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Abstract

The inducible enzyme heme oxygenase 1 (HO-1) plays a pivotal role in cell defense 
against different kind of stressors, from oxidative stress to hypoxia. For this reason, HO-1 
overexpression has been correlated to cancer aggressiveness in different tumors, being 
one of the molecular mechanisms used by tumor cells to become resistant to therapies. 
In addition, HO-1 has a well-recognized role in restraining immune response and in 
maintaining tolerance. In this context, the possibility that HO-1 induction in immune cells 
can reduce immune response to cancer and impair cancer immune therapy becomes a 
hot topic in cancer research. In this review, the most recent evidence pointing out the 
role of HO-1 in generating a permissive tumor microenvironment has been discussed as 
well as the most promising therapeutic approaches to increase effectiveness of immune 
therapies.

Introduction

The enzyme heme oxygenase (HO), described in two 
different isoforms (HO-1 and HO-2) in mammals, 
degrades heme group into biliverdin, carbon monoxide 
(CO), and free iron. The reaction is carried out in presence 
of molecular oxygen (O2) and nicotinamide adenine 
dinucleotide phosphate (Maines 1988). HO-1 and HO-2 
are codified by two different genes; HMOX-1 gene maps 
on the human chromosome 22q12.3 (Kutty et  al. 1994), 
on a region of approximately 13,148 bp, containing five 
exons and four introns, and codifies for a 32 kD protein 
(Waza et  al. 2018). HMOX-2 gene maps on the human 
chromosome 16p13.3 and encodes for two protein 
transcripts of 36 kDa. The degree of similarity between 
HO-1 and HO-2 is about 50% (McCoubrey & Maines 
1994). While HO-2 is constitutively expressed in particular 
in brain and testis, HO-1 is expressed at very low levels 
under physiological conditions in the most cell types and 
upregulated (Waza et  al. 2018) as part of stress response 
mechanisms (Keyse & Tyrrell 1989, Nitti et  al. 2022, Sies 

et al. 2022). Indeed, HO-1 is induced in response to various 
stressors (e.g. oxidative insults or iron overload) in order 
to maintain redox homeostasis preventing cell damage or 
transformation, and the products of its enzymatic activity 
exert the antioxidant and pro-surviving properties of 
HO-1. Indeed, biliverdin, together with bilirubin derived 
by the reduction carried out by biliverdin reductase, as well 
as CO are potent antioxidant and antiapoptotic molecules. 
Furthermore, the release of free iron is normally quenched 
by ferritin, which is synthesized in parallel with HO-1, 
or extruded by cells through ferroportin (Yanatori et  al. 
2020), thus preventing Fenton reaction and cell damage.

It is important to note that HO-1 is considered a key 
molecule in promoting immune tolerance and immune 
suppression, acting as major regulator of crosstalk between 
innate and adaptive immune response (Ozen et al. 2015). 
For instance, it has been well demonstrated that HO-1 
induction protects cells and tissues from immunological 
destruction, promoting the generation of CD4+CD25+ 
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regulatory T cells in mouse models of transplantation 
(Yamashita et al. 2006).

One of the main effectors of the anti-inflammatory 
and immunomodulatory action of HO-1 is CO, as 
demonstrated in different experimental models in which 
CO administration mimics the effects of HO-1 induction. 
HO-1-derived CO increases interleukin-10 (IL-10) 
production from macrophage (Otterbein et al. 2000) and 
drives maturation and proliferation of T cells toward anti-
inflammatory and immunosuppressive phenotype (Song 
et al. 2004). Moreover, HO-1 induction and CO generation 
act as a safeguard mechanism to prevent inappropriate 
T cell activation, as demonstrated in monocyte and in 
naïve CD4+ and CD8+ T cells (Burt et al. 2010). In addition, 
CO is able to inhibit APC maturation and induces Treg 
proliferation and expansion, ensuring a tolerogenic 
phenotype (Wegiel et  al. 2013). Indeed, both in rats and 
in human, the overexpression of HO-1 increases the 
refractory of dendritic cells (DCs) to lipopolysaccharide 
(LPS)-induced maturation (Chauveau et  al. 2005) and 
limits antigen presentation, thus impairing the activation 
of CD4+ T-cell responses (Campbell et  al. 2018). In 
addition, HO-1-derived CO promotes immunotolerance 
at fetal–maternal interface (Sollwedel et  al. 2005) and 
maintains maternal DCs in an immature state, leading 
to the expansion of the peripheral Treg population 
(Schumacher et al. 2012, Solano et al. 2015). Furthermore, 
HO-1 upregulation is involved in the early expansion, 
differentiation, and maturation of myeloid cells into 
macrophages (Wegiel et  al. 2014). HO-1 overexpression 
was demonstrated to be responsible for the switch to M2 
macrophage polarization, and M2 macrophages showed 
high levels of HO-1 expression (Naito et  al. 2014). Also, 
HO-1/CO system inhibits both caspase-1 activation and 
secretion of pro-inflammatory cytokines IL-1β and IL-18, 
acting as inflammasome inhibitors (Kim & Lee 2013).

However, the anti-inflammatory activity of HO-1 is 
mediated not only by CO but also by bilirubin. Indeed, 
the potent anti-inflammatory activity of bilirubin is well 
recognized since the pioneering observation of Philip 
S. Hench concerning the anti-inflammatory effect of 
jaundice (Hench 1938). Nowadays, the increased blood 
levels of bilirubin, when limited to modest increments, 
are considered protective against cardiovascular diseases, 
aging, and inflammatory diseases, as widely revised by 
Vitek and Tiribelli (Vitek et  al. 2023). In addition, HO-1-
derived bilirubin can act as potent immune modulator 
also in local tissue microenvironment, for instance 
favoring wound healing or regulating acute inflammation 
(Nitti et  al. 2020). Indeed, not only bilirubin is able 

to affect innate immunity by interfering with the 
complement cascade activation (Basiglio et al. 2007) and 
inducing M2-macrophages polarization (Zhao et al. 2021) 
but is also able to affect adaptive immunity. It has been 
demonstrated that bilirubin inhibits T-cell proliferation 
and decreases the production of pro-inflammatory Th1 
cytokines IL-2 and interferon-γ (IFNγ) in a dose-dependent 
manner in experimental model of EAE (Liu et al. 2008). In 
addition, macrophage exposure to bilirubin reduces PD-L1 
expression and leads to the expansion of Treg cells (Rocuts 
et al. 2010, Adin et al. 2017). Furthermore, both in vitro and 
in vivo bilirubin inhibits the production of inflammatory 
cytokines such as IL-6 and tumor necrosis factor α (TNFα) 
and reduces leukocyte transmigration via interaction with 
endothelial adhesion molecules (Keshavan et al. 2005), in 
particular decreasing the expression of P- and E-selectin, 
VCAM, and ICAM (Mazzone et al. 2009, Grochot-Przeczek 
et al. 2012).

HO-1 anti-inflammatory activity is widely 
recognized, and HO-1 has been proposed as a potential 
pharmacological target to treat chronic inflammatory 
diseases, as recently revised (Campbell et al. 2021).

Thus, due to the prominent role in cell survival and 
adaptation to stress, the induction of HO-1 in cancer cells 
can favor tumor progression and resistance to therapy. 
Nonetheless, in the last years, HO-1 overexpression 
ha been demonstrated also in cells of the tumor 
microenvironment (TME) and proved to be involved in 
the gain of a tolerogenic phenotype.

In this review, the main aspects of the role of HO-1 
in the modification of TMEN and in immune escape 
will be detailed, highlighting new potential therapeutic 
approaches in cancer treatment.

Molecular mechanisms of HMOX-1 
transcription in cancer cells and in 
immune cells

HMOX-1 gene promoter contains NRF2, hypoxia inducible 
factor-1 (HIF-1), Sp1, AP-1, nuclear factor-kappa B (NF-kB), 
and STAT3-binding sites that enable gene transcription 
in response to oxidative and electrophilic stressors or 
hypoxia (Lavrovsky et  al. 1994, Siow et  al. 1999, Prawan 
et  al. 2005, Alam & Cook 2007) and to different signal 
transduction pathways, setting up a pivotal mechanisms 
of cell survival and adaptation. Here, we focus on the 
main molecular mechanisms involved in HMOX-1 
transcription demonstrated in cancer cells and in immune 
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cells, especially with regard to cancer-immune recognition 
(Fig. 1).

HO-1 induction in response to the most oxidative 
and electrophilic stressors mainly relays on the activation 
of NRF2 (Loboda et  al. 2016, Yamamoto et  al. 2018), and 
the role played in cancer progression by NRF2-dependent 
HO-1 induction is well known and characterized (Shibata 
et  al. 2008, Na & Surh 2014, Furfaro et  al. 2016b). NRF2 
in the cytosol is bound to its inhibitor Kelch-like ECH-
associated protein 1 (Keap1) which belongs to the Cullin3 
(CUL3)-based ubiquitin 3 ligase complex and targets NRF2 
to proteasome degradation. Keap1 modifications due to 
cysteine oxidation or electrophile binding allow NRF2 to 
move into the nucleus and bind antioxidant/electrophile 
response elements (AREs) by dimerizing with small Maf 
proteins, leading to HO-1 transcription (Kobayashi & 
Yamamoto 2005, Hirotsu et al. 2012).

In cancer cells, NRF2/Keap1 system can be affected by 
genetic modifications (Mitsuishi et al. 2012, Furfaro et al. 
2016b). Its constitutive activation due to gain-of-function 
mutations of NRF2 or loss-of-function mutations of Keap1 
has been identified in different kinds of tumors, including 
head and neck, lung, esophageal, gastric, liver, bladder, and 
colorectal cancer (Na & Surh 2014). In addition, epigenetic 
modifications, such as TET-dependent demethylation of 
NRF2 promoter, or CUL3 hypermethylation of Keap1, can 
induce NRF2 constitutive activation in lung, ovarian, and 
colorectal cancers (Hanada et al. 2012, van der Wijst et al. 
2014, Zhao et  al. 2015). Recent evidence underlines that 
NRF2/HO-1 pathways activation works as an oncogenic 
route that favors murine breast cancer progression 

modulating immune response in pro-carcinogenic 
direction (Li et al. 2021).

In immune cells, NRF2-dependent HO-1 induction 
has a prominent role in macrophage polarization. It has 
been recently demonstrated that in diet-induced obese 
mice JWH-133, an agonist of cannabinoid receptor 2, 
regulates its anti-inflammatory and anti-obesity activity 
by promoting macrophage polarization to M2 in adipose 
tissue via NRF2/HO-1 pathways (Wu et  al. 2020). In 
addition, the activation of NRF2/HO-1 pathway is linked 
to IL-10 production and to the gain of a pro-fibrotic 
feature in macrophages, cooperating with the arhyl 
hydrocarbon receptor in response to the exposure to 
uremic toxins (Barisione et al. 2016). Furthermore, NRF2/
HO-1 activation in tumor-associated macrophages (TAMs) 
reduces the efficacy of anticancer treatment and favors 
melanoma progression, as better discussed in the next 
sections (Consonni et al. 2021).

HO-1 induction is also observed as a response to the 
increased intracellular concentration of heme groups 
(Ogawa et al. 2001). The BTB domain and CNC homolog 
1 (Bach1) is a heme-binding protein able to bind ARE 
sequences repressing HMOX-1 transcription (Kikuchi 
et al. 2005, Ryter & Choi 2005, Chapple et al. 2016, Piras 
et al. 2017, Zhang et al. 2019). Heme groups can bind Bach1 
that in turns detaches from ARE sequences enabling 
HMOX-1 transcription (Ogawa et al. 2001, Davudian et al. 
2016, Nitti et al. 2017). The degradation of heme due to the 
activity of HO-1 stabilizes Bach1 and prevents its further 
degradation, restoring its level. Thus, when Bach1 levels 
are restored, HO-1 levels in turns decreases. In cancer cells, 
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Figure 1
Schematic representation of the main molecular 
pathways involved in HMOX1 gene transcription, 
particularly relevant in cancer cells (blue) and 
immune cells (purple) or in both (degrading). See 
text for more details. Image created with 
BioRender.com.
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this mutual regulation between HO-1 and Bach1 seems 
lost. Indeed, Bach1 stabilization can be observed in the 
presence of HO-1 expression in lung cancer metastasis 
and correlates with poor prognosis (Lignitto et  al. 2019, 
Wiel et al. 2019). The role of heme in Bach1 modification 
and the correlation with tumor progression has been 
demonstrated and reviewed elsewhere (Muhseena et  al. 
2021). Considering immune cells, it has been recently well 
proved that HO-1 can be induced by heme independently 
by NRF2 but dependently by Bach1, at least in peritoneal 
macrophages (Zhang et al. 2021), and this aspect seems to be 
particularly relevant in inflammatory response. Moreover, 
the possibility to induce HO-1 in a Bach1-dependent 
but NRF2-independent way has been demonstrated for 
cannabidiol and proved to exert anti-inflammatory effects 
(Casares et al. 2020).

The different kinases (i.e. MAPKs and PI3K/AKT) 
involved in HO-1 induction in cancer cells can act on 
NRF2 but also on other transcription factors. In MCF-7 
breast cancer cells treated with cadmium chloride, the 
induction of HO-1 is due to p38 MAPK-dependent NRF2 
activation (Alam et  al. 2000). In human gastric cancers, 
HO-1 induction is mediated by ERK activation but 
independent of NRF2 (Liu et  al. 2004). Also, PI3K/AKT 
plays a role in HO-1 induction in neuroblastoma and in 
cholangiocarcinoma treated with guanosine (Dal-Cim 
et  al. 2012) or piperlongumine (Talabnin et  al. 2020), 
respectively.

HIF-1α (Wang et al. 1995, Pugh et al. 1997) also induces 
HO-1 expression in response to cellular stressors, including 
endogenous ROS and oxygen deprivation (Chin et al. 2007, 
Palazon et al. 2014). A specific HIF-1α/HO-1 pathway has 
been well characterized in halting inflammatory response 
in lungs (Hu et al. 2015) and correlated to the modulation 
of mitochondrial biogenesis (Yu et  al. 2016, Shi et  al. 
2021). Importantly, a specific role of HIF-1α-dependent 
HO-1 induction has been demonstrated to be involved in 
maintaining Hodgkin lymphoma cells as undifferentiated 
(Nakashima et al. 2021). Notably, the expression of HIF-1α 
has been proved to be highly interconnected with HO-1 
overexpression in order to constitute a highly tolerogenic 
TME, favoring M2 polarization and Treg recruitment in 
breast cancer (Duechler et al. 2014).

Sp1 and AP-1 have been demonstrated to be 
responsible of HO-1 induction in mouse brain endothelial 
cells exposed to prostaglandin 15d-PGJ2 downstream 
the activation of ROS/PKCδ/JNK1/2 cascade (Yang et  al. 
2022). Moreover, it has been demonstrated that HO-1 is 
induced through the activation of AP-1 via PKCα/Pyk2/
p38α MAPK- or JNK1/2-dependent c-Jun activation, in 

human pulmonary alveolar cells exposed to mevastatin, 
and suppresses TNFα-dependent inflammation (Yang et al. 
2020).

In addition, the relevance of AP-1 and NF-kB in the 
regulation of HMOX-1 transcription has been described 
in the inflammatory response (Luu Hoang et  al. 2021). 
Indeed, the binding site for NF-kB in the promoter 
region of HO-1 was identified by Abraham’s lab in 1996 
(Lavrovsky et al. 1994) and confirmed later on as part of the 
mechanisms underlying HO-1 expression in macrophages 
exposed to LPS (Kurata et  al. 1996) or in epithelial cells 
treated with TGFβ (Lin et al. 2007a). Interestingly, also the 
pharmacological modulation of this pathway has been 
proposed in the treatment of B-cell lymphoma (Huang 
et al. 2016).

With particular relevance to macrophages, IL-10 
induces the upregulation of HO-1 via IL-10R, through 
STAT3 phosphorylation and its binding to the STAT-
binding element in the promoter region of HO-1 
(Ricchetti et al. 2004, Naito et al. 2014). Notably, STAT3 can 
be activated downstream of HO-1 induction, since HO-1 
inhibition was able to downregulate STAT3 activation 
(Magri et al. 2022).

It is important to note that the presence of two kinds 
of polymorphisms such as (GT)n repeats and SNPs in gene 
promoter can influence HMOX1 inducibility. Indeed, 
the length of (GT)n repeats (long vs short) correlates 
with different transcriptional activity (lower vs higher, 
respectively) and with the development of cardiovascular 
and pulmonary diseases (Exner et al. 2004, Daenen et al. 
2016). Also, a higher degree of inducibility is associated 
with SNP413 A>T and with a reduction of cardiovascular 
disease risk (Ono et  al. 2004). Yet, few data have been 
provided so far as far as neoplastic pathology is concerned, 
as previously reported by us (Nitti et al. 2021).

HO-1 expression is regulated by microRNA as well, as 
elsewhere revised (Cheng et al. 2013), directly or through 
the modulation of NRF2-dependent activation pathway 
affecting cancer progression. Indeed, the modulation of 
NRF2/HO-1 by miRNA-155 or miR200a has a role in lung 
cancer and breast cancer progression, respectively (Eades 
et al. 2011, Gu et al. 2017). Also, miR-1254 or miR-193a-5p 
acts directly on HO-1 and reduces the growth of non-small 
cell lung cancer (NSCLC) and prostate cancer, respectively 
(Pu et al. 2017, Yang et al. 2017), and we proved that miR494 
favors neuroblastoma cell survival in oxidative stress 
condition by inducing HO-1 (Piras et al. 2018).
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HO-1 protein structure and localization

HO-1 has an α-helical structure. The heme group is 
coordinated with His 25 and is accommodated between 
the distal and the proximal helices generating a closer 
conformation in the holoenzyme (Rahman et al. 2013).

HO-1 main localization is the endoplasmic reticulum 
(ER) where co-localizes with cytochrome P450 (CYP450) 
reductase (Durante 2020), but evidence has been provided 
also for plasma membrane, where HO-1 co-localizes with 
caveolin 1 and 2 (Jung et al. 2003), mitochondria (Slebos 
et  al. 2007), and nuclei (Lin et  al. 2007b). It has been 
proved that HO-1 prevents apoptosis acting on caveolin 1 
through the activity of CO (Kim et al. 2005). Localization 
at the mitochondria seems to be involved in the control 
of apoptotic pathway, in a mutual relation with HO-2 
(Turkseven et al. 2007). In addition, mitochondrial HO-1 
controls the metabolism of heme groups (Converso 
et  al. 2006). However, the role played by the different 
localization of HO-1 in the progression of tumors has 
not been evaluated, with the exception of the nuclear 
localization. Indeed, a truncated form of HO-1, with 
nuclear localization and no enzymatic activity, derived 
by proteolytic activity of peptide peptidase (SSP), has 
been described (Lin et  al. 2007b, Hsu et  al. 2015). Being 
characterized by a transcriptional activity, truncated 
HO-1 has been hypothesized to be importantly involved 
in cancer progression. In the acetylated form, truncated 
HO-1 increases AP-1 transcriptional activity, leading 
to cancer progression (Hsu et  al. 2017, Mascaró et  al. 
2021). Contrasting results have been described, both 
highlighting not only the association between nuclear 
compartmentalization and disease severity in chronic 
myeloid leukemia (Tibullo et  al. 2013) but also opposite 
observations (Ferrando et al. 2011, Degese et al. 2012), and 
the topic has been revised in deep elsewhere (Mascaró 
et al. 2021).

To note, HO-1 has been detected extracellularly, in 
plasma, serum, milk, cerebrovascular fluids, and urine 
(Serpero et  al. 2012, Signorelli et  al. 2016, Vanella et  al. 
2016), opening to the chance to investigate a potential role 
of HO-1 as biomarker (Tibullo et al. 2013). The mechanisms 
underlying the extracellular localization are still largely 
unknown, and both the active secretion and the result 
of cellular lysis have been hypothesized. In patients with 
acute myocardial infarction, the plasma level of HO-1 does 
not correlate with biomarkers of necrosis (Novo et al. 2011), 
and in patients with acute kidney injury, the urinary level 
of HO-1 mirrors the increased level in renal tissue, as a 
response to cell damage (Zager et  al. 2012). Interestingly, 

a correlation between the serum level of HO-1 and the 
progression of abdominal aortic aneurysm has been 
highlighted (Hofmann et al. 2021). With regard to cancer, 
it is to note that HO-1 protein is found in the culture 
medium of breast, lung, melanoma, and kidney tumor 
cells in the extracellular vesicles (Hurwitz et  al. 2016). In 
this context, HO-1 needs to be taken into consideration as 
a potential circulating biomarker, especially considering 
the evident correlation among HO-1 expression levels 
in cancer tissues and clinical disease score or prognosis, 
as already reviewed (Nitti et al. 2021), even though more 
investigations are needed.

HO-1 expression and immune escape

During the progression of neoplastic disease, the 
upregulation of HO-1 can modify TME, decreasing cancer 
cell immune recognition. This effect can be achieved 
by different mechanisms. On one hand, cancer cells 
can upregulate HO-1 and elude immune surveillance 
modifying the expression of receptors for immune 
cells or through the generation of immune-suppressive 
cytokines. On the other hand, immune cells themselves 
can overexpress HO-1 gaining a less aggressive, tolerant 
phenotype. These two main mechanisms are detailed 
below.

HO-1 expression in cancer cells reduces 
immune recognition

The induction of HO-1 in cancer cells has been related to 
the progression of disease, and associated with resistance 
to therapy, invasiveness, metastasis, and angiogenesis, as 
widely reviewed by us and others (Jozkowicz et  al. 2007, 
Was et al. 2010, Nitti et al. 2017) and not further discussed 
here.

Nonetheless, in the last years, HO-1 upregulation 
in cancer cells gained attention for the ability to impair 
immune recognition (Fig. 2).

We have recently demonstrated that, in BRAFV600-
mutated melanoma cells treated with vemurafenib 
(PLX4032), HO-1 overexpression reduces natural killer 
(NK) recognition impairing the expression of NK ligands 
(B7-H6 and ULBP3), both under standard culture 
conditions (Furfaro et  al. 2020) and under physiological 
oxygen tension or hypoxia (Furfaro et al. 2022). Moreover, 
the induction of HO-1 in cervical cancer cells reduces the 
expression of specific markers of NK activation (NKG2D, 
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NKp30, and NKp46) and the production of IFNγ and 
TNFα in a co-culture model (Gomez-Lomeli et  al. 2014). 
In both experimental systems, the downregulation or 
the enzymatic inhibition of HO-1 in cancer cells restores 
the NK antitumor activity restoring the expression of 
NK ligands on cancer cells (Furfaro et  al. 2020, 2022) or 
NK-activating receptors (Gomez-Lomeli et  al. 2014). In 
line with these results, HO-1 overexpression in acute 
myeloid leukemia (AML) cells has been shown to decrease 
NK cytotoxicity activity by inhibiting CD48-2B4 axis both 
in vitro and in vivo and is associated with a poor prognosis 
in term of overall survival, refractory, and relapse (Zhang 
et al. 2022). More recently, the induction of HO-1 in AML 
has been proved to reduce the expression of HLA-C, thus 
favoring tumor escape from NK-mediated killing (Feng 
et al. 2023).

Furthermore, breast cancer and melanoma 
progression has been successfully halted by fasting-
mimicking diet that increases the infiltration of cytotoxic 

CD8+ tumor-infiltrating lymphocytes (TILs) through the 
downregulation of HO-1 in cancer cells (Di Biase & Longo 
2016).

Interestingly, a potent immune-suppressive response 
is observed in regulatory CD8+ T cells that specifically 
recognized HO-1 and that crucially contribute to the 
suppression of T-mediated antitumoral response (Andersen 
et  al. 2009). Thus, HO-1 could drive the suppression of 
T-cell response once recognized by immune cells. In 
addition, these cells have been detected not only in tumor 
mass but also in peripheral blood potentially working as 
biomarkers in cancer patients (Andersen et al. 2009).

HO-1 expression in TAMs, TILs, and DCs impairs 
cancer immune recognition

In recent years, HO-1 upregulation has been described in 
immune cells of TME, where it plays a role in suppressing 
antitumor response promoting a permissive environment 

Figure 2
Schematic representation of the immune-suppressive activity induced by HO-1 overexpression in cancer cells, in TAMs, and in DCs and the effects on T 
and NK cells that lead to immune-escape and cancer progression. Image created with BioRender.com.

https://doi.org/10.1530/REM-23-0006
https://rem.bioscientifica.com� ©�2023�the�author(s)

Published�by�Bioscientifica�Ltd.
This work is licensed under a Creative Commons 
Attribution 4.0 International License.

https://doi.org/10.1530/REM-23-0006
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


PROOF ONLY
R7M Nitti et al. 2023:1 e230006

for growth and metastasis. In this context, the most 
important evidence comes from the analysis of TAMs, 
TILs, and DCs (Luu Hoang et al. 2021).

TAMs are the main source of HO-1 in the TME. They 
respond to different tumor-derived stimuli and are able 
to differentiate and reprogram into different subsets that 
are beyond the classic M1 and M2 dichotomy, and HO-1 
has been recently proved to be overexpressed in different 
specific subgroups of TAMs (Arnold et al. 2014, Muliaditan 
et al. 2018a, Consonni et al. 2021).

Indeed, in two murine models of Lewis lung carcinoma 
and pancreatic ductal adenocarcinoma, a particular subset 
of HO-1-positive TAMs co-expressing fibroblast activation 
protein alpha (FAP+HO-1+ TAMs) has been described 
(Arnold et  al. 2014). In these cells, HO-1 conditional 
ablation or HO-1 pharmacological inhibition decreases 
tumor growth, confirming the immunosuppressive role of 
HO-1 in TAMs.

Similar TAM subsets were found in tissue sections of 
human adenocarcinoma and in the 4T1 orthotopic model 
of breast adenocarcinoma (Muliaditan et al. 2018a). They 
are predominantly located in the perivascular region 
of the tumor and facilitate trans-endothelial migration 
and metastatic spread, and HO-1 inhibition completely 
abrogates this effect (Muliaditan et al. 2018a).

Positive staining for HO-1 was also found in CD11b+- 
and F4/80+-infiltrating macrophages in E.G7-OVA tumor-
bearing mice (Alaluf et al. 2020). HO-1+ TAMs derive from 
a subset of Ly6Chi monocytes that gradually differentiate 
into Ly6CloMHCII+ TAMs in TME. Compared with HO-1-
negative TAMs, this subset shows decreased MHC II 
expression in line to its immunosuppressive feature.

Recently, another particular subgroup 
of TAMs expressing high levels of HO-1 
(F4/80hiCD115hiC3aRhiCD88hi) has been identified 
(Consonni et  al. 2021). This population, phenotypically 
similar to erythrocyte macrophages, preferentially 
accumulates at the invasive edge of the tumor, in line 
with their involvement in neoangiogenesis, epithelial-to-
mesenchymal transition, and tumor spread. Furthermore, 
M-CSF or C3a-induced differentiation of bone marrow-
derived monocytes (BMDMs) upregulates HO-1 in an 
NRF2-dependent way coordinated by the p50NF-kBi-
CSF-R1-C3aR axis and induces TAM phenotype in 
CO-dependent manner. Importantly, both the deletion of 
myeloid HO-1 and the inhibition of recruitment pathway 
of HO-1+ TAMs are able to block metastasis formation and 
to enhance the effect of immunotherapy, in particular 
increasing the efficacy of anti-PD-1 therapy. Moreover, 
in patients with stage III melanoma, HO-1 expression 

levels in the peripheral monocytes correlate with HO-1 
expression in CD163+ cells of metastatic lesions, thus 
highlighting the correlation between HO-1 expression 
and poor prognosis (Consonni et al. 2021).

Other evidence shows that following chemotherapy-
induced phagocytosis of tumor cells, TAMs upregulate 
HO-1 expression that, in turns, hampers M1 polarization, 
attenuating the effect of chemotherapeutics. In fact, using 
HO-1 knockout mice or in the presence of HO-1 inhibitor 
the response to chemotherapy is efficiently restored (Kim 
et al. 2020, 2021).

In addition, HO-1 plays a role in the metabolic changes 
of TAMs, such as modification in aminoacid metabolism, 
driving the establishment of an immunosuppressive 
microenvironment (Magri et  al. 2022). In fact, the 
inhibition of HO-1 in BMDMs significantly reduces 
the expression of IDO-1 and Arg2 (Magri et  al. 2022), 
two essential enzymes involved in the catabolism of 
l-arginine and l-tryptophane, associated with the 
immunosuppressive network in cancer (Mondanelli et al. 
2017).

Notably, HO-1 expression in TAMs modulates the 
activity of TILs, DCs, and NK cells toward an immune-
suppressive feature. Indeed, the inhibition of HO-1 in 
TAMs affects the production of cytokines involved in T-cell 
recruitment and regulation, leading to a reduction in the 
expression of Tregs and increasing the proportion of CD8+ 

T cells, highlighting the strategic potential associated with 
TAMs reprogramming by HO-1 inactivation (Kim et  al. 
2021). Importantly, myeloid ablation of HO-1 is able to 
improve the response toward therapeutic immunization 
promoting antitumor CD8+ T cell proliferation and 
cytotoxicity (Alaluf et al. 2020).

Moreover, in glioblastoma tissues, a large presence 
of CD68+/HO-1+ macrophages and a lower percentage of 
CD8+ T lymphocytes have recently been shown; HO-1 
inhibition, which strongly reduces IL-10 release, is able to 
drive the complete recovery of T-cell proliferation (Magri 
et al. 2022).

Furthermore, HO-1 deletion, by promoting a 
phenotypic switch in F4/80hi TAMs, increases the expression 
of IFNγ and GrzB in CD8+ T cells, leading to a higher 
frequency of effector memory cells (CD8+CD44+CD62L– 
cells) and to an augmented CD8+/CD4+FoxP3+ ratio 
restoring their antitumor activities (Consonni et al. 2021). 
Notably, the infiltration of HO-1+CD4+CD25+ FoxP3+ Tregs 
correlates with the progression and grading of glioma (El 
Andaloussi & Lesniak 2007).

With regard to DCs, it has been demonstrated that 
HO-1 induction maintains DCs in an immature and 
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pro-tolerogenic status (Chauveau et  al. 2005). Moreover, 
the immunomodulatory activity of CD4+CD25+ Tregs 
is dependent on HO-1 expression in DCs (George et  al. 
2008). Importantly, pro-tolerogenic signature of DCs in 
TME is achieved in an HO-1-dependent manner (Trojandt 
et al. 2016).

No evidence of HO-1 upregulation in NK cells in TME 
has been pointed out so far.

HO-1 inhibitors in cancer therapy

The role of HO-1 in tumor progression appears, then, to be 
related to two crucial aspects: on one hand, HO-1 exerts an 
antiapoptotic, pro-surviving activity that protects cancer 
cells from the death induced by therapeutic agents, and 
this has been widely revised elsewhere by us and others 
(Podkalicka et  al. 2018, Nitti et  al. 2021). However, HO-1 
carries out a crucial immune-suppressive activity both in 
tumor cells, reducing their immune recognition, and in 
immune cells reducing their antitumoral activity. Thus, 
the inhibition of HO-1 activity as well as its molecular 
downregulation reducing the availability of HO-1 
bioactive products, CO and bilirubin, can have strategic 
therapeutic potential acting both as chemosensitizer, 
increasing the efficacy of traditional anticancer treatments 
(chemo-, radio-, and photodynamic therapies), and as 
immune-stimulatory tool improving the efficacy of novel 
immunotherapy approaches, as explained below.

Different pharmacological compounds as well as 
genetic tools able to downregulate HO-1 activity have been 
proposed (Podkalicka et al. 2018). Among pharmacological 
compounds, proto- and mesoporphyrin derivatives and 
imidazole-based compounds are the most well known 
(Podkalicka et al. 2018).

The first generation of HO inhibitors are 
metalloporphyrins (Vreman et  al. 1993). They are 
structurally similar to heme molecules and strongly 
inhibit HO-1 activity, although they lack in specificity 
(Schulz et  al. 2012). Indeed, they act on other heme-
dependent enzymes such as nitric oxide synthase 
(NOS), soluble guanylate cyclase (sGC), and CYP450 
(Appleton et al. 1999, Kinobe et al. 2008). Moreover, their 
translational applicability was sometimes limited due to 
their poor solubility in aqueous solutions. However, the 
generation of water-soluble compounds by conjugation 
with specific molecules, for example, polyethylene glycol 
or amphiphilic styrene–maleic acid copolymer, increased 
their applicability (Sahoo et  al. 2002, Iyer et  al. 2007, 
Herrmann et al. 2012).

Metalloporphyrins showed efficacy both in vitro and in 
vivo. The most used are zinc-protoporphyrin IX (ZnPPIX), 
tin-protoporphyrin IX (SnPPIX), and tin-mesoporphyrin 
IX (SnMPIX) (Podkalicka et al. 2018, Nitti et al. 2021).

It has been shown that ZnPPIX treatment enhances 
the efficacy of cisplatin in hepatoma cancer cells (Liu 
et  al. 2014), increases the apoptotic rate in glioma cells 
treated with arsenic trioxide (Liu et al. 2011) and is able to 
enhance the cytotoxic effect of gemcitabine in urothelial 
cancer cells (Miyake et  al. 2010). We have demonstrated 
that HO-1 inhibition by ZnPPIX sensitizes neuroblastoma 
cells to glutathione depletion and etoposide (Furfaro 
et  al. 2012) and to bortezomib treatments (Furfaro et  al. 
2014). Furthermore, in BRAFV600-mutated melanoma cells, 
SnMPIX increases cell death induced by vemurafenib/
PLX4032 (Furfaro et al. 2020).

Moreover, ZnPPIX treatment sensitizes A549 NSCLC 
cells to radiotherapy (Zhang et  al. 2011) and colon and 
ovarian cancer cells to photodynamic therapy (Nowis 
et  al. 2006), and SnPPIX sensitizes melanoma cells to 
photodynamic therapy (Frank et al. 2007).

Importantly, it has been recently reported that the 
inhibition of HO-1 by metalloporphyrins reprograms the 
immune response toward tumor cells and consequently 
improves the efficacy of immunotherapy. Indeed, 
FAP+HO-1+ TAMs can be therapeutically targeted using 
SnMPIX, which prevents metastatic spread by blocking 
HO-1-dependent CO release (Muliaditan et  al. 2018a). 
Moreover, the inhibition of HO-1 activity by ZnPPIX 
restores the expression of pro-inflammatory genes such as 
TNFα and CXCL10 while downregulating the expression 
of typical anti-inflammatory genes like IL-10 and CCL22, 
and treatment with CO-releasing molecule, CORM-2, was 
able to revert these effects, confirming the role played 
by HO-1-dependent CO in suppressing tumor immune 
recognition (Consonni et  al. 2021). In addition, in mice 
treated with anti-PD-1, HO-1 inhibition with ZnPPIX 
improves the efficacy of immunotherapy, resulting in a 
decrease of tumor volume (Consonni et  al. 2021). More 
recently, in macrophage derived from glioblastoma 
patients, it has been proved that treatments with ZnPPIX or 
SnPPIX decrease PD-L1 expression; on the contrary, HO-1 
induction obtained by macrophage exposure to cobalt 
protoporphyrin IX (CoPPIX) increases PD-L1 expression, 
indicating that PD-L1 regulation depends on HO-1 activity 
(Magri et  al. 2022). Also, in a preclinical model of breast 
cancer, it has been demonstrated that SnMPIX can be used 
as immune checkpoint that targeting myeloid-derived 
HO-1 improves response to chemotherapy, achieving the 
efficacy of PD-1 blockade (Muliaditan et al. 2018b).
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Furthermore, the inhibition of HO-1 can be a strategy 
to improve the adoptive immunotherapy. Indeed, 
SnMPIX-based HO-1 inhibition significantly increases 
the generation of WT1 leukemia-specific T cells, from 
healthy donors, enhancing the effective T-cell immunity 
in leukemia patients (Schillingmann et al. 2019).

The second generation of HO-1 inhibitors, namely 
the imidazole-based compounds, are water-soluble non-
porphyrin molecules. Acting with a non-competitive 
mechanism, they show a limited inhibitory activity on 
NOS, sGC, and CYP450 and are selective toward HO-1 
(Kinobe et al. 2006, Pittala et al. 2013). Azalanstat was the 
first imidazole-based compound described (Vlahakis et al. 
2005), but other molecules derived from its structural 
modification have been synthesized and extensively 
reviewed by the group of Salerno and Pittalà (Salerno et al. 
2019). Recently, a novel acetamide-based HO1 inhibitor, 
with potent antiproliferative activity in U87MG glioma 
cells, has been discovered (Fallica et al. 2021).

Among imidazole-based compounds, a small 
molecule OB-24 shows potent inhibition of HO-1 activity. 
In particular, OB-24 selectively inhibits HO-1 in prostate 
advanced cancer cells, leading to a significant decrease 
of cell proliferation in vitro and a reduction of tumor 
growth and lymph node/lung metastasis in vivo, also 
showing a potent synergistic activity when combined 
with taxol (Alaoui-Jamali et  al. 2009). In macrophages 
from glioblastoma patients, OB-24, similar to ZnPPIX 
and SnMPIX, reduced PD-L1 expression (Magri et  al. 
2022). Notably, in B16-F0 melanoma-bearing mice, the 
combination therapy OB-24 plus anti-PD-1 reduces the 
tumor size compared to monotherapy. The effect seems 
to be dependent on the inhibition of cytoprotective 
function of HO-1; the inhibition of HO-1, indeed, renders 
melanoma cells more susceptible to immune-mediated 
killing (Khojandi et al. 2021). In addition, the same authors 
demonstrated that OB-24-dependent HO-1 inhibition 
counteracts immune CD4+ and CD8+ TIL evasion of B16 
melanoma cells, leading to a decrease in tumor volume. 
In fact, HO-1 induction by hemin treatment protects B16 
cells from CTL-mediated killing (Kuehm et al. 2021).

Furthermore, different genetic tools such as RNA 
interference and CRISPR/Cas9 technology have been 
tested to modulate HO-1 activity in cancer therapy.

Small interfering RNA and short hairpin RNA act by 
targeting HO-1 at the transcriptional level, leading to a 
decrease of protein synthesis, and the efficacy of HO-1 
silencing in sensitizing cancer cells to therapy has been 
reported widely. We have demonstrated that HO-1 silencing 
overcomes cancer cell resistance in neuroblastoma cells 

exposed to bortezomib (Furfaro et al. 2014, 2016a) and in 
melanoma cancer cells exposed to target therapy (Furfaro 
et  al. 2020). HO-1 silencing sensitizes pancreatic cancer 
cell lines to gemcitabine or radiation treatment, leading 
to a significant inhibition of tumor growth (Berberat et al. 
2005). Silencing of HO-1 significantly increased apoptosis 
as demonstrated in lung (Kim et al. 2008) and colon cancer 
cells (Busserolles et al. 2006). In the orthotopic model of 
hepatocellular carcinoma, siHO-1 results in diminished 
tumor growth (Sass et  al. 2008). Moreover, siHO-1 
sensitizes human urothelial and cervical cancer cells 
to 5-aminolevulinic acid-based photodynamic therapy 
(Miyake et al. 2009, Ohgari et al. 2011) and mediated the 
photodynamic cytotoxicity, increasing the responsiveness, 
in C-26 colon adenocarcinoma, in MDAH2774 human 
ovarian carcinoma (Nowis et  al. 2006) and in WM451Lu 
human metastatic melanoma cells (Frank et al. 2007).

In addition, silencing of HO-1 significantly enhanced 
the sensitivity of HL-60R AML cell line to chemotherapy 
(Zhe et  al. 2015) and induced apoptosis and cell growth 
arrest in acute lymphocytic leukemia (Cerny-Reiterer et al. 
2014) as well as in chronic lymphocytic leukemia, where 
the silencing also enhanced the effects of the combined 
therapy fludarabine plus entinostat (Zhou et al. 2019).

CRISPR/Cas9 editing system through the genetic 
ablation of HO-1 leads to a stable knockdown and to 
a high efficiency of protein inhibition. In BRAF-WT 
melanoma cells, HO-1 CRISPR/Cas9 editing decreased 
clone formation and tumor cell growth (Liu et  al. 2019) 
and in pancreatic ductal adenocarcinoma suppressed cell 
proliferation and increased, under hypoxia condition, the 
efficacy of gemcitabine treatment (Abdalla et  al. 2019). 
Moreover, in T47D breast cancer cells, HO-1 CRISPR/
Cas9-mediated knockdown decreased both proliferation 
and migration and increased cisplatin-induced apoptosis 
(Evazi Bakhshi et al. 2022).

Importantly, in vivo experimental models on HO-1 
ablation leads to important findings on the role played 
by HO-1 in response to immunotherapy. Indeed, it has 
been demonstrated that myeloid specific ablation of 
HO-1 in MN/MCA1 fibrosarcoma enhances the efficacy 
of anti-PD-1 therapy in decreasing tumor volume and the 
percentage of metastatic area (Consonni et al. 2021).

In xenograft mouse models of AML, HO-1 gene 
knockout enhances the antitumor effect of PD-1 inhibition 
by reducing tumor growth and increasing survival. In this 
context, HO-1 knockout inhibits the immunosuppressive 
function of both polymorphonuclear and monocytic/
myeloid-derived suppressor cell populations (Zhou et  al. 
2018). Moreover, it has been demonstrated that HO-1 
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Table 1 Efficacy of HO-1 inhibitors in cancer therapies.

Inhibitor
Experimental models

Effect ReferenceIn vitro In vivo

ZnPPIX Hepatoma cells 
(HepG2)

Xenograft mouse model 
of liver cancer

ZnPPIX enhances cellular sensitivity to 
cisplatin by increasing ROS production

Liu et al. (2014)

Human glioma cell 
lines (U251MG and 
A172)

ZnPPIX increases cell death and ROS 
generation in glioma cells potentiating 
the effects of arsenic trioxide

Liu et al. (2011)

UC lines (T24 and 
MGHU3)

Xenograft mouse model 
of urothelial cancer

ZnPPIX sensitizes UC to gemcitabine and 
irradiation treatment. In in vivo model, 
ZnPPIX decreases the number of 
proliferating cells and increases the 
apoptotic rate.

In addition, siHO-1 sensitizes to 5-ALA-
based photodynamic therapy

Miyake et al. 
(2010)

Neuroblastoma cells 
(GIMEN)

ZnPPIX sensitizes GIMEN cells to GSH 
depletion and etoposide treatment 
increasing ROS production

Furfaro et al. 
(2012)

Neuroblastoma cells 
(HTLA-230)

ZnPPIX improves the pro-apoptotic effect 
of proteasome inhibitor-based therapy 
(bortezomib) in high-risk 
neuroblastoma cells.

HO-1 silencing also sensitizes 
neuroblastoma cells to bortezomib 
treatment

Furfaro et al. 
(2014)

Human NSCLC cells 
(A549)

ZnPPIX in combination with irradiation 
decreases cell viability and clonogenicity 
and enhances the apoptotic index as 
well as the percentage of cells in G1 
phase.

Zhang et al. (2011)

Human NSCLC cells 
(A549)

ZnPPIX and siHO-1 increase apoptosis of 
A549 cells exposed to cisplatin

Kim et al. (2008)

Human ovarian 
carcinoma cells 
(MDAH2774) and 
murine colon 
adenocarcinoma cells 
(C-26)

ZnPPIX treatment enhances 
photodynamic mediated cytotoxicity.

HO-1 silencing also sensitizes carcinoma 
cells to photodymamic therapy

Nowis et al. (2006)

Mouse 4T1 breast tumor 
model

Cotreatment with ZnPPIX and paclitaxel 
decreases tumor growth and restores 
the proportion of infiltrating CD8+ 
cytotoxic T lymphocytes

Kim et al. (2020)

Mouse 4T1 breast tumor 
model

ZnPPIX increases the expression of 
CD86-M1 polarization marker in mice 
treated with paclitaxel and decreases 
the expression of IL-10 in CD11b+ 
myeloid cells

Kim et al. (2021)

Ex vivo HO-1 deleted 
TAMs

B-16 melanoma-bearing 
mice

ZnPPIX treatment decreases tumor 
growth, improves the effect of anti-PD1 
immunotherapy, and reduces the 
percentage of metastatic area in lung. 
Myeloid ablation HO-1 also blocks 
metastasis formation and increases the 
efficacy of anti PD-1 therapy. Ex vivo 
deletion of HO-1 in TAMs restores CD8+ 
T-cell antitumor activity

Consonni et al. 
(2021)

Ex vivo BMDM derived 
from glioblastoma 
patients

ZnPPIX treatment decreases PD-L1 
expression in macrophages derived 
from glioblastoma patients and enables 
the recovery of CD8+ T lymphocytes.

Similar results were obtained using 
OB-24 as HO-1 inhibitor

Magri et al. (2022)
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SnMPIX Primary BRAFV600 

melanoma cells 
(MeOV-1, MeTA, and 
MeMi)

SnMPIX increases cell death induced by 
vemurafenib in BRAFv600-mutated 
melanoma cells and increases NK cell 
recognition and killing.

siHO-1 also improves the efficacy of 
vemurafenib, further reducing cell 
viability and restoring NK ligand 
expression

Furfaro et al. 
(2020)

4T1 orthotopic model 
breast carcinoma

SnMPIX treatment prevents trans-
endothelial migration and metastatic 
dissemination of cancer cells, blocking 
CO release

Muliaditan et al. 
(2018a)

Spontaneous murine 
model of mammary 
adenocarcinoma 
(MMTV-PyMT)

SnMPIX targets myeloid HO-1 activity 
favoring CD8+ T-cell response

Muliaditan et al. 
(2018b)

Ex vivo PBMC from 
healthy donors

SnMPIX increases the generation of 
WT1-specific T cells used in adoptive 
immunotherapy to improve T-cell-
based therapy for leukemia patients

Schillingmann 
et al. (2019)

OB-24 Human prostate 
advance cancer cells 
(PCA) and resistant 
cells (PCA-R)

Mouse model of human 
prostate cancer PC3M

HO-1 inhibition leads to a significant 
decrease of cell proliferation in vitro 
and a reduction of tumor growth and 
lymph-node metastasis in vivo. 
OB-24 + Taxol shows potent therapeutic 
effect yielding >90% reduction in tumor 
growth in vivo.

Short hairpin HO-1 shows similar results 
both in vitro and in vivo.

Alaoui-Jamali et al. 
(2009)

B16-F0 melanoma-
bearing mice

Combined therapy OB-24 + anti-PD-1 
reduces tumor size compared to 
monotherapy

Khojandi et al. 
(2021)

B16-F0 melanoma-
bearing mice

HO-1 inhibition counteracts immune 
CD4+ and CD8+ TIL evasion and leads to 
a decrease in tumor volume

Kuehm et al. 
(2021)

siHO-1 Human pancreatic 
cancer cells (Panc-1, 
MIa PaCa-2, SU8686, 
and Colo 357)

HO-1 silencing sensitizes pancreatic 
cancer cells to gemcitabine or radiation 
treatment and leads to a significant 
decrease in cancer cell growth

Berberat et al. 
(2005)

Colon cancer cells 
(Caco-2)

HO-1 silencing increases apoptosis Busserolles et al. 
(2006)

Human epithelial 
cervical cancer cells 
(HeLa)

SnPPIX and HO-1 silencing sensitize to 
5-ALA-based photodynamic therapy

Ohgari et al. (2011)

Ex vivo primary ALL 
cells

HO-1 silencing induces apoptosis and cell 
growth arrest in cell treated with 
imatinib. Polyethylene glycol ZnPPIX 
and styrene maleic acid ZnPPIX also 
sensitize cells to imatinib

Cerny-Reiterer 
et al. (2014)

CLL cells HO-1 silencing enhances the effects of 
the combined therapy fludarabine plus 
entinostat

Zhou et al. (2019)

HO-1 CRSPR/
Cas9 editing

Melanoma cells (A375) 
and HO-1 knockout 
A375 cells

SCID mice injected with 
A375 cells

HO-1 stable knockdown decreases in 
vitro clone formation and in vivo tumor 
growth

Liu et al. (2019)

Pancreatic ductal 
adenocarcinoma cell 
lines (CD18/HPAF, 
COLO 357, Capan-1, 
and MIA PaCa-2)

PDAC cell-derived 
xenograft tumors

HO-1 editing suppresses cell proliferation 
and increases the efficacy of 
gemcitabine treatment in hypoxia 
condition.

HO-1 inhibition (ZnPPIX and SnPPIX) 
suppresses PDAC proliferation, 
increases susceptibility to gemcitabine, 
and induces apoptosis under hypoxia

Abdalla et al. 
(2019)
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myeloid ablation strongly improves the response to 
therapeutic immunization by enhancing antitumor CD8+ 
T-cell proliferation and cytotoxicity (Alaluf et al. 2020).

The main strategies used for HO-1 inhibition/
downregulation are summarized in Table 1.

Conclusions and future perspectives

Although the precise molecular mechanisms involved in 
the induction of HO-1 in cancer cells and in cells from TME 
are far from be clearly understood, increasing evidence 
points out the role played by HO-1 in halting cancer 
immune recognition. On one hand, the overexpression 
of HO-1 in tumor cells, as a result of cell adaptation to 
therapy or to hypoxia, reduces tumor antigenicity; on the 
other hand, the overexpression of HO-1 in immune cells, 
in particular TAMs, induces tolerogenic and immune-
suppressive phenotype. The two aspects converge toward 
a common goal, namely favoring tumor progression. 
Notably, the role of HO-1 in increasing tumor cell 
resistance to chemo-, radio-, and photodynamic therapies 
was already recognized, but the role of HO-1 in immune 
escape opens a new scenario where HO-1 inhibition could 
efficiently enhance the outcome of immune therapies as 
well, reducing therapeutic failure or disease relapses.
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