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Rhythmicity of neuronal oscillations
delineates their cortical and spectral
architecture
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Neuronal oscillations are commonly analyzed with power spectral methods that quantify signal
amplitude, but not rhythmicity or ‘oscillatoriness’ per se. Here we introduce a new approach, the
phase-autocorrelation function (pACF), for the direct quantificationof rhythmicity.We applied pACF to
human intracerebral stereoelectroencephalography (SEEG) and magnetoencephalography (MEG)
data and uncovered a spectrally and anatomically fine-grained cortical architecture in the rhythmicity
of single- and multi-frequency neuronal oscillations. Evidencing the functional significance of
rhythmicity, we found it to be a prerequisite for long-range synchronization in resting-state networks
and to be dynamically modulated during event-related processing. We also extended the pACF
approach to measure ’burstiness’ of oscillatory processes and characterized regions with stable and
bursty oscillations. These findings show that rhythmicity is double-dissociable from amplitude and
constitutes a functionally relevant and dynamic characteristic of neuronal oscillations.

Electrophysiological recordings are characterizedbyprominent rhythmicity
—oscillations—of neuronal activity1,2. Neuronal oscillations are funda-
mental for the temporal coordination of neuronal processing throughout
the cortical processing hierarchy and have been widely studied over
decades3–5. Already the pioneering electroencephalography (EEG) record-
ings in the 1920s–1930s by Hans Berger6 e.e. observed prominent alpha
oscillations and reported their well-established functional consequence
what has since been termed the “Berger effect”where alphapower (8–14Hz)
is increased when the eyes are closed and decreased at the opening of eyes.
Due to their mechanistic roles in the temporal coordination of neuronal
processing, oscillations are involved in a variety of cognitive functions
ranging from sensorimotor processes4,7 and perception8–10 to higher-level
cognitive functions such as attention11,12, working memory13,14, cognitive
control15, and long-term memory16. Conversely, abnormal neuronal oscil-
lations characterize many neuropsychiatric and neurological disorders17

such as atypical development18, depression19, Parkinson’s disease20,
schizophrenia21, and epilepsy22.

Different features of spontaneous neuronal oscillations have been
characterized using resting-state data where event-related activities do not
confound the analysis23–27. Spectral analysis has established that

spontaneous oscillations are similarly present in magnetoencephalography
(MEG) and stereo-EEG (SEEG)28,29, show frequency-specific correlations
with fMRI BOLD signal24 and that power-spectral-peak frequencies of
neuronal oscillations exhibit both a medial-to-lateral and a posterior-to-
anterior hierarchy gradient of increasing frequency30.

Yet, after decades of research in various fields, data analysis
methods for neuronal oscillations still remain under active
development31–33. Oscillations are traditionally operationalized by their
amplitude and widely studied using power spectral methods, where a
spectral peak above the “1f ” aperiodic component constitutes “gold
standard”2 evidence for the presence of oscillations, i.e., for significant
rhythmicity. In this approach, oscillations are thus defined to be present
at frequencies that exhibit greater power than the aperiodic component,
which can then be quantified with analyses based on parameterization of
power spectra34,35.

However, being amplitude-based, this approach is only a qualitative
indicator of rhythmicity and does not measure it directly nor quantify it
explicitly. For example, a peak in the power spectrumshows that oscillations
exist in the data, but cannot indicate exactly how rhythmic they are, as the
power spectral density (PSD) peak magnitudes are dependent on the signal
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per se. Further, the lifetimes of oscillations cannot be unambiguously
deduced from the PSD peak.

Even though the width of the PSD peak is dependent on rhythmicity
and can be quantified, several confounders limit the interpretability and
preclude the conclusion that a change in said width could be quantitatively
associated with a change in rhythmicity. This is because rhythmicity is by
definition a property contained in the temporal stability of the phase of a
complex signal, and it is independent of its amplitude (Fig. 1e, j).

Next, depending on the nature of the underlying dynamics, neuronal
oscillations exhibit a wide range of amplitude distributions36 ranging from
Gaussian, to non-normal, to bistable37, which is evidenced by their heavy-
tailed (gamma-like) amplitude distributions38 rather than them exhibiting
Rayleigh distributed amplitudes expected for Gaussian processes.

Oscillation amplitude envelopes also exhibit power-law long-range tem-
poral correlations in the neural data39 and computationalmodels40, which is
incompatible with the notion of them being Gaussian. All of those caveats
make it impossible to describe oscillations using only power spectrum.

In addition, the neural activity is organized in evolving patterns in
different timescales acrossmultiple species41. In caseof the brainoscillations,
such time scales could be operationalizedwith cycles of different frequencies
aka basic units of oscillations. There were attempts in previous studies to
take such “brain clock” into account42 but is still operateswith a signal power
and requiresmanual selection of a central frequencywhichmay be different
between conditions or subjects43.

Here we advance a new approach and operationalize the construct of
rhythmicitywith the phaseAutocorrelation Function (pACF). It specifically

Fig. 1 | Phase autocorrelations index rhythmicity—validation with
simulated data. a Phase time series of a simulated analytical signal and the same
signal at lags of one and three cycles. b Time series and histograms of the phase
difference between the signal and 1-cycle and 3-cycles lagged version. c Phase
autocorrelation, obtained as the absolute value of the complex average of the phase
differences, as a function of lag. d Cumulative Function (CF) of the corresponding
pACF. The dashed line indicates the 90th percentile threshold, which is used to
determine the lifetime of the oscillation. e Example signals and its phase timeseries

with strong, medium, and weak rhythmicity, and their (f) pACF lifetime, (g) power
spectral density (PSD), and (h) wavelet amplitude spectra (colors as in e). i pACF
lifetime (black) and PSD (gray) of the oscillation peak frequency as a function of
rhythmicity. j Example signals with Strong,Medium, andWeak power, and their (k)
pACF lifetime, (l) PSD, and the (m) wavelet amplitude spectra (colors as in k).
n pACF lifetime (black) and PSD (gray) of the oscillation peak frequency as a
function of signal power.
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quantifies the rhythmicity of neuronal oscillations in an amplitude-
independent manner, operates in the oscillatory cycles time domain and
expresses the predictability of a future phase as a function of time (lag),
thereby yielding a direct measurement of temporal stability, i.e.,
rhythmicity.

Results
Operationalization of rhythmicity with phase autocorrelations
The first step in the quantification of phase autocorrelations and estimation
of the pACF is to acquire the phase time series using complex wavelet
filtering (Fig. 1a). The phase difference between this time series and its time-
lagged copies (Fig. 1b) is systematic at short lags and becomes increasingly
erratic for longer lags, which reflects the decay of temporal (phase) auto-
correlations with increasing lags. This intuitive finding is quantified in the
pACF by expressing a phase-autocorrelation value for each lag (Fig. 1c, for a
detailed description see “Methods”).

The pACF can then be aggregated into a single value to indicate the
“lifetime” of phase autocorrelations similar to how exponential decay is
indexed by a decay time constant. However, as we make no assumptions
about the shape of the pACF curve, we use amodel-free approach by testing
where the CDF crosses a threshold. The lifetime is estimated in a non-
parametric manner by transforming the pACF into the corresponding
cumulative function and detecting the first lag that exceeds a pre-defined
threshold (Fig. 1d, see “Methods” for details). We used here a threshold of
0.9 that thus indicates that 90% of the total observed above-chance-level
phase autocorrelation is accounted for by the corresponding lag.

To validate that pACF can be used to quantify rhythmicity, we gen-
erated signals with varying phase autocorrelations and power. First,
increasing the rhythmicity of the signal (Fig. 1e) resulted in increased pACF
lifetimes (Fig. 1f, i)while the power (Fig. 1g, i) andwavelet amplitude spectra
(Fig. 1h) remained essentially unchanged.On the other hand, increasing the
powerof the signal (Fig. 1j) led to salient changes in thepower (Fig. 1l, n) and
amplitude (Fig. 1m) spectra, while the pACF lifetimes remained (Fig. 1k, n)
nearly constant. These results thus demonstrate that pACF taps into
“oscillatoriness”, i.e., stability of the oscillation while amplitude-based
metrics tap into the strength of the oscillating processes, and these two
approaches may thus uncover distinct mechanistic or functional char-
acteristics of oscillations in vivo.

Phase autocorrelations reveal sparse oscillations in mesoscale
human cortical assemblies
To assess the presence of phase autocorrelations in human cortical oscil-
lations, we first analyzed intra-cerebral stereo-EEG (SEEG) resting-state
recordings. SEEG electrode contacts in cortical gray matter yield direct
recordings of the local field potentials generated by mesoscale neuronal
populations. First, in a single subject, an inspection of the low-alpha fre-
quency band (7.9 Hz) pACFs (Fig. 2a) showed that some contacts exhibited
strong phase autocorrelations compared to the null level.

To test whether the observed pACF lifetimes were significantly above
the noise level, the significance threshold corresponding to p ≤ 0.01 was
identified as the 99th percentile of the surrogate pACF lifetimes (Fig. 2b, see
“Methods”). This showed thatwhile distribution of pACF lifetime values for
contacts without oscillations was similar to the distribution of noise-level
values (Supplementary Fig. 1d) a subset of brain areas exhibited significant
oscillations (Fig. 2c).

We then extended this approach to all frequencies for 81 wavelet
frequencies from 2 to 100Hzwith logarithmic spacing to obtain the spectra
of phase autocorrelation lifetimes, hereafter called “pACF spectra”, andused
hierarchical clustering to group the electrode contacts with similar pACF
spectra. Spectral clusters of oscillations were predominantly found in alpha
and beta frequency bands with peaks at 7.8 Hz and 22.9 Hz (Fig. 2d).
Strikingly, the clusters in both bands were anatomically well segregated and
spectrally composed of very few narrow-band components.

To compare these findings with power spectral analysis, we evaluated
PSD spectra for these data using the separation of the spectra into aperiodic

“1f ” and periodic components (Fig. 2e) with the FOOOF method35 (see

“Methods”). Both the pACF (Fig. 2f) and PSD spectra exhibitedmain peaks
at the same alpha and beta frequencies, indicating converging inference of
oscillations therein.However, neither the absolutePSDpeakvalues nor their
height above the 1

f fit was correlated with pACF-based rhythmicity of the

oscillations (Fig. 2g, h, Pearson correlation coefficient 0.06 for the peak at
7.8 Hz and −0.001 for the peak at 22.9 Hz). In addition, while pACF
identified significant rhythmic oscillations in narrow peaks at 7.8 Hz, 9 Hz
and 22.9 Hz of only 2–3Hzwidth, the corresponding spectral peaks in PSD
were 64% wider, and the spectral power was elevated above the 1

f levels also

between the peaks and thus outside of the frequencies where pACF revealed
significant rhythmicity (see Fig. 2f dashed line). Moreover, clustering of the
electrode contacts with FOOOF’ed PSD failed to uncover the four clusters
(Supplementary Fig. 2a, b) revealed by pACF-lifetime-based clustering
(Supplementary Fig. 2c). In line with the simulations (Fig. 1i, n), these
findings thus suggest that rhythmicity is a unique property of neuronal
oscillations in vivo and complementary to their power.

Rhythmicity delineates neuronal oscillations in highly specific
anatomical and spectral domains
To assess how rhythmicity, in contrast with amplitude, defines the cortical
architecture and spectral structure of neuronal oscillations, we computed
phase autocorrelations and power spectra at the population level from 10-
min resting-state SEEG (N = 64 subjects) and source-modeled MEG data
(N = 54 subjects, N = 204 recordings). We represented the group-level data
in the Schaefer atlas44 at the resolution of 400 parcels and first obtained
grand-average pACF and PSD spectra for each parcel (Fig. 3a). Both SEEG
and MEG data showed that rhythmicity in the human brain was largely
contained in the alpha (5–11Hz in SEEG and 7–14Hz in MEG) and beta
(12–32Hz in SEEG and 15–32Hz in MEG) frequency bands. Quantifica-
tion of the extent of cortical areas exhibiting significant rhythmicity showed
that 29% of electrodes in individual subjects in SEEG and 42% of parcels in
individual MEG subjects exhibited at least one significant (p < 0.01, as in
Fig. 2b) pACF lifetime value in the theta-alpha (5–15Hz) frequency bands.
Activity in the beta peak was significant in 18% of each of the electrodes in
SEEG and 18% in parcels in MEG (Fig. 3b). These findings illustrate that
neocortical oscillations may not be as ubiquitous as thought earlier. Inter-
estingly, pACF lifetime indicated more oscillatory activity in the alpha than
in the beta band, while PSD indicated more significant activity in the beta
than in the alpha band (Supplementary Fig. 3a).

To identify the anatomical sources of these oscillations, we first esti-
mated the similarity of anatomical patterns of pACFs between different
frequencies. The source anatomies in SEEG and MEG were split into six
distinct clusters of frequencies (Fig. 3c, see Methods for details). Central
frequencies localized the rhythmicity in SEEG into prefrontal theta (5.6 Hz,
Fig. 3d), posterior low-alpha (7.1 Hz, Fig. 3d), a mixture of visual and
sensorimotor high-alpha (9.1 Hz, Fig. 3d), sensorimotor and attentional low
(16.9 Hz, Fig. 3d) and mid (25.5 Hz, Fig. 3d) beta, and attentional and
frontoparietal high-beta (31.6 Hz, Fig. 3d). Except for the prefrontal theta,
thesewerewell co-localizedwith the canonical tau-, alpha-, andmu rhythm-
like components inMEG45: superior temporal low-alpha (8.3 Hz), posterior
alpha (10.1 Hz), and sensorimotor high-alpha and beta (14.6 and 26.0 Hz),
respectively (Fig. 3e). Such fine-grained frequency communities were,
however, less salient in power spectral analysis that also was not able to
separate low and high-alpha clusters (Supplementary Fig. 3b) and yielded
more anatomical spread than thepACF lifetimes (Supplementary Fig. 3d–i).
These findings demonstrate that rhythmicity uncovers spatial and spectral
characteristics of neuronal oscillations that are distinct from those obser-
vable with their power spectra.

Distinct functional neuroanatomy for single- and multi-band
mesoscale oscillations
Visual analysis of individual subjects (Fig. 2) in SEEG suggested that in the
mesoscale neuronal populations, genuine oscillations are spectrally sparse
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Fig. 2 | Phase autocorrelation profiles are separated in well-delineated frequency
clusters. a The pACF and (b) its cumulative function (CF) for each gray matter SEEG
electrode contact for a representative subject, thin lines indicate individual contacts
while thick lines indicate a mean value. c swarm plot of pACF lifetime at a single
frequency of 9.5 Hz. The dashed line indicates the lifetime threshold. d Individual
electrodes' pACF spectra. The pACF spectra were sorted by hierarchical clustering using
Ward’s criterion and partitioned into four clusters (colored squares corresponding to
the dendrogram). e Power SpectrumDensity (PSD) for each cluster. The thick black line

indicates an average spectrum, the dashed line indicates an average aperiodic compo-
nent and the dotted gray line indicates the peak frequencies of the subject (7.8Hz and
22.9Hz). f pACF lifetime spectra for each cluster. The thick black dashed line indicates
the mean pink-noise pACF lifetime, dashed black line indicate the surrogate level (99
percentile of filtered pink-noise pACF lifetime), and dotted gray lines indicate the peak
pACF frequencies of the subject (7.8Hz and 22.9 Hz). g, h Difference between PSD
peak value with the aperiodic fit and pACF peak value with noise level for two peak
frequencies of 7.8 Hz (g) and 22.9 Hz (h).

https://doi.org/10.1038/s42003-024-06083-y Article

Communications Biology |           (2024) 7:405 4



and observed only in one or a few frequency bands. To quantify this at the
population level, we assessed the fraction of SEEG electrode contacts or
MEG parcels in functional brain systems (Fig. 4a) exhibiting at least one
significant peak in the pACF lifetime spectra at any frequency. We found
that the dorsal attention, visual, and sensorimotor systems exhibited the
highest prevalence of oscillations (70–80%, Fig. 4b), while the default (62%,
59%, and 57% for DefaultB, DefaultC, and DefaultA systems) and limbic
(60% and 39% for LimbicA and LimbicB systems) systems had the smallest
fractions of oscillations.

Anatomically, oscillations were the scarcest in the anterior frontal
cortex (Fig. 4c). While an average of 66% of SEEG electrode contacts and
73% of parcels in MEG exhibited oscillations as evaluated with pACF, only
27% of contacts exhibited two distinct peaks (29% for MEG), and 11% (7%
forMEG)more than two peaks in any frequency band (Fig. 4d). At the level
of brain systems, the sensorimotor system exhibited the greatest fraction of
individual electrodes or parcels oscillating concurrently at 2 (35% for both
SEEG andMEG) or at 3 or more bands (19% for SEEG and 11% forMEG).
Neuronal oscillations with true, above-chance level rhythmicity are thus
sparse in the frequency domain and found largely in only one or two bands
in both SEEG and MEG even though the power-spectral peaks extended
over greater frequency ranges.

The single-band oscillations in SEEG were predominantly localized to
occipital, temporal, and posterior parietal cortices (Fig. 4e), while themulti-
band oscillations (comprised of multiple frequencies) were the most pre-
valent in central frontoparietal areas, especially in the sensorimotor and
dorsal attention systems (Fig. 4f). We reproduced this analysis with MEG
data and found that the anatomical distributions of single- and dual-band
oscillations therein were similar to those found in SEEG (Fig. 4k, l), which
corroborated that this division is not limited to mesoscale neuronal
assemblies but rather reflects a systematic functional division in the archi-
tecture of neocortical oscillations. We then further assessed the anatomical
distributions of peak frequencies for the single- andmulti-band oscillations.

Alpha-band components of multi-band oscillations exhibited sig-
nificantly higher peak frequencies than single-band alpha oscillations in

both SEEGandMEG(Fig. 4g,m,p = 0.0005 for the SEEGcohort, p = 0.0001
for the MEG cohort, shuffle test). This division was salient in the topo-
graphies of alphapeak frequencies (Fig. 4h, i, n, o),which revealedbilaterally
symmetric peak frequency subdivisions across the neocortical surface.
Importantly, the beta oscillations were much more likely to appear as a
component in multi-band (26% of SEEG electrodes and 38% of MEG
parcels) oscillations than alone as single-band oscillations (9% of SEEG
electrodes and 6% of MEG parcels).

Phase autocorrelations and power spectra tap into distinct
underlying constructs in oscillatory brain dynamics
In order to assess the relationship between spectral power and rhythmicity
quantitatively, we tested how the cortical topographies of pACF, PSD, and
wavelet amplitudes were correlated. We first assessed whether the wavelet
amplitudes or pACFs were more predictive of the PSD observations by
evaluating partial correlations among these metrics for the SEEG andMEG
datasets. The correlations between PSD and amplitude were stronger than
those between PSD and pACF essentially throughout the analyzed fre-
quency spectrum (Fig. 5a, b) and prominent in the alpha (7.8 Hz for SEEG
data, 10.5 Hz for MEG data) and beta (14.8 Hz for SEEG data, 20.8 Hz for
MEG data) frequencies (Fig. 5c, d).

Already the pioneering electroencephalography (EEG) recordings in
the ’50s byHansBerger6 e.e. observedprominent alpha oscillations and their
well-established functional feature—the “Berger effect”—where alpha
power is increased when the eyes are closed and decreased at the opening of
eyes. To validate this result further, we repeated this analysis with inde-
pendent eyes-closed and eyes-open resting-state MEG data and found that
they followed the same pattern (Supplementary Fig. 5a, b). This shows that
the resting-state power spectra are more determined by the amplitude of
neuronal oscillations than by their rhythmicity. We then assessed whether
the “Berger effect” was driven by a change in amplitude or rhythmicity.

Interestingly, while pACF, PSD, and amplitudeswere all greater for the
eyes closed than for the eyes-open condition, the effect size of the Berger
effectwas greater for pACF than forPSDor amplitude (Cohen’sd’ = 1.59 for

Fig. 3 | Phase-autocorrelation similarity revealed nested frequency clusters.
a Fraction of significant pACF lifetime spectra for each parcel sorted by peak fre-
quency and averaged across subjects for SEEG (left) and MEG (right). b Spectra for
fractions of cortical parcels exhibiting significant rhythmicity in pACF (thick line:
cohort average, shadowed areas indicate confidence intervals estimated via

bootstrapping, N bootstraps = 1000, 5th and 95th percentiles were used).
cCorrelation of the anatomical patterns of pACF lifetime for each pair of frequencies
(rectangles indicate frequency clusters). Anatomy of the average pACF lifetime
across frequencies in each cluster for SEEG (d) and MEG (e) datasets (see c).
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Fig. 4 | Architecture of single and multi-frequency oscillations. a System assign-
ment (N = 17) for each of 400 parcels in the Schaefer parcellation. b Fraction of
contacts in individuals with at least one significant oscillatory peak aggregated across
systems and sorted by the mean value of corresponding Yeo-17 system. c Fraction of
individual contacts without any significant oscillations in the SEEG dataset. Fraction of
individual contacts (SEEG, d) and cortical regions (MEG, j) with two or more than
three oscillation components. Fraction of individual contacts (SEEG) and cortical
regions (MEG) with a single oscillation in the alpha band (SEEG e, MEG k) or with
multiple oscillatory components including one in the alpha band (SEEG f, MEG l).

Histogram of peak frequencies pooled across individual contacts (SEEG, g)/cortical
regions (MEG, m) for signals with single or multiple peaks. The peak frequency of a
parcel analyzing single-peak contacts and contacts with several peaks for the alpha
band (all three sub-bands combined, SEEG h, i, MEG n, o). The box ends in (b, d, j)
indicate the lower quartile (Q1, 25th percentile) and upper quartile (Q3, 75th per-
centile) across bootstrapped fraction (N bootstraps = 1000), notches indicate the
median, and whiskers indicate the range of Q1− 1.5 * IQR andQ3+ 1.5 * IQR, where
IQR is the inter-quartile range (Q3−Q1).
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pACF lifetime, 0.76 for PSD, and 1.05 for amplitude, calculated for the peak
frequencies). Partial correlation analysis showed that, in contrast with PSD
being driven by amplitude in the resting state, the eyes-closed-vs-open
difference in the PSD spectrawasmore strongly predicted by pACF in alpha
and beta frequencies (0.42 and 0.49) than by amplitude (0.28 and 0.20)
(Fig. 5h, i). This indicates that the long-known Berger effect in PSD in fact
reflects more a change in alpha rhythmicity than in its amplitude and thus

that rhythmicity is a functionally significant characteristic of neuronal
oscillations.

Rhythmicity is a prerequisite for inter-areal synchronization of
neuronal oscillations
Long-range phase synchronization is fundamental for neuronal com-
munication in brain networks46 but its dependence on the rhythmicity of

Fig. 5 | Phase autocorrelation and power spectra reflect different mechanisms.
Pearson correlation coefficient of PSD with amplitude (blue) and pACF (orange)
lifetime values as a function of frequency for the SEEG (a) and MEG (b) datasets.
Pearson correlation triangle for each combination of PSD, amplitude, and pACF
lifetime at peak alpha (7.8 Hz for the SEEG and 10.5 Hz for the MEG datasets, left)
and beta (15.8 Hz for the SEEG and 20.8 Hz for the MEG dataset, right) frequencies
for the SEEG (c) and MEG (d) datasets. pACF lifetime (e), PSD (f), and amplitude

spectra (g) for the resting state recordings with opened and closed eyes obtained via
MEG recordings. h Pearson correlation coefficient of contrast values between eyes
open and closed conditions for PSD with amplitude (blue) and pACF lifetime
(orange) as a function of frequency. i Pearson correlation triangle for each combi-
nation of PSD, amplitude, and pACF lifetime at peak alpha (10.5 Hz, left) and beta
(20.8 Hz, right) frequencies. Shaded areas indicate bootstrapped confidence inter-
vals (5th and 95th percentiles, N bootstraps = 1000).
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the coupled oscillating neuronal assemblies has remained unaddressed.
To answer this question, we compared pACF with long-range synchro-
nization first with computational modeling and then with SEEG and
MEG data. Using a new hierarchical Kuramoto model (see “Methods”),
we simulated cortical synchronization dynamics emerging in the human
structural connectome. The model was set to operate in a regime of
realistic local (pACs) and global (inter-areal synchronization) dynamics.
Inter-areal synchronization was measured with the Phase-Locking Value

(PLV) in the model and SEEG data and with the weighted Phase Lag
Index (wPLI) in MEG data.

We first estimated the correlation between pACF and node strength,
i.e., themean synchronization of a networknode (model), a contact (SEEG),
or a parcel (MEG) with all other nodes/contacts/parcels. We found that in
themodel, node strengths were positively correlatedwith pACF around the
central frequency of the model (Fig. 6a, b). Testing this prediction with
empirical data,we found that, indeed, synchronizationandpACFs exhibited

Fig. 6 | Phase-autocorrelation as pre-requisite for phase synchrony. a, e, iAverage
PLV (model and SEEG) or wPLI (MEG) for each node as a function of corre-
sponding pACF lifetime for singlemodel realizations or an individual subject (SEEG
and MEG) at the alpha frequency (10 Hz for the model, 8.6 Hz for SEEG data and
11 Hz for the MEG data). b, f, j R2 for a fitted linear regression as a function of
frequency. The shaded areas indicates confidence intervals estimated with boot-
strapping (N rounds = 1000, 5th and 95th percentiles). The gray area indicates the

null-level estimated by a random permutation of the node strength vector (N per-
mutations = 1000). c, g, k Phase synchrony in the alpha frequency (10 Hz for the
model, 8.6 Hz for SEEG data, and 11 Hz for theMEG data) binned by pACF lifetime
of two contacts (SEEG) or parcels (MEG). d, h, l Predictability of significant syn-
chrony between two nodes (model), contacts (SEEG), or parcels (MEG) as a function
of frequency. The gray area indicates the null-level estimated by a random permu-
tation of the 2D phase synchrony heatmap (N permutations = 1000).
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significant positive correlations in both SEEG and MEG in the alpha fre-
quency band (6.5–9.5 Hz, SEEG; 8–13Hz, MEG Fig. 6e, f), while MEG also
revealed positive correlations in the beta (18–26Hz) band (Fig. 6i, j). Thus,
in bothmodel and brain, nodeswith high rhythmicity also exhibited greater
synchronization.

Wenext hypothesized that rhythmicitywould, in fact, be amechanistic
prerequisite for phase synchrony between two neuronal populations. We
first addressed this qualitatively and sorted samples according to the pACF
lifetimes of each pair of nodes (X andY) and evaluated the phase synchrony
between these nodes in pACF lifetime bins (Fig. 6c, g, k). This approach
showed that both in themodel (Fig. 6c) aswell as in SEEGandMEG(Fig. 6g,
k), strong synchronizationwas foundexclusivelywhenbothnodes exhibited
high rhythmicity.

To further quantify this, we evaluated the predictability of significant
synchrony between two nodes (3.42*surrogate mean, corresponding to
p < 0.001,Rayleighdistribution) if bothof themhave significant rhythmicity
(95th percentile of noise pACF lifetimewas taken as a threshold, similarly to
the previous analysis). Predictability was defined as tp

tpþfn where tp is the
number of true positives (edges with both significant synchrony and pACF
lifetime in both nodes) and fn the number of false negatives (edges with
significant synchrony but at least one node does not show significant pACF
lifetime).

In the model, predictability higher than the surrogate level was found
around the central model frequency (Fig. 6d). Importantly, in both SEEG
andMEG,we observed significant predictability in the alpha (6.5–9.5 Hz for
SEEG, 8–13Hz for MEG) and beta frequency bands (13–17Hz for SEEG,
18–24Hz forMEG, Fig. 6h, l). Thus, robust neuronal synchronization in the
human brain is predominantly found only among cortical areas that exhibit
strong rhythmicity.

The decay shape of phase autocorrelations dissociates stable
and bursty oscillations
Both animal-model47 and human electrophysiological studies48 suggest that
the rhythmicity of neuronal oscillations may vary qualitatively from con-
tinuous “meta-stable”oscillations to apparently discrete bursts lasting only a
few cycles. Brief high-amplitude bursts49,50 have been shown to be a robust
neuronal phenomenon and to play a role in cognitive functions51, but can
not be dissociated from sustained and temporally stable oscillations with
power-spectral amplitude-based methods.

Bursts are typically assessed as periods with amplitude exceeding a
threshold in their peri-event time but there is ongoing debate about how to
characterize the burstiness of a signal as a whole. Here, we introduce a
pACF- and phase-based approach to operationalize the “burstiness” or
“oscillatoriness” of the signal with the “stability index”.We defined “bursts”
as short periods of oscillations that are un-phase-correlated with their peri-
burst time series and “stable oscillations” as a process that exhibits long-
range phase autocorrelations evidenced by heavy-tailed pACFs (Fig. 2a).

At first, we validated the method using simulated signals with varied
inter-burst intervals (mean value from 5 to 30 cycles, standard deviation of
0.25 cycles) and burst length (mean value from 3 to 20 cycles). The stability
index correctly characterized as stable (stability index > 0.05) time series
with long periods of stable oscillations (and short inter-burst intervals), and
signals composed of short bursts at large intervals as bursty (stability
index <−0.05) (Fig. 7d).

We then estimated stability index spectra for the SEEG and MEG
cohorts using only those parcels, electrode contacts, and frequency bands
where significant rhythmicity was observed in primary pACF analyses
(Fig. 3a, b). We found that the theta and alpha bands (6–11Hz for SEEG,
7–15Hz forMEG) exhibited both the greatest average stability index values
(Fig. 7e) and the largest fractions of oscillations classified as stable (Fig. 7f, g).

Analyzing SEEG data on the system level, we found that the Limbic
system had the highest fraction of stable oscillations in the alpha frequency
band but also the highest fraction of burst-like activity in the beta band. In
theMEG data, stable oscillations dominated in all frequency clusters and all
subsystems. However, the beta-band cluster showed a higher number of

burst-like activity in comparison to the alpha band. These data are in line
with recent findings from an animal in vivo electrophysiology47.

Rhythmicity is dynamically modulated in event-related proces-
sing underlying stimulus detection
Finally, we aimed to assess whether rhythmicity is a stationary property of
local neuronal oscillations or modulated dynamically in response to event-
related task demands. We evaluated time-resolved pACF in MEG data
acquired during a visual threshold-stimulus-detection task (TSDT)8–10.
TSDT is a continuous performance task where sensory awareness is probed
by constant-intensity stimuli calibrated to the threshold of detection (50 %
detection (hit) rate (HR), finalmeanHR = 41%).Hence, TSDT is associated
withminimal sensory stimulation and as such is well-suited for probing the
changes in spontaneous brain dynamics imposed by task demands52. We
first reproduced the classical TSDT observations: as observed earlier8–10, the
detected stimuli (Hits) were characterized bymuch greater stimulus-phase-
locking and induced amplitude responses than the undetected stimuli
(Misses, Supplementary Fig. 6a).

To avoid possible bias in the Hit vs. Miss contrast due to a varying
number of trials, the average Hit/Miss response was bootstrapped using the
minimum number of trials. The time-frequency representations (TFRs)
showed that also the pACF exhibited event-related responses (Supple-
mentary Fig. 6b). The differences in pACF between the Hit and Miss con-
ditions were observed in four time-frequency windows (Fig. 8a) with up to
39% of cortical parcels exhibiting significant Hit-Miss differences (Fig. 8b,
permutation test, N permutations = 1000, 95th percentile of surrogate
maximumdifference across time). In pACF, the event-related response was
characterized by a decrease in stability in low-alpha frequency (7.5–10Hz)
in 27% of recordings, primarily in the control and attention systems
(Supplementary Fig. 6c, d) but also by a decrease in stability in the beta
frequency (20–27Hz) localized primarily to the somatomotor system
(Fig. 8c, f).

Comparing the pACF results with the previously established data of
induced oscillatory response (Supplementary Fig. 6e, f) and Phase-Locking
Factor (PLF, Supplementary Fig. 6i, j), we found that pACF yielded partially
distinct responses in both dynamics and peak frequencies from those of
stimulus locking and induced responses. pACF revealed reduced rhyth-
micity in alpha and beta bands in the 0.25–0.75 s time window similar to
reduced induced oscillatory responses in alpha and beta bands (Supple-
mentary Fig. 6g, h) indicating that there was indeed a genuine change in
rhythmicity in these frequencies.

In summary, pACF revealed a fine-grained frequency resolution in
comparison to the induced response (for instance, the alpha and beta effects
showed as a single cluster using the induced response approach but were
separate when using pACF lifetime, Supplementary Fig. 6g, h). pACF thus
yields novel insight into the event-related dynamics by enabling the dis-
sociationof the early non-oscillatory broadband responses fromthe genuine
changes in oscillatoriness of spontaneous oscillations.

Discussion
Neuronal oscillations encompass a wide range of neuronal processes where
the phase of the oscillation is the key mechanistically and functionally
substantial element25,53,54, they predict visual perception55, plays a role in
neural coordination56, plasticity57 and reflect phase-specific functional
relations between neuronal populations58. Phase-synchronization is also a
basis for resting-state networks27,59,60. The relationship between phase and
amplitude correlations23,61 and that between oscillations of different
frequencies28 have remained an active topic for investigation.

Oscillations have variable rhythmicity, ranging from stable “classical”
oscillations such as the alpha rhythm62–64 to short-lived bursts65, and to
quasi-periodic oscillations that are genuine oscillations but have such
variability in frequency that in time-averagedmetrics such as the PSD, they
average out to an apparent “1f ”-like power spectrum

4,66. However, while the
amplitude dynamics and inter-areal correlations of neuronal oscillations are
widely studied, rhythmicity per se has attracted little attention.
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Fig. 7 | Level of burst activity varies between frequencies and anatomical loca-
tions. a Example of simulated burst-like (red) and stable (blue) activity, the dashed
line indicates the instantaneous frequency of a signal. b pACF curves for the stable
(blue), bursty (red), and noise (black) signals. c npACF curves for the bursty and
stable signals. Despite having the same Q 1

4 and Q 1
2 the signals have different Q

3
4.

d Heatmap of stability index for the artificial data generated with varying burst
length and interburst interval. e An average stability index across different fre-
quencies for SEEG (blue) andMEG (red) data. The average value was estimated with

bootstrapping (N rounds = 1000). Fraction of signals with stable (SI > 0.05) and
burst (SI <−0.05) activity for SEEG (f) and MEG (g) data. Anatomy of the average
stability index value and a fraction of stable and burst patterns aggregated across 17
systems for SEEG (h–j) and MEG (j–m) data for three frequency clusters detected
previously: high alpha, low beta, and mid beta. Violin plots show distribution of the
bootstrapped of each pattern (N rounds = 1000), the kernel size was computed using
the Scottsmethod. Shaded areas indicate bootstrapped confidence intervals (5th and
95th percentiles, N bootstraps = 1000).
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We establish here a new measure for characterizing and quantifying
rhythmicity, the phase-autocorrelation function (pACF), that is based on
phase stability and yields the “lifetime” of neuronal oscillations in an
amplitude-independent manner. This approach is similar to the classical
autocorrelation function that has been extensivelyused toquantify temporal
stability in both broad- and narrow-band signals. The autocorrelation
function, however, is based on real-valued signals and therefore the
amplitude of each sample biases the weight of said sample in the auto-
correlation function. For this reason, the ordinary autocorrelation function
retains amplitude as a confounder that biases the estimates of oscillation
lifetimes toward those of large-amplitude oscillations. This problem is
greatly mitigated by pACF using only phase information and being inde-
pendent of the amplitude (Supplementary Fig. 1h, i).

Using pACF, we found here that spontaneous human brain activity
exhibits genuinely rhythmic oscillations only sparsely and with high ana-
tomical and spectral specificity. We elucidated the cortical architecture of
rhythmicity in both meso- and macro-scale neuronal oscillations, in SEEG
andMEGdata, respectively.We further established that pACF is a necessary
requisite for long-range phase synchronization between cortical regions and
that the approach can be extended to the detection of “burstiness” (i.e., how
much of the observed signal is bursts). We also show that pACF could be
adapted for the fine-grained time-frequency event analysis. These findings
suggest that pACF is a powerful tool for the study of neuronal oscillations by
quantifying rhythmicity in a direct and objective manner.

Indeed, explicit measurements of rhythmicity were commonplace in
the early years of neural oscillations research67,68, when both autocorrelation
functions of continuous data69,70 and histograms of spikes71 were routinely
used to quantify rhythmicity, while the power spectrum was used to detect

the presence of oscillations. Over time, however, the use of classical
autocorrelation-based methods has declined and power-spectrum approa-
ches have become the primary way of analyzing oscillations in general,
where oscillations are defined relationally as frequencies with greater power
than neighboring frequencies.

In this approach, oscillatory power is qualified as a function of fre-
quency and the concept of rhythmicity can only be indirectly oper-
ationalised as the width of the spectral peak, which can still be confounded
by other signal properties. Here we advance a new approach to quantify
rhythmicity explicitly and objectively using phase autocorrelations. While
power spectral methods have also been extended to yield a rhythmicity-like
measurement with “lagged coherence”72, this approach embodies a
frequency-shifting bias that leads to erroneous peak-frequency estimates,
which in the present pACF is accounted for with instantaneous frequency
correction (Supplementary Fig. 1a).

Using simulations and realMEG and SEEG recordings, we established
here that rhythmicity operationalized with pACF lifetime and amplitude
operationalized with signal power tap to different constructs and are the-
oretically and experimentally double-dissociable. Importantly, we found
that also for neuronal oscillations in vivo, rhythmicity and amplitude were
poorly correlated both in SEEG and MEG data (Fig. 5c, d), which suggests
that rhythmicity and amplitude arise from partially distinct underlying
neurophysiological and systems-level mechanisms. To further address the
relationship between pACF and power spectral approaches and putatively
distinct underlyingmechanisms,weusedpartial correlations and found that
PSD was more correlated with amplitude than rhythmicity (Fig. 5a, b).
However, contrasting eyes-open and eyes-closed resting states, where alpha
power increases with the closing of eyes (“Berger effect”), showed that this

Fig. 8 | Time-frequency phase autocorrelation representation during threshold-
stimulus detection task.Heatmap of the average pACF lifetime contrast values (a)
and a fraction of significant differences (b) between two conditions (Hit–Miss) for
each pair of frequency and parcel. Significance was estimated with surrogates using

the shuffle test with randompermutation of hit andmiss labels (N shuffles = 10,000).
Anatomy and bar plots averaged across functional systems of a fraction of significant
values for the first (c, f), second (d, g), and third responses (e, h). Error bars in
barplots represent a standard deviation of the mean value.
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effect was in fact drivenmore by a change in rhythmicity than in amplitude.
These data thus constitute the first line of evidence that functional changes
in the brain dynamics may be associated with the stability rather than
amplitude of neuronal oscillations.

In comprehensive data-driven analyses, we observed significant
rhythmicity in narrow-band oscillations throughout the neocortical
surface so that on average, 66% of SEEG electrode contacts and 73% of
MEG parcels in individual subjects exhibited significant oscillations as
defined with pACF. The most dominant oscillations were in alpha and
beta bands as found before with spectral analysis methods2,30. However,
rhythmicity analyses showed that these dominant oscillations were in fact
comprised of multiple sub-bands with unique anatomical profiles and
very limited anatomical similarity across frequencies despite the wide-
spread similarity in PSD data. The presence of narrow-band oscillations
was further substantiated in single-subject data, suggesting that despite
wide power spectral peaks, true oscillations are sparse and confined to
narrow frequency bands.

Additionally, we found that pACF was more accurate in identifying
oscillations than spectral-based methods in several respects. First, pACF
exhibited better frequency resolution (Fig. 2e, f) than PSD and dissected
each of the alpha and beta bands into three sub-bands (Fig. 3c), while with
PSD a single band was observed (Supplementary Fig. 3b). Second, pACF
revealed sparsely anatomically located oscillations (Fig. 3d, e and Supple-
mentary Fig. 3e, f). Thus, in addition to being a qualitatively novel obser-
vable, pACF also yields insight into the architecture of oscillations by
overcoming the intrinsic resolution limitations of the power-based analysis.
This might be because a purely single-frequency signal appears as a peak in
FFT only when it has constant amplitude and phase, while fluctuations in
amplitude and discontinuities in phase lead to non-zero FFT coefficients in
neighboring frequency bins73. This phenomenon is known as “frequency
leakage”and leads tooscillatoryprocesseshaving spectral peakswith awidth
that is dependent on their amplitude39 and phase fluctuations.

Neural oscillations exist at multiple time scales and canonically are
divided into frequency bands that reflect specific cognitive or physiological
processes74 such as theta (4–8Hz), alpha (8–15Hz), or beta (15–30Hz)
bands. Our single-subject data suggested that despite wide power spectral
peaks, true oscillations could be sparse and confined to narrow frequency
bands. At the group level, we indeed found rhythmicity to splice the
canonical frequency bands intomultiple sub-bands with unique anatomical
profiles and very limited anatomical similarity across frequencies (Supple-
mentary Fig. 3c) despite the widespread similarity in PSD data (Supple-
mentary Fig. 4c). This constitutes the first line of evidence that rhythmicity-
based characterization yields novel insight into oscillatory brain
architecture.

The most stable oscillations were located in attentional and sensory
systems, while in the limbic system and anterior frontotemporal cortex
(Fig. 4b), oscillations were the rarest andmost short-lived. In line with prior
PSD-based results35 and with the classical definition of alpha and mu
rhythms45, alpha-bandoscillationswere strongest in posterior brain regions,
while lowbeta-bandoscillationswere located centrally around sensorimotor
regions. The present findings, however, also revealed variability among the
topographies of nearby frequencies and revealed a nested structure of alpha
and beta bands with low-, mid-, and high-frequency communities
(Fig. 3d, e).

The gradient-like organization of many aspects of brain architecture
has recently emerged as a central topic in neuroscience75. It has been pro-
posed that an underlying macroscopic gradient-like organization shapes
brain dynamics76–78. Power-spectral-peak frequencies of neuronal oscilla-
tions exhibit both a medial-to-lateral and a posterior-to-anterior hierarchy
gradient of increasing alpha-peak frequency30,79. Here, we revealed the
anatomyof peak frequencies of genuine oscillationswhichwas complex and
distinct for individual frequency bands. Importantly, unlike the more
gradient-like prevalence maps, the maps of peak frequencies lacked salient
directions in principal axes (for an alpha, Fig. 4h, i, n, o; beta, see Supple-
mentary Fig. 4c, d, g, h).

Meanwhile, activity in the prefrontal cortex (PFC) is dependent on
neurochemical control through noradrenaline and dopamine, or of
acetylcholine80, which influence oscillation dynamics as shown by phar-
macological modulation81 and genetic variability82. Moreover, the anterior
PFC, which is thought to be a largely homo-sapiens specific and evolutio-
narily the area with most recent expansion in humans that plays a role in
higher cognitive functioning,was largely devoid of oscillations in our data. It
is possible that PFC shows intrinsic oscillatoriness only in the higher cog-
nitive processing functions, such as during working memory processing,
while it is silent in resting state51.

As the pACF approach yielded narrow oscillatory peaks, it allowed us
to identify oscillations in individual bands in a more precise way. We
quantified the fractionof cortical areas that exhibitedoscillations in only one
or two frequencies. Strikingly, in both SEEG and MEG, less than 30% of
areas with oscillations exhibited them in two or more bands, and <10% in
more than two. The neocortical surface is thus largely “mono-oscillatory”
with the dominant resting-state oscillations almost exclusively in the theta/
alpha band (Fig. 4g, m). Conversely, significant beta oscillations were found
to largely only co-occur with theta/alpha oscillations. Moreover, the ana-
tomical profilesof single- anddual-frequencybandoscillationsweredistinct
(Fig. 4d–f) and the beta-coupled theta/alpha oscillations exhibited system-
atically higher frequencies than those found alone (Fig. 4g–i).

Inter-areal synchronization of neuronal oscillations is thought to
regulate communication across the cortex. However, there has been scarce
prior research into its relationship with the oscillatory properties of indi-
vidual regions. At the meso-scale, our results suggest that oscillations at the
same frequency are required for significant phase synchronization. We
found positive correlations between average node synchrony and oscillation
lifetime (Fig. 6b, f, g) and observed that significant phase synchrony can be
predicted from the rhythmicity of the coupled areas (Fig. 6d, h, l) in the
model as well as in SEEG and MEG recordings.

Communication between neurons is based on neuronal spiking which
occurs in different patterns from rhythmic spiking to short sequences of fast
activity called bursts83. Single-cell activity is not prominent enough to be
recorded with extracellular potentials such as SEEG, but the activity of
multiple densely connected cells might cause detectable signals84. Recent
primate electrophysiology research has shown that working memory
demands might be dependent on burst-like activity rather than stable
oscillations in the prefrontal cortex51,85. It also has been proposed that brain
dynamics in general are composed mostly of transient bursts rather than
stable oscillations48. Such bursts are typically defined as short periods of
high-amplitude narrow-band activity86.

Methodological approaches to quantifying bursting activity and
measuring burstiness have, however, remained an area of active develop-
ment. Power-spectral methods cannot dissect stable and burst-like activity
with a poor signal-to-noise ratio, hence the solutions have remained pre-
dominantly based on amplitude time-series analyses. These approaches
match the visual intuition of bursts often exceeding the “background
activity” in amplitude, but leave implicit the notion of bursts possibly also
pertaining to the temporal stability of neuronal oscillations.

In this work, we utilized pACF and defined bursts as short periods of
highly stable oscillations separated by activity without long-range correla-
tions (Fig. 7a). This is reflected as high autocorrelation at the start of the
pACF curve but a sharp decline in the middle, resulting in the shape of the
pACF curve skewing to the right (Fig. 7b). Using this approach, we showed
that while overall, alpha-band oscillations were the most stable, beta oscil-
lations showed the highest fraction of recordings with high “burstiness”
(Fig. 7e–g). The findings of burstiness specifically in beta-band are intri-
guing and in line with previous results in humans87 and from the monkey
prefrontal cortex during working memory51.

Finally, to addresswhether rhythmicity canbe assessed in event-related
research paradigms, we analyzed MEG data from a visual threshold-
stimulus-detection task where identical, very weak stimuli are detected half
of the time9. Cluster analysis of pACF lifetimes showed that rhythmicity is
able to detect the previously established difference between hit and miss
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TSDT responses in theta (4–6Hz), alpha (8–10Hz), and beta (20–27Hz)
with higher resolution than the classical methods. In addition, it also
revealed a highly stable period in the high-alpha frequency band (14–16Hz)
whichwas not detectedwith classicalmethods to analyze event-related data.
Furthermore, pACF revealed contrasts at a higher frequency resolution and
evoked responses in more frequency bands than the induced response
approach. pACF can thus reveal insight also into event-related dynamics.

To summarize, pACF analyses of meso- and macroscale neuronal
oscillations show that rhythmicity is complementary to signal power, yields
unique information, and allows for precise investigation of brain oscillatory
architecture. It alsomay be used to estimate the burstiness of a signal and for
fine-grained time-frequency analysis of visual stimulus processing. These
findings indicate that pACF may be a valuable tool in a wide range of
neuroscience scales and studies.

Methods
SEEG data acquisition
Using stereoelectroencephalography (SEEG), we acquired an average of
10min of uninterrupted spontaneous activity with eyes closed from 92
consecutive patients affected by drug-resistant focal epilepsy undergoing
presurgical evaluation. From this cohort, 25 patients were excluded due to
previous brain surgery or large cortical malformations identified from
magnetic resonance images (MRI). Additionally, 6 subjects were excluded
because of recording artefacts. After the exclusion of electrode contacts in
the epileptic zone (EZ), the final cohort of 61 patients (age: 29.9 ± 9.7, 35
male) yielded a total of 6945 gray matter contacts (113 ± 16 per subject,
mean ± standard deviation, one session per subject).

We acquiredmonopolar (with shared reference in the whitematter far
from the putative epileptic zone) local-field potentials frombrain tissuewith
platinum-iridium, multi-lead electrodes. Each multi-lead electrode con-
sisted of up to 15 contacts, each measuring 2mm in length, 0.8 mm in
thickness, and spaced 1.5 mm apart from border to border (DIXI medical,
Besancon, France). The anatomical positions and amounts of electrodes
varied exclusively according to surgical requirements88. On average, each
subject had 17 ± 3 (mean ± standard deviation) shafts (range 9–23) with a
total of 153 ± 20 electrode contacts (range 122–184, left hemisphere:
66 ± 54, right hemisphere: 47 ± 55 contacts, gray-matter contacts:
113 ± 16.2).

Prior to electrode implantation, the participants provided written
informedconsent toparticipate in researchstudies and for thepublicationof
their data. This studywas approved by the ethical committee (ID 939) of the
Niguarda Ca’GrandaHospital, Milan, and was performed according to the
Declaration of Helsinki.

MEG data acquisition—resting state
Tenminutes of eyes-open resting-state datawere recordedwith aTriux 306-
channel MEG (Elekta-Neuromag/MEGIN, Helsinki, Finland; 204 planar
gradiometers and102magnetometers) atBioMagLaboratory,HUSMedical
Imaging Center, from 54 healthy participants (26 females; mean age
31.27 ± 9.16, median age 28.5, the average number of recordings per subject
3.9,min 1,max 18, the analysis outcomewas average across sessions of each
subject) and 15 healthy participants for the eyes-closed and eyes-closed
cohorts, no participants were excluded. Participants were seated in a dimly
lit roomand instructed to focus on a cross displayed on the screen in front of
them. Bipolar horizontal and vertical EOG were recorded for the detection
of ocular artifacts.MEGandEOGwere recorded at a 1000Hz sampling rate.

T1-weighted anatomical MRI scans (MP-RAGE) were obtained for
head models and cortical surface reconstruction at a resolution of
1 × 1 × 1mmwith a 1.5 TeslaMRI scanner (Siemens,Munich, Germany) at
HelsinkiUniversityCentralHospital. The study protocol forMEGandMRI
data was approved by the Coordinating Ethical Committee of Helsinki
UniversityCentralHospital (ID290/13/03/2013), written informed consent
was obtained fromeach participant prior to the experiment, and all research
was carried out according to the Declaration of Helsinki.

MEG data acquisition—TSDT
Participants performed a visual Threshold-Stimulus Detection Task
(TSDT) while neural activity was recorded with a Triux 306-channel
MEG (Elekta-Neuromag/MEGIN, Helsinki, Finland; 204 planar gradi-
ometers and 102 magnetometers) at BioMag Laboratory, HUS Medical
Imaging Center, from 23 healthy participants (15 females, mean age: 33,
range: 18–57, 1 left-handed, one session per subject). All participants
had to meet the following inclusion criteria: be between 18 and 60 years
old, have normal or corrected-to-normal vision, and be compatible with
MEG and MRI. Exclusion criteria included any neurological or neu-
ropsychiatric disorder. Bipolar horizontal and vertical EOG were
recorded for the detection of ocular artifacts. MEG and EOG were
recorded at a 1000-Hz sampling rate. A total of 18 subjects were used for
the analysis.

During the TSDT task, participants were seated in a dimly lit
room and presented with slowly varying dynamic Perlin noise, which
covered a visual angle of 10 degrees and was projected onto a screen
inside the magnetically shielded room. After a variable inter-stimulus
interval (1.5–4.5 s), one of two geometrical shapes was presented at
the center of the Perlin noise (1° visual angle). To find the individual
visual detection threshold, a QUEST staircase adaptation procedure
was performed to achieve a 50% detection rate. Subjects were
instructed to give an answer with a response device if they detected
the stimulus. The answer hand was randomized for each subject. A
total of 500 trials were collected during a 25-min MEG measurement.

The study protocol for MEG and MRI data was approved by the
Coordinating Ethical Committee of Helsinki University Central Hospital
(ethical number 290/13/03/00/2013), written informed consent was
obtained fromeachparticipant prior to the experiment, and all researchwas
carried out according to the Declaration of Helsinki.

SEEG data preprocessing
The closest white-matter (cWM) referencing scheme was used for SEEG
data. Neocortical electrodes in gray matter were referenced to their nearest
contacts in white matter23. This referencing scheme produces signals with
consistent polarity and limits the mixing of signals from active sources,
resulting in more accurate phase estimates. Prior to the main analysis, cW-
referenced SEEG time series were low-pass filtered with FIR filter with a
cutoff at 440Hz and stop-band at 500Hz (60Hz transition band, −6 dB
suppression at 475 dB).

MEG data preprocessing
We used Maxfilter with temporal signal space separation (tSSS) (Elekta
Neuromag Ltd., Finland) to suppress extra-cranial noise in sensors and to
interpolate bad channels. The data were low-pass filtered at 249Hz and
Notch-filtered to remove line noise and the corresponding harmonics. We
then used independent component analysis (MNE, https://mne.tools/
stable/index.html) and visual inspection to identify and remove compo-
nents that were correlated with ocular (using the EOG signal), heart-beat
(using the magnetometer signal as reference), or muscle artefacts.

We used the FreeSurfer software (surfer.nmr.mgh.harvard.edu) for
volumetric segmentation of MRI data, surface reconstruction, flattening,
cortical parcellation, and neuroanatomical labeling with the 400-parcel
Schaefer atlas44 that favors functional network topology over structural
(gyral) topology, with each cortical parcel assigned to one of the functional
systems defined in ref. 89.

We used the MNE software package90,91 to create head conductivity
models and cortically constrained source models with 8000–14,000 sources
per hemisphere (spacing of 5mm) and subject, for MEG-MRI co-locali-
zation, and for thepreparationofnoise covariancematrices (from frequency
band 151–249Hz, 800–500ms before stimulus for each trial), forward and
inverse operators. We created fidelity-weighted inverse operators for opti-
mized reconstruction accuracy28,92 and collapsed source time series to the
200 parcels of the Schaefer atlas.
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Signal preprocessing
In this study, we used complex Morlet wavelets to obtain a narrow-band
representation of a signal93. Line-noise harmonics were suppressed with a
notch filter centered at 50Hz with 53 dB suppression and 1Hz band
transition widths. The low-pass filtered data were then separated into nar-
row frequency bands with 81 equally log-spaced (fi+1 = fi*1.05) Morlet
wavelets with frequencies ranging from 2Hz to 100Hz. The upper fre-
quency boundarywas selected to keep theminimumnumber of samples per
cycle not less than 10 and the minimum pACF step of 0.1 cycles. We used
MorletWaveletwith 7.5 cycles to achieve adetailed frequency resolutionbut
keep time resolution as good as possible (Supplementary Fig. 1b–d).

DWI and structural connectome
We computed structural connectomes for 57 unrelated subjects randomly
selected from the WU-Minn 1200 subjects dataset of the Human Con-
nectome Project (HCP; https://www.humanconnectome.org/). For each
subject, White Matter (WM) tracts were reconstructed from preprocessed
Diffusion Weighted Imaging (DWI) data with MRtrix3 (https://www.
mrtrix.org/). In summary, from each subject’s pre-processed 3T DWI data,
we estimated the Multi-Shell Multi-Tissue (MSMT) response and per-
formedMSMT spherical deconvolution94 and probabilistic tractography to
generate a preliminary tractogram of 50 million streamlines (maximum
tract length = 250mm; Fiber Orientation Distribution (FOD) amplitude
cutoff, 0.01; seeding fromthegraymatter-whitematter interface; application
of the Anatomically Constrained Tractography (ACT) framework95).

We then filtered this initial tractogram with the Spherical-
deconvolution Informed Filtering of Tractograms (SIFT) framework96 in
order to produce a more biologically plausible version of the tractograms
and to reduce the bias for longer, thicker tracts inherent to the tracking
algorithm97. The resulting final tractograms for each subject were composed
of 5 million streamlines. For each subject, we created an individual cortical
parcellation (400 parcels) based on the Schaefer atlas44 and then collapsed
streamlines to weighted edges between parcels. Each endpoint of a
streamline was matched with the most likely parcel using a radial search
spanning 3mm outward. The weight of the connection between any two
parcels was determined by the count of streamlines linking them. Self-
connections, represented on the diagonal of the matrix, were assigned a
weight of zero.

Phase autocorrelation estimates
To estimate the phase autocorrelation function of an analytical signal (e.g.,
after wavelet-filtering), we calculated the Phase Locking Value (PLV) of a
signal with a delayed copy of itself. The PLV is the absolute value of the
complex PLV (cPLV)31. The population pACF was thus defined as:

pACFðlÞ ¼ E½CSx;xðlÞ�

where E[.] denotes the expected value and CSx,x(l) denotes the cross-
spectrum between a complex signal X and a copy delayed with lag l. In
practice, pACF is estimated using limited data and sample pACF is defined
as:

pACFðlÞsample ¼
1
N

XN

i¼1

CSx;xðlÞ

where N is the total number of samples.
pACF was computed for a range of lags of the corresponding signal

ranging from zero lag to 20 cycles with a step of 0.1 cycles. Note that pACF
will be a delta function if signal phases are independent and a constant if
signal phases are linearly dependent. However, narrow-band filtering
induces artificial phase-autocorrelations into a data that are dictated by the
timedomainwidthof thefilter. In the caseofMorletwavelets, the strengthof
these autocorrelations depend on the number of cycles in the wavelet
(Supplementary Fig. 1c).

In the common approach, the transformation of lag in cycles to
timesamples would be done by multiplying it with the sampling frequency
and dividing on the frequency of interest lag � SRate

Frequency. However, this
approach biases the pACF spectral peak toward higher frequencies than the
frequency of the ground truth oscillation as well as the PSD peak (Supple-
mentary Fig. 1a).

Inorder toovercome this issue,weapplied the instantaneous frequency
correction where we divided the sampling frequency on the sample mean
instantaneous frequency of the wavelet-filtered data rather then its central
frequency lag � SRate

IF
where IF is a mean instantaneous frequency.

To take into account possible long-lasting autocorrelations with
low similarity, we transformed the pACF function to an explained
variance function by dividing by the sum over all lags. The lifetime of
the pACF function is defined as the first point where cumulative pACF
is higher than a given value (we used a threshold of 0.9 in this
study Fig. 1d).

An interesting feature of pACF, stemming from the fact that it uses
only phase information, is that it does not assume that a signal is stationary.
Indeed, analyses of simulated data corroborate this and show that the pACF
spectra are the same for stationary and non-stationary signals (Supple-
mentary Fig. 1g).

Functional connectivity estimation
To estimate inter-areal phase interactions at individual subject levels, we
computed synchrony metrics for each pair of contacts (SEEG) or parcels
(MEG). For SEEG, we used the phase locking value (PLV, see “Phase
autocorrelation” section), and forMEGdata, the weighted Phase Lag Index
(wPLI) which is defined as:

wPLI ¼ jPN
i¼0 imagðCSx;yÞjPN

i¼0 jimagðCSx;yÞj

where imag(CSx,y) is the imaginary part of the cross-spectrum of the
complex time series x and y98,99.

Data modeling
We validated the pACF approach on synthetic data with known oscillatory
properties. To simulate this data, we computed the sumof pinknoise and an
oscillatory component. To generate an oscillatory component with varying
longevity, we filtered the pink noise signal several times (from 1 to 10) first
with a frequency-tolerant Morlet wavelet (number of cycles = 3.5) and then
with a time-tolerant Morlet wavelet (number of cycles = 7.5). After each
round of filtering, we normalized a component by dividing it by its mean
envelope to preserve the amplitude magnitude. To obtain a signal with
varying power, we computed the sum of pink noise and the real part of the
same pink noise signal filtered with aMorletWavelet andmultiplied it with
a coefficient (from 5 to 15).

To evaluate the relationship between phase autocorrelation and phase
synchrony on simulateddata,weused aKuramotoModel100. Themodelwas
adapted to have several “nodes”, each of them a population of 500 oscilla-
tors. The phase dynamics for each oscillator are given by:

δθmi
δt

¼ωm
i þ K intl

N

XN

j¼0

sinðθmi � θmj Þ

þ
XM

j¼0

Wj;m � sinðθmi � ΘjÞ þN ð0; σ2Þ

where θmi is the phase of ith oscillator in mth node, ωm
i is the natural

frequency of the oscillator,Kint is the coupling coefficient within a node,N is
the number of oscillators within a node,M is the total number of nodes,Wi,j

is the connection strength between nodes i and j andΘj is the average phase
of the jth node. Strengths of inter-node connections were derived from
structural human connectome based on Schaefer parcellation44 with the
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resolution of 400 parcels. The raw values of the connectome were log-
transformed, and K was set to 10.0 for all nodes.

Spectral clustering of pACF profiles
To group pACF and PSD spectra by their similarity, we used a hierarchical
algorithm based on Ward’s method101. This algorithm initially assigns to
each sample a unique cluster and sequentially merges two sub-clusters with
the minimum distance to a new one. Following the method, the distance
between two clusters is defined as:

ΔðA;BÞ ¼ nA � nB
nA þ nB

� jjmA
�!� mB

�!jj2

where nA and nB are number of samples in clusters A and B, mA
�! and mB

�!
are centroids of these clusters.

To detect frequency bands of interest, we first computed the Pearson
correlation coefficient betweenvectors ofpACFparcel values for eachpairof
frequencies. We then transformed the correlation coefficient to the simi-

larity index s using the next formula s ¼
ffiffi
ð

p
1�ρffiffi
ð

p
2Þ where ρ is the Pearson

correlation coefficient (Supplementary Fig. 3b). Then we constructed a
weighted similarity graph where each edge’s weight indicates the spatial
similarity between two frequencies and removed all edges with non-
significant distance (obtained with one-sided permutation test, N = 1000,
99th percentile of the null-distribution was considered as a significance
threshold). Todetect overlapping communities in such a graph,weapplied a
Deep Non-negative Matrix Factorization method102 and selected commu-
nities with an average fraction of significant activity of more than 5%.

Oscillatory peak detection and analysis
To detect peaks of oscillatory activity, we first linearly interpolated a spec-
trum and applied the peak detection algorithm from the Scipy library103 to
find peaks with a minimum height of the noise level, minimum width of
1Hz, and distance to the closest next peak of at least 3 Hz.

We pooled detected peak frequencies to parcels and computed
the fraction of electrode contacts without oscillatory components at
all, with one, two, or more peaks. To find the central frequency of a
parcel, we pooled central frequencies of individual signals that belong
to the same parcel to a histogram, divided it into alpha (8–15 Hz) and
beta (15–30 Hz) frequency bands, and applied the peak detection
algorithm to the frequency-related parts of the histogram. If several
peaks were detected in a band, we considered their median as a
central frequency.

Stability index
To compute the stability index we at first compute npACF ¼ pACF

pACFnoise
—a

pACFnormalized by computing ratiowith correspondingnoise-level pACF
curve (Fig. 7c). As the next step, we extract the longest segment of npACF
with values higher than a given threshold (in this analysis we used the
threshold of 2) and detectedQ1,Q2 andQ3 values whereQk value represents
the kth quantile. As the last step, we compute the skewness of the segment
and define the stability index as:

SI ¼ Q3 þ Q1 � 2 � Q2

Q3 � Q1

Time-frequency representation of the phase autocorrelation
function
The estimation of pACF is based on the phase difference between individual
samples which can be used to construct the time-frequency representation
of a signal. In order to do so, we computed PLV in moving windows of size
2.5 cycles between a signal and a delayed version of itself for lags of 1 to 3
cycleswith increments of 0.1 cycles and averagedPLVacross lags. The time-

resolved pACF was estimated as:

xt ¼
XLmax

l¼0

PtþW=2
i¼t�W=2 z

l
i

W
=N

where t is a timestep, l is a lag,W is awindowsize in samples,N is thenumber
of lags, and z is the phase difference between a signal and its delayed version.

Statistics and reproducibility
To test whether a pACF lifetime was significantly different from that of a
random process it is essential to take into account the filter-induced auto-
correlations and to match the real-data scaling exponents (Supplementary
Fig. 1e, f). We wavelet-filtered 10,000 realizations of the pink-noise data
using the same wavelet parameters and matching the data length, applied
the pACF lifetime pipeline and computed the 99th percentiles of the pACF
lifetime values for each frequency.

In order to test whether pACF lifetime is significantly correlated with
average node synchrony andwhether pACF predicts presence of significant
synchrony between channels, we randomly shuffled pACF values
(N = 10,000) and computed the distribution of correlation coefficients for
the surrogate data. We used 5th and 95th percentiles as significance
thresholds for the correlation (negative and positive) and 95th percentile for
the predictivity.

We used a similar permutation approach to test the significance of
TSDT response values. We estimated the null hypothesis distributions
with surrogates using a two-sided permutation test. We randomly per-
muted hit and miss labels (N shuffled = 10,000), computed the difference
between response variables (pACF lifetime, PLF and amplitude response)
and used the 5th and 95th percentiles of the distributions as the sig-
nificance threshold. We used the F-max statistic to correct for multiple
comparisons.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
Rawdata cannot bemade available due to data privacy regulations set by the
ethical committees. The data underlying results to reproduce the main
findings is deposited in theDataDryad repository104. Other types of data can
be shared upon reasonable request.

Code availability
For obtaining the main findings and computing phase autocorrelation
function of any data can be found on Github (https://github.com/palvalab/
discovering_rhythmicity).
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