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Abstract—Electromagnetic levitation systems bring unique
benefits to many fields of industry. In this context, feedback
control is challenging as, in practice, only the position of the
levitating object and the electromagnet current can be measured.
Since we need to know all the system’s state variables, includ-
ing the levitating object’s velocity, to ensure effective position
tracking, we address the problem of constructing state observers.
More specifically, we investigate a feedback linearization control
scheme and design observers for output feedback by relying just
on measurements of position and current. We find the observer
gain by solving problems based on LMIs (linear matrix inequali-
ties) and test our approach in simulation. The results confirm the
advantage of using this control scheme with a properly selected
observer gain, while considering the disturbances acting on the
system.

Index Terms—levitation system, position control, dynamic
output feedback, observer design

I. INTRODUCTION

Many applications of electromagnetic levitation exist, thus
making this research area of particular interest in the control
community. In this paper, we focus on the problem of design-
ing state observers for dynamic output feedback to overcome
the lack of velocity sensors in the feedback loop. We will
place state observers in the control loop while considering the
need for a convenient design, which is fundamental to set a
high-precision control.

Fig. 1 depicts a sketch of an illustrative levitation system.
The mass m of ferromagnetic material is subject to gravity and
an electromagnetic force F), which depends on both z; > 0
(i.e., the distance from the electromagnet) and the intensity of
the electromagnetic field, which is proportional to the square
of the current flowing in the coil of the electromagnet. We
have to deal with this governing equation

mi; = mg — Fy

()

where g denotes the gravity acceleration, and modeling F; is
often affected by a lot of experimental uncertainty.

Much literature on the control of levitating objects is
available. In all works, the difficulty of dealing with such
systems is pointed out because of the uncertainty affecting the
lumped parameter model of Fj; in (1), which is a nonlinear
function of z; and coil current. To overcome this issue,
identification is addressed as a preliminary step to control
levitation systems [1], [2]. Neural networks are also adopted
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Fig. 1. Example of an explanatory levitation system.

to approximate this nonlinearity [3], [4]. While assuming
knowledge of this term, the design of the position control is
nontrivial in any case. In [1], the authors combine feedback
linearization and PID (proportional, integral, and derivative)
regulators. An internal model approach with global stability
properties is presented in [5]. Model predictive control (MPC)
is adopted to control a levitating mass [6]; a quadratic cost
function is minimized to set the coil currents and duty cycles.
In [7], an MPC-based governor selects the setpoint references
of PID controllers. An adaptive approach is then presented to
control a levitating object with unknown mass [8]. Suitably
tuned PID regulation for position control is considered in
[9], [10]. Standard LQ (linear quadratic) and PID controllers
are experimentally compared in [11]. EKF (extended Kalman
filter) and MPC are studied in [12] for position control while
considering input saturation. Lastly, the focus is on adaptive
sliding mode control in [13].

Let us now focus on the contributions of this paper. In more
detail w.r.t. (1), we consider a magnetic levitation system like
the one shown in Fig. 1 by using the following equations [1]:

.T'l =T
&2 = g — o(x1) 7} )
I3 = —%.T;; + %u



where the state variables z1, z5 represent position and velocity
of the ball with mass m, z3 is the current in the electromagnet,
and u is the applied voltage; then, L and R are the wind-
ing induction and resistance, respectively. Finally, ¢(-) is a
decreasing function, taking different forms depending on the
features of the electromagnet and the assumptions adopted to
compute the field. The knowledge of () is, therefore, critical
to control this system.

A crucial aspect of controlling electromagnetic levitation
systems is the need to know all the state variables for feedback
control, while only position and current can be measured in
practice. Likewise in [14], we pursue the goal of constructing
state observers specifically for a plant described by

1 =Ty
j:2 =9 (,0(171) I% (3)
T3 = —%1173 + TUu

y=(z1, z3) €R?

in such a way as to increase adequate closed-loop transient
response and disturbance rejection. Toward this end, we will
focus on state observers with linear error dynamics in a noise-
free setting [15]-[17] and, later on, address the design in
the presence of disturbances with an £5-gain approach [18].
Linear matrix inequalities (LMIs) [19] will be used to design
the proposed observers. In this respect, the use of LMIs is a
novel contribution compared to the state-of-the-art in control
design for electromagnetic levitation systems.

The paper is organized as follows. In Section II, we present
the control scheme based on feedback linearization. In Section
III, we focus on the design of observers to be put in the control
loop of Section II. Simulation results are reported in Section
IV. Finally, conclusions are drawn in Section V together with
a prospect of future work.

II. CLOSED-LOOP CONTROL BY FULL STATE FEEDBACK

Feedback linearization for (2) requires the knowledge of all
state variables [17]. It is based on the state transformation

h(I) I 21
z—T(z):=| Lgh(z) | = Z = 2z
L3h(x) g — o(z1) z3 23

for all z € R3, where 2 € R3 z = h(z) = z,
and Lyh(z) denotes the Lie derivative of h(-) with respect
to the vector field given by the right-hand side of (2),
ie, z = f(z,u) == (22, g — p(z1) 22, —Rz3/L +u/L).
Specifically, the function z; — ¢(z;) was experimentally
identified in [1] resulting as follows:

1
~ m(bo + bizy + ba? + bsad)

with suitable parameters bg,by,bs,b3 € R. Therefore, we
obtain the state-space description in the z coordinates

p(z1)

Z 010 z1 0
% |l=(00 1 2 | + 10 ] (b(z)—a(z)u)
7;'3 0 0 O z23 1

with

\._ 2z30(x1) N 20p(z1) | 2Rz} (1)
a(m).——L b(z):=—xzox3 Bty 7 )

For z € R® such that a(z) # 0, we can replace u with (b(z)—
v)/a(x), where v € R is regarded as the new control input.
Thus, we get the state equation in the Brunowski form:

z=Az+ Buv. 4)

Since (A, B) is controllable, we can apply the state feedback
law v = —K z +r with K = (K3, Ko, K3) € R'*2 chosen
by means of pole placement to impose eigenvalues A — BK
with strictly negative real parts. Once the pole assignment is
done, it is straightforward to check that the reference signal
for tracking the position z] is given by

g * *
r=R + Kq1z7 =: k(z7).
V@ (=)

The aforesaid is illustrated in Fig. 2, where for the sake of
brevity y(z,v) := (b(z) —v)/a(x) from now on. This control
scheme will be a starting point for the next section, where
output feedback is addressed.
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Fig. 2. State feedback control scheme.

III. OBSERVER DESIGN FOR OUTPUT FEEDBACK

In this section, we consider the problem of constructing
observers to be put in the loop of Fig. 2 in such a way as
to perform output feedback by using only measurements of
position and current. A possible scheme of interest is shown
in Fig. 3, where the control law

(t) = —K5() + r(t)

is adopted with 2(t) € R® denoting the estimate of z(t) € R3
at time ¢ > 0 and taking

1 0 0
¢= ( 00 1 ) ‘

Toward this end, notice that the plant is described in the z
state variables by

{é:Az+Bv 5)

y=Cz

where § = (31,9 — o) y3) = (21,9 — p(z1)2}). A
standard linear Luenberger observer is thus given by

2=A24+Bv+L,(§j-C3) (6)
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Fig. 3. Output feedback control scheme in z coordinates.

where L, € R**? is the observer gain to be chosen in such
a way as to make A — L,C Hurwitz. This gain exists since
the pair (A, C) is observable. Unfortunately, we should use
the inverse mapping of = — T'(z), denoted by T!(-), which
is not well defined for all 2 € R®. This might cause some
difficulties since it is not guaranteed the estimate of z to satisfy
the invertibility condition of 7". Therefore, we will investigate
a different observer structure by referring to the = coordinates,
i.e., an observer with £ € R® as state vector and the mapping
% = T'(&), which is well defined for all # € R®. This observer-
based control scheme is shown in Fig. 4.

t=f(z,u)
y=Czx
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Fig. 4. Output feedback control scheme in z coordinates.

We now focus on the design of an observer for the control
scheme of Fig. 4. We will not investigate the closed-loop
stability of the overall control loop but the stability of the
observer’s estimation error, for which we will rely on an
equivalent description of the plant. More specifically, we use

i=Azx+ f(z,u)
{y:C’m (7
with f(z,4) = (0, g — p(a1)a3, w/L),
01 0
A={00 o C:(égg’)
0 0 —R/L

as it is equivalent to (3). It is worth noting that the pair (4, C)
of (7) is observable. Second, consider the state observer

i=Aé+ fy,u)+L (y—C&) (8)

where Z(t) € R® is the estimate of z(t) at time ¢t > 0,
L € R**?, and f(y,u) denotes f((y1,0,y2),u) with a little
abuse of notation. It is straightforward to check that (8)
exhibits a linear error dynamics, i.e., if we define e(t) :=

z(t) — &(t) € R3, we obtain ¢ = (A — LC)e, which turns out
to be asymptotically stable to zero if we choose the observer
gain L in such a way as to get a Hurwitz matrix A — LC.

!
i=Az+f(y,u)

+Duw
y =Cz+Ew

Y, u
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Fig. 5. Output feedback control scheme in z coordinates with a plant affected
by disturbances.

Though, in principle, we can find the observer gain to guar-
antee the asymptotic stability of the estimation error by using
some pole placement technique, it is more convenient to design
the observer by considering both system and measurement
noises. Thus, instead of (7), we refer to

{ i=Az+ f(y,u)+ Dw

y=Cz+ Ew ©)

to easily account for the error dynamics, where w € R* is a
vector that collects both system and measurement noises with

00 0O E_OO 0
T\ 0 0 1 /-

1 0 00

01 00
Specifically, w;,wy in (9) account for system disturbances,
whereas w3, wy represent measurement noises. Thus, we ob-
tain the error dynamics

é=(A-LC)e+ (D - LE)w,

D =

O

(10)

which can be investigated in line with [18]. More specifically,
we can find the observer gain L after solving the LMI problem

mind wrt. Y,P>0,6>0 st (11a)
AP-C'YT4+PA-YC+1/2 PD-YE B
D'P-ETYT —81/2
(11b)
P57 (11c)

aimed at minimizing the Lo gain involved by (10), where
Y € R3*?, and P > 0 means that P € R3*? is symmetric
and positive definite. The constraint P > I (i.e., P — I > 0)
is added to ensure a well-conditioned P. Specifically, the
resulting P,Y allow to get L = P~1Y, while providing an £
gain equal to /8. For the purpose of comparison, notice that
the selection of the observer gain can be done in a noise free-
setting, namely assuming w(¢t) = 0 for all ¢ > 0, by solving

the LMI problem
max A W.rt.

Y,P>A,A>0 st (12a)



AP-CT'YT+PA-YC <0 (12b)

in such a way as to get a “small” gain L, = P~'Y with a
well-conditioned P. Proper conditioning of (12) is guaranteed
by the constraint P > \I.

In the next section, we will address the observer design
and simulations to analyze the performance of the resulting
closed-loop scheme in Fig. 5.

IV. SIMULATION EXAMPLE

For comparison of the proposed observers, we consider a
plant with ¢ = 9.8 m/s?, R=2Q, L =15-10"2H, m =
0.005 kg, by = 0.0304 sA%/m, b; = 0.7159 s>A%/m?, b, =
—0.9165 s*A%/m*, and b3 = 1.1994 s2A%/m° taken from [1].

First, we focus on the state feedback control law in z
coordinates for (4) by finding a suitable controller gain K.
It is convenient to perform pole placement with three poles in
—10 by choosing the gain

K = (1000 300 30). 13)

The control scheme with this gain in the state feedback will
be called FSF (full state feedback).
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Fig. 6. Noise-free simulation run with closed-loop state feedback (FSF

scheme of Fig. 2) with 2(0) = (0.08 , 0, 0.07).

The solution of (12) was obtained using YALMIP [20] as
follows:

1.8432 —0.2811 0
P=| —02811 1.8432 0 (14a)
0 0 1.7497
0.3749 0
Y = 1.8432 0 (14b)
0 —232.9206
0.3643 0
L= 1.0556 0 (14c)
0 —133.1191

We refer to the observer-based control with the estimator
having this gain and controller gain (13) as DOF1 (dynamic

[m/s]
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Fig. 7. Noise-free simulation run with observer-based feedback with

an observer (8) having gain (l4c) (DOFI scheme of Fig. 5), z(0) =
(0.08, 0, 0.07), and £(0) = (0, 0, 0).
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Fig. 8. Noise-free simulation run with observer-based feedback with

an observer (8) having gain (15¢) (DOF2 scheme of Fig. 5), z(0) =
(0.08, 0, 0.07), and 2(0) = (0, 0, 0).

output feedback no. 1). Using again YALMIP, we solved (11)
to get

3.6902 —2.8539 0
P=| —28539  4.0276 0 (15a)
0 0 1.0776
3.1148 0
Y = 2 0 (15b)
0 —23.1746
1.8675 0
L= 13233 0 (15¢)
0 —21.5066

We denote the observer-based control with the estimator
having this gain and controller gain (13) as DOF2 (dynamic



output feedback no. 2).

In simulations that are not reported here for brevity, the
DOF1 scheme showed an unstable behavior, which may be
ascribed to the high gain (14c) of the observer. Thus, we relied
only on the velocity estimate 25 and took y; and y5 instead of
%1 and 23, respectively. Thus, (y1, &2, y2) was used in the
DOF1 feedback loop with satisfying results as shown later.

Fig. 6 presents a noise-free simulation run to illustrate the
behavior of the closed-loop FSF controller; the results obtained
with DOF1 and DOF2 in the same simulation setting are
depicted in Figs. 7 and 8. Such plots allow us to emphasize that
the observer design method DOF2, based on (11), is beneficial
in terms of transient response as compared to DOFI relying
on (12). The DOF2 approach tracks, in fact, the commanded
position much better, ensuring smoother behavior.

In the presence of zero-mean Gaussian noises w;, i =
1,2,3,4 (dispersion equal to 0.0001, 0.0001, 0.0003, and
0.0003, respectively), we obtained the simulation results of
Figs. 9-11. The boxplot! of Fig. 12 allows us to compare the
input signals, where the FSF, DOF1, and DOF2 medians are
equal to 0.11687, 0.11686, and 0.11689, respectively. This
means that about the same actuation effort is required by
the three control schemes but with very different outcomes
in terms of precision, as shown in Fig. 13, where the medians
of the error tracking modulus for FSF, DOF1, and DOF2 are
equal to 0.00094, 0.00399, and 0.00045, respectively. Finally,
Fig. 14 depicts the behavior of the tracking errors over time.
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Fig. 9. Simulation run with closed-loop state feedback (FSF) with z(0) =
(0.08, 0, 0.07) and zero-mean Gaussian disturbances.

Such simulations confirm the advantage of using an
observer-based feedback scheme with a properly selected
observer gain, which accounts for the disturbances acting on
the plant, while ensuring a satisfactory transient response.

‘Following standard practice, the central mark indicates the median, the
box sides correspond to the lower and upper quartiles, the whiskers length
is 1.5 times the interquartile range, and the outliers are plotted individually
using the '+ marker symbol.
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Fig. 10. Simulation run with observer-based feedback and observer (8) having
gain (l4c) (DOF1), z(0) = £(0) = (0.08 , 0 , 0.07), and zero-mean
Gaussian disturbances.
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Fig. 11. Simulation run with observer-based feedback and observer (8) having
gain (15c) (DOF2), z(0) = £(0) = (0.08 , 0 , 0.07)), and zero-mean
Gaussian disturbances.

V. CONCLUSIONS

In this paper, we tackled the design of state observers
for dynamic output feedback of levitation systems without
velocity measurements. We first selected the most appropriate
observer structure and, second, developed a successful design
method. Our design relies on using LMIs, which turns out to
be effective. Future work will regard the practical verification
of what we gained in simulation on an experimental setup
under development. From a theoretical point of view, we will
address the closed-loop stability of the observer-based control
scheme. Reduced-order observers and Kalman filters will also
be investigated since, in principle, we need only an estimate of
the velocity of the levitating object while having measurements
of position and current through sensors at our disposal.
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