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Abstract. RICAM survey repulsive cost in multi-marginal optimal transportation theory and

predictions for the future!

Introduction

The main objective of this survey is to present recent developments in optimal transport

theory for repulsive costs with finitely many marginals. More precisely, we are interested in

characterize, for a class of repulsive cost functions, the minimizers of the multi-marginal optimal
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transportation problem

(MK) min

{∫
RdN

c(x1, . . . , xN )dγ : γ ∈ Π(RdN , µ1, . . . , µN )

}
,

where c : (Rd)N −→ R ∪ {∞} is a lower semi-continuous cost function and Π(RdN , µ1, . . . , µN )

denotes the set of couplings, i.e. probability measures γ(x1, . . . , xN ) having µi as marginals,

for all i = 1, . . . , N . Typically, c can be given by a sum of convex decreasing functions, as the

Coulomb interaction cost [16, 33, 65, 52, 65, 93]

c(x1, . . . , xN ) =
N∑
i=1

N∑
j=i+1

1

|xj − xi|
,

which is the case of most interest in DFT (see section 1). Also related to Quantum Mechanics,

in the so-called weak interaction regime [16, 42, 85, 96], we will consider the repulsive harmonic

potential as cost function c,

cw(x1, . . . , xN ) = −
N∑
i=1

N∑
j=i+1

|xj − xi|2.

In the last section, we also discuss briefly the multimarginal problem for the determinant cost

c(x1, . . . , xN ) = det(x1, . . . , xN ), or c(x1, . . . , xN ) = |det(x1, . . . , xN )|,

studied by Carlier and Nazaret in [21].

The literature on multi marginal problems in optimal transport is growing very fast both

from theoretical and applied point of view. Optimal Transport Theory for finitely many marginals

showed to be powerful in many applications as, for instance, in economics [19, 23, 24, 44, 78],

mathematical finance [6, 8, 9, 38, 39, 46], image processing [99], tomography [1], statistics [20]

and astrophysics [41].

Although very natural in such applied problems, up to our knowledge, optimal transport

problems for 3 or more marginals was only considered in the literature during the 90’s by Knott

and Smith, Olkin and Rachev and Rüschendorf and Uckelmann [60, 76, 90], and later by Gangbo

and Świech [47]. In [47], the authors proved the existence and uniqueness of Monge-type solution

for the problem (MK) for the quadratic cost c(x1, . . . , xN ) =
∑N

i,j=1 |xj − xi|2.

A systematic study of the structure of transport plans and general conditions in order

to guarantee the existence of Monge-type solutions for the problem (MK) was made by Pass

[79, 80, 81] and Kim and Pass [56, 57]. Several theoretical developments were made in the

last years, as the study of partial multi-marginal transport [59], symmetric Monge-Kantorovich

problem [28, 29, 49, 50, 51, 62, 71, 72, 100] and duality [10, 36, 55, 100]. Applications in Geometry

and Analysis as the Wasserstein Barycenter problem and decoupling a system of PDE’s can be

found in [2, 58, 51].

For a complete presentation of the multimarginal optimal transport theory with general

costs functions, including a discussion of many applications, we refer the survey [77]. In this

notes, we are rather analyzing the Multimarginal Optimal Transport Theory starting from the

point of view of researchers working on Density Functional Theory.

Paola Gori-Giorgi, Michel Seidl et al were interested in compute accurately the ground

state of a quantum molecule with a large number of atoms. As we will discuss later, after doing

suitable approximations, the solutions of the optimal transport (MK) for Coulomb cost (more
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precisely, the optimal potential), or more generally repulsive costs, can be seen as a good ansatz

in order to construct solutions for Hohenberg-Kohn functional (1.12).

From a mathematical perspective, in those problems, the interesting case is when all marginals

in the coupling γ in (MK) are absolutely continuous with respect to Lebesgue measure and are

all the same. In particular, since the cost functions are “repulsive”, if Monge-type solutions

exists, they should follow the rule “the further, the better!”, which means that we want to move

the mass as much as we can. In other words, in the present case, optimal transport plans tend

to be as spread as possible.

Organization of this Survey. In the section 1, we present the physical motivation in consider-

ing repulsive costs and give an introduction of Density Functional Theory though a mathematical

viewpoint. The main goal of this section is explain how optimal couplings in Monge-Kantorovich

problem can be useful to compute the ground state energy of a quantum system of N electrons.

The section 2 introduce briefly the general theory of multimarginal optimal transport, in-

cluding a discussion about the Kantorovich duality and the notion of c-cyclical monotonicity

applied to this framework. In addition, we give some highlights in the interesting case of sym-

metric transport plans.

In the sections 3, 4 and 5, respectively, we discuss the recent development for the specific

cases of Coulomb, repulsive harmonic costs and the determinant.

Finally, in section 6 we introduce a recent iterative method to solve (multi marginal) optimal

transportation problems and we present some numerical experiments for Coulomb, repulsive

harmonic and the determinant costs.

What is new? We present in the section 4 some new results we obtained for cost functions

c(x1, . . . , xN ) = f(|x1 + · · ·+ xN |), f : Rd → R is convex,

which, in particular include the case of repulsive harmonic costs (see corollary 4.7). In addition,

we show:

(i) Existence of Fractal-like cyclical Monge solutions: we show the existence of couplings

γ = (Id, T, T 2, . . . , TN−1)]µ concentrated on the graphs of functions T, T 2, . . . , TN−1,

where µ a uniform probability measure on the d-dimensional cube. Moreover, T is not

differentiable in any point, which differs substantially to the classical regularity theory

in the classical 2 marginals case [17, 18].

(ii) Optimal Transport plans supported on sets of Hausdorff dimension > 1: In the classical

optimal trasport theory with 2 marginals the the question if Kantorovich type solutions

of (MK) are also Monge-type solutions is fundamental and optimal transport plans are

concentrated in the graph of a function T . In the multimarginal setting, it was known

that, for the repulsive harmonic cost, there exist optimal transport plans which are

not concentrated in one dimensional sets [42]. In Section 4, we give a concrete general

example where optimal transport plans are supported on 2-dimensional Hausdorff sets.

(iii) Numerical results: we present some interesting results for the repulsive harmonic and

for the determinant cost.
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1. Why Multi-marginal Transport Theory for repulsive costs?
sec:why

1.1. Brief introduction to Quantum Mechanics of N-body systems. Energies and ge-

ometries of a molecule depend sensibly on the kind of atom on a chemical environment. Semi-

empirical models as Lewis structure explain some aspects, but they are far to be satisfactory,

mostly because they are not quantitative.

Classical behavior of atoms and molecules is described accurately, at least in a theoretical

point of view, by quantum mechanics. However, in order to predict the chemical behavior of

a molecule with a large number of electrons we need to deal with computational aspects and

approximations are needed. For example, if we use a direct approximation of 10 grid points in

R of the time-dependent Schrödinger equation in order to simulate the chemical behavior of the

water molecule (H2O), which has 10 electrons and its position is represented in the space R30,

then we need to compute 1030 grid points.

Quantum Chemistry studies the ground state of individual atoms and molecules, the excited

states and the transition states that occur during chemical reactions. Many systems use the so-

called Born-Oppenheimer approximation and many computations involve iterative and other

approximation methods.

The main goal of Quantum Chemistry is to describe accurately results for small molecular

systems and to increase the size of large molecules that can be processed, which is very limited

by scaling considerations.

It means that from a Quantum Model, for which the only input is the atomic number of a

molecule, we want to predict the evolution of a molecular system. Classical models consider a

molecule with N electrons and M nuclei. We denote by a point xi ∈ R3 the position coordinates

of the i-th electron of mass me and by si its i-th electron spin. The charges, the mass and

the positions of the α-th nucleus are represented, respectively, by Zα ∈ RM , mα ∈ RM+ and

Rα ∈ (R3)M

The state of the system is described by a time-dependent wave function ψ ∈ L2([0, T ];⊗Ni=1L
2(R3×

Z2) × ⊗Mα=1L
2(R3)), ψ(x1, s1, . . . , xN , sN ;R1, . . . , RM , t). The group Z2 = {↑, ↓} represents the

spin of a particle.

We say that a wave functions is antisymmetric or fermonic if their change sign under a

simultaneous exchange of two electrons i and j with the space coordinates xi and xj and spins

si and sj , that is,

ψ(xσ(1), sσ(1), . . . , xσ(N), sσ(N)) = sign(σ)ψ(x1, s1, . . . , xN , sN ) σ ∈ SN

where SN denotes the permutation set of N elements.

In the physics literature, Fermionic wave function obeys the Fermi-Dirac statistics and, in

particular, the Pauli exclusion principle. On the other hand, a wave function is called symmetric

or bosonic when obeys Bose-Einstein statistics which also implies that when one swaps two

bosons, the wave function of the system is unchanged.

If it is not mentioned explicitly, we will suppose that the wave function is spinless, i.e. ψ is a

function depending only on time, electrons and nuclei position ψ(t, x1, x2, . . . , xN , R1, . . . , RM ).

The evolution of a wave function ψ boils down to a (time-dependent) Schrödinger Equation

i∂tψ = Hψ , H = Tn + Te + Vne + Vee + Vnn (1.1) GSE

where the operators Tn, Te, Vne, Vee and Vnn are defined by
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Tn = −~
M∑
α=1

1

2mα
∆Rα (Nuclei Kinetic Energy)

Te = −~
N∑
i=1

1

2me
∆xi (Electron Kinetic Energy)

Vne = −
N∑
i=1

vR(xi) = −
N∑
i=1

( M∑
α=1

Zα
|xi −Rα|

) (
Potential Energy of Inte-

raction Nuclei-Electron

)
Vee =

N∑
i=1

N∑
j=1,j 6=i

1

|xi − xj |
(Interaction Electron-Electron)

Vnn =
M∑
α=1

M∑
β=1,β 6=α

ZαZβ
|Rα −Rβ|

(Interaction Nuclei-Nuclei)

Born-Oppenheimer Approximation: The Born-Oppenheimer approximation (named

for its original inventors, Max Born and Robert Oppenheimer) is based on the fact that nuclei

are several thousand times heavier than electrons. The proton, itself, is approximately 2000

times more massive than an electron. Roughly speaking, in Born-Oppenheimer approximation

we suppose that nuclei behave as point classical particles. This reasonable, since typically

2000me ≤ mα ≤ 100000me.

In other words, we suppose mα � me, we fix me = 1 and we consider an ansatz of type

ψ(x,R, t) = ψe(x,R)χ(R, t), where physically means that the dynamical of the electron ψe are

decoupled of the dynamics of the nuclei χ. Substituting that ansatz in (1.1), we can show

that the electronic part ψe(x,R) solves the following eigenvalue problem, so-called Eletronic

Schrödinger Equation

Heψe = λeψe, He = Te + Vne + Vee + Vnn (1.2) ESE

where the eigenvalue λe = λe(R) depends on the position vector R = (R1, . . . , RM ) of atomic

nuclei. The function He = He(R) is called Eletronic Hamiltonian. From the other side, through

a formal argument, the nuclei wave function χ(R, t) is a solution of a Schrödinger Equation

restrict to the nuclei with potential energy λe,

i∂tχ(R) = (Tn + λe(R))χ(R).

We refer to [14] for all computations and formal deduction of those formulas. Another

consequence of that approximation is that the nuclear components of the wave function are

spatially more localized than the electronic component of the wave function. In the classical

limit, the nuclear are fully localized about single points representing classical point particles.

In Quantum Chemistry is interesting to study the of minimizing the nuclei configuration,

called Geometric Optimization Problem.

The Geometric Optimization Problem: Compute the following minimizer

inf

{
E(R1, . . . , RM ) +

M∑
α=1

M∑
β=1,β 6=α

ZαZβ
|Rα −Rβ|

: (R1, . . . , RM ) ∈ R3M

}
(1.3) pb:GOP

where

• The second term is the nuclei-nuclei iteration Vnn, as defined in the (1.1).
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• The function E(R) = E(R1, . . . , RM ) corresponds to the effective potential created by

the electrons and is, itself, given by a minimization problem (see Electronic minimization

problem bellow).

The value of the potential E0 = E0(R1, . . . , RM ) for given fixed positions of the nuclei is

obtained by solving the electronic problem:

The Electronic minimization problem: Compute the lowest eingenvalue (“ground state

energy”) E0 of the following linear operator, called Electronic Hamiltonian

op.Hel Definition 1.1 (Eletronic Hamiltonian). The Eletronic Hamiltonian is a linear operator

Hel : L2
anti(R3N )→ L2

anti(R3N ), Hel = −~2

2

N∑
i=1

∆xi +

N∑
i=1

vR(xi) +

N∑
i=1

N∑
j=i+1

f(xj − xi)

where L2
anti(R3N ) denote the set of square-integrable antisymmetric functions ψ : R3N → R,

vR : R3 → R is a L2(R3N ) function and f : R→ R is a continuous function.

The first term of the Eletronic Hamiltonian is the Kinetic Energy and the second term, the

function vR(xi), depends only on the single electron. Typically, vR(xi) = −
∑M

α=1
Zα

|xi−Rα| is the

interaction electron-nuclei energy of the single electron. The function f which depends only on

the distance of two electrons and measures the electron-electron potential interaction; typically

f is the Coulomb Interaction f(xj − xi) = 1/|xj − xi| or the repulsive harmonic interaction

f(xj − xi) = −|xj − xi|2. From both mathematical and physical viewpoint, may be also useful

to study more general convex and concave functions.

The ground state of the functional (1.1) is given by the Rayleigh-Ritz variational principle

E0 = E(R1, · · · , RM ) = min{〈ψ,Helψ〉 : ψ ∈ H}

where H = {ψ ∈ H1(R3N ) : ψ is antisymmetric and ‖ψ‖ = 1}. Equivalently,

E0 = min
{
Te[ψ] + Vne[ψ] + Vee[ψ] : ψ ∈ H

}
(1.4) eq.groundstateenergy

where T [ψ] is the Kinetic energy,

Te[ψ] =
~2

2

∑
s1∈Z2

∫
R3

. . .
∑
sN∈Z2

∫
R3

N∑
i=1

|∇xiψ(x1, s1 . . . , xN , sN )|2dx1 . . . dxN

Vne[ψ] is the electron-nuclei interaction energy,

Vne[ψ] =
∑
s1∈Z2

∫
R3

. . .
∑
sN∈Z2

∫
R3

N∑
i=1

vR(xi)|ψ(x1, s1 . . . , xN , sN )|2dx1 . . . dxN

and, Vee[ψ] is the electron-electron interaction energy

Vee[ψ] =
∑
s1∈Z2

∫
R3

. . .
∑
sN∈Z2

∫
R3

N∑
i=1

N∑
j=i+1

1

|xj − xi|
|ψ(x1, s1 . . . , xN , sN )|2dx1 . . . dxN

We refer here as the ground state quantum N -body problem the problem to find equilibrium

states for such a kind of system in (1.1). A theorem proved first by Zhislin [101], guarantee the

existence of the minimum in (1.4). Some variants can be found in the literature due, for instance,

to Lieb & Simon [68], Lions [70] and Friesecke [43].
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In computational chemistry, the Electronic minimization problem methods are used to com-

pute the equilibrium configuration of molecules and solids. However, the most computationally

practicable methods in this context are not numerical methods (in the sense in which this ter-

minology is used in mathematics), but power series of analytical solutions of reduced models.

1.2. Probabilistic Interpretation and Marginals. The absolute value square of the wave

function ψ(x1, s1, · · · , xN , sN ) can be interpreted as an N -point probability density distribution

that electrons are in the points xi with spins si.∫
R3N

|ψ(x1, s1, · · · , xN , sN )|2dx = 1.

If ψ is a L2(R3N ) function we can define the single particle density by

ρψ(x1) = N

∫
R3(N−1)

ρψN (x1, s1, · · · , xN , sN )dx2, · · · dxN , (1.5) eq.singledensity

where ρψN represents the N -point position density by

ρψN (x1, · · · , xN ) =
∑

s1,··· ,sN∈Z2

|.ψ(x1, s1, · · · , xN , sN )|2. (1.6) eq.Npointdensity

Analogously, we can define the k-density

ρψk (x1, . . . , xk) =

(
N

k

)∫
R3(N−2)

ρψN (x1, s1, · · · , xN , sN )dxk+1 · · · dxN (1.7) eq.pairdensity

We remark that when the particle is spinless the single particle density (1.5) can be simply

be written as

ρψ(x1) = N

∫
R3(N−1)

|ψ(x1, . . . , xN )|2dx2, · · · dxN .

The relevance of ρψ and ρψ2 to compute the ground state energy (1.4) is due to the fact that

the integration nuclei-nuclei energy Vne[ψ] and electron-electron energy Vee[ψ] depends only on

these, which is summated in the following lemma

lemma:rhoresem Lemma 1.2 ([33]). If ψ,∇ψ ∈ L2((R3 × Z2)N ,R), ψ antisymmetric and ‖ψ‖2 = 1, then

Vne[ψ] =

∫
R3

v(x)ρψ(x)dx, Vee[ψ] =

∫
R6

1

|x− y|
ρψ2 (x, y)dxdy.

In the next subsection we will denote the densities ρψ and ρψ2 simply by ρ and ρ2, omitting

the superscript symbol.

It is natural to wonder about the space of those densities arising from a function ψ is

defined, i.e, the space A of densities ρ : R3 → R verifying (1.5) for an antisymmetric ψ such

that ψ,∇ψ ∈ L2((R3 × Z2)N ,R) and ‖ψ‖2 = 1. An explicit characterization exists:

A =

{
ρ : R3 → R : ρ ≥ 0,

√
ρ ∈ H1(R3) and

∫
R3

ρ(x)dx = N

}
. (1.8) eq.spacerho
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1.3. Density Functional Theory (DFT). The Density Functional Theory is the standard

approximation to quantum mechanics in simulations of a system with more than a dozen elec-

trons and showed to be successful in many instances but has rare drastic failures as, for instance,

in predicting the behavior of Cr2 molecules [27]. DFT theory approximates quantum mechanics

via variational principles for the marginal density

ρ1(x1) :=

∫
Rd(N−1)

|ψ(x1, . . . , xN )|2dx2 . . . dxN , (1.9) eq:rho1

where ψ is a wave function associated to the N -body quantum problem as in equation (1.5).

Roughly speaking, DFT models are semi-empirical models of the pair density

ρ2(x1, x2) :=

∫
R3(N−2)

|ψ(x1, . . . , xN )|2dx3 . . . dxN . (1.10) eq:rho2

in terms of its marginal ρ. We simply write ψ → ρ1 and ψ → ρ2 to denote the relation between

ψ and ρ1, and ψ and ρ2. This means, respectively, that ψ has single particle density ρ and pair

density ρ2.

Concerning the ground state problem (1.4), we notice that, after the lemma 1.2, we are able

to write the Electronic minimization problem (1.4) as

E0 = inf
ρ∈A

{
FHK [ρ] +

∫
R3

v(x)ρ(x)dx

}
, (1.11) eq.groundstatedensity

with

FHK [ρ] = inf

{
T [ψ] + Vee[ρ2] : ρ ∈ A, ψ → ρ

}
. (1.12) eq.FHK

where FHK is the so called Hohenberg-Kohn or Levy-Lieb functional. For a mathematical seek

of completeness, in this notes, instead of the Coulombian interaction Vee[ρ] we are also consider

a weak repulsive interaction given by

V̂ee[ρ] =

∫
R3N

N∑
i=1

N∑
j=1

−|xj − xi|2ρψN (x1, · · · , xN )dx1 . . . dxN in a compact set K ⊂ R3N

(1.13) eq:confinedrepulsiveharmonic

and +∞ otherwise.

The next theorem is the heart of Density Functional theory which was created by Walter

Kohn.

th:HK Theorem 1.3 (Hohenberg-Kohn, Levy-Lieb). Let ρ ∈ P(R3) be a probability density such that

ρ ∈ H1(R3) and f : R→ R be a continuous function. There exists a functional FHK : P(R3)→
R depending only on the single-particle density ρ such that for any potential Vnn, the exact

Quantum Mechanics ground state energy (1.4) satisfies

E0 = min
{(
FHK [ρ] +N

∫
R3

vR(x)ρ(x)dx
)

: ρ ∈ P(R3)
}

(1.14) eq.HK

Moreover, FHK [ρ] is given itself as a minimum problem

FHK [ρ] = min

{〈
ψ,
(
− ~2

2
∆ +

N∑
i=1

N∑
j=i+1

f(xj − xi)
)
ψ
〉

: ψ ∈ H1(R3N ), ψ → ρ

}
where, ψ → ρ means that ψ has single-particle density ρ and A is the set of ρ : R3 → R such

that ρ ≥ 0,
√
ρ ∈ H1(R3) and

∫
R3 ρ(x)dx = N .
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The Hohenberg-Kohn theorem states that the functional FHK is said to be universal in the

sense that it does not depend on the molecular system under consideration. From a Physics point

of view, it garantees that in a molecular system of N electrons, the first electron position density

ρ1 determines the pair density of the system (see corollary (1.4) bellow). From a mathematical

perspective, the proof of this theorem is a functional analysis exercise that, for the sake of

completeness, we are going to present a version we learnt from Gero Friesecke.

Proof. First remark that the non-universal part of the energy only depends on ρψ:

〈ψ,
N∑
i=1

v(xi)ψ〉 =

∫
R3N

N∑
i=1

v(xi)|ψ(x1, . . . , xN )|2dx = N

∫
R3

v(x)ρψ(x)dx

Now, we do a standard argument of Electronic minimization problem in (1.4), transforming it

in a double inf problem

E0 = inf
ψ

(
〈ψ,Hel ψ〉+N

∫
v(r)ρψ(r)dr

)
= inf

ψ

(
inf
ψ 7→ρ

(
〈ψ,Hel ψ〉

)
+N

∫
v(r)ρψ(r)dr

)
= inf

ψ

(
FHK [ρ] +N

∫
v(r)ρψ(r)dr

)
where in the last line we denoted FHK [ρ] = infψ 7→ρ

(
〈ψ,Hel ψ〉

)
. �

The present version stated on theorem 1.3 is due by Levy and Lieb. The next corollary

contains the main physical and mathematical consequence of the Hohenberg-Kohn theorem

(1.3).

cor:HK Corollary 1.4 (HK Theorem and Coupling problem). Let ρ ∈ P(R3) be a measure and ψ ∈
H1(R3N ) be an antisymmetric function with ‖ψ‖2 = 1. There exists a universal map from

single-particle density ρ(x1) to a pair densities ρ2(x1, x2) - or even k-density ρk(x1, . . . , xk) -

which gives the exact pair density of any N -electron molecular ground state ψ(x1, . . . , xN ) in

terms of its single-particle density.

Proof. Consider

ψ ∈ argmin{〈ψ,Helψ〉 : ψ → ρ}

and define by ρk the universal k-point density of that minimizer, i.e.

ρk(x1, · · · , xk) =

∫
|ψ(x1, · · · , xN )|2dk+1 · · · dxN

�

Of course, ρk may be not unique, since the ground state may be degenerate. The existence

of a map T : R3 → R3 which determines the density of ρ2 from ρ is highly not trivial and not

feasible because still uses high dimension wave function.

1.4. “Semi-classical limit” and Optimal Transport problem. A natural approach to un-

derstand the behavior of the Hohenberg-Kohn functional FHK [ρ] (1.12) is to study separately,

the contributions of the kinetic energy and the Coulomb interaction electron-electron energy.
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A well-know method in DFT literature, known as adiabatic connection, is to neglect the ki-

netic energy, in which the electron-electron interaction is rescaled with a real parameter λ while

keeping the density ρ fixed [63, 98]

FHKλ [ρ] = min

{
〈ψ,
(
− ~2

2
∆ +

N∑
i=1

N∑
j=i+1

λ

|xj − xi|
)ψ〉 : ψ ∈ H1((R3)N ) : ψ → ρ

}
. (1.15) eq:FHKlamba

The strong-interaction limit (λ → ∞), up to passage on probability measures, was first

considered by two papers in physics literature: Seidl [93] and Seidl, Gori-Giorgi & Savin [94]. In

[52], Gori-Giorgi, Seidl and Vignale interpreted the strong-interaction regime as a mass trans-

portation problem with a Coulomb cost.

Later, an equivalent limit, so-called “semi-classical limit”, was made mathematical rigor-

ously in the two particles case by Cotar, Friesecke & Klupperlberg [33]. They considered the

Hosenberg-Kohn functional FHK = FHK~ as a function of both ρ and ~ (λ = 1) and proved that

- up to passage of the limit ~→ 0 - the FHK reduces to the following functional obtained by a

minimization over pair densities (1.7) instead of wave functions

F̃ [ρ] = inf

{∫
R6

1

|x− y|
ρ2(x, y)dxdy : ρ2 ∈ A2, ρ2 → ρ

}
, (1.16) eq.HKpairdensities

where ρ2 → ρ means that ρ2 satisfies the equation (1.7), and the set A2 of admissible pair

densities is defined by the image of A under the map ψ → ρ. Instead of the corresponding

single particle density case, we do not know any characterization of the space of admissible pair

density function A2.

We state in the next theorem the semi-classical limit for the 2-particles case. The general

case of N particles is still an open problem.

th.semiclassicalCFK Theorem 1.5 (“Semi-classical limit” for N = 2, Cotar-Friesecke-Klüpperlberg, [33]). Let ρ : R3 →
[0,∞] be a probability density such that

√
ρ ∈ H1(R3), N = 2 and f : R→ R be the Coulomb or

the repulsive harmonic interaction potentials. Then,

FHK~ [ρ] = min
{
〈ψ,
(
− ~2

2 ∆ + f(x2 − x1)
)
ψ〉 : ψ ∈ H1(R6), ψ → ρ

}
→
~→0

min
{∫

R3N

f(x2 − x1)dγ(x1, x2) : γ ∈ Γ(R6, ρ)
}

=: FOT [ρ]
(1.17) eq.semiclassicallimit

where the set Γ(R6, ρ) denotes the set of measures γ ∈ P(R6) having ρ as marginals, i.e. (ei)]γ =

ρ where, for i = 1, . . . , N ei is the projection maps ei : R3N → R3. The symbol γ → ρ means

that γ has pair density ρ.

The main difficulty in proving Theorem 1.5 is that for any transport plan given by a density

ψ, γ = |ψ(x1, . . . , xN )|2dx1 . . . xN , we have that ψ 6∈ H1(R3N ), ψ 6∈ L2(R3N ) and T [ψ] = ∞.

Moreover, smoothing the an optimal γ does not work at this level, because this may change

the marginals of the problem (1.17). Cotar, Friesecke & Klupperlberg developed a smothing

technique in order to deal with this problem without changing the marginals. A complete proof

of the previous theorem can be found in [33].

We want to stress a little with the terminology. In Quantum Mechanics, the “semi-classical

limit” has a precise meaning: it is an asymptotic regime for the Hamiltonian dynamics of a

Quantum system defined in a Hilbert space and it is given by a Weyl-Wigner quantization (or

quantization by deformation studied in a more abstract context of Poisson manifolds). In those

specific cases, the limit ~→ 0 is called “semi-classical” limit, because the first and second order
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terms of that asymptotic expansion is given by “classical” terms, functions of the Hamiltonian

function in a symplectic manifold [40, 88].

In DFT context, that limit seems to be up to know merely a question of re-scaling. The

minimizers of FOT [ρ] are candidates to ansatz to develop approximated methods to compute

the ground state energy of the Electronic Hamiltonian.

At that point, is natural to define the DFT-Optimal Transportation ground state EDFT−OT0 ,

EDFT−OT0 [ρ] = inf

{
T [ψ] + Vne[ρ

ψ] + EOT [ρψ] : ψ ∈ H
}

= inf

{
TQM [ρ] + Vne[ρ] + EOT [ρ] : ρ ∈ A

} (1.18) eq:DFTOT

where ρψ represents the single particle density (see (1.5)), TQM and EOT are defined, re-

spectively, by

TQM [ψ] = inf

{
T [ψ] : ψ ∈ H, ψ → ρ

}
and

EOT [ρ] = inf

{∫
R3N

N∑
i=1

N∑
i=1

f(xj − xi)dγ(x1, . . . , xN ) : γ ∈ Π((Rd)N , ρ)

}
. (1.19) eq:OTgroundstate

where Π((Rd)N , ρ) denotes the set of probability measures γ : (Rd)N → R+ having ρ has

marginals. We recall the ground state problem (1.4)

E0 = inf

{
T [ψ] + Vne[ψ] + Vee[ψ] : ψ ∈ H

}
= inf

{
T [ψ] + Vne[ρ

ψ] + Vee[ρ
ψ
2 ] : ψ ∈ H

}
.

The problem to minimize EDFT−OT0 in (1.18) is called DFT-OT problem. Notice that, in

the case where f is the Coulomb potential,

Vee[ρ2] ≥ EOT [ρ], for every probability density ρ ∈ H1(R3).

Finally, taking the infimum in both sides of the previous equation, we have

Theorem 1.6 (Cotar-Friesecke-Klüpperlberg, [33]). Consider f(|xj − xi|) = 1/|xj − xi|. For

every N , and any potential vR ∈ L3/2 + L∞(R3), the density functional with electron-electron

interaction energy (1.19) is a rigorous lower bound of the Electronic minimization problem (1.4)

E0 ≥ EDFT−OT0

It turn out now that the central question of DFT-OT problem with Coulomb potentials is

to characterize the minimizers γ of EOT [ρ]. Those minimizers could be used an ansatz in order

to find minimizers of the Hohenberg-Kohn FHK [ρ]. In [93], the physicist Seidl formulate the

following conjecture.

conj:Seidl Conjecture 1.7 (Seidl [93]). There exists a deterministic minimizer of EOT [ρ] with Coulomb

potential/cost

c(x1, . . . , xN ) =

N∑
i,j=1

1

|xi − xj |
.

In other words, for Coulomb-type electron-electron interactions, Seild conjectures that ex-

ist a measure γ that minimizes EOT of form γ = (Id × T1 × · · · × TN−1)]ρ1, given by maps

T1, . . . , TN−1 : R3 → R3. It is natural to ask the same kind of question for more general cost

functions. In the past year, similar question was studied in the optimal transportation literature

giving different answers for the problem. We are going to mention some of them:
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(i) In the 2-electrons case, the minimizers of EDFT−OT0 are well-understood [33] and there

exists a map which correlates the density of a given minimization plan of EOT [ρ], see

Theorem 3.6.

(ii) Gangbo & Swiech (without being aware of Seidl) reinforces the conjecture 1.7 showing

in [47, 21] that “Seild’s conjecture’s” is true, respectively, for the attractive harmonic

cost c(x1, . . . , xN ) =
∑N

i,j=1 |xi − xj |2.

(iii) Colombo, De Pascale & Di Marino [29] answer affirmatively Seidl conjecture in the one

dimensional case (d = 1), as we will describe in the section 3.

(v) The authors proved that Seild’s conjecture is not true for the repulsive harmonic cost

c(x1, . . . , xN ) =
∑N

i,j=1−|xi − xj |2. Moreover, for the same cost and for a particular

single particle density, there exists a “fractal-like” optimal transport maps, which are

not differentiable almost everywhere. In the see section 4, we are going to state and

proof those statements.

2. DFT meets Optimal Transportation Theory
sec:DFTOT

2.1. Couplings and Multi-marginal Optimal Transportation problem.

def:coupling Definition 2.1 (Coupling). Let (X,µ), (Y, ν) be two probability spaces. A coupling γ is a mea-

sure on the product X × Y such that γ admits µ and ν as marginals, respectively, on X and Y ,

i.e.

(e1)]γ = µ, (e2)]γ = ν

where e1, e2 are respectively the projection maps (x, y) ∈ X ×Y 7→ x ∈ X and (x, y) ∈ X ×Y 7→
y ∈ Y .

It is easy to show that a coupling of µ and ν is equivalent to

(i) For all measurable sets A ⊂ X and B ⊂ Y , one has γ[A×Y ] = µ[A] and γ[X×B] = ν[B].

(ii) For all integrable measurable functions u, v on X,Y ,∫
X×Y

(u(x) + v(y))dγ(x, y) =

∫
X
u(x)dµ(x) +

∫
Y
v(y)dν(y)

A trivial coupling of (X,µ) and (Y, ν) is given by the product measure (X × Y, µ× ν). The

symbol ρ → ψ defined in eq. (1.9) means that the measure γ = |ψ(x1, . . . , xN )|2dx1 . . . dxN is

a coupling, for instance, between ρ1 and ρk−1. In the classical theory of 2-marginals optimal

transport [4, 97] a coupling is also called a transport plan.

In the case 2-molecular system with Coulomb interactions, up to passage to the limit ~→ 0,

the theorem 1.5 states that there exist a special coupling γ, minimizer of (1.17), which is

concentrated in the graph of measurable function. That motivates the next definition

def:deterministicoupling Definition 2.2 (Deterministic Coupling). A coupling γ of two probability spaces (X,µ) and

(Y, ν) is said to be deterministic if there exists a measurable function T : X → Y such that

γ = (Id, T )]µ.

In that terminology, the main question is to understand when the coupling given by the

DFT-Optimal Transport (1.19) is deterministic. In this terminology, Seidl’s conjecture can be

rephrased in the following way: Does exist a deterministic coupling in the Optimal Transportation

problem (1.19) for Coulomb costs?
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2.2. Multimarginal Optimal Transportation Problem. The “semi-classical limit” in the

2 particles case (thm. 1.5) and Seidl’s Conjecture (1.7), motivate us to introduce a more general

coupling problem.

We denote by N by the number of particles (marginals), d the dimension of the space where

those particles live (typically is the physical space d = 3) and I a index set of cardinality |I| = N .

Consider by a function xi : Rd → R the position of a single particle. The configuration of a

system of N -particles is given by a vector x = (x1, x2, . . . , xN ) or, more precisely, by a function

x : I → Rd.
Suppose that we fix the distribution of the i-th particle, given by a density function ρi : Rd →

[0, 1], i ∈ I and c : RNd × RNd → [0,∞], a continuous cost function. We set µi = ρiLd,∀i ∈ I
where Ld is the Lebesgue measure on Rd and we want to characterize the optimal coupling of

the Monge-Kantorovich problem

(MK) inf

{∫
RdN

c(x1, . . . , xN )dγ(x1, . . . , xN ) : γ ∈ Π(RdN , µ1, . . . , µN )

}
, (2.1) pb:MKN

where Π(RdN , µ1, . . . , µN ) denotes the set of couplings γ(x1, . . . , xN ) having µi as marginals, for

all i ∈ I, i.e. the set Π(RdN , µ1, . . . , µN ) =
{
γ ∈ P(RdN ) : (ei)]γ = µi,∀i ∈ I

}
and, for all

i ∈ I, ei : RdN → Rd is the projection on the i-th component and P(RdN ) denotes the set of

probability measures in RdN . In the DFT-OT problem it was mentioned that a interesting case

is when all marginals are the same and equal to a measure µ on Rd. In that case, we denote the

set of transport plans simply by ΠN (µ).

Notice that the existence of a such minimum in (2.1) is not a big deal and it is quite

standard in Optimal Transport Theory. Indeed, Π(RdN , µ1, . . . , µN ) is trivially non empty,

since the independent coupling µ1 × · · · × µN ∈ Π(RdN , µ1, . . . , µN ); the set Π(RdN , µ1, . . . , µN )

is convex and compact for the weak*-topology thanks to the imposed marginals; and moreover

quantity to be minimized γ 7→
∫
c dγ is linear with respect to µ. Hence, we can guarantee the

existence of such a minimum of (2.1) by imposing a very weak hypothesis on the cost function,

such as lower-semicontinuity.

However, we are interested in characterize some class of optimal transport plans or, at least,

understand when that optimal coupling could be deterministic. Our problem so, is to study

when minimizers of (MK) corresponds to Multi-marginal Monge minimizers

(MN ) min

{∫
(Rd)N

c(x, T1(x), . . . , TN−1(x))dµ1(x) : T = (Ti)i∈I ∈ TN

}
, (2.2) pb:MN

where denote by TN = {T = (Ti)i∈I : Ti is a Borelian map such that Ti]µ1 = µi, ∀i ∈ I}. As

usual, it is easy to see that the set of admissible plans in (2.1) “includes” the set of Monge

transport maps in (2.2): in fact, given a transport map T = (Id, T1, . . . , TN−1), we can consider

a measures γT on (Rd)N defined by γT = (Id×T1 × · · · × TN−1)]µ. Let h : (Rd)N → R be a

γT -measurable function, then∫
(Rd)N

h(x1, . . . , xN )dγT (x1 . . . , xN ) =

∫
Rd
h(x1, T1(x1), . . . , TN−1(x1))dµ1(x1);

and if we have γT -measurable function f : Rd → [0,∞]∫
(Rd)N

f(xi)dγT (x1, . . . , xN ) =

∫
Rd
f(xi)dµi(xi),
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and so, γT is a transport plan. In particular, the value of the minimization among Monge-

Kantorovich couplings is smaller of equal to the value of the minimization among the determin-

istic couplings

(MK) ≤ (MN ).

Rather than in (2.1), the existence of the optimal deterministic coupling in (2.2) is not obvious

and the difficulties do not lie on the “multi-marginality” of the problem. In fact, at that point,

it is not possible to apply standard methods in Calculus of Variations even in the classical

2-marginals case in order to guarantee the existence of the minimum (2.2).

Intuitively, the difference between the two problems (2.1) and (2.2) is that in MN almost

every point x1 ∈ Rd is coupled with exactly one point xi ∈ Rd for each i ∈ {1, . . . , N − 1}
whereas throughout the problem (2.1) we allow the splitting of mass in the “transportation”

process in between two or more target points in Rd for i ∈ {1, . . . , N − 1}.
The problem (2.1), when N = 2, was studied by L. Kantorovich in 1940’s [53, 54], without

being aware of the famous article of Monge [75]. In 1975, L. Kantorovich won the Nobel Prize

together with C. Koopmans “for their contributions to the theory of optimum allocation of

resources”.

A important disadvantage in using the relaxed approach (2.1) in the multi-marginal OT is

that the set of optimal transportation plans could be very large and we could need to select

some special class of transportation plans.

In the 2-marginal setting, the two formulations (2.1) and (2.2) are proved to be equivalent

for general Polish Spaces by Pratelli in [86].

thm:PratelliMongeKantorovich Theorem 2.3 (Monge equals Monge-Kantorovich in the 2-marginals case, [86]). Let (X,µ), (Y, ν)

be Polish spaces, where µ ∈ P(X) and ν ∈ P(Y ) are non-atomic probability measures. If

c : X × Y → R ∪ {∞} is a continuous cost, then

min

{∫
X×Y

c(x, y)dγ(x, y) : γ ∈ Γ(X×Y )

}
= inf

{∫
X
c(x, T (x))dµ(x), :

T]µ = ν,

T : X → Y Borel

}
where Γ(X × Y ) denotes the set of 2-marginals transport plans γ ⊂ X × Y having µ and ν as

marginals.

In the particular case of the multi-marginal OT problem in (2.2) and (2.1) when all marginals

are equal to ρLd, we can apply the previous theorem (2.3) on the Polish spaces X = Rd, Y =

(Rd)N−1 with measures µ = ρLd and ν = (e2, . . . , en)]γ, for every γ ∈ Γ(RdN , ρLd), and obtain

the following corollary

cor:MNMK Corollary 2.4. Let is µ1 = · · · = µN = ρLd be probability measures on Rd with density ρ and

c : (Rd)N → R be a continuous cost function. Then,

(MK) = (MN ).

Notice that, in general, the equivalence between (2.1) and (2.2) is not a immediate conse-

quence of the theorem 2.3. In particular, remark that the image measure of Y = Rd(N−1) is not

prescribed, but only its marginals.

Finally, we conclude this section giving an example of a particular continuous cost function

where the optimal coupling γ is not deterministic, even in the 2 particles case. The nonexistence

of an optimal transport maps typically happens when minimizing sequences of γ exhibit strong

oscillations.
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Example 2.5 (G. Carlier). Suppose µ uniformly distributed in [0, 1], ν uniformly distributed in

[−1, 1] and the continuous cost c : R2 → R given by

c(x1, x2) = (x2
1 − x2

2)2.

Since c ≥ 0 we have that an optimal plan for this cost is given by γ = µ ⊗ (1
2δx + 1

2δ−x) since∫
c dγ = 0. We want to show there doesn’t exit a map T such that the cost attains zero: suppose

in fact that
∫

(x2−T (x)2)2 dx = 0 but then one should have T (x) ∈ {x,−x} almost everywhere.

Hence,

T (x) = (χA − χ[0,1]\A)x

for a measurable A ⊂ [0, 1]. But then T]µ = L1|A+L1|Ã 6= ν, where x ∈ Ã iff −x ∈ [0, 1]\A, and

so we reach an absurd since T wouldn’t admissible. It is however easy to construct admissible

maps Tn, linear on [i/2n, (i+ 1)/2n), such that
∫
c(x1, Tn(x1))dµ(x1) tends to zero.

Remark that, we state by simplicity the example in the 2-marginal case, since the same

conclusion and arguments apply in the larger interactions case under the cost

c(x1, . . . , xN ) =
N∑
i=1

N∑
j=i+1

(x2
i − x2

j )
2.

Figure 1. (example ?? ) Left: support of the optimal coupling γ . Right: optimal

coupling γ. The simulation has been performed by using the iterative method

described in section 6.figure:carlier

2.3. Dual formulation. We consider the formal convex dual formulation of (2.1)

(KN ) sup

{∫
Rd

N∑
i=1

ui(xi)dµi(xi) :
N∑
i=1

ui(xi) ≤ c(x1, . . . , xN )

}
, (2.3) pb:KN

where ui ∈ L1(Rd, µi), called Kantorovich potentials or simply potentials, are upper semicon-

tinuous for all i ∈ {1, . . . , N}. This is often called the dual problem of (2.2).

Notice that, when all marginals are equal to µ1 = ρ(x)Ld and the cost is symmetric, we

can assume the Kantorovich potentials ui(xi) are all the same u(xi), and we can rewrite the

constraint in (2.3) as
N∑
i=1

u(xi) ≤ c(x1, . . . , xN ).

Among all Kantorovich potentials, a particular class is of special interests.
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Definition 2.6 (c-conjugate function). Let c : (Rd)N → R∪{∞} a Borel function. We say that

the N -tuple of functions (u1, . . . , uN ) is a c-conjugate function for c, if

ui(xi) = inf

{
c(x1, . . . , xN )−

N∑
j=1,j 6=i

uj(xj) : xj ∈ Xj , j 6= i

}
∀i = 1, . . . , N

As we will see in the next theorem 2.7, the optimal potentials u1, . . . , uN in (KN ) are c-

conjugate, and therefore semi-concave. So, they admits super-differentials ∂ui(xi) at each point

xi ∈ Rd and then, at least in the compact case, we can expect that for each xi ∈ Rd, there exists

xj ∈ Rd, j 6= i, such that

u(xi) = c(x1, . . . , xN )−
∑
j 6=1

uj(xj).

Moreover, if c : (Rd)N → R is differentiable and |ui(xi)| < ∞, for a xi ∈ Rd, ui is locally

Lipschitz. The well-know general result linking both problems (2.1) and (2.3) are proved by

Keller in 1984.

th:DualKellerer Theorem 2.7 (Kellerer, [55]). Let (X1, µ1), . . . , (XN , µN ) be Polish spaces equipped with Borel

probability measures µ1, . . . , µN . Consider c : X1 . . . XN → R be a Borel cost function and

assume that c = supXc <∞ and c = infX c > −∞. Then,

(i) There exists a solution γ to the Monge-Kantorovich problem (2.1) and a c-conjugate

solution (u1, u2, ..., uN ) to its dual problem (2.3).

(ii) “Duality holds”,

inf

{∫
X1...XN

cdγ : γ ∈ Π(µ1, . . . , µN )

}
= sup

{ N∑
i=1

∫
Xi

ui(xi)dµi : ui ∈ D
}
, (2.4)

where D is the set of functions ui : Rd → R, i = 1, . . . , N , such that

N∑
i=1

ui(xi) ≤ c(x1, . . . , xN ), and
1

N
c− (c− c) ≤

N∑
i=1

ui(xi) ≤
1

N
c.

(iii) For any solution γ of (2.1), any conjugate solution of (2.3) and any (x1, . . . , xN ) ∈
spt(γ), we have

N∑
i=1

ui(xi) = c(x1, . . . , xN ).

We remark that despite the great generality of Kellerer’s theorem, it can not be applied

directly to Coulomb-type costs, since Coulomb cost does not satisfies the boundedness hypothesis

c = supXc <∞ and, in addition, the cost c can not be bounded by functions in L1(Rd, ρLd)
N∑
i=1

N∑
j=i+1

1

|xj − xi|
≤

N∑
i=1

u(xi).

A generalization of Keller’s theorem due to M. Beiglboeck, C. Leonard and W. Schachermayer

[10], extends this duality for more general costs, but also cannot be applied in this context.

Recently, De Pascale [36] extended the proof of duality which can be applied also for

Coulomb-type costs, see Theorem 3.1. In fact, suppose µ = ρ(x)Ld a probability measure
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which does not give mass to sets of cardinality smaller or equal than d− 1, then

min

{∫
(Rd)N

N∑
i=1

N∑
j=i+1

1

|xi − xj |
dγ : γ ∈ ΠN (µ)

}
= max

{
N

∫
Rd
u(x)ρ(x)dx : u ∈ D̃

}
(2.5) eq:DualDeP

where D̃ is the set of potentials u ∈ L1(Rd, µ) such that

N∑
i=1

u(xi) ≤
N∑
i=1

N∑
j=i+1

1

|xj − xi|
, ⊗Ni=1ρ− almost everywhere. (2.6) eq:ColConstaintDual

Moreover, we get the conclusions (i) and (iii) of the theorem 2.7. Physically, the constraint

(2.6) means that, at optimality, the allowed Nd configuration space should be a minimum of

the classical potential energy [16].

Remark 2.8. More generally, the main theorem of [36] show that the Kantorovich duaility holds

for cost of form
N∑
i=1

N∑
j=i+1

1

|xj − xi|s
, s ≥ 1.

2.4. Geometry of the Optimal Transport sets. In this section, our goal is to present the

relation between the support of a coupling γ and optimality in the Monge-Kantorovich problem

(2.1). In the next, rather than give a complete presentation, we will just summarize key results

necessary to present recent developments of this theory applied to Coulomb-type and repulsive

harmonic-type costs.

We now define a natural generalization of the concept of c-cyclically monotone sets in the

multi-marginal setting of Optimal Transportation Theory, proposed by Brendan Pass [79].

def:ccyclicallymonotoneset Definition 2.9 (c-cyclically monotone set). Let c : RdN → R be a cost function. A subset

Γ ⊂ RdN is said to be c-monotone with respect to a partition p ⊂ I if, for all x = (x1, . . . , xN ), y =

(y1, . . . , yN ) ∈ Γ

c(x) + c(y) ≤ c(X(x, y, p)) + c(Y (x, y, p))

where X(x, y, p), Y (x, y, p) ∈ RN are functions obtained from x and y by exchanging their coor-

dinates on the complement of p, namely

Xi(x, y, p) =

{
xi, if i ∈ p
yi, if i ∈ pc and Yi(x, y, p) =

{
yi, if i ∈ p
xi, if i ∈ pc ∀i ∈ I

The notion of c-cyclical mononoticity in the multi marginal setting was study by Ghoussoub,

Moameni, Maurey, Pass [49, 50, 79, 80] and successfully applied in the study of decoupling

PDE systems [51]. Recently, Beiglbock and Griessler [7], presented a new notion called finistic

optimality inspired in the martingale optimal transport, which in some cases plays an equivalent

role of cyclical monotonicity.

The next proposition gives a necessary condition on the support for an optimal transport

plan γ. For the proof, which is based on the 2-marginal result [95], we invite the reader to see

the Lemma 3.1.2 of [79].
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prop:optccyclicmonotone Proposition 2.10 (Support of transport plan are c-cyclically monotonic). Let c : (Rd)N → [0,∞]

be a continuous cost and µ1, . . . , µN absolutely continuous probability measure on Rd. Sup-

pose that γ ∈ Π((Rd)N , µ1, . . . , µN ) is an optimal transport plan for Multimarginal Monge-

Kantorovich Problem (2.1) and assume (MK) < ∞. Then γ is concentrated in a c-monotone

set.
sec:sym

2.5. Symmetric Case. We are going to show in this section that we can reduce to study the

problem 2.2 and 2.1, respectively, in a suitable class of transport maps (called cyclic maps)

and transport plans (symmetric plans). Having in mind the DFT-OT problem, it is natural

to suppose that the cost functions does not change if there are some symmetries among the

configuration of the particles or, equivalently, we can suppose the measures defined by the

densities ρi are cyclically symmetric.

Definition 2.11 (Symmetric probability measure). Let µ be a probability measure in Rd. We

say that µ is symmetric if µ = (− Id)]µ.

Definition 2.12 (Cyclically symmetric probability measures). A probability measure γ ∈ P(RdN )

is cyclically symmetric if∫
RdN

f(x1, . . . , xN )dγ =

∫
RdN

f(σ(x1, . . . , xN ))dγ, ∀f ∈ C(RNd)

where σ is a permutation σ ∈ SN . We will denote by Πsym(RdN , µ1, . . . , µN ) the set of symmetric

transport plans γ ∈ Πsym(RdN , µ1, . . . , µN ) and we simply denoted by Πsym
N (µ), the space of all

symmetric probability measures on RdN having the same marginal µ.

Notice that if (µ1, . . . , µN ) are marginals of γ ∈ Πsym(RdN , µ1, . . . , µN ), then∫
Rd
f(xi)dµi(xi) =

∫
RdN

f(x1, . . . , xN )dπ(x1, . . . , xN )

=

∫
RdN

f(σN+1−i(x1, . . . , xN ))dπ(x1, . . . , xN )

=

∫
RdN

f(x1)dµi(x1, . . . , xN )

=

∫
Rd
f(x1)dµ1(x1).

Briefly,

(ei)]π = µ1, ∀i ∈ I,
where ei is the canonical projection.

Analogously in the problem (2.2) and (2.1), we can define the (multimarginal) symmetric

Monge-Kantorovich Problem as follows:

(MKsym) inf

{∫
RdN

c(x1, . . . , xN )dπ(x1, . . . , xN ) : γ ∈ Πsym
N (µ)

}
, (2.7) pb:MKsym

and the associated multimarginal cyclically Monge Problem

(Mcycl) inf

{∫
Rd
c(x, T1(x), . . . , TN−1(x)) : T ∈ T cycl(RdN , µ)

}
,

where T cycl(RdN , µ) denotes the set of maps T = (Id, T1, . . . , TN−1) such that Ti : Rd → Rd is

a Borel map, Ti]µ = µ, Ti+1(x) = T (i)(x) for every i ∈ {1, . . . , N − 1} and T (N) = Id.
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Proposition 2.13. Suppose µ ∈ P(Rd) an absolutely continuous probability measure with respect

to the Lebesgue measure and c : (Rd)N → R be a continuous symmetric cost. Then,

(MK) = (MKsym).

Proof. The fact that the infimum of (2.1) is smaller or equal than (2.7) is obvious, we will simply

write MK ≤ MKsym. Now, we need to show that for every transport plan γ ∈ ΠN (µ) we can

associate a symmetric plan in Πsym
N (µ). Indeed, given γ ∈ ΠN (µ), we define

γ =
1

N !

∑
σ∈SN

σ]γ,

and finally we notice that γ has the same cost of γ. �

We remark that is not so obvious do the same reasoning for the minimum problems Mcycl

and MN . We know only that MN ≤ Mcycl. Finally, the fact of (Msym ≤ Mcycl), was proved

by M. Colombo and S. Di Marino [28]. We give the precise statement of the theorem.

CoDMa Theorem 2.14 (M. Colombo and S. Di Marino, [28]). Let c : (Rd)N → R be a continuous func-

tion and bounded from below. If µ has no atoms, then

(MKsym) = (Mcycl).

Finally, we have the equality between the Multi-marginal cyclic problem and Multi-marginal

OT problem.

cor:CoDMa Corollary 2.15. If µ has no atoms and c : (Rd)N → R is a continuous function and bounded

from below, then

(MKsym) = (MK) = (M) = (Mcycl).

The last result of this section is due Pass [82], which says that optimal transport plans for

symmetric costs can be supported on sets of Hausdorff dimension equal or bigger than 2N − 2.

th:sym:Pass Theorem 2.16 (Pass, [82]). Let c : (Rd)N → R be a symmetric cost and {µi}Ni=1 be radially

symmetric and absolutely continuous with respect to Lebesgue measure in Rd. Suppose that for

every radii (r1, ...rN ) the minimizers

(x1, . . . , xN ) ∈ argmin|yi|=ri c(y1, y2, . . . yN ) are not all co-linear.

Then, there exists solutions γ for the Monge-Kantorovich symmetric problem (2.7) whose support

is at least 2N − 2-dimensional.

3. Multi-marginal OT problem with Coulomb Cost
sec:Coulomb

This section is devoted to the summary of the results present in literature on the multi mar-

ginal optimal transport with Coulomb cost. We already highlighted the fact that the interesting

case is when all the marginals are equal, since this is the physical case. We point out that,

as always, the focus will be on characterizing the optimal plans as well as looking for cyclical

transport maps: in this direction an important conjecture has been made by Siedl in its seminal

paper [?], where he gave an explicit construction of a map for measures with radial symmetry

in Rd. In the last years the conjecture was proven to be right: first in the 1D case when µ is the

uniform measure on an interval, and then generalized to any diffuse measure on the real line.

However quite recently various authors disproved the conjecture in the case Rd for d ≥ 2 and

for N = 3 marginals, yet the Seidl map is still optimal for some class of measures.
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We begin by analyzing the general problem, and then we will proceed to look at the radial

case.

3.1. General theory: duality, equivalent formulations and many particles limit. We

begin stating the duality theorem in this case proved by De Pascale [36], by means of Γ-

convergence of finite dimensional problems for which the duality is classical.

lem:DualDeP Theorem 3.1. Let µ ∈ P(Rd) be a measure that is not concentrated on a set of cardinality

smaller or equal than N − 1. Then the duality (2.5) holds and the dual problem has a bounded

maximizer.

The boundedness of the maximizer u can let us prove also some regularity properties. The

first one is the fact that any optimal plan is supported away from the diagonals, while the second

one proves second order regularity of u.

lem:diagonal Lemma 3.2 (Corollary 3.13 in [36]). Let µ as in Theorem 3.1; then there exists α > 0 such

that for every optimal plan γ we have supp(γ) ⊆ {(x1, . . . , xN ) : |xi − xj | ≥ α ∀ i 6= j}.

lem:regularitypot Lemma 3.3. Let µ as in Theorem 3.1 and u be a bounded maximizer in the dual problem in

(2.5); then u has a µ-representative that is Lipschitz and semi concave.

Proof. As in the classical case we first prove a structural property of the maximizer u, namely

that the constraint (2.6) is saturated, that is (u, . . . , u) is a c-conjugate N -tuple. Let us consider

w(x1) = ess-inf
(x2,...,xN )∈Rd(N−1)

 ∑
1≤i<j≤N

1

|xi − xj |
−

N∑
i=2

u(xi)

 ,

where the ess-inf is made with respect to the measure µ⊗N−1. It is obvious that w(x1) ≥ u(x1)

for µ-a.e x1, thanks to (2.6). Suppose that w > u in a set of positive measure; but then

(w, u, . . . , u) would be a better competitor in the (asymmetrized) dual problem contradicting

the fact that u is a maximizer (we use the fact that the symmetrized dual problem and the

asymmetrized one have the same values). Now we have that w is defined everywhere and so we

can talk about its regularity.

Let d > 0 be a number such that there exists points p1, . . . pN in the support of µ such

that |pi − pj | ≥ d; this number exists as long as ] supp(µ) ≥ N . Let us fix ε > 0 such that
1
2ε >

2N(N−1)
d + 2N‖u‖∞ and ε ≤ d/8; in this way it is true that if we define

wx0(x1) = ess-inf
|xi−x0|≥ε, i=2,...,N

 ∑
1≤i<j≤N

1

|xi − xj |
−

N∑
i=2

u(xi)

 ,

we have wx0 = w on B(x0, ε). In fact in the definition of w we can choose xi among the pi (or

very close to them, as they belong to the support) such that |xi−xj | > d/2−2ε ≥ d/4 for every

i 6= j, and so we have that w ≤ 2N(N−1)
d +N‖u‖∞ but then it is clear that for any (x2, . . . , xN )

such that |xi − x0| ≤ ε we will have∑
1≤i<j≤N

1

|xi − xj |
−

N∑
i=2

u(xi) ≥
1

2ε
> w(x1) ∀x1 ∈ B(x0, ε);

this proves that in fact wx0 = w on the set B(x0, ε) and so in particular also in B(x0, ε/2). But

in this set wx0 is Lipschitz and semi concave since it is an infimum of uniformly C∞ functions
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on B(x0, ε/2). Moreover the bounds on the first and second derivatives don’t depend on x0 but

only on ε, that is fixed a priori, and so by a covering argument we obtain the thesis. �

Another interesting reformulation of the Coulomb-like problem, or more generally when we

have only interaction between two particles can be found in [42], where, seeking a dimensional

reduction of the problem, the authors use the fact that if γ ∈ ΠN (µ) is a symmetric plan then∫
RNd

∑
1≤i<j≤N

1

|xi − xj |
dγ =

(
N

2

)∫
R2d

1

|x− y|
d(π1, π2)]γ,

that is, since the electron are indistinguishable, it is sufficient to look at the potential energy

of a couple of electron and then multiply it by the number of couples of electron. It is clear

that γ2 = (π1, π2)]γ is a 2-plan whose marginal are still µ; we will say that η ∈ Π2(µ) is N -

representable whenever it exists γ ∈ ΠN (µ) such that η = (π1, π2)]γ. The equivalent formulation

they give is

min
γ∈ΠN (µ)

∫
RNd

∑
1≤i<j≤N

1

|xi − xj |
dγ = min

η∈Π2(µ)
η is N -representable

(
N

2

)∫
R2d

1

|x− y|
dη.

Unfortunately the conditions for being N -representable are not explicit and they are very

difficult to find; this is correlated to the N -representability for matrices, but here, since we

are in the semiclassical limit, we deal with densities instead. In [42] the authors propose, as

a method for reduce the dimensionality of the problem, to substitute the condition of being

N -representable with that of being k-representable with k ≤ N ; the resulting problem will give

a lower bound to the real SCE functional.

We present also a general theorem regarding the many particles limit, that embodies the

well-known fact that when N →∞ then the solution is the mean field one

Theorem 3.4 ([34]). Let µ ∈ P(Rd). Then we have that

lim
N→∞

1(
N
2

) min
γ∈ΠN (µ)

∫
RNd

∑
1≤i<j≤N

1

|xi − xj |
dγ =

∫
R2d

1

|x− y|
dµ⊗ µ.

In terms of DFT we are saying that EOT (µ) =
(
N
2

)
EMF (µ) + o(N2), where EMF is the normal-

ized mean field energy EMF (µ) =
∫

1
|x−y| dµ(x) dµ(y).

Remark 3.5. The statement about the Coulomb cost in the physical case is quite classical. In

fact, for measure ρ ∈ L4/3(R3) the Lieb-Oxford bound holds [66, 67]:(
N

2

)
EMF (ρ) ≥ EOT (ρ) ≥ N2EMF (ρ)− CN4/3

∫
R3

ρ4/3(x) dx,

and so the conclusion is immediate. However, in [34] the proof is completely different and

relies the fact that a measure γ ∈ Π2(µ) that is N -representable for every N must be in the

convex envelope of the measure of the type ν ⊗ ν, and then on a direct computation using the

Fourier transform. In particular, aside from the Coulomb cost in dimension 3 they prove the

theorem for more general costs with binary interaction of the form
∑

1≤i<j≤N l(xi − xj), where

l ∈ Cb(Rd) ∩ L1(Rd) satisfies l(z) = l(−z) and also l̂ ≥ 0.
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3.2. The Monge problem: deterministic examples and counterexamples. In this sec-

tion we will illustrate the case in which we know that there exists a deterministic solution; in

those cases moreover there is also a result of uniqueness. We remark that these are the two

extreme case, namely the case N = 2 (and any d) and the case d = 1 (and any N). We will

just sketch the proofs in order to make clear the method used here, and why it is difficult to

generalize it. We begin with the 2-particle case, in every dimension d: this result was proved in

[33] by means of standard optimal transport techniques.

th:cotar Theorem 3.6. Let µ ∈ P(Rd) be a probability measure that is absolutely continuous with respect

to the Lebesgue measure. Then there exists a unique optimal plan γO ∈ Π2(µ) for the problem

min
γ∈Π2(µ)

∫
R2d

1

|x1 − x2|
dγ.

Moreover this plan is induced by an optimal map T , that is, γ = (Id, T )]µ, and T (x) = x+ ∇φ
|∇φ|3/2

µ-almost everywhere, where φ is a Lipschitz maximizer for the dual problem.

Proof. Let us consider γ a minimizer for the primal problem and φ a bounded and Lipschitz

maximizer of the dual problem (it exists thanks to Lemma 3.3). Then we know that

F (x1, x2) = φ(x1) + φ(x2)− 1|x1 − x2| ≥ 0 for µ⊗ µ-almost every (x1, x2),

and we know also that F = 0 γ-almost everywhere. But then F has a minimum on the support

of γ and so ∇F = 0 in this set; in particular we have that ∇φ(x1) = − x1−x2
|x1−x2|3 on the support of

γ. Finding x2 we have that x2 = x1 − ∇φ
|∇φ|3/2 (x1) = T (x1) on the support of γ and this implies

γ = (Id, T )]µ as we wanted to show (see for example . �

The first positive N -marginal result for the Coulomb cost is instead shown in [29] where, in

dimension d = 1, the authors can prove that for non-atomic measure an optimal plan is always

“induced” by a cyclical optimal map T .

teo:1DN Theorem 3.7. Let µ ∈ P(R) be a diffuse probability measure. Then there exists a unique

optimal symmetric plan γO ∈ Πsym
2 (µ) that solves

min
γ∈ΠsymN (µ)

∫
RN

∑
1≤i<j≤N

1

|x1 − x2|
dγ.

Moreover this plan is induced by an optimal cyclical map T , that is, γO = 1
N !

∑
σ∈SN σ]γT , where

γT = (Id, T, T (2), . . . , T (N−1))]µ. An explicit optimal cyclical map is

T (x) =

{
F−1
µ (Fµ(x) + 1/N) if Fµ(x) ≤ (N − 1)/N

F−1
µ (Fµ(x) + 1− 1/N) otherwise.

Here Fµ(x) = µ(−∞, x] is the distribution function of µ, and F−1
µ is its lower semicontinuous

left inverse.

Proof. We begin observing that if γ is a symmetric optimal plan then a stronger statement than

Proposition 2.10 holds, namely we have that for every x, y ∈ supp(γ):

c(x) + c(y) = min{c(X(x, σ(y), p)) + c(Y (x, σ(y), p)) : ∀p ⊂ {1, . . . , N}, ∀σ ∈ SN},

where c is the Coulomb cost on the N -tuple of points x = (x1, . . . , xN ) and σ acts on the indices.

The key point here is that one can show (Proposition 2.4 ??) that this property holds if and
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only if a more geometric condition holds true for x and y: they are well-ordered. This property

amounts to the fact that, up to permute the coordinates of both points, we have

x1 ≤ y1 ≤ x2 ≤ · · · ≤ xN ≤ yN ,

or the other way around. Once this property is proved the rest of proof is rather linear, since we

proved that the support of (π1, π2)]γ|D, where D = {xi ≤ xj and yi ≤ yj , ∀ i < j}, is basically

monotone in the usual sense where is the set where the coordinates are ordered. We remark that

the key property does not easily generalize to d > 1 since it (heavily) uses the ordered structure

of R. �

Let us notice that in this case we don’t have uniqueness of optimal plan neither of cyclical

optimal maps, as pointed out in Remark 1.2 in [29].

For the general case so we have to assume d > 1 and N > 2: from now on we will look at

the case in which the measure µ has radial symmetry. We can easily see that in this case we

can reduce our problem to a multi marginal problem in R.

Lemma 3.8 (Radial case). Let µ ∈ P(Rd) be a radially symmetric measure. In particular µ

is determined by µr = | · |]µ. The for every optimal plan γ ∈ ΠN (µ), if we consider γr = R]γ,

where R : (x1, . . . , xN ) 7→ (|x1|, . . . , |xN |), we have that γr is an optimal plan for the 1D multi

marginal problem

min
η∈ΠN (µr)

∫
RN

c1(r1, . . . , rN ) dη. (3.1) eq:red_rad

where c1 is the reduced Coulomb cost

c1(r1, . . . , rN ) = min

 ∑
1≤i<j≤N

1

|xi − xj |
: |xi| = ri ∀i = 1, . . . , N

 .

Moreover
∫
RdN

∑
1≤i<j≤N

1
|xi−xj | dγ = C

∫
Rd c1(r1, . . . rN ) dγr, for some C = C(d)

Given the one dimensional character of this problem, one could expect that the solution

is similar to the one depicted in Theorem 3.7. In fact in [94] the authors conjecture a similar

structure:

Conjecture 3.9 (Seidl). Let µ ∈ P(Rd) be an absolutely continuous measure with respect to the

Lebesgue measure, with radial symmetry, and let µr = | · |]µ. Let 0 = r0 < r1 < . . . < rN−1 <

rN =∞ such that the intervals Ai = [ri, ri+1) have all the same radial measure µr(Ai) = 1/N .

Then let F (r) = µr(0, r] be the cumulative radial function and let S : [0,∞)→ [0,∞) be defined

piecewise such that the interval Ai is sent in the interval Ai+1 in an anti monotone way:

S(r) = F−1(2i/N − F (r)) if ri−1 ≤ r < ri and i < N

F (S(r)) =

{
F−1(F (r) + 1/N − 1) if N is even

F−1(1− F (r)) if N is odd,
if rN−1 ≤ r < rN .

Then S is an optimal cyclical map for the problem (3.1).

However in the recent papers [31, 37] this conjecture is proved to be wrong, looking at radial

measures µ concentrated in some thin annulus {1− δ ≤ |x| ≤ 1 + δ}; in particular in [37] the 1D

problem is proven to be equivalent, when δ → 0, to the repulsive harmonic one, for which high

non-uniqueness holds and the Seidl map is not optimal (see the following section). However in

[31] also a positive example is found, namely a class of measures for which the conjecture holds.
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These results show that the solution to the multi marginal problem with Coulomb cost is

far from being understood: in particular there is no clear condition on the marginal µ for the

Seidl conjecture to hold.

4. Multi-marginal OT problem with repulsive Harmonic Cost
sec:OTHarm

This section is devoted to the study of the repulsive harmonic cost. In DFT-OT problem,

we replace the electron-electron Coulomb interaction in the section 3, by a weak force which

decrease with the square distance of the particles. The term weak comes from the fact that,

in the repulsive harmonic cost the, interaction cost function has value zero when the particles

overlap, instead of ∞ in the Coulomb case.

More precisely, we are interested in characterize the minimizers of the following problem

(MKweak) min

{∫
(Rd)N

N∑
i,j=1

−|xj − xi|2dγ(x1, . . . , xN ) : γ ∈ Π((Rd)N , µ1, . . . , µN )

}
, (4.1) OTHarm:pb:MKweak

where µ1, . . . , µN are absolutely continuous probability measures in Rd.
From a mathematical viewpoint this cost has some advantages compared to the Coulomb

one, since here we can do explicit examples. We can interpret the solutions of (4.1) as an

ansatz for DFT problem (Hohenberg-Kohn functional (1.12)) for particles interacting under the

repulsive harmonic potential. From a technical aspect, this could be an interesting toy model to

approach the case of Coulomb cost. From applications, some minimizers of (4.1) seems to have

no particular relevance in physics because, as we will see in the examples 4.10 and 4.11 below,

certain optimals γ of (4.1) allows particles to overlap.

We will see that this problem has a very rich structure, that is very different from the classical

2-marginal case. First of all we notice that minimizers of this problem are also minimizers of

the problem with the cost c(x1, . . . , xn) = |x1 + . . .+ xn|2; in fact we have that∫
RdN

N∑
i,j=1

−|xi − xj |2 dγ =

∫
RdN

c dγ − (N − 1)
N∑
i=1

∫
Rd
|x|2 dµi,

but this last additive term depends only on the marginals and not on the specific plan γ. The

cost c is very particular since has a wide class of “trivial” optimal plans, that is the ones that

are concentrated on x1 + . . .+ xn = 0; however the structure is very rich, see Lemma 4.3.

Concerning the existence of minimizers of (4.1), we will assume that the measures µi have

finite second moments; then existence follows immediately from the equality

argminγ∈Π((Rd)N ,µ1,...,µN )

{∫
−

N∑
i=1

N∑
j=i+1

|xj−xi|2dγ
}

= argminγ∈Π((Rd)N ,µ1,...,µN )

{∫
|x1+· · ·+xN |2dγ

}
.

In particular, Corollary 2.15 holds in this case too. Notice that the fact that the repulsive

harmonic cost is smooth and has linear gradient does not make the Multi-marginal Optimal

Transportation problem easier compared to the Coulomb cost. In fact in this case the problem

is that if we write down the optimality conditions for the potentials, in the case described in

Lemma 4.3, we simply find the condition x1 + . . .+ xN = const since in this case the potentials

are linear functions.

However, we can enjoy the symmetries of this problems and build easy Monge solutions for

some particular cases of (4.1), see examples 4.8, 4.10, 4.11 and 4.13 below.
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Before stating the main result in the multi-marginal setting, we start analyzing the problem

(4.1) in the 2-marginals case, where everything seems to work fine, just as in the square distance

case.

Proposition 4.1. Let µ, ν ∈ P(Rd) and cw(x, y) = −|x − y|2 be the opposite of the square-

distance in Rd. Suppose that µ is an absolutely continuous with respect to the Lebesgue measure

in Rd and ν has no atoms. Then, there exists a unique optimal transport map T : Rd → Rd for

the problem

min

{∫
cw(x, y)dγ : γ ∈ Π2(R2d, µ, ν)

}
= inf

{∫
cw(x, T (x))dµ : T]µ = ν

}
Moreover, T = ∇φ, where φ : Rd → R is a concave function and there exists a unique optimal

transport plan γ, that is γ = (Id × T )]µ .

Proof. This result is a easy consequence of the Brenier’s theorem. Indeed, it is enough to verify

that, taking C = 2
∫
|x|2 dµ+ 2

∫
|x|2 dν, we have

C + inf

{∫
−|x− T (x)|2dµ(x) : T]µ = ν

}
= inf

{∫
|x−G(x)|2dµ(x) : G]µ = ν̃

}
where G = −T and ν̃ = (−Id)]ν. Then by Brenier’s theorem there exists an unique optimal

map G which can be written as G(x) = ∇ψ(x), and ψ : Rd → R is a convex map. In other

words, T is a gradient of a concave function. �

Notice that if we suppose µ = f(x)dx and ν = g(x)dx are probability measures with densities

f, g concentrated, respectively, in convex sets Ωf ,Ωg and assume there exits a constant λ > 0

such that λ ≤ f, g ≤ 1/λ. Then, T is a C1,α function inside Ωf [17, 18].

OTHarm:Exam2Marginals Example 4.2 (2 marginals case, uniform measure in the d-dimensional cube). Suppose that µ =

ν = L
∣∣
[0,1]d

. In this case, we can verify easily that the optimal map T : [0, 1]d → [0, 1]d is given

by the anti-monotone map T (x) = (1, . . . , 1)− x.

Surprisely, the next theorem says that we can not always expect Caffarelli’s regularity for

the optimal transport maps for the repulsive harmonic cost with finitely many marginals N > 2

even when the support of the measures has convex interior (see corollary 4.7 below). Before

stating the theorem we will prove a lemma that characterizes many optimal plans:

OTHarm:stuplemma Lemma 4.3. Let {µi}Ni=1 be probability measures on Rd and h : Rd → R be a strictly convex

function and suppose c : ([0, 1]d)N → R a cost function of the form c(x1, . . . , xN ) = h(|x1 +

· · · + xN |). Then, if there exists a plan γ ∈ Γ(µ1, . . . , µN ) concentrated on some hyperplane of

the form x1 + . . . xN = k, this plan is optimal for the multi marginal problem with cost c and

supp(γ̃) ⊂ {x1 + . . . + xN = k} is a necessary and sufficient condition for γ̃ to be optimal. In

this case we will say that γ is a flat optimal plan and {µi}Ni=1 is a flat N -tuple of measures.

Proof. First of all we show that k is fixed by the marginals µi, and it is in fact the sum of

the barycenters of these measures. Let ci =
∫
x dµi; then let us suppose that there exists

γ ∈ Γ(µ1, . . . , µN ) that is concentrated on {x1 + . . . + xN = k}. Then, using that the i-th

marginal of γ is µi, we can compute

k =

∫
(x1 + . . .+ xN ) dγ =

N∑
i=1

∫
xi dγ =

N∑
i=1

∫
x dµi =

N∑
i=1

ci.
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In particular we notice also that for every admissible plan γ̃ we have
∫

(x1 + . . . + xN ) dγ̃ = k

and so by Jensen inequality we have∫
h(x1 + . . .+ xN ) dγ̃ ≥ h

(∫
(x1 + . . .+ xN ) dγ̃

)
= h(k) =

∫
h(x1 + . . .+ xN ) dγ.

This proves that γ is an optimal plan. Thanks to the strict convexity of h, this shows also that

if γ̃ is optimal then γ̃-a.e. we should have x1 + . . .+ xN = k. �

This reveals a very large class of minimizers in some cases, as we will see later. However

not every N -tuple of measures is flat: it is clear that we can have marginals such that there is

no plan with such property:

Example 4.4. Let N = 3 and µi = µ for every i = 1, 2, 3 with µ = ν1 + ν2 with ν1 = (−Id)]ν2

and ν1 concentrated on [2, 3]. Now it is clear that the barycenter of µ is 0 but for every 3 points

x1, x2, x3 in the support of µ we cannot have x1 +x2 +x3 = 0: two of them have the same sign,

let’s say x1 and x2, but then we have |x1 +x2| ≥ 4 > 3 ≥ |x3|, which contradicts x1 +x2 = −x3.

So it can’t exists an admissible plan concentrated on H0 = {x1 +x2 +x3 = 0}; in fact we showed

that for every γ ∈ Π(µ) we have supp(γ) ∩H0 = ∅.

Remark 4.5. In the case N = 2 the condition for which there exists an admissible plan γ

concentrated on an hyperplane of the form x1 + x2 = k implies that the two measures µ and

ν̃ = (−Id)]ν are equal up to translation. This condition is in fact very restrictive. However

when we think at the DFT problem and in particular we assume that µ = ν then the said

condition amounts to have that µ is centrally symmetric about its barycenter and in the context

of density of 2 electrons around a nucleus this seems a fairly natural condition.

OTHarm:mainthm Theorem 4.6. Let µi = µ = Ld
∣∣
[0,1]d

,∀i = 1, . . . , N be the uniform measure on the d-dimensional

cube [0, 1]d ⊂ Rd, h : Rd → R a convex function and suppose c : ([0, 1]d)N → R a cost function

such that c(x1, . . . , xN ) = h(x1 + · · ·+xN ). Then, there exits a transport map T : [0, 1]d → [0, 1]d

such that TN (x) = x and

min

{∫
cdγ : γ ∈ ΠN (µ)

}
= min

{∫
c(x, T (x), . . . , TN−1(x))dµ :

T]µ = µ,

TN = I

}
. (4.2)

Moreover, T is not differentiable almost everywhere.

Proof. We express every z ∈ [0, 1] by its base-N system, z =
∑∞

k=1
ak
NK with ak ∈ {0, 1 . . . , N−1}.

Consider the map by S(z) =
∑∞

k=1
S(ak)
NK , where S is defined by the permutation of N symbols,

i.e. S(i) = i+ 1, ∀i = 1, . . . , N − 1 and S(N) = 1. A straight forward computation shows that

z +
N∑
i=1

Si(z) =
N

2
(4.3) eqn:bary

Let T : Rd → Rd be a map defined by T (x) = T (z1, . . . , zd) = (S(z1), . . . , S(zd)) and denote

by T j(x) = (S(j)(z1), . . . , S(j)(zd)), j = 1, . . . , N − 1. We will first show that S is a measure-

preserving map. In fact, we can show that there exits functions Sk : [0, 1] → [0, 1] defined

recursively by

S0(x) = x, and Sk+1(x) = Tk+1(Sk(x))
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where Tk acts only of the k-th digit: T1(x) = x− (N − 1) ·N−k if x ∈ Ck and Tk(x) = x+N−k

if x ∈ [0, 1] \ Ck. The sets Ck are defined by

Ck =
Nk−1⋃
j=1

(
N(j − 1) + (N − 1)

Nk
,

j

Nk−1

]
.

Moreover, it is easy to see that

(Tk)]L[0,1] = L[0,1] ∀k ∈ N, and Sk → S uniformly.

Hence ∫
f(x)S]Ld =

∫
f(x)dx, ∀f ∈ C0([0, 1]d).

Now, it remains to show that T is optimal. But this is true thanks to the fact that (4.3) implies

that the plan induced by T satisfies the hypothesis of Lemma 4.3.

�

OTHARM:maincor Corollary 4.7. Let µ = Ld
∣∣
[0,1]d

be the uniform measure on the d-dimensional cube [0, 1]d in

Rd and suppose c : ([0, 1]d)N → R the N -dimensional repulsive harmonic cost.

c(x1, . . . , xN ) = −
N∑
i=1

N∑
j=i+1

|xj − xi|2, (x1, . . . , xN ) ∈ ([0, 1]d)N

Then, there exits an optimal cyclical transport map T : [0, 1]d → [0, 1]d: in particular

min

{∫
cdγ : γ ∈ ΠN (µ)

}
= min

{∫
c(x, T (x), . . . , TN−1(x))dµ :

T]µ = µ,

TN = I

}
. (4.4)

Moreover, T is not differentiable almost everywhere.

Proof. As we already observed, the problem with the cost c is equivalent to the problem with

the cost |x1 + . . .+ xN |2 and the result follows from the Theorem 4.6. �

We remark the construction of T in the proof of the Theorem 4.6 also works if N = 2 and

T is exactly the optimal transport map described in the example (4.2).

The unexpected aspect of Corollary 4.7 is the existence - for N ≥ 3 - of an optimal transport

map which is not differentiable almost everywhere. It turns out that this optimal map T could

be not unique if d > 1 and N ≥ 3 and, in that case, we can construct explicitly a regular optimal

map. This kind of richness appears already in the case d = 1 with the Coulomb cost; however

in that case we have uniqueness if we restrict ourselves to the symmetric optimal plan. Here

this is not the case as it is easy to see that modifying the action S on the digits (the important

thing is that when we see S as a permutation, it is a cycle), we obtain another map, and the

symmetrized plan is not equal to the one generated by the map described before.

In the following, we are going to present some concrete examples where we have other

explicit solutions for such kind of optimal maps for (MKweak) in (4.1). For these example the

goal is to show that there can be smooth optimal maps but they don’t necessarily satisfy the

“group rule”, that is, we can find maps T2, . . . TN such that (Id, T2, . . . , TN )]µ1 is an optimal

plan but T2 ◦ T2 6= Ti for any index i.

OTHarm:ex:3p Example 4.8 (3 particles, asymmetric). Consider the case when three particles are distributed

in R3 as Gaussians, µ1 = µ2 = 1
(2π)3/2

exp(−1
2(x2

1 +x2
2 +x2

3)) and µ3 = 1
2π3/2 exp(−(x2

1 +x2
2 +x2

3)).
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In this case, we can verify that the couple (T, S) of maps T, S : Rd → Rd, T (x) = x a.e. and

S(x) = −2x a.e. is admissible and it is optimal since x+ T (x) + S(x) = 0.

OTHarm:ex:breathing2marginals Example 4.9 (2N particles on S1, ). Suppose µ1, . . . , µ2N uniform probability measures on the

circle S1. The rotation map Rθ : R2 → R2 with angle θ = π/N is an optimal transport map.

Also, the maps Rkθ, k = 2, . . . , N , are optimal transport maps for the repulsive harmonic cost.

OTHarm:ex:evenmarginals Example 4.10 (2N particles, breathing map). Suppose µ1, . . . , µ2N uniform probability measures

on S2 ⊂ R3. Consider the vector v, the A : R3 → R3 the antipodal map A(x) = −x and

Rvθ : R3 → R3 the rotation of angle θ = π/N and direction v. Then, T = A ◦ Rvθ is a cyclic

optimal transport map.

The optimal solution γ = (x, T, T 2, . . . , TN−1)]µ1 is called “breathing” solution [94]: the

coupling γ represent the configuration where the 2N electrons are always at the same distance

from the center, opposite to each other in the equilibrium configuration. Notice that, the map

G = T 2 is also an cyclical optimal transportation map. Moreover, T is a C∞ function and its

a gradient of a convex-concave function φ(x1, x2, . . . , x2N−1, x2N ) = 1
2(x2

1 + x2
3 + · · ·+ x2

2N−1)−
1
2(x2

2 + x2
4 + · · ·+ x2

2N ).

OTHarm:ex:2Np Example 4.11 (2N particles in Rd, symmetric ρ). In this case, there exits maps T (x) = x a.e.

and S(x) = −x a.e. such that c(T (x), S(x), . . . , T (x), S(x)) = 0. We notice that in this case we

have S(2)(x) = x and so in particular this solution has the cyclic structure

(T (x), S(x), . . . , T (x), S(x)) = (x, S(x), S(2)(x), . . . , S(2N−1)).

OTHarm:ex:twomapsplan Example 4.12 (Optimal Maps which doesn’t satisfy a group law). Let us consider the case d =

1 and N = 3 where the measures are µ1 = µ2 = µ3 = 1
2L|[−1,1].

Then we define the maps

T (x) =

{
x+ 1 if x ≤ 0

x− 1 if x > 0,
S(x) =

{
−1− 2x if x ≤ 0

1− 2x if x > 0.

We have that T]µ = µ and S]µ = µ, and moreover x+T (x)+S(x) = 0; in particular (Id, S, T )]µ

is a flat optimal plan and so the thesis.

OTHarm:ex:trueplan Example 4.13 (Optimal Transport diffuse plan). Let us consider the same problem as in Exam-

ple 4.12. Now we consider a general symmetric plan γ = 1
2H

2|Hf(max{|x|, |y|, |z|}), where H is

defined as H = {x + y + z = 0} ∩ {|x| ≤ 1, |y| ≤ 1, |z| ≤ 1}. This is a symmetric flat optimal

plan; now we compute the marginals. Since it is clear that γ is invariant under x 7→ −x, it is

sufficient to consider the marginal on the set x > 0. But then we can make the computation∫
x≥0

φ(x) dγ(x, y, z) =
√

3

∫
|x|,|y|,|x+y|≤1,x≥0

φ(x)f(max{|x|, |y|, |x+ y|}) dxdy

=
√

3

∫ 1

0

∫ 1−x

0
φ(x)f(x+ y) dy dx+

√
3

∫ 1

0

∫ 0

−x
φ(x)f(x) dy dx

+
√

3

∫ 1

0

∫ −x
−1

φ(x)f(|y|) dy dx

=
√

3

∫ 1

0
φ(x)

(
xf(x) + 2

∫ 1

x
f(t) dt

)
dx.
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In particular the choice f(x) =
√

3
6 x gives the marginals equal to 1

2L|[−1,1]. We notice also that

any even density ρ = h(|x|) for some decreasing function h : [0, 1] → [0,∞) can be represented

in this way: in fact it is sufficient to choose f(x) = 1√
3

(
h(x)
x − 2x

∫ 1
x
h(t)
t3
dt
)

.

Example 4.14 (A Counterexample on the uniqueness of Multimarginal Optimal Maps for N > 3 Passconterexample).

As mentioned in the theorem 2.16 and in [42], it was already understood by Pass that in these

high dimensional cases, the solution of repulsive costs may also be non unique, differently on

the two marginals case. On a higher dimensional surface there can be enough wiggle room to

construct more than one measure with common marginals, as shows in the examples 4.8, 4.10,

4.11, 4.12, 4.13. In most of the cases, the non-uniqueness seems to be given by the symmetries

of the problem, but in Example 4.13 and Corollary 4.7 this is not the case, as we exploit the

fact that the dimension of the set c(x + y + z) − φ(x) − φ(y) − φ(z) = 0, is greater then the

minimal one.

Finally, the last proposition of this section says that when d = 1 and odd N we have no

hope in general to find piecewise regular cyclic optimal transport maps.

Proposition 4.15. Let µ = L|[0,1] and N ≥ 3 be an odd number. Then, the infimum

inf

{∫
c(x, T (x), T 2(x), . . . , TN−1)dµ :

T]µ = µ,

TN = I

}
.

is not archived by a map T which is differentiable almost everywhere. In particular, the non

differentiable transport map T given by the theorem 4.6 is a Monge minimizer for (4.1)

Proof. First of all we notice that if T is differentiable almost everywhere then also T (2) has the

same property, thanks to the fact that T]µ = µ. In particular, since the Lusin property holds

true for T (i) for every i = 1, . . . , N and T]µ = µ, the change of variable formula holds and in

particular we have that (T (i))′(x) = ±1 for almost every x (notice also that T is bijective almost

everywhere since T (N)(x) = x).

Since µ is N -flat we have that the condition on T in order to be an optimal cyclical map is

x + T (x) + T (2)(x) + . . . + T (N−1)(x) = N/2; now we can differentiate this identity and so we

will get

1 + T ′(x) + (T (2))′(x) + . . .+ (T (N−1))′(x) = 0 for a.e. x.

But this is absurd since on the left hand side we have an odd number of ±1 and their sum will

be an odd number. �

In conclusion, also in the case of the repulsive harmonic cost, the picture is far from being

clear: an interesting structure appears when {µi}Ni=1 is a flat N -tuple of measures but we still

can’t characterize this property. Moreover, in the flat case in which µi = µ, for example when

µ = 1
2L

1|[−1,1], we have both diffuse optimal plan and a cyclical optimal map.

An interesting open problem is whether if for any N -flat measure µ, say absolutely con-

tinuous with respect to the Lebesgue measure, we have a cyclical optimal map and a diffuse

plan.
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5. Multi-marginal OT for the Determinant
sec:Det

We are going to give a short overview of the main results in [21], where Carlier and Nazaret

consider the following optimal transport problems for the determinant:

(MKDet) sup

{∫
(Rd)d

det(x1, . . . , xd)dγ(x1, . . . , xd) : γ ∈ Π((Rd)d, µ1, . . . , µd)

}
, (5.1) Det:pb:MKDet

and

(MK|Det|) sup

{∫
(Rd)d

|det(x1, . . . , xd)|dγ(x1, . . . , xd) : γ ∈ Π((Rd)d, µ1, . . . , µd)

}
, (5.2) Det:pb:MKDetm

where µ1, . . . , µd are the uniform probability measures in Rd. In addition, in order to guarantee

existence of a solution, we assume that exist p1, . . . , pd ∈ [1,∞[ such that

d∑
i=1

1

pi
= 1, and

d∑
i=1

|xi|pi
pi

< +∞.

Notice here the problem (2.1) makes sense only when N = d. In the following, we will focus

in discuss the problem (5.1) and exhibit explicit minimizers γ in the radial case. Clearly, the

difference between (5.1) and (5.2) is that the second one admits positively and negatively oriented

basis of vectors, while the first one “chooses” only the positive ones. Moreover, if we assume

that among the marginal µ1, . . . , µd there exits two symmetric probability measures µi, µj , i 6=
j, i.e. µi = (-Id)]µi and µj = (-Id)]µj , then any solution γ of (5.1) satisfies det(x1, . . . , xd) ≥ 0 γ-

almost everywhere and so solves also (5.2) (Proposition 6, [21]).

Similarly to the Gangbo-Świȩch cost [47], the Monge-Kantorovich problem for the determi-

nant (5.1) can be seen as a natural extension of classical optimal transport problem with two

marginals and so, it is equivalent to the 2-marginals repulsive harmonic cost (4.1).

Indeed, we can write in the two marginals case, det(x1, x2) = 〈x1, Rx2〉, where R : R2 → R2

is the rotation of angle −π/2. Hence, since µ1 and µ2 has finite second moments, up to a change

of variable x̃2 = Rx2, the problem (MKDet) in (5.1) is equivalent to the classical Brenier’s

optimal transportation problem, as shows the following computation.

argmaxγ∈Π(µ1,µ2)

∫
R2

det(x1, x2)dγ(x1, x2), = argmaxγ∈Π(µ1,µ2)

∫
R2

〈x1, x̃2〉dγ(x1, x2),

= argmaxγ̃∈Π(µ1,µ̃2)

∫
R2

〈x1, x2〉dγ̃ − C,

= argminγ∈Π(µ1,µ̃2)

∫
R2

|x1 − x2|2

2
dγ(x1, x2)

,

where C = 1/2(
∫
|x1|2 dµ1 +

∫
|x2|2 dµ2) and µ̃2 = R]µ2.

In the sequel, we are going to construct maximazers for (5.1), thanks to some properties of

the Kantorovich potentials in the dual problem associated to (5.1) (see theorem 5.1 bellow),

(KDetN ) inf

{∫
Rd

d∑
i=1

ui(xi)dµi(xi) :

N∑
i=1

ui(xi) ≤ det(x1, . . . , xd)

}
. (5.3) pb:KNDet

In [21] it is provided an useful characterization of optimal transport plans though the po-

tentials ui, given by the following theorem 5.1 below. In addition, by means of a standard

convexification trick we obtain regularity results on the Kantorovich potentials.
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Det:carcgamma Theorem 5.1. A coupling γ ∈ Π((Rd)d, µ1, . . . , µd) is optimal in (5.1) if and only if there exists

lower semi-continuous convex functions ui : Rd → R ∪ {∞} such that for all i ∈ {1, . . . , d},

d∑
i=1

ui(xi) ≤
d∑
i=1

u∗i ((−1)i+1
∧
i 6=j

xj), on (Rd)d;

d∑
i=1

ui(xi) =

d∑
i=1

u∗i ((−1)i+1
∧
i 6=j

xj), γ − almost everywhere;

(−1)i+1
∧
i 6=j

xj ∈ ∂ui(xi), γ − almost everywhere.

where
∧d
i=1 xj denotes the wedge product and, for every i, u∗i is the convex dual of the Kantorovich

potential ui.

Now, the main idea is to use the geometrical constraints on the Kantorovich potentials ui
(5.3), given by the theorem (5.1), in order to construct an explicit solutions.

We illustrate the theorem (5.1) and explain how to construct a particular optimal γ for (5.1)

by an example in the three marginals case in the unit ball in R3. Let µi = ρiL3, i = 1, 2, 3

radially symmetric probability measures on the 3-dimensional ball B.

In this particular situation, the optimizers of (5.1) and (5.2) has a natural geometric inter-

pretation: what is the best way to place three random vectors x, y, z, distributed by probabil-

ity measures µ1, µ2, µ3 on the sphere, such that the simplex generated by those three vectors

(0, x, y, z) has maximum average volume?

Suppose γ ∈ Π(B,µ1, µ2, µ3) optimal in (5.1) when d = 3. From optimality of γ, we have

u1(x) + u2(y) + u3(z) = det(x, y, z), γ − almost everywhere.

Applying the theorem (5.1), we get{ u2(y) + u3(z) = u∗1(y ∧ z)
u1(x) + u3(z) = u∗2(−x ∧ z)
u1(x) + u2(y) = u∗3(x ∧ y)

, γ − almost everywhere,

and, { ∇u1(x) = y ∧ z
∇u2(y) = −x ∧ z
∇u3(z) = x ∧ y

, γ − almost everywhere. (5.4) sys:perp

Again, from the optimality of γ, given a vector x on in the ball, the conditional probability

of y given x is supported in a “meridian” M(x)

M(x) = {y ∈ S2 : 〈∇u1(x), y〉 = 0},

where S2 is the 2−sphere. Finally, assuming that 〈x,∇u1(x)〉 6= 0, the conditional probability

of z given the pair (x, y) is simply given by a delta function on z

z =
∇u1(x) ∧∇u2(y)

〈x,∇u1(x)〉
;

In particular, we have

〈x,∇u1(x)〉+ 〈y,∇u2(y)〉+ 〈z,∇u3(z)〉 = det(x, y, z) = det(∇u1(x),∇u2(y),∇u3(z)).
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Example 5.2 (An explicit solution in the ball B ⊂ R3). Suppose µi = L3
B, i = 1, 2, 3, the

3-dimensional Lebesgue measure in the ball B ⊂ R3. The following coupling γ∗∫
B3

fdγ∗ =
1

L3(B)

∫
B

(∫
M(x)

f(x, |x|y, x ∧ y)
dH1(y)

2π

)
dx, ∀f ∈ C(B3,R). (5.5) Det:examplegamma

is an optimizer for (5.1) with d = 3. Indeed, from we can show explicit potentials u∗1(x) =

u∗2(x) = u∗3(x) = |x|3/3; clearly we have

det(x, y, z) ≤ |x||y||z| ≤ |x|3/3 + |y|3/3 + |z|3/3, ∀ (x, y, z) ∈ B,

with equality when |x| = |y| = |z| and x, y, z are orthogonal. Since γ∗ is concentrated on this

kind of triples of vector we have the optimality. Finally, by a suitable change of variable, it is

easy to see that γ∗ ∈ Π3(L3
B).

Some comments on the radially symmetric d-marginals case: In [21], for d radially symmetric

probability measures, the authors exhibit explicit optimal couplings γ∗. In their proof, two

aspects were crucial: the first one is remark that if {µi}di=1 are radially symmetric measures

in Rd, then the optimal Kantorovich potentials ui(xi) = ui(|xi|) are also radially symmetric;

in particular the system (5.4) for general d implies that the support of γ∗ is contained in the

set of orthogonal basis. The second observation is to notice that in the support of γ∗ we have

Hi(|x1|) = |xi|, where Hi is the unique monotone increasing map such that (H∗i )]µ1 = µi,

where H∗i (x) = x
|x|Hi(|x|). This is done analyzing the correspondent radial problem (with cost

c(r1, . . . , rd) = r1 · · · rd), using the optimality condition φ′i(ri) = ∂ic and the fact that in this

case riφ
′
i(ri) = r1φ

′
1(r1) = c ≥ 0; then, exploiting the convexity of φi we get ri = Hi(r1) for

some increasing function Hi, that is uniquely determined.

Existence of Monge-type solutions: In the 3-marginals case in the unit ball, by construction

of the the coupling γ∗ in (5.5) or, more generally, the optimal coupling in the d-marginal case

(see theorem 4 in [21]), we can see that their support are not concentrated in the graph of cyclic

maps T, T 2, . . . , T d−1 or simply on the graph of maps T1, . . . , Td−1 as we could expect from

corollary (2.15). In other words, γ∗ in (5.5) is not Monge-type solution.

The existence of Monge type solutions for the determinant cost is still an open problem for

odd number of marginals. From the geometric conditions we discussed above, in the case in which

µi = µ a radial measure, if Monge solutions exists then, for every x ∈ Rd, (x, T1(x), . . . , Td−1(x))

should be a orthogonal basis, and |Ti(x)| = |x| , i = 1, . . . , d− 1.

For the interesting even dimensional case, we can observe a similar phenomena remarked in

the repulsive harmonic costs and build easy Monge solutions for (5.1).

Example 5.3. The even dimensional phenomena: As in the repulsive harmonic cost, it is easy

to construct Monge minimizers for the determinant cost for even number of marginals ≥ 4. For

instance, suppose c(x1, x2, x3, x4) = det(x1, x2, x3, x4) and define maps T1, T2, T3 : B → R4 by

T1(x) =


−x2

x1

−x4

x3

 , T2(x) =


−x3

x4

x1

−x2

 , T3(x) =


−x4

−x3

x2

x1

 , x = (x1, x2, x3, x4) ∈ B.

We can see that γT = (Id, T1, T2, T3)]γ is a Monge-type optimal transport plan for (5.1) and

(5.2).
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6. Numerics
numerics

Numerics for the multi-marginal problems have so far not been extensively developed. Dis-

cretizing the multi-marginal problem leads to a linear program where the number of constraints

grows exponentially in the number of marginals. In [22] Carlier, Oberman and Oudet studied the

matching of teams problem and they were able to reformulate the problem as a linear program

whose number of constraints grows only linearly in the number of marginals. More rencently

a numerical method based on an entropic regularization has been developed and it has been

applied to various optimal transport problem in [11, 12, 35]. Let us mention that the Coulomb

cost has been treated numerically in various paper as in [73, 52], where the solutions are based

on the analytical form of transport maps given in [52], in [74], where parameterized functional

forms of the Kantorovich potential are used, in [25, 26], where a linear programming approach

has been developed to solve the 1-dimensional problem , and, as already mentioned, in [12]. In

this section we focus on the regularized method proposed in [11, 12, 35] and we, finally, present

some numerical experiments for the costs studied above.
subIPFP

6.1. The regularized problem and the Iterative Proportional Fitting Procedure. Let

us consider the problem

(MK) inf

{∫
RdN

c(x1, . . . , xN )γ(x1, . . . , xN )dx1, . . . , dxN : γ ∈ Π(RdN , µ1, . . . , µN )

}
, (6.1) pb:MKN2

whereN is the number of marginals µi which are probability distributions over Rd, c(x1, ..., xN )

is the cost function, γ the coupling, is the probability distribution over RdN and Π :=
⋂N
i=1 Ci

with Ci := {γ ∈ P(RdN ) : ei]γ = µi}.

Remark 6.1. From now on the marginals µi and the coupling γ are densities and when the optimal

coupling γ is induced by maps Ti, we write it as γ = µ1(x1)δ(x2 − T2(x1)) · · · δ(xN − TN (x1)).

In order to discretize (6.1), we use a discretisation with Md points of the support of the kth

marginal as {xjk}jk=1,··· ,Md
. If the densities µk are approximated by µk ≈

∑
jk
µjkδxjk , we get

min
γ∈C

∑
j1,···jN

cj1,··· ,jNγj1,··· ,jN , (6.2) pb:MKdiscrete

where cj1,··· ,jN = c(xj1 , · · · , xjN ) and the coupling support for each coordinate is restricted to the

points {xjk}k=1,··· ,Md
thus becoming a (Md)

N matrix again denoted γ with elements γj1,··· ,jN .

The marginal constraints Ci becomes

Ci :=
{
γ ∈ R(Md)N

+ :
∑

j1,...,ji−1,ji+1,...,jN

γj1,...,jN = µji , ∀ji = 1, · · · ,Md

}
. (6.3) constraint

As in the continous framework the problem (6.1) admits a dual formulation

max
ujk

N∑
k=1

M∑
j=1

ujkµjk

s.t.

N∑
k=1

ujk ≤ cj1···jN ∀ jk = 1, · · · ,Md,

(6.4) DualDiscrete

where ujk = uk(xjk) is the kth Kantorovich potential. One can notice that the primal (6.1)

has (Md)
N unknown and Md × N linear constraints and the dual problem (6.4) has Md × N
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unknown, but (Md)
N constraints. This actually makes the problems computationally unsolvable

with standard linear programming methods even for small cases.

Remark 6.2. We underline that in many applications we have presented (as in DFT) the

marginals µi are all equals (µi = µ, ∀ i ∈ {1, · · · , N}). Thus the dual problem can be re-

written in a more convenient (but still computationally unfeasible for many marginals) way

max
uj

M∑
j=1

Nujkµ

s.t.

N∑
k=1

ujk ≤ cj1···jN ∀jk = 1, · · · ,Md,

(6.5) DualDiscreteBis

where uj = u(xjk). Now the dual problem has Md unknown, but (Md)
N linear constraints.

A different approach consists in computing the problem (6.1) regularized by the entropy of

the joint coupling. This regularization dates to E. Schrödinger [92] and, as mentioned above, it

has been recently introduced in many applications involving optimal transport [11, 12, 35, 45]

Thus, we consider the following discrete regularized problem

min
γ∈C

∑
j1,···jN

cj1,··· ,jNγj1,··· ,jN + εE(γ), (6.6)

where E(γ) is defined as follows

E(γ) =

{∑
j1,···jN γj1,··· ,jN log(γj1,··· ,jN ) if γ ≥ 0

+∞ otherwise.
(6.7)

After elementary computations, we can re-write the problem as

min
γ∈C

KL(γ|γ̄) (6.8) eq22

where KL(γ|γ̄) =
∑

i1,...,iN
γi1,...,iN (log(

γi1,...,iN
γ̄i1,...,iN

)) is the Kullback-Leibler distance and

γ̄i1,...,iN = e
−
cj1,··· ,jN

ε . (6.9) barg

As explained in section 2, when the transport plan γ is concentrated on the graph of a

transport map which solves the Monge problem, after discretisation of the densities, this property

is lost along but we still expect the γ matrix to be sparse. The entropic regularization spreads the

support and this helps to stabilize the computation as it defines a strongly convex program with

a unique solution γε. Moreover the solution γε can be obtained through elementary operations.

The regularized solutions γε then converge to γ? (see figure 2), the solution of (6.1) with minimal

entropy, as ε → 0 (see [32] for a detailed asymptotic analysis and the proof of exponential

convergence).

In order to introduce the Iterative Proportional Fitting Procedure (IPFP), we consider the

two marginals problem

min
γ∈C

∑
i,j

cijγij . (6.10) pd:MKdiscrete2

The aim of the IPFP is to find the KL projection of γ̄ on the set C = {γij ∈ RMd × RMd :∑
j γij = µi} ∩ {γij ∈ RMd × RMd :

∑
i γij = νj}. By writing down the lagrangian associated
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ε = 0.2 ε = 0.1 ε = 0.05

ε = 0.025 ε = 0.0125 ε = 0.006

Figure 2. Support of the coupling γε for the Coulomb cost and all marginals

µi = (1 + cos(πx/2))/2. The simulation has been performed on a discretization

of [−2, 2] with Md = 1000.figure:regularization

to (6.10) and computing the optimality condition, we find that γij can be written as

γij = aibj γ̄ij with ai = eui/ε, bj = evj/ε, (6.11)

where ui and vj are the regularized Kantorovich potential. Then, ai and bj can be uniquely

determined by the marginal constraint

ai =
µi∑
j bj γ̄ij

, bj =
νj∑
i aiγ̄ij

. (6.12)

Thus, we can now define the following iterative method

bn+1
j =

νj∑
i a
n
i γ̄ij

, an+1
i =

µi∑
j b
n+1
j γ̄ij

. (6.13) IPFP

Remark 6.3. In [89] Rüschendorf proves that the iterative method (6.13) converges to the KL-

projection of γ̄ on C.

Remark 6.4. Rüschendorf and Thomsen (see [91]) proved, in the measure continous framework,

that a unique KL-projection exists and takes the form γ(x, y) = a(x)⊗ b(y)γ̄(x, y) (where a(x)

and b(y) are non-negative functions).

The extension to the multi-marginal framework is straightforward but cumbersone to write.

It leads to a problem set on N Md-dimensional vectors aj,i(·) , j = 1, · · · , N, i(·) = 1, · · · ,Md.

Each update takes the form

an+1
j,ij

=
ρij∑

i1,i2,...ij−1,ij+1,...,iN
γ̄i1,...,iN a

n+1
1,i1

an+1
2,i2

...an+1
j−1,ij−1

anj+1,ij+1
...anN,iN

. (6.14) ip3
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6.2. Numerical experiments: Coulomb cost. We present now some results for the multi-

marginal problem with Coulomb cost in the real line. We consider the N marginals equals to

a density µ (we work in a DFT framework so the marginals rappresent the electrons which

are indistinguishable). We recall that splitting µ into N µ̃i with equal mass (
∫
µ̃i(x)dx =

1
N

∫
µ(x)dx), we will have µ̃i → µ̃i+1 i = 1, · · · , N − 1 and µ̃N → µ̃i.

The simulations in figure 3 are all performed on a discretization of [−5, 5] with Md = 200,

with marginals µi = µ(x) = N
10(1 + cos(π5x)) i = 1, · · · , N and ε = 0.02. If we focus on the

support of the coupling γ̃12(x, y) we can notice that the numerical solution correctly reproduces

the prescribed behavior: the transport plan is induced by a cyclical optimal maps (see section

3).

Figure 3. (1st Row) Left: support of the optimal coupling γ̃12(x, y) for N = 3.

Right: support of the optimal coupling γ̃12(x, y) for N = 3 (2nd Row) Left:

support of the optimal coupling γ̃12(x, y) for N = 4. Right: optimal coupling

γ̃12(x, y) for N = 4. (3rd Row) Left: support of the optimal coupling γ̃12(x, y) for

N = 5. Right: optimal coupling γ̃12(x, y) for N = 5. The dashed lines delimit

the intervals where µ̃i , with i = 1, · · · , N , are defined.figure:coulombNcos

Remark 6.5. Theorem 3.7 actually works also for other costs functions as c(x1, · · · , xN ) =∑N
i<j −log(|xi − xj |). This means that if we use the density µ(x) = N

10(1 + cos(π5x)), we expect

to obtain the same solution of the Coulomb cost. Thus if we now consider the 3-marginals case

and the discretized cost cj1,j2,j3 = −log(|xj1 − xj2 |) − log(|xj1 − xj3 |) − log(|xj2 − xj3 |), we can
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notice (see figure 4) that we recover the same optimal coupling of the corresponding case for

Coulomb (first row of figure 3). The simulation is performed on a discretizetion [−5, 5] with

Md = 200, with marginals µ(x) = N
10(1 + cos(π5x)) N = 3 and ε = 0.01.

Figure 4. (logarithmic cost) Left: support of the optimal coupling γ̃12(x, y) for

N = 3. Right: support of the optimal coupling γ̃12(x, y) for N = 3. The dashed

lines delimit the intervals where µ̃i , with i = 1, · · · , 3, are defined.figure:logNcos

6.3. Numerical experiments: repulsive Harmonic cost. As shown in section 4 the min-

imizers of the OT problem with the harmonic cost are also minimizers of the problem with

c(x1, · · · , xN ) = |x1 + · · ·+ xN |2, so for the discrete problem (6.2) we take cj1···jN = |xj1 + · · ·+
xjN |2. Let us firstly consider the two marginal case and the uniform density on [0, 1] (see example

4.2), and, as expected, we find a detrministic coupling given by γ(x, y) = µ(x)δ(y−T (x)) where

T (x) = 1− x, see figure 5. The simulation in figure 5 has been performed on a discretization of

[0, 1] with Md = 1000 gridpoints and ε = 0.005.

Figure 5. Left: support of the optimal coupling. Right: optimal coupling.figure:harmonic2marginals

The multi-marginals case is more delicate to treat: the original OT problem does not admit

a unique solution where as the regularized problem does. As we have explained in section 6.1

the regularized problem is a strongly convex problem which admits a unique solution and the

resulting coupling is the one with the minimal entropy. However we are able to make the IPFP

algorithm converge to a selected coupling among the optimal ones for the original problem. Let

us focus on the example 4.12. In this case we have all marginals equals to µ = 1
2L|[−1,1] and we

can find a deterministic coupling given by γ(x, y, z) = µ(x)δ(y− T (x))δ(z − S(x)) (see example

4.12 for the maps T (x) and S(x)). In order to select the desired coupling, the idea is to modify

the cost function by adding a penalization term p(x, y) = τ
|x−y| which makes µ1 and µ2 be

furthest as possible. Thus, the discretized cost now reads as

cj1,j2,j3 = |xj1 + xj2 + xj3 |2 +
τ

|xj1 − xj2 |
. (6.15)
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In figure 6 we visualize the projection γ̃12(x, y) = π12γ(x, y, z) and γ̃13(x, z) = π13γ(x, y, z)

of the computed coupling. The simulation has been performed on a discretization of [−1, 1] with

Md = 1000 gridpoints, ε = 0.0005 and η = 0.1.

We, finally, take the same marginals as in the previous example, but we do not add the penal-

Figure 6. Top-Left: support of the optimal coupling γ̃12(x, y). Top-Right: op-

timal coupling γ̃12(x, y). Bottom-Left: support of the optimal coupling γ̃13(x, z).

Bottom-Right: optimal coupling γ̃13(x, z).figure:twomaps

ization. In this case we expect a diffuse plan since, if we forget about the marginal constraint,

it is simple to show that the second order Γ-limit of the regularized problem as ε → 0 is the

relative entropy of γ with respect to H2|{x+y+z=0}; we expect that the Γ-limit is the same also

when we add the marginal constraint.

In figure 7 we present the projection γ̃12(x, y) = π12γ(x, y, z) of the computed coupling (it

is enough to visualize only this projection because of the symmetries of the problem). The

simulation has been performed on a discretization of [−1, 1] with Md = 1000 gridpoints, ε =

0.0005.

6.4. Numerical experiments: Determinant cost. Numerical simulations for the multi-

marginal problem with the determinant cost present an obvious computational difficulty: in

order to compute the solution just for the 3-marginals case, we have to introduce a discretiza-

tion of R3.

Remark 6.6. We remind the reader that c(x1, · · · , xN ) = det(x1, · · · , xN ) where xi ∈ RN

However if we take radially symmetric densities µi as marginals (see section 5 for a more

complete description of the problem in the measure framework), Carlier and Nazaret show that

(MK) can be reduced to a 1-dimensional problem: the only unknown are the relations between

the norm of each vector ri = ‖xi‖. These relations can be obtained by solving the following
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Figure 7. Left: support of the optimal coupling γ̃12(x, y). Right: optimal cou-

pling γ̃12(x, y).figure:diffplan

problem

min
γ∈Π(λ1(r),··· ,λN )

−
∫

(

N∏
i=1

ri)γ(r1, · · · , rN )dr1 · · · drN , (6.16) radialPb

where λi(r) = σ(r)µi(r) (i.e. N = 3 then r = (r, θ, ϕ) and σ(r) = 4πr2). Moreover, for this

problem we know that there exists a unique (deterministic) optimal coupling (see Proposition 5

in [21]). The discretized cost now reads cj1···jN =
∏N
k=1 rjk . Let us consider the 3-marginals case

and all densities λi equals to the uniform on the ball B0.5 = {x ∈ R3|‖x‖ ≤ 0.5}. As proved in

[21], the optimal coupling is actually supported by the graph of maps which rearrange measure

(see figure 8 ). The simulation in figure 8 has been performed on a discretization of [0, 0.5] with

Md = 100 and ε = 0.01. In the same way we can take all marginals λi(r) = 4πr2e−4r and

Figure 8. (Uniform density) Left: support of the optimal coupling γ̃12(r1, r2).

Right: optimal coupling γ̃12(r1, r2).figure:detUniform

we obtain again a deterministic coupling, figure 9. The simulation has been performed on a

discretization of [0, 3] with Md = 300 and ε = 0.05.

Figure 9. (Exponential density)Left: support of the optimal coupling γ̃12(r1, r2).

Right: optimal coupling γ̃12(r1, r2).figure:detExponential
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We, finally, present a simultaion (see figure 11) with three different marginals λi (see figure

10). The simulation has been performed on a discretization of [0, 4] with Md = 300 and ε = 0.07.

λ1 λ2 λ3

Figure 10. Densities λ1, λ2 and λ3.figure:den

Figure 11. Top-Left: optimal coupling γ̃12(r1, r2). Top-Center: optimal cou-

pling γ̃13(r1, r3). Top-Right: optimal coupling γ̃23(r2, r3). Bottom-Left: support

of the optimal coupling γ̃12(r1, r2). Bottom-Center: support of the optimal cou-

pling γ̃13(r1, r3). Bottom-Right: support of the optimal coupling γ̃23(r2, r3).figure:planden

Conclusion
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[4] L. Ambrosio, N. Gigli and G. Savaré, Gradient Flows in Metric Spaces and in the Space of Probability

Measures. Lectures in Mathematics. ETH Zrich (2008);

[5] A. Becke, Density-functional thermochemistry III. The role of exact exchange. J. Chem. Phys. 98, 5648

(1993);

[6] M. Beiglbock, A. Cox and M. Huesmann, Optimal Transport and Skorokhod Embedding. preprint;

[7] M. Beiglbock and C. Griessler, An optimality principle with applications in optimal transport. Preprint

available at http://arxiv.org/abs/1404.7054;

[8] M. Beiglbock, P. Henry-Labordere, and F. Penkner, M. Beiglbock, P. Henry-Labordere, and F. Penkner.

Model independent bounds for option prices: a mass transport approach. Finance Stoch.,17:477501 (2013);

[9] M. Beiglbock and N. Juillet, On a problem of optimal transport under marginal martingale constraints.

Finance Stoch.,17:477501 (2013);

[10] M. Beiglboeck, C. Leonard and W. Schachermayer, A General Duality Theorem for the Monge–Kantorovich

Transport Problem. Studia Math. 209, no. 2 (2012);

[11] JD Benamou, G. Carlier, M. Cuturi, L. Nenna, and G. Peyré, Iterative Bregman Projections for Regularized
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[91] L. Rüschendorf., W. Thomsen, Closedness of sum spaces and the generalized Schrodinger problem. Theory

of Probability and its Applications 42(3), 483?494 (1998)
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