
Journal of Network and Computer Applications 235 (2025) 104094

A
1
n

Contents lists available at ScienceDirect

Journal of Network and Computer Applications

journal homepage: www.elsevier.com/locate/jnca

Research paper

Light up that Droid! On the effectiveness of static analysis features against
app obfuscation for Android malware detection
Borja Molina-Coronado a ,∗, Antonio Ruggia b , Usue Mori c, Alessio Merlo d ,
Alexander Mendiburu a , Jose Miguel-Alonso a

a Dept. of Computer Architecture and Technology, University of the Basque Country UPV/EHU, Donostia, Spain
b Dept. of Informatics, Bioengineering, Robotics and Systems Engineering, University of Genoa, Genoa, Italy
c Dept. of Computer Science and Artificial Intelligence, University of the Basque Country UPV/EHU, Donostia, Spain
d CASD - Centre for Advanced Defense Studies, Rome, Italy

A R T I C L E I N F O

Keywords:
Machine learning
Static analysis
Malware detection
Obfuscation
Reliability
Evasion

A B S T R A C T

Malware authors have seen obfuscation as the mean to bypass malware detectors based on static analysis
features. For Android, several studies have confirmed that many anti-malware products are easily evaded with
simple program transformations. As opposed to these works, ML detection proposals for Android leveraging
static analysis features have also been proposed as obfuscation-resilient. Therefore, it needs to be determined
to what extent the use of a specific obfuscation strategy or tool poses a risk for the validity of ML Android
malware detectors based on static analysis features. To shed some light in this regard, in this article we assess
the impact of specific obfuscation techniques on common features extracted using static analysis and determine
whether the changes are significant enough to undermine the effectiveness of ML malware detectors that rely on
these features. The experimental results suggest that obfuscation techniques affect all static analysis features to
varying degrees across different tools. However, certain features retain their validity for ML malware detection
even in the presence of obfuscation. Based on these findings, we propose a ML malware detector for Android
that is robust against obfuscation and outperforms current state-of-the-art detectors.
1. Introduction

With the spread of Android devices, the amount of malware crafted
for this OS has also experienced a extraordinary growth (Statista, 2021;
Kaspersky Labs, 2021). This has led researchers to devise cutting-edge
anti-malware solutions based on machine learning (ML) algorithms.
When fed with app data, these algorithms are able to find patterns
that are characteristic and informative enough to classify apps as either
goodware or malware. In this sense, the performance of ML highly
depends on the quality and soundness of the data that is used to build
the classifier (Hastie et al., 2009; Molina-Coronado et al., 2020). In the
case of Android malware detection, the extraction of this data, in the
form of a vector of features that represents the behavior of apps, is
performed using either dynamic or static analysis (Sadeghi et al., 2016;
Wang et al., 2019).

Dynamic analysis is performed on a controlled environment (sand-
box) where the app is executed. During execution, traces that describe
the behavior of the app, e.g., network activity, system calls, etc. are
logged (Sadeghi et al., 2016). On the contrary, static analysis is based

∗ Corresponding author.
E-mail addresses: borja.molina@ehu.eus (B. Molina-Coronado), antonio.ruggia@dibris.unige.it (A. Ruggia), usue.mori@ehu.eus (U. Mori),

alessio.merlo@ssuos.difesa.it (A. Merlo), alexander.mendiburu@ehu.eus (A. Mendiburu), j.miguel@ehu.eus (J. Miguel-Alonso).

on the inspection of the content of the package file (APK) of an app.
This includes the compiled code and other resources such as image and
database files (Li et al., 2017). Both techniques are valid to extract
valuable data from apps. However, dynamic analysis involves a costly
process whose success is dependent on the emulation method used
and the absence of sandbox evasion artifacts in the code of apps.
Instead, static analysis is computationally cheaper, but it can be coun-
teracted by applying app code transformations. Such transformations
are commonly known as obfuscation (Tam et al., 2017).

Obfuscation is a security through obscurity technique that aims to
prevent automatic or manual code analysis. It involves the transforma-
tion of the code of apps, making it more difficult to understand but
without altering its functionality (Sihag et al., 2021). This characteristic
has made obfuscation a double edged sword, used by both, goodware
and malware authors. Developers of legitimate software leverage ob-
fuscation to protect their code from being statically analyzed by third
parties, e.g., trying to avoid app repackaging or intellectual property
abuses (Collberg and Thomborson, 2002). Malware authors have seen
https://doi.org/10.1016/j.jnca.2024.104094
Received 27 March 2024; Received in revised form 14 November 2024; Accepted 9
vailable online 19 December 2024
084-8045/© 2025 The Authors. Published by Elsevier Ltd. This is an open access
c/4.0/).
 December 2024

article under the CC BY-NC license (http://creativecommons.org/licenses/by-

https://www.elsevier.com/locate/jnca
https://www.elsevier.com/locate/jnca
https://orcid.org/0000-0001-9372-5219
https://orcid.org/0000-0003-2435-9993
https://orcid.org/0000-0002-2272-2376
https://orcid.org/0000-0002-7271-1931
https://orcid.org/0000-0003-4616-322X
mailto:borja.molina@ehu.eus
mailto:antonio.ruggia@dibris.unige.it
mailto:usue.mori@ehu.eus
mailto:alessio.merlo@ssuos.difesa.it
mailto:alexander.mendiburu@ehu.eus
mailto:j.miguel@ehu.eus
https://doi.org/10.1016/j.jnca.2024.104094
https://doi.org/10.1016/j.jnca.2024.104094
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jnca.2024.104094&domain=pdf
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/

B. Molina-Coronado et al.

e
i

e
e
t

d
m

a
e
i
f
d
T

a
p
a
m
c

t
u

f
e
c
s

t

F

a
p

T

t

d

I

T
r
d
d
d

Journal of Network and Computer Applications 235 (2025) 104094
obfuscation as a mean to conceal the purpose of their code (Dong
t al., 2018), preventing static analysis tools from obtaining meaningful
nformation about the behavior of apps.

It may seem common sense that the application of any, or the
combination of several, obfuscation techniques will make malware
analysis relying on features extracted using static analysis fruitless.
However, it is unclear to what extent this aspect is true. Some studies on
Windows and Android executables have demonstrated that obfuscation
harms detectors that rely on static analysis features. For example, pack-
ing1 prevents obtaining informative features (Aghakhani et al., 2020;
Ruggia et al., 2021), which are essential to train malware detectors.
Similar conclusions have been drawn for other forms of transforma-
tion (Hammad et al., 2018; Molina-Coronado et al., 2023; Gao et al.,
2024), showing a major weakness in Android malware detectors. How-
ver, other studies contradicted these findings and proposed feature
xtraction techniques via static analysis that enable the successful iden-
ification of malware even when apps are obfuscated (Suarez-Tangil

et al., 2017; Bacci et al., 2018; Garcia et al., 2018; Gao et al., 2023;
Wu et al., 2022).

All these works appear promising in demonstrating either the flaws
or the strengths of static analysis features for malware detection. How-
ever, their discrepancies complicate the extraction of sound conclusions
regarding the validity of static analysis features for Android malware
etection. Some limitations apply to these existing references. First,
ost studies based their analyses considering detectors as black boxes,

without analyzing the impact of obfuscation on the apps and/or fea-
tures used to train/evaluate them (Rastogi et al., 2014; Maiorca et al.,
2015; Hammad et al., 2018; Bacci et al., 2018; Molina-Coronado et al.,
2023; Gao et al., 2024). Nonetheless, this additional feature-centered
nalysis is important to understand and explain the reasons behind
xcellent or poor performance metrics when obfuscation is present, and
s crucial for building more robust detectors. Additionally, a common
law in many studies lies in the omission of details concerning their
atasets and the configuration of their experimental setups (Suarez-
angil et al., 2017; Garcia et al., 2018; Lee et al., 2019; Wu and Kanai,

2021). This absence of detail undermines reproducibility and leads to
inconsistent findings between articles.

To shed light on the impact of obfuscation on static analysis features
nd the detectors that rely on them, this work presents the most com-
rehensive analysis to date on how common obfuscation techniques
ffect the information obtained through static analysis for Android
alware detection using ML algorithms. The contributions of this paper

an be summarized as follows:

• We provide an agnostic2 evaluation of the strength, validity and
detection potential of a complete set of features obtained by
means of static analysis of APKs when obfuscation is used.

• We analyze the impact of a variety of obfuscation strategies and
tools on static analysis features, providing insights about the use
of these features for malware detection in obfuscated scenarios.

• We propose a high-performing ML-based Android malware de-
tector leveraging a set of robust static analysis features. We
demonstrate the ability of this detector to identify goodware and
malware despite obfuscation, outperforming the state-of-the-art.

• We present a novel dataset with more than 95K obfuscated An-
droid apps, allowing researchers to test the robustness of their
malware detection proposals.

1 Packing is a particular form of obfuscation which hides the real code
hrough one or more layers of compression/encryption. At runtime, the
npacking routine restores the original code in memory to be then executed.

2 In this context, we refer agnostic as an analysis carried out without
ocusing on a specific malware detection proposal, but on elemental features
xtracted from app information. This allows anyone to infer how obfuscation
an impact more complex features, that rely on this information, used by
pecific detection proposals.
2
• In spirit of open science and to allow reproducibility, we make the
code publicly available at https://gitlab.com/serralba/robustml_
maldet.

The rest of this paper is organized as follows. Section 2 introduces
he literature that has previously tackled obfuscation as a problem in

malware analysis. Section 3 provided basic information about topics
that are required to understand the content of this paper. Section 4
describes the construction of the app dataset and presents the features
that are considered in our experiments. Section 5 evaluates the impact
of different obfuscation strategies and tools in static analysis features,
as well as their validity for malware detection. Section 6 is devoted to
assess the robustness of our ML malware detection proposal. Section 7
includes a discussion of the main findings made along this paper.
inally, we conclude this paper in Section 8.

2. Related work

The related work can be divided into two groups: (1) studies that
nalyze the vulnerabilities of malware detectors when obfuscation is
resent, and (2) works that propose novel malware detectors which are

presumably robust to obfuscation.

2.1. Study of the vulnerabilities of malware detectors

The works that evaluate the negative effects of obfuscation on
Android malware detectors have mainly been carried out for black box
malware detectors, i.e., the system or model is analyzed and evaluated
based solely on its input–output behavior, without direct access to or
knowledge of its internal workings. The first work of this type (Rastogi
et al., 2014) studied how obfuscation impacts the detection ability of
10 popular anti-virus programs available in the VirusTotal platform.
The work demonstrated that these detectors are vulnerable and loose
their reliability in the identification of obfuscated malware. Similarly,
in Maiorca et al. (2015), 13 Android anti-virus programs from Virus-

otal are assessed using different obfuscation strategies to modify
malware. The results showed a meek improvement in detection accu-
racy concerning the findings of previous works (Rastogi et al., 2014)
and proved the effort of companies responsible of developing these
ools to try to counteract obfuscation. A more comprehensive analysis

for 60 anti-virus tools in VirusTotal has been presented in Hammad
et al. (2018). Again, the work demonstrated the vulnerabilities of most
etectors when facing obfuscated malware.

The mentioned studies showed that the success on bypassing detec-
tion highly depends on the obfuscation tools and strategies considered.
They focused on commercial anti-virus tools, however, some other
works have focused on assessing the impact of obfuscation in published
ML based detectors. In Bacci et al. (2018), an analysis of the effect of
obfuscation in two detectors, one relying on static and the other on
dynamic analysis features, is presented. It is shown that the perfor-
mance of the detector using dynamic analysis features is not altered by
obfuscation, contrary to the detector that uses static analysis features.
However, authors indicated that this effect can be easily mitigated by
including obfuscated samples during the training phase of ML models.
n Molina-Coronado et al. (2023), eight state-of-the-art Android mal-

ware detectors leveraging static analysis features and ML algorithms are
assessed using obfuscated malware samples. The authors demonstrated
that obfuscation is a major weakness of these popular solutions, since
all of them suffered a drop in their performance. One of the most recent
and comprehensive studies is carried out in Aghakhani et al. (2020).

his work analyzes the effect of packing in ML malware detectors
elying on static analysis for Windows executables. The conclusions
rawn from the extensive set of experiments indicate that ML malware
etectors for Windows fail to identify the class of transformed samples
ue to the insufficient informative capacity of static analysis features.

While all these studies highlighted the additional challenges that
obfuscation introduces for malware detection, most of them fall short

https://gitlab.com/serralba/robustml_maldet
https://gitlab.com/serralba/robustml_maldet
https://gitlab.com/serralba/robustml_maldet

B. Molina-Coronado et al.

u
s
w
m
t
a
t

o
p
s
d

o
t
w

i
D
S
e

s
o

o
I
m
s
A
t

t
o
d
s

f
o
c

p

a
t

h
h
c
d
a

Journal of Network and Computer Applications 235 (2025) 104094
in explaining the reasons behind accurate or erroneous detections when
obfuscation is considered. This is due to the fact they consider the
detectors as black-box tools to study the effect of obfuscation on their
effectiveness. Since they do not analyze the effect of obfuscation on
the apps, these works do not allow for a detailed analysis of how
different obfuscation strategies and tools impact the information and
features that can be used for detection. As an exception, in Gao et al.
(2024), the authors examine the impact of obfuscation on the accuracy
of 13 machine learning-based detectors. For analysis, the detectors are
categorized into three groups: String-based, Image-based, and Graph-
based. However, the broad categorization used for the study limits the
ability to explain how obfuscation strategies impacts the information
sed detectors, specially for those using features from different file
ources. Additionally, only a single obfuscation tool is considered,
hich may lead to inaccurate conclusions, as different obfuscation tools
ay implement the same obfuscation strategy in various ways. In con-

rast to these works, the goal of this paper is to provide comprehensive
nd detailed insights into the effect of obfuscation on Android apps and
he different static analysis information, arranged into a fine-grained set

of feature families, used for malware detection. This approach aims to
contribute to the development of more effective detectors and to clarify
the benefits of using static analysis features for detecting malware in
different obfuscation scenarios.

2.2. Obfuscation-resilient detectors

A second group of studies focuses on the development of obfuscation-
resilient detectors, specifically designed to operate effectively in the
presence of obfuscated apps. AndroDet (Mirzaei et al., 2019) employs a
nline classifier that is incrementally retrained as new obfuscated sam-
les are received, outperforming classical offline approaches. However,
everal experimental flaws have been discovered related to the lack of
iversity on the obfuscated set used for training (Mohammadinodooshan

et al., 2019). DroidSieve (Suarez-Tangil et al., 2017) categorizes static
analysis features as obfuscation-sensitive and obfuscation-insensitive
based on theoretical aspects. Feature frequency is studied for different
datasets with obfuscated and unobfuscated malware samples to support
the idea that most changing features provide better information. In
consequence, they proposed a detector that relies on the features of
both groups, and offering good performance in terms of malware detec-
tion and family identification. RevealDroid (Garcia et al., 2018) argues
against static analysis features such as Permissions, Intents or Strings
for robust malware detection. Contrary to the authors of DroidSieve,
they suggest that obfuscation-sensitive features do not provide useful
information to detect malware. Instead, the authors propose a new
set of static analysis features based on a backward analysis of the
calls to dynamic code loading and reflection APIs. In this way, the
functions invoked at runtime are identified, nullifying the effect of ob-
fuscation, making the proposed detector obfuscation-resilient. Recently,
CorDroid (Gao et al., 2023) proposes the combination of the label
of two models, one trained with opcode transition probabilities and
ther with sensitive API call graph information. The idea is to combine
he output of the two models using and optimization procedure that
eights them in order to obtain the final prediction.

Other allegedly obfuscation-resilient detectors leveraging deep learn-
ing algorithms are presented in Kim et al. (2018), Lee et al. (2019),
Wu and Kanai (2021), Wu et al. (2022). The authors of these works
suggest that the capacity of deep learning to embed and extract useful
nformation from the features is enough to tackle obfuscation. Seq-
roid (Lee et al., 2019) relies on strings extracted from the app code.
trings are then transformed into sequences of characters to obtain an
mbedding representation of the app that is then used for classification.

Despite the excellent results reported for malware detection, the ability
of the detector to identify obfuscated apps is based on (unproven)
tatements that are not specifically tested. In Wu and Kanai (2021)
bfuscation-sensitive and insensitive features, including permissions,
 d

3
opcodes and meta-data from ApkID,3 a signature-based fingerprinting
tool are incorporated. Similarly to Lee et al. (2019), the obfuscation-
resiliency of this work cannot be confirmed based on the results,
since the effect of the use of obfuscation in the detector is based
n theoretical aspects not specifically covered by the experiments.
n Wu et al. (2022), a contrastive learning approach based on centrality
etrics of API calls is used to extract features that distinguish between

amples of different malware families even in obfuscation scenarios.
gain, the robustness of the proposed detector cannot be ensured since

he experimental setup does not include obfuscation techniques such as
reflection, nor obfuscated goodware.

The experiments carried out in all these works present some flaws
hat, in our opinion, put in question their capability. For example, most
f them do not describe, or vaguely analyze, the composition of their
atasets in terms of the number of obfuscated malware or goodware
amples or the obfuscation techniques applied to them (Kim et al.,

2018). Also, the tools considered to obfuscate the samples in most
cases are limited to only one, which can lead to implementation-specific
biases during evaluation (Wu et al., 2022; Gao et al., 2023). Some
articles focus their analyses exclusively on obfuscated malware (Suarez-
Tangil et al., 2017; Mirzaei et al., 2019; Kim et al., 2018; Wu et al.,
2022; Molina-Coronado et al., 2023; Gao et al., 2024), either for the
training or evaluation of the detectors, but what about obfuscated
goodware? How do detectors behave in the presence of such apps?
Other biases include the use of different obfuscation tools or strategies
or malware than for goodware, which results in models that associate
bfuscation, or the use of a particular obfuscation tool, to a specific
lass in the data (Aghakhani et al., 2020). Similarly, experiments

performed with malware and goodware captured from different periods
can cause biases in the detectors as features such as API calls are time-
varying (Arp et al., 2022). Also, most of these studies focused on a
small set of features, arguing against other types of features without
roviding any proof Mirzaei et al. (2019), Garcia et al. (2018). All these

aspects may justify the good published results and cause contradictions
concerning other analyses carried out for ML-based detectors (Bacci
et al., 2018; Molina-Coronado et al., 2023). Finally, we also found that
most of them do not provide enough details, data or codes to reproduce
their systems.

3. Background

This section briefly introduces some basic concepts that are needed
to understand the rest of this paper. This includes the structure and
content of an Android Application Package (APK) from which static
nalysis features are extracted, as well as the types of obfuscation
echniques than can be applied and their effect in the apps.

3.1. Android apps

Android apps are usually developed in Java or Kotlin.4 When an app
as to meet very strict performance constraints, or interact directly with
ardware components, Android allows developers to introduce native
omponents written in C and C++ (i.e., native code). An Android app is
istributed and installed via an APK, a compressed (ZIP) file containing
ll the resources needed (e.g., code, images) to firstly execute the app.

Fig. 1 shows the internal structure of an APK file.
Every APK must be signed with the private key of the developer. To

validate this signature, the APK contains the public certificate of the
developer inside the META-INF folder. This mechanism guarantees the

3 https://github.com/rednaga/APKiD
4 From now on, we will refer to Java code, although the techniques we

escribe are also valid for apps written in Kotlin.

https://github.com/rednaga/APKiD

B. Molina-Coronado et al.

v
c

a
r
B
o
t

o

a
s
a

a

e

b

s)
o
l
h
p
a
w
f
t
t
l
b

w

c
s
a
a

Journal of Network and Computer Applications 235 (2025) 104094
Fig. 1. Structure of an APK file.

integrity of the APK.5 In a nutshell, before installing an app, Android
erifies if the files in the APK match a pre-computed signature and
ontinues with the installation only if the integrity check succeeds.

The AndroidManifest.xml defines the structure of an Android
pp and its meta-data, such as the package name of the app, the
equired permissions, and the main components (i.e., Activity, Service,
roadcast Receiver, and Content Provider). An Android app can contain
ne or multiple DEX file(s) (i.e., classes*.dex), which include
he compiled Java code. Each .dex file can reference up to 64k

methods (Google Developers, 2020), such as the Android framework
methods, other library methods, and the app-specific methods. For the
native components, Android provides an Android Native Development
Kit (NDK) (Ratabouil, 2015) that generates native libraries in the form
f Linux shared objects. Such objects are stored into the lib folder.

Finally, the res folder contains the compiled resources (e.g., im-
ges, and strings), and the assets directory includes the raw re-
ources, providing a way to add arbitrary files such as text, HTML, font,
nd video content into the app.

3.2. Obfuscation

Obfuscation is the process of modifying an executable without
ltering its functionality (You and Yim, 2010). It aims to counteract

automatic or manual code analysis. In the Android context, many
strategies can be applied to modify the code or resources within the
APK file: from simple operations that change some metadata to by-
pass basic checks (e.g., signature-based anti-malware), to techniques
that explicitly modify the DEX code or resources of the app (Zhang
t al., 2021). It is worth emphasizing that in Android obfuscation

is more common than in other binary code (e.g., x86 executables),
ecause analyzing and repackaging an Android app is straightfor-

ward (Ruggia et al., 2021). In the rest of this Section, we present the
type of modifications considered in this work.

Renaming. A DEX file stores the original string-valued identifiers (name
f fields, methods and classes (Google, 2020). Often, these identifiers
eak information about code functionalities, lifecycle components and
ow they interact with each other. For instance, a common practice by
rogrammers is to add ‘‘Activity’’ to each Java class that implements an
ctivity component. The renaming technique replaces these identifiers
ith meaningless strings, aiming to remove information about the

unctionality of the app. Consequently, renaming involves modifying
he .dex files and the Manifest file (AndroidManifest.xml). Note
hat this technique cannot be applied to methods of the Android
ifecycle (e.g., onCreate, onPause) or Android framework components
ecause that would break the execution logic.

5 Note that Android does not verifies the validity of the developer’s certifi-
cate but instead, uses this mechanism to validate the integrity of the content

ithin the APK. Therefore, the developers’ certificates can be self-signed.
4
Code manipulation. These techniques manipulate the code present in
the DEX files to remove useless operations, hide specific API invo-
cations, and modify the execution flow. The main techniques in this
category are:

• Junk code insertion and Reordering (JCIR) Junk Coder Insertion
technique introduces sequences of useless instructions, such as
nop (i.e., no-operation instructions that do nothing). Other strate-
gies transform the control-flow graph (or CFG) of apps by in-
serting goto instructions or arithmetic branches. For example, a
goto may be introduced in the code pointing to an useless code
sequence ending on another goto instruction, which points to the
instruction after the first goto. The arithmetic branch technique
inserts a set of arithmetic computations followed by branch in-
struction that depends on the result of these computations, crafted
in such a way that the branch is never taken (Aonzo et al., 2020).
This technique also implies Reordering basic blocks in code by
inverting branch conditions.

• Call indirection (CI) This technique aims to modify the call graph
and, therefore, the CFG of the app. It introduces a new intermedi-
ate chain of method invocations in the code, adding one or several
nodes between a pair of nodes in the original graph. For example,
given a method invocation from 𝑚𝑜𝑟1 to 𝑚𝑜𝑟2 in the code, 𝑚𝑜𝑟1
is modified to call to the start of a sequence of 𝑛 intermediate
methods (𝑚𝑖 ∶ 1 <= 𝑖 <= 𝑛) that end in a call to 𝑚𝑜𝑟2. In this
way, the analysis could not reveal that 𝑚𝑜𝑟2 is actually invoked
by 𝑚𝑜𝑟1 (Rastogi et al., 2013).

• Reflection This technique uses the reflection capability of the
Java language to replace direct method invocations with Java
reflection methods that use class and method identifiers as param-
eters to perform the call. This makes actual method invocations
difficult to inspect (Rastogi et al., 2013). Listings 1 and 2 show
an example of this transformation. In Listing 1, the method m1
(of the class MyObject) is accessed through the operator ‘‘.’’
from the object instance, whereas in Listing 2 shows the same
invoked method using the Java reflection API. In this example, a
java.lang.reflect.Method.invoke() object is created
(lines 2–3) and invoked (line 4) for a specific object instance
(i.e., obj), whereas the class and method names are passed as
parameters of these functions.

• Encryption This technique prevents accessing to parts or the entire
code or resources (e.g., strings and asset files) of the app by using
symmetric encryption algorithms. It involves storing the original
code or resources in an encrypted form so that a decryption rou-
tine, inserted in the code, is invoked whenever an encrypted part
needs to be accessed. The decryption key is stored somewhere
in the APK or calculated at runtime. This technique introduces
extra latency during app execution and severely complicates the
analysis of the functionality of the encrypted part (Zhang et al.,
2021).

It is worth emphasizing that different obfuscation techniques can be
ombined to improve their effectiveness. For example, encrypting the
trings of reflective calls can hide the method and class names invoked
t runtime. This makes it difficult to recover these values by static
nalysis of the apps. Listing 3 shows an example of the application

of both obfuscation techniques to the code in Listing 1. In particular,
the class and method names are decrypted at runtime (lines 2–3),
hiding which methods are actually invoked. Note how these values are
exposed only in an encrypted form, and could change if a different
encryption key or algorithm was employed.

4. Dataset

For our experiments, firstly, we constructed a dataset with obfus-
cated and non-obfuscated apps. From this collection of apps, and by
means of static analysis, we obtain a set feature vectors that constitute
the object of this study. This section describes how the app dataset is
built and the types of features derived from the apps.

B. Molina-Coronado et al.

t
2
t
(

t

w
c
o

i

o
u
w
p
w

A
h

Journal of Network and Computer Applications 235 (2025) 104094
Listing 1 Java direct method invocation
1 public class com . example . MyObject implements MyInterface {
2 public Object m1(Object prm) {}
3 }
4
5 public Object standardInvoke (com . example . MyInterface obj , Object arg) {
6 return obj .m1(param) ;
7 }
Listing 2 Java reflective method invocation
1 public Object re fec t ion Invoke (com . example . MyInterface obj , Object arg) {
2 Class <?> c l s = Clas s . forName ("com.example.MyObject") ;
3 Method m = c l s . getDeclaredMethod ("m1") ;
4 return m. invoke (obj , param) ;
5 }
Listing 3 Java reflective method invocation with encrypted values
1 public Object refEncrInvoke (com . example . MyInterface obj , Object arg) {
2 S t r ing className = decrypt ("AXubduuiao...ZXW") ;
3 S t r ing methodName = decrypt ("uibdadBUID...ncu") ;
4 Class <?> c l s = Clas s . forName (className) ;
5 Method m = c l s . getDeclaredMethod (methodName) ;
6 return m. invoke (obj , param) ;
7 }
w

4.1. App dataset

We build our app dataset using a subset of APKs downloaded from
he AndroZoo repository (Allix et al., 2016), which contains more than
0 million of APKs with associated meta-data. This meta-data includes
he source of the APK, the date, and the number of positive detections
VTD) in VirusTotal. Our objective was to obtain a dataset with the

same number of malware and goodware samples, all of them free of
obfuscation. We downloaded thousands of samples and filtered out
hose marked by APKiD6 as ‘‘suspicious’’ of including obfuscation. To

label samples we relied on the VTD values (Zhu et al., 2020): an app
ith VTD≥7 is considered malware, while an app with VTD=0 was

onsidered goodware (apps with intermediate VTD values were filtered
ut).

In the second step, we generated obfuscated versions of the apps
n the downloaded dataset. To perform this process, we utilized three

open-source obfuscation tools: DroidChameleon (Rastogi et al., 2013),
AAMO (Preda and Maggi, 2017), and ObfuscAPK (Aonzo et al., 2020).
These tools were selected for their wide range of available obfuscation
techniques, their open-source nature, and their demonstrated ability to
evade Android malware detectors in prior studies. Specifically, for each
obfuscation tool, we try to obfuscate every app in the dataset using six
obfuscation strategies: Renaming, Junk Code Insertion and Reordering,
Reflection, Call Indirection and Encryption. Table 1 summarizes the
specific techniques under each strategy. The tools were configured
using their default settings for all techniques. The results of this process
are summarized in Table 2.

Note that some tool combinations failed due to errors during the
APK decompilation/compilation process. It is worth noticing that there
were more failures in the case of malware apps than in goodware
apps. ObfuscAPK was the tool with the best success rate, correctly
bfuscating an average of 85% of the apps. On the contrary, we were
nable to obtain obfuscated samples when trying to apply Encryption
ith AAMO, due to bugs introduced in the code by this tool that
revent the APK from being rebuilt. The attempts to use Renaming
ith DroidChameleon were also unsuccessful due to an error in the

implementation of the tool. For other techniques, DroidChameleon and
AMO had average success rates of 55% and 28%, respectively. We
ypothesize that apps which could not be successfully obfuscated by

6 https://github.com/rednaga/APKiD
5
Table 1
List of obfuscation techniques applied to samples.

Category Obfuscation techniques

Renaming Class Rename, Field Rename, Method Rename

Junk Code Insertion
and Reordering

Arithmetic Branch Insertion, Goto Insertion
(unconditional jumps), Reorder (branch inversion)

CallIndirection Function Call Indirection

Reflection Reflection, Advanced Reflection

Encryption Asset Encryption, String Encryption, Native Code
Encryption

Table 2
Success rate of different technique-tool obfuscation combinations for the apps in the
Clean dataset. The first part of the name refers to the tool used to obfuscate the apps,

ith DC for DroidChamaleon, AA for AAMO, and OA for ObfuscAPK. The characters
after the underscore refer to the strategy followed to obfuscate the apps: renaming
(rnm), junk code insertion and reordering (jcir), call indirection (ci), reflection (refl)
and encryption (encr).

Tool-technique #Goodware
samples

#Malware
samples

Obf. success
rate

DC_rnm – – 0%
AA_rnm 2244 1953 34%
OA_rnm 5690 4317 81%
DC_jcir 1855 1123 24%
AA_jcir 2289 2019 35%
OA_jcir 6003 4755 87%
DC_ci 3664 2209 47%
AA_ci 1337 1362 22%
OA_ci 6050 4765 87%
DC_refl 6200 3993 82%
AA_refl 1332 1402 22%
OA_refl 6080 4802 88%
DC_encr 5008 3746 70%
AA_encr – – 0%
OA_encr 6074 4814 88%

any of the tools are either already obfuscated or face issues with the
obfuscation tools themselves, potentially due to bugs in the tools or
incompatibilities with certain app characteristics. We therefore decided
to exclude these apps from the dataset to avoid introducing potential
false negatives into the analysis. After completing the obfuscation
process, we compiled a final ‘‘Clean’’ dataset which consists of 4749
goodware and 4067 malware samples that succeeded to be obfuscated

https://github.com/rednaga/APKiD

B. Molina-Coronado et al.

A

o

f

o
<

w
o
s
t

t

o
o
t
𝑛

c
b
u

f

Journal of Network and Computer Applications 235 (2025) 104094
Table 3
Composition of datasets used in this work. The columns indicate the number
of samples that comprise each set. The CleanSuccObf dataset contains the
clean (original) apps for which we obtained obfuscated versions with all tools
for at least one technique.

Dataset #Goodware samples #Malware samples

Clean 4749 4067
NonObf 1345 1211
CleanSuccObf 3404 2856
Renaming 3238 2868
JCIR 1515 1008
CallIndirection 2118 1737
Reflection 2667 2484
Encryption 4790 4060

with at least one technique and tool. Additionally, we created 14
different datasets, each corresponding to a specific tool-technique com-
bination, with varying compositions of obfuscated apps derived from
the ‘‘Clean’’ dataset.

Table 3 summarizes the different datasets that will be used in the
experiments. The criteria for the composition of these datasets will be
explained in Section 5.

• NonObf: It includes the non obfuscated versions of the apps in the
Clean dataset for which we could not obtain an obfuscated version
with all the tools for at least one technique, i.e., apps that can be
obfuscated using a specific tool and technique but not with the
remaining tools using the same technique.

• CleanSuccObf: includes the subset of non obfuscated apps present
in Clean, but not in NonObf. That is, the apps for which all the
tools have worked for at least one technique.

• The remainder datasets (Renaming, JCIR, CallIndirection, Reflec-
tion, and Encryption) contain the obfuscated versions of the apps
in CleanSuccObf for that particular technique.

4.2. Feature dataset

An app dataset has to be transformed into a dataset of feature
vectors prior to perform malware detection using ML. Following a
detailed literature analysis, we identified seven families of static anal-
ysis features that have proven to be useful for ML-based malware
detection (Wang et al., 2019). We used two well-known and widely
used static analysis frameworks for Android to extract these features:

ndroguard (Desnos et al., 2018) and FlowDroid (Arzt et al., 2014).
Sources of these features include: the classes.dex and AndroidMani-
fest.xml files, as well as the contents of the res and assets directories
f APKs.

4.2.1. Permissions
Permissions have commonly been used as a source of information

or malware detection in Android (Arp et al., 2014; Wang et al.,
2014; Feizollah et al., 2017; Zhu et al., 2018). In this category, we
consider as features the full set of permissions provided by Google in
the Android documentation,7 as well as the set of custom8 permissions
that developers may declare to enforce some functionality in their apps.
Following this procedure, we extracted a set of 683 binary features, each
corresponding to the presence or absence of a given permission.

7 https://developer.android.com/reference/android/Manifest.permission
8 https://developer.android.com/guide/topics/permissions/defining
6
4.2.2. Components
An app consists of different software components that must be de-

clared in the AndroidManifest.xml file. These elements have been widely
used as a source of information for malware detectors (Wu et al., 2012;
Arp et al., 2014; Xu et al., 2016; Feizollah et al., 2017). We extract a list
f hardware and software components that can be declared using the
uses-feature>tag from the Android documentation,9 as well as every

identifier for Activity, Service, ContentProvider, BroadcastReceivers
and Intent Filters. In total, we obtained a set of 85 476 binary features,

hose value is set to True or False for an app according to the presence
f the feature in its AndroidManifest.xml file. We additionally derive
even frequency features accounting for the number of elements of each
ype in the app.

4.2.3. API functions
API libraries allow developers to easily incorporate additional func-

ionality and features into their apps, being the main mean of commu-
nication between the programming layer and the underlying hardware.
As such, analyzing the calls to methods of these libraries (API functions)
constitutes a good instrument to characterize the functionality of apps,
and, therefore, for malware detection. Following similar approaches to
those proposed in the literature (Wu et al., 2012; Arp et al., 2014;
Zhu et al., 2018; Koli, 2018), we extract a binary feature for each
API method, and set its value to True if the app contains any call to
that method within its code. In total, this set consist of 66 118 binary
features.

4.2.4. Opcodes
The compiled Android code (Dalvik) consists of a sequence of

pcodes. Opcode-based features provide insights about the code habits
f developers as they represent fine-grained information about the func-
ionality of apps (Kim et al., 2018). Subsequences of opcodes, or simply
-grams, have been used for Android malware detection in Jerome

et al. (2014), Canfora et al. (2015), Kang et al. (2016), McLaughlin
et al. (2017). Concerning the size of the subsequences, Jerome et al.
(2014) and Canfora et al. (2015) observed that 𝑛 = 2 offers a good
trade-off between the size of the feature vector generated and the per-
formance obtained by detectors. Therefore, we extract unique opcode
subsequences of length 2 (or bi-grams) from the code of the apps, and
create a feature to represent the number of appearances of each bigram
in the code. The resulting vector contains a total of 25 354 frequency
features.

4.2.5. Strings
The APK file strings are a valuable source of information for mal-

ware detection. In this regard, the most common strings include IP
addresses, host names and URLs (Arp et al., 2014; Wang et al., 2017);
ommand names (Yerima et al., 2013; Zhang and Jin, 2016) and num-
ers (Wang et al., 2017). We processed app files and found 2 425 892
nique strings. Following the procedure in Aghakhani et al. (2020), we

observed that 98.5% of the strings were present in less than 1% of the
samples. After removing these rare strings, we obtained 39 793 binary
features, each representing the presence or absence of a specific string
within the app files.

4.2.6. File related features
This type of features includes the size of code files and different

file types inside the APK (Grace et al., 2012; Yerima et al., 2013;
Wang et al., 2017; Suarez-Tangil et al., 2017). We base our file type
extractor on both, the extension of the file and the identification of the
irst bytes of the content (i.e., magic numbers) of files. The result is a

new frequency feature for every unique combination of the extension
(ext) and magic type (mtype), identified as ext_mtype. For files without
extension, we use the complete file name instead. In total, this set
consist of 65 986 frequency features per app.

9 https://developer.android.com/guide/topics/manifest/uses-feature-
element.html

https://developer.android.com/reference/android/Manifest.permission
https://developer.android.com/guide/topics/permissions/defining
https://developer.android.com/guide/topics/manifest/uses-feature-element.html
https://developer.android.com/guide/topics/manifest/uses-feature-element.html

B. Molina-Coronado et al.

c

c
t

r

o
t
d
s

e

(
o
o

t
a
i

d
b
a
s
R
a
l
O

Journal of Network and Computer Applications 235 (2025) 104094
Table 4
Persistence of static analysis features when comparing clean and obfuscated apps using ObfuscAPK (OA), DroidChameleon (DC) and AAMO (AA).

Renaming Junk Code
Insertion and
Reordering

Call Indirection Reflection Encryption Avg.

OA DC AA OA DC AA OA DC AA OA DC AA OA DC AA

Permissions 0.972 – 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.932 0.799 1.0 1.0 1.0 – 0.977
Components 0.219 – 0.999 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 – 0.939
API functions 0.480 – 0.717 1.0 1.0 1.0 0.493 0.718 0.489 0.985 0.407 0.487 0.994 0.999 – 0.751
Opcodes 0.985 – 0.993 0.269 0.107 0.116 0.832 0.832 0.970 0.979 0.919 0.826 0.959 0.982 – 0.751
Strings 0.995 – 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.906 1.0 0.897 0.028 0.009 – 0.833
File Related 0.895 – 0.993 0.803 0.880 0.987 0.791 0.874 0.983 0.845 0.904 0.987 0.926 0.923 – 0.907
Ad-hoc 0.923 – 0.942 0.655 0.345 0.560 0.455 0.667 0.409 0.888 0.859 0.850 0.92 0.922 – 0.722
- m

u
m

m
o
1

t

a

4.2.7. Ad-hoc features
As explained earlier, some specific detectors claim to use obfuscation

resistant features. We call the features used by these detectors that
do not fall into any of the above categories ad-hoc features. They
include: semantic features based on sink and source relationships in
the code (Zhang and Jin, 2016); certificate information (Suarez-Tangil
et al., 2017); flags about the use of cryptographic, reflective, and
ommand execution classes (Grace et al., 2012; Wang et al., 2017;

Koli, 2018); and resolved function names for native and reflective
alls (Garcia et al., 2018). Due to the computational cost of obtaining
hese features, we limited the time spent computing them to 15 min

per sample. The result is a set of 35 387 frequency features, each
epresenting the number of occurrences of the feature within the app.

5. Feature validity

As a first step in this study, we have designed a set of experiments
to determine the robustness and detection ability of the seven feature
families described in the previous section when obfuscation is present.
The first experiment analyzes the impact that different obfuscation
strategies and tools have on the information described by the features.
In the second experiment we evaluate the performance and stability of
ML algorithms when using these features for malware detection.

5.1. Feature persistence

In this experiment, we aim to examine the impact of obfuscation
n the features presented above. We analyze when and how much
he features change in the presence of obfuscation. We highlight the
isparities among obfuscation tools and how different implementations
trategies of the same obfuscation objective can affect the features.

To analyze these aspects, we calculate the feature persistence for
ach tool-technique obfuscation combination. This is done by deter-

mining the average level of overlap between the features of an original
clean) app and its obfuscated counterparts. To compute the feature
verlap, we compare each pair of feature vectors calculated for an
riginal app and its obfuscated version, and quantify the proportion

of features with exact value matches. Note that for binary-featured
representations (Permissions, Components, Strings and API functions),
this is equivalent to computing the Jaccard index that measures the
ratio between the shared elements and the total number of elements in
he union of both feature vectors. Note also that, for frequency vectors,
n increment or decrease in one unit or ten units has the same effect
n this metric.

The results of this experiment are shown in Table 4. We find various
egrees of persistence, in most cases over 0.8, with many exact matches
etween the feature vectors of clean and obfuscated APKs. Components
nd Permission features suffer the smallest changes when applying
trategies such as Junk Code Insertion and Reordering, Call Indirection,
eflection and Encryption (independently of the tool). Despite they are
ffected by all techniques, File-Related features are also among the
east affected on average. On the contrary, Ad-hoc, API functions and

pcode feature vectors change the most when obfuscation is applied.

7
However, the average persistence values for these features indicate that
ost fields (about 75%) are not affected by obfuscation. Therefore, in

most cases, we conclude that the use of obfuscation is not reflected as
a radical change in the feature vectors.

Persistence values refer to the proportion of features that remain
nchanged, but do not tell us which particular features change the
ost when a tool-technique combination is applied. To shed some

light on this regard, we selected the 15 features that change the most
when obfuscation is applied. They may belong to different families. To
obtain them, we measured the degree of discrepancy in the number
of occurrences of each of these features, comparing the original ap-
plication and the obfuscated version. To simplify the visualization, we
show the results for each technique, averaging the discrepancy values
for the three tools. The obtained rankings are shown in Fig. 2. The
name of each bar is the feature name (which includes its family). The
number at the right of each bar is the degree of discrepancy, i.e., the
average difference in the frequency of the feature between original and
obfuscated versions of apps. Note that for easier interpretation, the
scales are specific to each figure.

Regarding the persistence of the different feature families, Renam-
ing mainly affected Components and API functions features, due to
changes in the names of user-defined packages, classes, methods and
fields. It also alters the declaration of custom permissions present in
the code, since they depend on the name of the class where they
are declared. However, as can be seen in Fig. 2(a), none of these
features are among the 15 most affected, mainly because the names
assigned to the classes are app-specific. In contrast, Opcode features are
among those most significantly affected, due to changes in the order of

ethods when processing class files. This mainly changes the frequency
f sequences that present invocation instructions (opcodes 110, 111 and
12).

In concordance with persistence values in Table 4, Figs. 2(b) and
2(c) show that Junk Code Insertion and Reordering, and Call Indirec-
ion techniques are particularly detrimental for features based on code

information, with Opcode and Ad-hoc features being the most sensitive
to both types of obfuscation. In particular, Ad-hoc features are the most
affected by Call Indirection (see Fig. 2(c)) due to the added complexity
in the analyses required for their extraction. This is the case of sink
and source relations between API functions such as Cursor.getString and
Log.i. Also, due to the addition of indirect calls, this technique increases
the frequency of some opcode sequences such as ‘‘90_110’’ formed by an
iput (90) instruction followed by an invokeinvoke (110). This technique
involves adding hundreds of auxiliary (indirect caller) methods per
class, either in separate or in the API classes inside the API. However,
these methods are randomly named, which limits their impact (their
popularity will be low). As shown in Fig. 2(b), Junk Code Insertion
and Reordering greatly alters the frequency of most Opcode sequences
due to the inclusion of useless instructions, mainly goto (40) and invoke
(110, 112, 113). The introduction of useless code also greatly impacts
on the size of the APK file (File-related feature file:apk_size).

Reflection changes the persistence of features extracted from code
nalysis. This effect is clearly perceptible in Fig. 2(d). With this tech-

nique, the code is modified to hide the originally called methods

B. Molina-Coronado et al.

Fig. 2. Top 15 of most changed features for each obfuscation strategy. The values on the right indicate the disparity or difference in the frequency of features between the
obfuscated apps and their original versions. Results from the three tools have been averaged.

Journal of Network and Computer Applications 235 (2025) 104094

8

B. Molina-Coronado et al.

t
f
a
s
a
n

r

i
S
a
t
a

T

t
i
r
w
t
a
i
d

p
t
a

l
t
s

A
i
A
d
o

c
o
f
p
c
a

t

c
m
c
c
t
n
n

D
t

s
m
b
t
p
t

t

f
a

Journal of Network and Computer Applications 235 (2025) 104094
and use reflective calls instead. This mainly affects the API functions
hat are called more frequently in the code, including string-related
unctions such as toString, append, equals, or length. Ad-hoc functions are
mong the most changed due to the added complexity of identifying
ink and source relationships that contain reflective code. Reflection
lso results in new string features that contain the class and function
ames invoked by reflection. However, these are declared once in the

code, so their frequency is kept low. Permission features are affected
because Reflection can hide the presence of protected API functions that
equire specific permissions to be granted.

Encryption adds helper classes with the decryption routines that are
used to hide user-defined strings and parameters. Therefore, API, Op-
code, Ad-hoc, and File-related features are affected by the modifications
ntroduced in the code. However, the main target of this technique are
tring features, as illustrated in Fig. 2(e) and Table 4. These are heavily
ffected because their original values are encrypted. In this regard, the
op 15 features most changed by encryption are strings related to the
pp’s user interface (UTF-8,phone, id, title, type).

5.1.1. Differences between obfuscation tools
As seen in Table 4, changes in features depend on the tool used.

hese differences are due to implementation particularities. Indeed,
because of these peculiarities, obfuscation can even alter features that
are not primary target of the chosen obfuscation technique. Fig. 3
depicts the average level of overlap between the features obtained for
he same apps when obfuscated using different tools. Darker colors
ndicate less overlap in the obtained feature vectors, while lighter colors
epresent higher agreement. To better explain the differences obtained,
e manually examined the code of these obfuscation tools as well as

he features obtained from different samples. Due to space limitations
nd in order to make this paper more readable, we omit very specific
mplementation details and limit our discussion to the more prominent
ifferences.

We observed that of all the tools analyzed, none of them considered
arameter randomization when implementing the different obfuscation
echniques except for Junk Code Insertion and Reordering. As such, for
 given tool, the extracted feature vectors are only dependent on the

input (app data). In other words, given the same input, a particular
tool-technique combination will always return the same output. It is
worth mentioning that all tools obfuscate (modify) the Android or Java
ibraries when this type of content is included in the APK, mainly due
o poor checks during obfuscation. Since this code is not user-related,
uch changes may break the execution of the apps.

The largest differences between obfuscation tools are present for
PI function and Ad-hoc features. This aspect is clearly perceptible

n Figs. 3. In the case of Reflection, we noticed that ObfuscAPK and
AMO perform a fine-grained checking when selecting the set of can-
idate function calls to be transformed, so that errors introduced by
bfuscation are minimal. In contrast, DroidChameleon obfuscates calls

whose package matches any of the prefixes included in a pre-defined
list, without making any additional checks. In consequence, as shown in
Figs. 3(a) and 3(c) feature overlap is low since DroidChameleon results
in a higher number of transformed API calls with respect to ObfuscAPK
and AAMO.

The way in which the files to be transformed are selected is also the
explanation behind the differences observed between AAMO and Obfus-
cAPK with Renaming (see Fig. 3(b)). By default, ObfuscAPK selects all
the files within the APK as candidates for Renaming. This translates into
hanges in the content of files even if they belong to the Java library
r the Android framework. Hence, features in the Components and API
unctions families are greatly modified by this tool. In contrast, AAMO
erforms some additional checks aiming to avoid modifying this type of
ontent and presents a reduced impact on these features. Nonetheless,
s shown by the persistence values for API-related features in Table 4,

these checks are insufficient. For example, classes that are part of the
 s

9
Table 5
Performance of static analysis features for malware detection using non-
obfuscated apps for both training and evaluation. TPR stands for the True
Positive Rate, i.e., the number of malware correctly identified. FPR stands for
the False Positive Rate, i.e., the number of goodware erroneously identified
as malware. The A𝑚𝑒𝑎𝑛 is the average of the TPR and the True Negative Ratio
(1-FPR).

TPR FPR A𝑚𝑒𝑎𝑛

Permissions 0.867 0.156 0.855
Components 0.808 0.157 0.825
API functions 0.928 0.081 0.923
Opcodes 0.884 0.252 0.816
Strings 0.907 0.082 0.912
File Related 0.265 0.197 0.534
Ad-hoc 0.768 0.143 0.812

‘‘com.android’’ package are obfuscated because they do not match the
name of the AAMO blacklisted ‘‘android’’ package.

The disparities observed for API function features with CallIndirec-
ion between the three tools (see Figs. 3(a)–3(c)) are due to the way

intermediate methods are created. ObfuscAPK and AAMO insert the
ode of intermediate methods within the class file of the original calling
ethod, whereas DroidChameleon adds this code to a (separate) helper

lass. As a result, methods inserted by ObfuscAPK and AAMO inside the
lass files of the Android framework are considered as API features by
he feature extraction process. Moreover, since these tools use different
aming conventions for these new methods, the resulting features do
ot overlap.

When applying encryption technique, ObfuscAPK and
roidChameleon use different algorithms and parameters. This explains

he differences observed between both tools in Fig. 3(a). In particular,
ObfuscAPK uses the AES algorithm for encryption, whereas Droid-
Chameleon uses Caesar’s algorithm. In both cases, the encryption key
is hardcoded in their respective code.

5.2. ML performance

We devise a second set of experiments to (1) analyze the ability
of static features to detect malware, and (2) study the stability of
these features for malware detection within ML algorithms in the
presence of obfuscation. In all experiments, the RandomForests classifi-
cation algorithm is used without any parameter optimization (Breiman,
2001), as implemented in scikit-learn, a widely-used python library for
ML (Pedregosa et al., 2011).

The first scenario is focused on analyzing the predictive power of the
different feature families in a fully non-obfuscated (clean) environment.
For model training we use the NonObf dataset.10 For evaluation pur-
poses we used the apps from the CleanSuccObf dataset. Our objective
is to evaluate the ability of an off-the-shelf classifier to approximate
the class 𝑦 of apps (malware or goodware) as a function of the original
(non-obfuscated) features 𝑥𝑜𝑟𝑖𝑔 obtained from clean apps.

Table 5 shows the performance of the trained models. As can be
een, most features present high true positive rates (TPR above 0.8) and
oderately low false positive rates (FPR below 0.2). Therefore, it can

e concluded that most feature families provide enough information
o enable effective malware detection using ML algorithms. This is
articularly true for API functions and String features. On the contrary,
he model generated using File-Related features performs similar to a

random choice model (an A𝑚𝑒𝑎𝑛 value of 0.5) and therefore, we can say
hat these features are not suitable for the purpose at hand.

10 Note that an error during the obfuscation process of an app from this set
or a given tool can be due to an error in the obfuscation tool, since the same
pp has been successfully obfuscated using other tools for the same and other
trategies.

B. Molina-Coronado et al. Journal of Network and Computer Applications 235 (2025) 104094
Fig. 3. Feature overlap between every pair of obfuscation tools using different obfuscation strategies. Note that because Rename and Encryption do not work for DroidChameleon
and AAMO, respectively, the corresponding columns are omitted.
Table 6
Feature insensitivity, i.e., the overlap between the classifications made by the ML models for original and their obfuscated variants using ObfuscAPK (OA), DroidChameleon (DC)
and AAMO (AA).

Renaming Junk Code
Insertion and
Reordering

Call Indirection Reflection Encryption Avg. Over.

OA DC AA OA DC AA OA DC AA OA DC AA OA DC AA

Permissions 0.986 – 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.934 0.674 1.0 1.0 1.0 – 0.968
Components 0.506 – 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 – 0.961
API functions 0.986 – 0.992 1.0 1.0 1.0 1.0 1.0 1.0 0.946 0.305 0.998 1.0 1.0 – 0.939
Opcodes 0.950 – 0.964 0.446 0.235 0.087 0.899 0.963 0.900 0.922 0.954 0.893 0.923 0.940 – 0.827
Strings 1.0 – 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.296 0.078 – 0.874
File Related 0.027 – 0.805 0.013 0.052 0.384 0.013 0.072 0.380 0.025 0.106 0.575 0.091 0.030 – 0.197
Ad-hoc 0.624 – 0.813 0.706 0.012 0.583 0.434 0.751 0.415 0.621 0.370 0.238 0.720 0.741 – 0.540
Even with high persistence values, small changes in feature vectors
can lead to large changes in the performance of an ML algorithm.
This may be the case if the small set of changed features is the
most informative for a classifier and strongly influences its prediction.
Consequently, this second scenario investigates the sensitivity of ML
algorithms to the changes induced by feature vector obfuscation.

We use the ML models trained in the previous experiment (i.e., with
clean apps from the NonObf set) and compile two separate evaluation
sets for each obfuscation strategy. The first set, known as the obfuscated
evaluation set, consists of (obfuscated) samples from the corresponding
Renaming, JCIR, CallIndirection, Reflection or Encryption datasets. The
other set comprises the clean versions of those apps in the obfuscated
dataset. By comparing the predictions made by the ML model for the
clean and obfuscated versions of the same app, we can assess whether
or not obfuscating an app can change the decision made by the ML
model. We leverage the Jaccard index to compute the overlap between
the predictions for the clean and obfuscated apps, and we refer to this
measure as insensitivity. Thus, a high level of insensitivity indicates that
the predictions made by a model are preserved even when obfuscation
is applied to the apps.

The measured insensitivity values are compiled in Table 6. As can
be seen, the decisions of ML models for some feature families are
consistent among tools and techniques. This is the case, for example,
of Permissions, Components and API functions for Junk Code Inser-
tion and Reordering, Call Indirection and Encryption strategies, with
a perfect match in the predictions. Opcode and Ad-hoc features, in
contrast, are sensitive to all obfuscation techniques independently of
10
Fig. 4. Overall feature insensitivity of features against different obfuscation strategies.

the used tool. In other cases, differences between tools measured by the
persistence of features are evidenced in the sensitivity of features for a

B. Molina-Coronado et al. Journal of Network and Computer Applications 235 (2025) 104094
Fig. 5. Relation between persistence and insensitivity to changes of the different features for each obfuscation technique and tool. Every color makes reference to a feature family,
with red for Permissions, green for Components, blue for API functions, yellow for Opcodes, gray for Strings, violet for File-Related, and orange for Ad-hoc features; whereas symbols
make reference to the values reported on each feature family for ObfuscAPK (circles), AAMO (triangles) and DroidChameleon (squares). The average of all tools is represented by
the cross symbol.
specific technique and tool combination. For example, Permissions are
more sensitive to reflection when applied using ObfuscAPK or Droid-
Chameleon. Similarly to Permissions and Components when Renaming
is applied using ObfuscAPK.

If we observe the average insensitivity values of features indepen-
dently of the tool used, see Fig. 4, Permissions, Components or API
functions result in stable predictions regardless of the obfuscation status
of the apps, with insensitivity levels exceeding 0.9 for most strategies.
Strings are greatly sensitive to Encryption, with an average value
of 0.18, but instead are totally insensitive to any other obfuscation
strategy. Similarly, opcode features are highly sensitive to Junk Code
Insertion and Reordering but mostly obtained stable predictions for the
remaining types of obfuscation. On the contrary, Ad-Hoc, Opcode and
File-Related features exhibit high fluctuations in the decisions made by
the models for all the strategies. This suggests a greater sensitivity of
models to changes introduced by obfuscation in these features.

We wondered if the persistence of features when obfuscation is
applied to apps is somehow related to the insensitivity of ML models
based on those features. In Fig. 5, we represented the persistence and
insensitivity values for the different feature families. As can be seen,
in general, there is a high correlation between low persistence and
high sensitivity, meaning that larger changes in the features vectors
induce larger changes in the predictions of the ML algorithm. See for
example Opcode features with JCIR in Fig. 5(b) and String features
with Encryption in Fig. 5(e)). However, high persistence values do not
necessarily mean that the retained features are the ones that are more
helpful to the ML models in making accurate predictions. For example,
Ad-hoc features show high persistence values when applying Reflection
11
(changed features are only 16% of the total). Still, the insensitivity is
rather low, indicating those include the features that play an important
role in the accuracy of predictions (see Fig. 5(d)). Another example is
File-related features, which show the most irregular behavior for ML
models despite the small proportion of features altered by obfuscation
(10% on average as shown in Fig. 5(f)). In this regard, in the previous
scenario we evidenced that File-related features lack informativeness
for detection (see Table 5).

The previous results highlight an important finding: while persis-
tent features are commonly considered reliable predictors for malware
detection, persistence is not the sole factor influencing the robustness
of the detection model. On the contrary, high insensitivity values
implicate a high persistence on features, so it is a more adequate
indicator of robustness. Therefore, it is crucial to carefully examine
the impact of obfuscation-induced changes on the informativeness of
the features, as even small changes can significantly impact prediction
performance. In the next section, we explore the selection of different
feature vectors based on ML performance and feature insensitivity to
changes to develop robust malware detection models.

6. Robust malware detection

We hypothesize that it is possible to build a robust classifier (one
with accurate predictions when dealing with both clean and obfuscated
apps) by using features that are both relevant (generate good models
with clean apps) and insensitive (the decision of the classifier does not
change between the clean and the obfuscated version of an app). We
call these robust features. On the contrary, features that obtained low

B. Molina-Coronado et al.

A

m

S
s
r
c
f

m
c
t
o

i
l
o

o

r
t
n

m

s
c

t

f
R

f
p
o
i

t

Journal of Network and Computer Applications 235 (2025) 104094
Table 7
Features selected for robust malware detection based on different thresholds for the
𝑚𝑒𝑎𝑛 and feature insensitivity.
Threshold Feature types #Features

0.8 Permissions, API functions, Components, Opcodes, Strings 8 683
0.85 Permissions, API functions, Strings 4 683
0.9 API functions 2 000

Table 8
Performance of different robust feature combinations for ML malware detection. A,
stands for the model using exclusively API functions. PAS, refers to proposal using
Permissions, API functions and Strings, whereas PACOS uses Permissions, API functions
Components, Opcodes and Strings.

Non-Obfuscated Obfuscated

A PAS PACOS A PAS PACOS

TPR 0.928 0.920 0.923 0.858 0.889 0.889
FPR 0.081 0.065 0.068 0.060 0.044 0.056
A𝑚𝑒𝑎𝑛 0.923 0.927 0.927 0.898 0.922 0.916

insensitivity values (i.e., are highly sensitive) or are irrelevant for ML
odels are prone to cause fluctuations in the predictions of ML models

when obfuscation is used.
To select different sets of robust features based on the previous

statements, we use the A𝑚𝑒𝑎𝑛 metric reported in Table 5 and the
average feature insensitivity reported in Table 6. Specifically, we set
three thresholds (0.8, 0.85, and 0.9) for both metrics as the criteria
for combining different families of features and train robust ML-based
malware detectors. Table 7 shows the feature families that are com-
bined according to each threshold value. As can be seen, the strictest
threshold (0.9) considers only the API functions family (A), while the
intermediate threshold (0.85) includes API functions, Permissions, and
trings (PAS). The lower threshold (0.8) expands this to include Permis-
ions, API functions, Components, Opcodes, and Strings (PACOS) for
obust detection. Once different families of features are identified for
ombination to form robust features sets, and given the large number of
eatures in some groups, particularly in PAS and PACOS, we select only

the 2000 most relevant features of each family. To do so, we used the
feature importance rankings for each family of features as provided by
the corresponding RandomForest classifiers trained in the experiments
described in Section 5.2. Note that this selection does not apply to the
Permissions family, as it only contains 683 features.

To experiment with robust detectors using the different feature
combinations identified, we train three malware detectors using the
RandomForest algorithm with the apps in the NonObf dataset (which
does not contain obfuscated samples). This results in three malware
detectors using combinations of robust features: one for A features,
another one for PAS features and the third one for PACOS features.
For evaluation of these detectors with non-obfuscated goodware and

alware, we leverage the CleanSuccObf dataset, whereas for the obfus-
ated scenario, we use the apps from the Renaming, JCIR, CallIndirec-
ion, Reflection and Encryption datasets. The prediction performances
f the three detectors are summarized in Table 8. As expected, high

performance values for the three detectors are obtained for the exper-
ment without obfuscated apps, with true positive rates over 90% and
ow ratios of false positives (under 8%). In this regard, PAS and PACOS
btained superior performance values to using only API features.

When tested with obfuscated apps, the model relying solely on API
function features (A) showed a 3% reduction in A𝑚𝑒𝑎𝑛 performance com-
pared to using the non-obfuscated scenario, primarily due to the impact
f reflection on these features, as discussed in Section 5.2. In contrast,

incorporating additional features in PAS and PACOS, provided valuable
information for detection in this scenario, outperforming the detector
that used only API features. Specifically, the PAS detector achieved a
2% reduction in false positives and a 3% increase in correctly detected
malware compared to the performance of the model using only API
 c

12
functions. However, adding Component and Opcode features (PACOS)
did not improve performance over PAS, resulting in 2% fewer true
positives and a 1% reduction in the number of obfuscated goodware
being misclassified. Therefore, the most robust model is PAS, which
utilizes Permissions, API functions, and Strings.

For comparison, we also evaluate the performance of our best de-
tector, with PAS features, against RevealDroid, a robust state-of-the-art
malware detector (Garcia et al., 2018), and Drebin, a high-performing
detector (Arp et al., 2014). Both detectors use their own sets of static
analysis features and ML algorithms. RevealDroid features include API
function and package counts, native calls extracted from binary exe-
cutables and function names resolved from reflective and dynamic code
loading calls. These account for a total of 59 072 features that are used
to train a RandomForest model to perform malware detection. The fea-
tures used by Drebin comprise declared and requested permissions, app
components, host names, IPs, commands and suspicious and restricted
API functions. This results in 253 881 binary features that are used to
train a linear Support Vector Machine (SVM) classifier.

Table 9, shows the performance of our PAS detector against Re-
vealDroid and Drebin. As can be seen, PAS outperformed both state-of-
the-art detectors for the non-obfuscated and obfuscated scenarios. With
obfuscated apps, our robust proposal obtained a 1% and a 6% higher
detection rate, and 4% and 8% lower malware misclassification levels,
with respect to Drebin and RevealDroid. In contrast to RevealDroid and
Drebin, which mainly rely on Strings and API features, PAS benefits
from the combination of a variate feature vector and hence, it is more
obust to different obfuscation strategies. These good numbers evidence
hat using a small set of Permissions, API functions and Strings, that do
ot require highly complex extraction or preprocessing mechanisms,

is enough to perform malware detection in Android using off-the-self
ML algorithms. Moreover, it also demonstrates that these features are
robust enough to identify obfuscated malware and goodware even
without information about the strategy or tool used to obfuscate apps.

7. Discussion and future work

The experiments carried out in this paper evidence that, as com-
only assumed (Ye et al., 2017), static analysis features can be affected

by specific obfuscation techniques. On one hand, feature persistence
howed that all the feature families are affected by at least one obfus-
ation technique. Among them, the features obtained from the manifest

of applications proved to be the most stable. Nonetheless, and contrary
o what is commonly argued (Bakour et al., 2018), our experiments

also demonstrate that static analysis features can be a reliable source
of information for ML malware detection. In this regard, we observed
that some obfuscation strategies can result in additional features while
leaving the original features unaltered. For example, this is the effect
of CallIndirection in API functions, or Reflection in Strings. In most
cases, the impact of obfuscation is limited to less than 20% of all the
features derived from the samples (for example, at most 20% of the
eatures are affected by Call Indirection and about 15% are altered by
eflection). An interesting line of research in this regard could be to

analyze whether static analysis frameworks have flaws that magnify the
impact of obfuscation. This aspect would help developers to improve
static analysis tools and also facilitate practitioners to select the most
reliable tool.

We also observed that the changes caused by obfuscation on the
eatures vary significantly between different tools, mainly due to im-
lementation particularities. The lack of randomization in the analyzed
bfuscation tools makes them produce the same output for the same
nput value, even for different source apps or executions of the same

tool. Despite this way of operation is useful to hide the explicit informa-
ion provided by, for example a class name, it is insufficient to conceal

the intrinsic information, i.e., relationships between features, such as
orrelations. Consequently, apps that contain a similar characteristic,

B. Molina-Coronado et al.

t
f
t
t
i
i
w
n

a
o
t
r
f
i
p
i
i
p
a
b

a

a
i
p
t
t
r
d
8
o

e

c

a
h
n
b
w

Journal of Network and Computer Applications 235 (2025) 104094
Table 9
Performance of robust ML detectors based on static analysis features. PAS refers to our robust detection proposal using
Permissions, API functions and Strings.

Non-Obfuscated Obfuscated

RevealDroid Drebin PAS RevealDroid Drebin PAS

TPR 0.856 0.914 0.920 0.832 0.876 0.889
FPR 0.117 0.103 0.065 0.12 0.088 0.044
A𝑚𝑒𝑎𝑛 0.869 0.905 0.927 0.856 0.893 0.922
u

t
S
o

g
o
d
p
f

o
o
W
v
A
M
s
F

b
v
s
p

w
M
S

when obfuscated using the same tool, will maintain similar relations be-
ween the obfuscated values than between the original (unobfuscated)
eatures. Additionally, we found that open-source obfuscators need
o improve the implementation of some obfuscation techniques due
o the high failure rates they present. Therefore, the proposition and
mplementation of better obfuscation strategies and tools for Android
s a promising research area. Such strategies should be accompanied
ith evaluations to ensure that the execution of the obfuscated apps is
ot broken.

The performance analysis of ML models trained with static analysis
features revealed that some feature types (families) typically proposed
for malware detection (Pan et al., 2020), such as file-related features,
re not effective to distinguish malware. The experiment, conducted
n non-obfuscated applications, revealed API functions and Strings as
he most informative features to identify malware, achieving detection
ates of over 90% with low false positive rates of 8%. Through care-
ul analyses about the impact of obfuscation-induced changes on the
nformativeness of features, we have demonstrated that even changes
roduced to a small proportion of feature values can have a significant
mpact on performance. This finding demystifies a common assumption
n the Android malware detection field, which is to consider highly
ersistent features as robust. To address this issue, we proposed to use
 more precise indicator of the robustness of features which combines
oth persistence and ML performance of features.

By combining features that exhibited high insensitivity to changes
nd presented high ML accuracy, we demonstrated that ML-based

malware detection using basic static analysis features can be robust
against common obfuscation techniques. Remarkably, this remains true
even in scenarios where no knowledge about the obfuscation strategies
pplied to the apps is assumed, i.e., the obfuscated data is not taken
nto account during the training process. Under such conditions, we
roposed a robust detection approach that outperformed RevealDroid,
he current state-of-the-art obfuscation-resilient detector, and Drebin,
he best proposal for malware detection in Android according to a
ecent comparative (Molina-Coronado et al., 2023). Specifically, our
etector achieved 92% of correct classifications, compared to 89% and
5% for Drebin and RevealDroid, respectively. Accordingly, our focus
n obtaining richer and more robust app representations showed that

performance on Android malware detection can be improved with-
out considering features that require high computations or relying on
xtremely complex ML algorithms. Therefore, we believe that further

research efforts should shift from ML-centered solutions to the explo-
ration of the different sources of static analysis features for malware
detection.

As a final note, we are aware that some limitations apply to the
work carried out for this paper. The main one is that our analysis
is limited to individual obfuscation strategies. However, obfuscation
strategies can be combined in order to increase the probability of
circumventing detectors. It should be noted that the number of possible
ombinations is extremely high. Especially, because the number of

techniques that can be combined and the order in which they are
pplied to apps determines the obfuscation results, i.e., the information
idden by a previous obfuscation technique becomes invisible for the
ext obfuscation strategy. The cost of assuming such experimentation
ecomes unfeasible in the context of this work since: (1) samples
ould have to be obfuscated combining strategies and tools, and (2),

feature extraction, comparison and model training would have to be
 w

13
performed for the resulting obfuscated samples. In contrast to such
extensive analysis, our study of individual techniques aimed to better
nderstand their impact in the information that is extracted for ML

malware detection, as well as to evidence implementation pitfalls and
particularities among obfuscation tools. In this regard, this work can be
seen as a first step at understanding the impact that the combination
of different obfuscation strategies can have on static analysis features.
As for future work, we plan to extend our experiments to additional
obfuscation techniques, such as packing.

8. Conclusions

This paper explored the effectiveness of static analysis features for
ML-based Android malware detection in the presence of obfuscation. To
perform this assessment, we generated a variety of datasets by applying
different obfuscation strategies to apps with the help of three state-
of-the-art open-source obfuscators. Seven families of static analysis
features were defined and evaluated throughout an extensive set of
experiments. We identified which families are more persistent when
obfuscation is applied and determined why persistence is not a good
indicator of robustness against obfuscation based on their performance
for Android malware detection using obfuscated malware. Based on
hese findings, we proposed the use of Permissions, API functions and
trings for robust ML-based malware detection. A stock implementation
f the RandomForest classification algorithm using these features was

used. The generated ML detector is able to separate malware from
oodware with a remarkable success rate, without any prior knowledge
f the specific obfuscation techniques applied to apps. In particular, this
etector correctly identified 89% of evasion attempts with a low false
ositive rate of 4%, outperforming the current state-of-the-art solution
or obfuscation-resistant Android malware detection.

CRediT authorship contribution statement

Borja Molina-Coronado: Writing – review & editing, Writing –
riginal draft, Validation, Software, Project administration, Methodol-
gy, Investigation, Data curation, Conceptualization. Antonio Ruggia:
riting – original draft, Data curation. Usue Mori: Writing – re-

iew & editing, Supervision, Funding acquisition, Conceptualization.
lessio Merlo: Writing – review & editing, Supervision. Alexander
endiburu: Writing – review & editing, Supervision, Funding acqui-

ition. Jose Miguel-Alonso: Writing – review & editing, Supervision,
unding acquisition.

Declaration of competing interest

The authors declare the following financial interests/personal re-
lationships which may be considered as potential competing inter-
ests: Borja Molina-Coronado reports financial support was provided
y Basque Government. Usue Mori reports financial support was pro-
ided by Basque Government. Alexander Mendiburu reports financial
upport was provided by Basque Government. Jose Miguel-Alonso re-
orts financial support was provided by Basque Government. Borja

Molina-Coronado reports financial support was provided by Spain Min-
istry of Science and Innovation. Usue Mori reports financial support

as provided by Spain Ministry of Science and Innovation. Alexander
endiburu reports financial support was provided by Spain Ministry of

cience and Innovation. Jose Miguel-Alonso reports financial support
as provided by Spain Ministry of Science and Innovation.

B. Molina-Coronado et al. Journal of Network and Computer Applications 235 (2025) 104094
Acknowledgments

This work has received support from the following programs:
PID2019-104966GB-I00AEI (Spanish Ministry of Science and Innova-
tion), IT-1504-22 (Basque Government, Spain), KK-2022/00106 (Elka-
rtek project supported by the Basque Government, Spain). Borja Molina-
Coronado holds a predoctoral grant (ref. PRE_2021_2_0230) by the
Basque Government, Spain.

Data availability

No data was used for the research described in the article.

References

Aghakhani, H., Gritti, F., Mecca, F., Lindorfer, M., Ortolani, S., Balzarotti, D., Vigna, G.,
Kruegel, C., 2020. When malware is packin’heat; limits of machine learning
classifiers based on static analysis features. In: Network and Distributed Systems
Security (NDSS) Symposium 2020.

Allix, K., Bissyandé, T.F., Klein, J., Le Traon, Y., 2016. Androzoo: Collecting millions
of android apps for the research community. In: 2016 IEEE/ACM 13th Working
Conference on Mining Software Repositories. MSR, IEEE, pp. 468–471.

Aonzo, S., Georgiu, G.C., Verderame, L., Merlo, A., 2020. Obfuscapk: An open-source
black-box obfuscation tool for android apps. SoftwareX 11, 100403.

Arp, D., Quiring, E., Pendlebury, F., Warnecke, A., Pierazzi, F., Wressnegger, C.,
Cavallaro, L., Rieck, K., 2022. Dos and don’ts of machine learning in computer
security. In: Proc. of the USENIX Security Symposium.

Arp, D., Spreitzenbarth, M., Hubner, M., Gascon, H., Rieck, K., Siemens, C., 2014.
Drebin: Effective and explainable detection of android malware in your pocket..
In: Ndss. 14, pp. 23–26.

Arzt, S., Rasthofer, S., Fritz, C., Bodden, E., Bartel, A., Klein, J., Le Traon, Y.,
Octeau, D., McDaniel, P., 2014. Flowdroid: Precise context, flow, field, object-
sensitive and lifecycle-aware taint analysis for android apps. Acm Sigplan Notices
49 (6), 259–269.

Bacci, A., Bartoli, A., Martinelli, F., Medvet, E., Mercaldo, F., Visaggio, C.A., 2018.
Impact of code obfuscation on android malware detection based on static and
dynamic analysis. In: ICISSP. pp. 379–385.

Bakour, K., Ünver, H.M., Ghanem, R., 2018. The android malware static analysis:
techniques, limitations, and open challenges. In: 2018 3rd International Conference
on Computer Science and Engineering. UBMK, Ieee, pp. 586–593.

Breiman, L., 2001. Random forests. Mach. Learn. 45, 5–32.
Canfora, G., De Lorenzo, A., Medvet, E., Mercaldo, F., Visaggio, C.A., 2015. Effective-

ness of opcode ngrams for detection of multi family android malware. In: 2015
10th International Conference on Availability, Reliability and Security. IEEE, pp.
333–340.

Collberg, C.S., Thomborson, C., 2002. Watermarking, tamper-proofing, and obfuscation-
tools for software protection. IEEE Trans. Softw. Eng. 28 (8), 735–746.

Desnos, A., Gueguen, G., Bachmann, S., 2018. Androguard. [Online] Available: https:
//androguard.readthedocs.io/en/latest/.

Dong, S., Li, M., Diao, W., Liu, X., Liu, J., Li, Z., Xu, F., Chen, K., Wang, X., Zhang, K.,
2018. Understanding android obfuscation techniques: A large-scale investigation in
the wild. In: International Conference on Security and Privacy in Communication
Systems. Springer, pp. 172–192.

Feizollah, A., Anuar, N.B., Salleh, R., Suarez-Tangil, G., Furnell, S., 2017. Androdialysis:
Analysis of android intent effectiveness in malware detection. Comput. Secur. 65,
121–134.

Gao, C., Cai, M., Yin, S., Huang, G., Li, H., Yuan, W., Luo, X., 2023. Obfuscation-
resilient android malware analysis based on complementary features. IEEE Trans.
Inf. Forensics Secur..

Gao, C., Huang, G., Li, H., Wu, B., Wu, Y., Yuan, W., 2024. A comprehensive
study of learning-based android malware detectors under challenging environments.
In: Proceedings of the 46th IEEE/ACM International Conference on Software
Engineering. pp. 1–13.

Garcia, J., Hammad, M., Malek, S., 2018. Lightweight, obfuscation-resilient detection
and family identification of android malware. ACM Trans. Softw. Eng. Methodol.
(TOSEM) 26 (3), 1–29.

Google, 2020. Dalvik executable format. URL https://source.android.com/docs/core/
runtime/dex-format. (Accessed online: 17 December 2024).

Google Developers, 2020. Enable multidex for apps with over 64k methods. URL https:
//developer.android.com/studio/build/multidex. (Accessed online: 17 December
2024).

Grace, M., Zhou, Y., Zhang, Q., Zou, S., Jiang, X., 2012. Riskranker: scalable and accu-
rate zero-day android malware detection. In: Proceedings of the 10th International
Conference on Mobile Systems, Applications, and Services. pp. 281–294.

Hammad, M., Garcia, J., Malek, S., 2018. A large-scale empirical study on the effects
of code obfuscations on android apps and anti-malware products. In: Proceedings
of the 40th International Conference on Software Engineering. pp. 421–431.
14
Hastie, T., Tibshirani, R., Friedman, J., 2009. The elements of statistical learning: data
mining, inference, and prediction. Springer Science & Business Media.

Jerome, Q., Allix, K., State, R., Engel, T., 2014. Using opcode-sequences to de-
tect malicious android applications. In: 2014 IEEE International Conference on
Communications. ICC, IEEE, pp. 914–919.

Kang, B., Yerima, S.Y., McLaughlin, K., Sezer, S., 2016. N-opcode analysis for android
malware classification and categorization. In: 2016 International Conference on
Cyber Security and Protection of Digital Services (Cyber Security). IEEE, pp. 1–7.

Kaspersky Labs, 2021. Mobile malware evolution 2020. [Online] Available: https:
//securelist.com/mobile-malware-evolution-2020/101029/.

Kim, T., Kang, B., Rho, M., Sezer, S., Im, E.G., 2018. A multimodal deep learning
method for android malware detection using various features. IEEE Trans. Inf.
Forensics Secur. 14 (3), 773–788.

Koli, J., 2018. RanDroid: Android malware detection using random machine learning
classifiers. In: 2018 Technologies for Smart-City Energy Security and Power.
ICSESP, IEEE, pp. 1–6.

Lee, W.Y., Saxe, J., Harang, R., 2019. SeqDroid: Obfuscated android malware detection
using stacked convolutional and recurrent neural networks. In: Deep Learning
Applications for Cyber Security. Springer, pp. 197–210.

Li, L., Bissyandé, T.F., Papadakis, M., Rasthofer, S., Bartel, A., Octeau, D., Klein, J.,
Traon, L., 2017. Static analysis of android apps: A systematic literature review. Inf.
Softw. Technol. 88, 67–95.

Maiorca, D., Ariu, D., Corona, I., Aresu, M., Giacinto, G., 2015. Stealth attacks: An
extended insight into the obfuscation effects on android malware. Comput. Secur.
51, 16–31.

McLaughlin, N., Martinez del Rincon, J., Kang, B., Yerima, S., Miller, P., Sezer, S.,
Safaei, Y., Trickel, E., Zhao, Z., Doupé, A., et al., 2017. Deep android malware
detection. In: Proceedings of the Seventh ACM on Conference on Data and
Application Security and Privacy. pp. 301–308.

Mirzaei, O., de Fuentes, J.M., Tapiador, J., Gonzalez-Manzano, L., 2019. AndrODet: An
adaptive android obfuscation detector. Future Gener. Comput. Syst. 90, 240–261.

Mohammadinodooshan, A., Kargén, U., Shahmehri, N., 2019. Comment on‘‘ AndrODet:
An adaptive android obfuscation detector’’. arXiv preprint arXiv:1910.06192.

Molina-Coronado, B., Mori, U., Mendiburu, A., Miguel-Alonso, J., 2020. Survey of
network intrusion detection methods from the perspective of the knowledge
discovery in databases process. IEEE Trans. Netw. Serv. Manag. 17 (4), 2451–2479.

Molina-Coronado, B., Mori, U., Mendiburu, A., Miguel-Alonso, J., 2023. Towards a fair
comparison and realistic evaluation framework of android malware detectors based
on static analysis and machine learning. Comput. Secur. 124, 102996.

Pan, Y., Ge, X., Fang, C., Fan, Y., 2020. A systematic literature review of android
malware detection using static analysis. IEEE Access 8, 116363–116379.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E., 2011. Scikit-learn: Machine
learning in python. J. Mach. Learn. Res. 12, 2825–2830.

Preda, M.D., Maggi, F., 2017. Testing android malware detectors against code obfusca-
tion: a systematization of knowledge and unified methodology. J. Comput. Virol.
Hacking Techn. 13 (3), 209–232.

Rastogi, V., Chen, Y., Jiang, X., 2013. Droidchameleon: evaluating android anti-malware
against transformation attacks. In: Proceedings of the 8th ACM SIGSAC Symposium
on Information, Computer and Communications Security. pp. 329–334.

Rastogi, V., Chen, Y., Jiang, X., 2014. Catch me if you can: Evaluating android anti-
malware against transformation attacks. IEEE Trans. Inf. Forensics Secur. 9 (1),
99–108.

Ratabouil, S., 2015. Android NDK: beginner’s guide. Packt Publishing Ltd.
Ruggia, A., Losiouk, E., Verderame, L., Conti, M., Merlo, A., 2021. Repack me if

you can: An anti-repackaging solution based on android virtualization. In: Annual
Computer Security Applications Conference. pp. 970–981.

Sadeghi, A., Bagheri, H., Garcia, J., Malek, S., 2016. A taxonomy and qualitative
comparison of program analysis techniques for security assessment of android
software. IEEE Trans. Softw. Eng. 43 (6), 492–530.

Sihag, V., Vardhan, M., Singh, P., 2021. A survey of android application and malware
hardening. Comp. Sci. Rev. 39, 100365.

Statista, 2021. Mobile operating systems’ market share worldwide from january 2012
to january 2021. [Online] Available: https://www.statista.com/statistics/272698/
global-market-share-held-by-mobile-operating-systems-since-2009/.

Suarez-Tangil, G., Dash, S.K., Ahmadi, M., Kinder, J., Giacinto, G., Cavallaro, L., 2017.
Droidsieve: Fast and accurate classification of obfuscated android malware. In:
Proceedings of the Seventh ACM on Conference on Data and Application Security
and Privacy. pp. 309–320.

Tam, K., Feizollah, A., Anuar, N.B., Salleh, R., Cavallaro, L., 2017. The evolution of
android malware and android analysis techniques. ACM Comput. Surv. 49 (4),
1–41.

Wang, W., Wang, X., Feng, D., Liu, J., Han, Z., Zhang, X., 2014. Exploring permission-
induced risk in android applications for malicious application detection. IEEE Trans.
Inf. Forensics Secur. 9 (11), 1869–1882.

Wang, X., Wang, W., He, Y., Liu, J., Han, Z., Zhang, X., 2017. Characterizing android
apps’ behavior for effective detection of malapps at large scale. Future Gener.
Comput. Syst. 75, 30–45.

http://refhub.elsevier.com/S1084-8045(24)00271-6/sb1
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb1
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb1
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb1
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb1
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb1
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb1
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb2
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb2
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb2
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb2
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb2
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb3
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb3
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb3
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb4
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb4
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb4
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb4
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb4
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb5
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb5
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb5
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb5
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb5
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb6
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb6
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb6
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb6
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb6
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb6
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb6
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb7
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb7
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb7
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb7
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb7
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb8
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb8
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb8
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb8
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb8
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb9
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb10
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb10
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb10
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb10
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb10
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb10
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb10
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb11
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb11
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb11
https://androguard.readthedocs.io/en/latest/
https://androguard.readthedocs.io/en/latest/
https://androguard.readthedocs.io/en/latest/
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb13
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb13
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb13
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb13
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb13
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb13
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb13
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb14
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb14
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb14
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb14
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb14
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb15
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb15
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb15
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb15
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb15
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb16
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb16
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb16
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb16
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb16
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb16
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb16
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb17
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb17
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb17
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb17
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb17
https://source.android.com/docs/core/runtime/dex-format
https://source.android.com/docs/core/runtime/dex-format
https://source.android.com/docs/core/runtime/dex-format
https://developer.android.com/studio/build/multidex
https://developer.android.com/studio/build/multidex
https://developer.android.com/studio/build/multidex
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb20
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb20
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb20
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb20
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb20
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb21
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb21
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb21
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb21
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb21
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb22
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb22
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb22
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb23
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb23
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb23
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb23
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb23
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb24
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb24
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb24
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb24
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb24
https://securelist.com/mobile-malware-evolution-2020/101029/
https://securelist.com/mobile-malware-evolution-2020/101029/
https://securelist.com/mobile-malware-evolution-2020/101029/
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb26
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb26
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb26
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb26
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb26
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb27
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb27
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb27
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb27
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb27
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb28
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb28
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb28
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb28
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb28
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb29
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb29
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb29
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb29
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb29
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb30
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb30
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb30
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb30
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb30
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb31
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb31
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb31
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb31
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb31
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb31
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb31
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb32
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb32
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb32
http://arxiv.org/abs/1910.06192
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb34
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb34
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb34
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb34
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb34
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb35
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb35
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb35
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb35
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb35
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb36
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb36
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb36
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb37
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb37
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb37
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb37
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb37
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb37
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb37
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb38
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb38
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb38
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb38
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb38
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb39
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb39
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb39
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb39
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb39
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb40
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb40
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb40
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb40
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb40
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb41
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb42
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb42
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb42
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb42
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb42
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb43
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb43
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb43
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb43
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb43
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb44
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb44
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb44
https://www.statista.com/statistics/272698/global-market-share-held-by-mobile-operating-systems-since-2009/
https://www.statista.com/statistics/272698/global-market-share-held-by-mobile-operating-systems-since-2009/
https://www.statista.com/statistics/272698/global-market-share-held-by-mobile-operating-systems-since-2009/
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb46
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb46
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb46
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb46
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb46
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb46
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb46
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb47
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb47
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb47
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb47
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb47
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb48
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb48
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb48
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb48
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb48
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb49
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb49
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb49
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb49
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb49

B. Molina-Coronado et al.

i
a
T
l

S
r
S
H

Journal of Network and Computer Applications 235 (2025) 104094
Wang, W., Zhao, M., Gao, Z., Xu, G., Xian, H., Li, Y., Zhang, X., 2019. Constructing fea-
tures for detecting android malicious applications: issues, taxonomy and directions.
IEEE Access 7, 67602–67631.

Wu, Y., Dou, S., Zou, D., Yang, W., Qiang, W., Jin, H., 2022. Contrastive learning
for robust android malware familial classification. IEEE Trans. Dependable Secure
Comput..

Wu, J., Kanai, A., 2021. Utilizing obfuscation information in deep learning-based
android malware detection. In: 2021 IEEE 45th Annual Computers, Software, and
Applications Conference. COMPSAC, IEEE, pp. 1321–1326.

Wu, D.-J., Mao, C.-H., Wei, T.-E., Lee, H.-M., Wu, K.-P., 2012. Droidmat: Android
malware detection through manifest and api calls tracing. In: 2012 Seventh Asia
Joint Conference on Information Security. IEEE, pp. 62–69.

Xu, K., Li, Y., Deng, R.H., 2016. Iccdetector: Icc-based malware detection on android.
IEEE Trans. Inf. Forensics Secur. 11 (6), 1252–1264.

Ye, Y., Li, T., Adjeroh, D., Iyengar, S.S., 2017. A survey on malware detection using
data mining techniques. ACM Comput. Surv. 50 (3), 1–40.

Yerima, S.Y., Sezer, S., McWilliams, G., Muttik, I., 2013. A new android malware
detection approach using bayesian classification. In: 2013 IEEE 27th International
Conference on Advanced Information Networking and Applications. AINA, IEEE,
pp. 121–128.

You, I., Yim, K., 2010. Malware obfuscation techniques: A brief survey. In: 2010
International Conference on Broadband, Wireless Computing, Communication and
Applications. IEEE, pp. 297–300.

Zhang, X., Breitinger, F., Luechinger, E., O’Shaughnessy, S., 2021. Android application
forensics: A survey of obfuscation, obfuscation detection and deobfuscation tech-
niques and their impact on investigations. Forensic Sci. Int. Dig. Investigat. 39,
301285.

Zhang, X., Jin, Z., 2016. A new semantics-based android malware detection. In: 2016
2nd IEEE International Conference on Computer and Communications. ICCC, IEEE,
pp. 1412–1416.

Zhu, S., Shi, J., Yang, L., Qin, B., Zhang, Z., Song, L., Wang, G., 2020. Measuring
and modeling the label dynamics of online anti-malware engines. In: 29th USENIX
Security Symposium (USENIX Security 20). USENIX Association, pp. 2361–2378.

Zhu, H.-J., You, Z.-H., Zhu, Z.-X., Shi, W.-L., Chen, X., Cheng, L., 2018. DroidDet:
effective and robust detection of android malware using static analysis along with
rotation forest model. Neurocomputing 272, 638–646.

Borja Molina-Coronado received his M.Sc. in Computer Engineering and his Ph.D.
n Computer Science from the University of the Basque Country UPV/EHU, in 2017
nd 2023, respectively. He is a researcher in the Dept. of Computer Architecture and
echnology of the UPV/EHU. His main research areas are malware analysis, machine

earning and network security.
15
Antonio Ruggia is a Ph.D. student in Security, Risk, and Vulnerability at the University
of Genoa since November 2020. He is interested in several security topics, including
Mobile Security, with a specific interest in Android, malware, and data protection. He
graduated in October 2020 from the University of Genoa and participated in the 2019
CyberChallenge.it, an Italian practical competition for students in Cybersecurity. Since
2018, he has worked as a full-stack developer in a multinational corporation.

Usue Mori received her M.Sc. Degree in Mathematics, and a Ph.D. in Computer
cience from the University of the Basque Country UPV/EHU, Spain, in 2010 and 2015,
espectively. Since 2019, she has been working as a lecturer in the Dept. of Computer
cience and Artificial Intelligence of the University of the Basque Country UPV/EHU.
er main research interests include clustering and classification of time series.

Alessio Merlo received the Ph.D. degree in computer science from the University of
Genoa in 2010. He is currently a Full Professor in computer engineering with the
Centre for Higher Defence Studies (CASD), Rome, Italy. He has published more than 120
scientific papers in international conferences and journals. His research interests include
mobile security, where he contributed to discovering several high-risk vulnerabilities
both in applications and the android OS and system security.

Alexander Mendiburu is a full professor at the Dept. of Computer Architecture
and Technology of the University of the Basque Country UPV/EHU, where he has
been working since 1999. He received his B.Sc. Degree in Computer Science and
his Ph.D. Degree from the University of the Basque Country, Spain, in 1995 and
2006, respectively. His main research areas are evolutionary computation, time series,
probabilistic graphical models, and parallel computing.

Jose Miguel-Alonso is a full professor at the Dept. of Computer Architecture and
Technology of the University of the Basque Country UPV/EHU. Formerly, he was a
Visiting Assistant Professor at Purdue University. He received his M.Sc. in Computer
Science in 1989 and his Ph.D. in Computer Science in 1996, both from the UPV/EHU.
He carries out research related to parallel and distributed systems, in areas such as
network security, software security, performance modeling and resource management in
large-scale computing systems. Prof. Miguel-Alonso is a member of the IEEE Computer
Society and of the HiPEAC European Network of Excellence.

http://refhub.elsevier.com/S1084-8045(24)00271-6/sb50
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb50
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb50
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb50
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb50
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb51
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb51
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb51
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb51
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb51
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb52
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb52
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb52
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb52
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb52
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb53
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb53
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb53
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb53
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb53
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb54
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb54
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb54
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb55
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb55
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb55
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb56
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb56
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb56
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb56
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb56
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb56
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb56
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb57
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb57
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb57
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb57
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb57
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb58
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb58
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb58
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb58
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb58
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb58
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb58
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb59
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb59
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb59
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb59
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb59
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb60
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb60
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb60
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb60
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb60
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb61
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb61
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb61
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb61
http://refhub.elsevier.com/S1084-8045(24)00271-6/sb61

	Light up that Droid! On the effectiveness of static analysis features against app obfuscation for Android malware detection
	Introduction
	Related Work
	Study of the Vulnerabilities of Malware Detectors
	Obfuscation-Resilient Detectors

	Background
	Android Apps
	Obfuscation

	Dataset
	App Dataset
	Feature Dataset
	Permissions
	Components
	API functions
	Opcodes
	Strings
	File related features
	Ad-hoc Features

	Feature Validity
	Feature persistence
	Differences between Obfuscation Tools

	ML Performance

	Robust Malware Detection
	Discussion and Future Work
	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Data availability
	References

