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Abstract

Satisfiability Modulo Theories (SMT) is the problem of deciding the satisfiability of a first-

order formula with respect to some background theory. In this thesis, we focus on the theory

of non-linear real arithmetic augmented with exponential and trigonometric functions, also

known as Non-linear Transcendental Arithmetic (NT A). NT A is a very expressive theory,

which can be used to model problems in different domains, such as physics, engineering,

economics, and biology.

Unfortunately, solving problems in NT A is very challenging: indeed, the problem is

undecidable, there is no known finite representation of satisfying assignments, and symbolic

methods struggle to reason precisely about transcendental functions. State-of-the-art SMT

solvers usually rely on over-approximations of transcendental functions, and are thus unable

to prove the existence of a model, except that in very simple cases.

We propose a novel approach to SMT(NT A) that leverages techniques coming from

the fields of numerical analysis and topology, and integrates them within the SMT context.

Numerical methods are used to quickly obtain approximate candidate solutions, which can be

used to reduce the search of a model to simpler local sub-problems. Topological methods are

used to prove the existence of a solution in a bounded region without the need to explicitly

express such a solution, thus circumventing the issue of representing satisfying assignments.

We implement our procedure in the prototype tool UGOTNL, and experimentally evaluate

the tool performances over a wide range of NT A benchmarks. The experiments show that

the tool significantly outperforms other state-of-the-art SMT solvers on satisfiable NT A

problems, being able to solve more than four times the benchmarks solved by the best of the

other tools.
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Furthermore, we characterize the class of problems for which our method can terminate

successfully. Based on that, we contribute with an original theorem that proves that a

weaker notion of decidability holds for bounded NT A formulas, namely that there exists an

algorithm that always terminates successfully under certain assumptions on the robustness of

the problem.

Finally, we outline how our idea of leveraging fast numerical techniques to accelerate

the search for a model can fit into a more general framework such as the model-constructing

satisfiability calculus (MCSAT), and how it can be applied to other theories, such as non-linear

integer arithmetic (NIA).
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Chapter 1

Introduction

1.1 Introduction

In the last decades, hardware and software systems have become increasingly widespread

in our lives, and more and more safety-critical applications rely on them. Failures of such

systems can have catastrophic consequences, such as causing human deaths, or huge eco-

nomic losses. Therefore, ensuring the correctness of these systems has become a fundamental

challenge in computer science. While extensive testing can serve as a first line of defense

against these malfunctions, it can neither guarantee the detection of all possible subtle bugs,

nor prove whether certain specifications are met. In order to do so, a more exhausting

and comprehensive approach to the problem is required. Formal verification, a rigorous

approach that relies on mathematical logic, emerged as an ideal framework for the task.

Logical formulas are used to express states and transformations of the system, as well as

the properties that we expect the system to satisfy. Then, fully automatic methods are used

to either produce a witness that shows that the desired property is violated, or to produce a

formal proof that demonstrates that the property holds.

One of the most popular paradigms to reason about logical formulas is Satisfiability

Modulo Theories (SMT), which generalizes the Boolean satisfiability problem (SAT) to

richer theories, such as linear and non-linear arithmetic, floating points, bit-vectors, arrays,

uninterpreted functions, and many others. SMT solvers leverage the integration of SAT

solvers with theory-specific decision procedures (also called theory solvers).

Huge progress has been made by the SMT community to develop efficient and scalable

decision procedures for a wide variety of theories. For certain theories, such as Linear
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Real Arithmetic (LRA), modern SMT solvers are already extremely efficient, and their use

has been widely adopted to tackle real-world problems. Even for more complex theories,

such as Non-linear Real Arithmetic (NRA), whose worst-case complexity is known to be

doubly-exponential [114, 35] and that only two decades ago was thought to be untreatable in

practice, now state-of-the-art SMT solvers are often able to solve even complex problems in

a reasonable amount of time.

However, if we extend NRA by including transcendental functions such as exponential

(e.g. exp, log) and trigonometric functions (e.g., sin, arctan), then the resulting theory,

Non-linear Transcendental Arithmetic (NT A), becomes undecidable [94].

Since modeling many problems in domains such as physics, engineering, economics,

and biology, requires the expressiveness of transcendental functions, then, research on

SMT(NT A) is of great importance [92]. However, given the theoretical and practical

complexity of the theory, there are still many problems that are out of the scope of state-of-

the-art SMT solvers.

SMT(NT A) can be tackled from different angles. In general, symbolic reasoning over

transcendental functions tends to be quite burdensome. Currently, most SMT solvers try to

avoid reasoning directly about transcendental functions, recurring to either linearization or

interval-based over-approximations. These approaches work particularly well for proving that

a formula does not have a solution, since if an over-approximation of the original formula is

unsatisfiable, then the original formula is unsatisfiable, too. However, except for very simple

cases, this approach is doomed to fail in proving that a formula does have a solution. One

major hurdle is that, contrarily to LRA, where satisfying assignments consist of fractions, or

NRA, where satisfying assignments consist of polynomial roots, there is no known finite

representation for NT A satisfying assignments. Hence, even just expressing a solution is a

non-trivial problem.

In this thesis, we will discuss how techniques from the fields of numerical analysis and

topology can be leveraged and integrated in the context of SMT to tackle formulas with

polynomials and transcendental functions, and how their adoption significantly advances

the state-of-the-art for the satisfiability case of NT A formulas. We will also discuss how

these techniques can play a role for the related theories of NRA and NIA (Non-linear

Integer Arithmetic). Moreover, we will theoretically characterize certain relevant subclasses

of NT A for which, despite the general undecidability of the theory, there exists a procedure

that always terminates successfully, under certain robustness assumptions.
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1.2 Related work

Here, we present various works that tackle problems involving nonlinear arithmetic. Since

the focus of the thesis is on NT A, we will devote most of the space to techniques that can

deal with transcendental functions, but we will also discuss approaches that only work for

NRA and NIA formulas.

1.2.1 Interval Contraint Propagation (ICP)

Interval Constraint Propagation (ICP) [12, 91] is an incomplete technique based on Interval

Arithmetic [84]. In this approach, interval arithmetic is used to evaluate a set of constraints

over boxes (i.e. Cartesian products of intervals), contract such boxes into smaller ones

without the lost of information, and then, if no further contraction is possible and the problem

has not yet been solved, decompose the boxes into smaller ones and reiterate the process for

each of these new boxes.

ICP is a very flexible procedure, as it can be applied to every function for which it is

possible to compute infinitely precise bounds (this class includes NT A functions). ICP can

effectively prove unsatisfiability of general formulas, and satisfiability of formulas that only

include inequalities. However, being based on interval arithmetic, which works by computing

over-approximations, in the presence of equalities this technique is, in general, not able to

prove satisfiability, as it would require the capability of expressing real values precisely as

singleton intervals, or as uniquely determined compositions of previously found singleton

intervals (this is possible only in the special case of strongly satisfiable equations [50, 42]).

The first solvers to implement ICP have been REALPAVER [56] and RSOLVER [91]. Cur-

rently, ICP is implemented by ISAT3 [50] and DREAL [54] for NT A, and by RASAT [110]

and SMT-RAT [99] for NRA. Interestingly, in order to overcome the weakness of ICP to

prove satisfiability, RASAT combines ICP with the Generalized Intermediate Value Theo-

rem [86]. SPASS(ISAT) [42], on the other hand, leverages the SPASS theorem prover [113] to

implement a strong satisfaction check on candidate solutions returned by ISAT2 that works

for strongly satisfiable formulas. A different approach is taken by DREAL, which relaxes

the notion of decidability to that of δ -decidability (see Subsection 1.2.3). In the context of

theorem proving, several tools have leveraged interval propagation to handle transcendental

functions [36, 80, 102, 74, 75].
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1.2.2 Linearization

The idea of the linearization approach is to avoid dealing directly with non-linearity by

reducing to a linear problem, and lazily linearize non-linear functions on the base of a

lemma-on-demand approach.

Incremental Linearization (IL) [61, 30] leverages efficient complete decision procedures

for linear arithmetic by abstracting non-linear multiplication and transcendental functions

symbols with uninterpreted functions. Then, linear solvers are used to either prove the

unsatisfiability of the abstracted formula, from which the unsatifiability of the original formula

follows, or find a rational model, which can either be an actual model or a spurious model, in

which case nonlinear terms are incrementally axiomatized by piecewise-linear constraints. IL

is particularly successful in proving unsatisfiability, and can also prove satisfiability when the

model is rational. However, since linear solvers are not able to find non-rational models, in

most of the cases that involve equalities it is possible to prove satisfiability only indirectly, by

showing that a given variable assignment satisfies the formula for all possible interpretations

of the involved transcendental functions within some bounds [28]. This technique, however,

only works for very simple cases. IL has been implemented in MATHSAT for NT A [28]

andNIA [29], in CVC5 forNT A [67], in SMT-RAT forNRA [116, 103] andNIA [98],

in Z3 for NIA [13], and in SWINE for EIA (Exponential Integer Arithmetic) [49].

Another linearization approach is the ksmt-calculus [17], a model-guided CDCL(T)-style

procedure that applies gradual linear approximations to non-linear constraints. Differently

from incremental linearization, where non-linear constraints are abstracted to uninterpreted

functions and then refined through incremental axiomatization, here, non-linear constraints

are directly linearized on-demand by tangent spaces, safely computed by numerical means.

This approach works for the class of functions with decidable rational approximations (which

include polynomials and transcendental functions), but only for problems with no equations.

The method has been implemented in the KSMT tool for a subclass of NRA.

For transcendental functions, linearization can be seen as a special case of using Taylor

approximations to find polynomial upper and lower bounds. This approach is used by

METITARSKI [4] to prove unsatisfiability of NT A formulas via reduction to NRA.

1.2.3 δ -satisfiability

In order to overcome the difficulties in proving satisfiability in the presence of transcendental

functions, a different approach that relaxes the notion of decidability has been proposed.
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In this approach, called δ -satisfiability [53], an algorithm can return either unsat (if the

problem is unsatisfiable) or δ-sat, if there exists a perturbation of the original formula (up

to some δ > 0 specified by the user) that is satisfiable. If a formula is δ -satisfiable, there is

no guarantee that it is also satisfiable: indeed, a formula can be at the same time unsatisfiable

and δ -satisfiable. The SMT solver DREAL [54] implements a δ -decision procedure based on

ICP. It has been proved that the KSMT-calculus is a δ -complete decision procedure, too [18].

1.2.4 NRA-specific

Here, we give an overview on methods that work specifically for SMT(NRA).
The most successful method is surely Cylindric Algebraic Decomposition (CAD). First

introduced by Collins [32], it is a quantifier elimination procedure that decomposes the

real space into cells, and then iteratively projects on one of the coordinates, reducing the

satisfiability of a formula to the satisfiability of sub-formulas of lower dimension. Although

its complexity is double exponential w.r.t. the number of variables [114, 35], it is a very

efficient technique when used within the model-constructing satisfiability calculus (MCSAT)

framework [64, 38]. Here, instead of eagerly running CAD on the whole formula, CAD is

lazily called only on polynomials in one variable to explain conflicts.

Virtual Substitution [115] is based on the well-known formulae for expressing the so-

lutions of polynomials in terms of radicals. This method can be practically very efficient

for polynomials with low degree, but its applicability is limited due to the Abel-Ruffini

theorem [96], which states that it is not possible to solve by radicals general polynomials of

degree 5 or higher with arbitrary coefficients.

Subtropical Satisfiability [108, 44, 109] is an incomplete method able to prove the

satisfiability of a single polynomial equation or of a sets of polynomial inequalities. Starting

from a given point, it uses information on the coefficients and exponents of the monomials to

guess the direction of the polynomial, and then reduces to linear solving to find a solution.

This method is particularly efficient for finding roots of extremely large polynomials (such

problems arise in some biological applications [108]).

1.2.5 NIA-specific

In the branch-and-bound approach [66, 63], a NIA formula is relaxed by allowing its

variables to range over the reals. If the relaxed formula has no real solution, then no integer
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solution exists either. Otherwise, if the relaxed formula is satisfiable, then either the solution

is integer-valued (in which case, it is also a solution for the original NIA formula), or the

solution contains at least one non-integer value, in which case new constraints are added to

exclude non-integer values between the floor and the ceiling of such value.

Another major approach is bit blasting [52], in which bounds are iteratively imposed

over the variables of the formula to reduce theNIA formula to a bounded (hence decidable)

sub-formula that can then be encoded into a SAT problem. This approach can be quite

successful for finding models, especially when the values are relatively small, but cannot

prove unsatisfiability, except for formulas that are already bounded from the beginning.

1.3 Contributions

In this thesis, we aim to address the problem of proving the satisfiability of quantifier-

free Non-linear Transcendental Arithmetic formulas (NT A). This is a notoriously hard

challenge for SMT solvers, given the undecidability of NT A, the unavailability of a way to

finitely represent satisfying assignments, and the difficulty of reasoning about transcendental

functions through symbolic methods. Current SMT solvers are only able to prove the

satisfiability of NT A formulas for very simple cases.

The contribution of this thesis is a push forward to the state-of-the-art for SMT(NT A),
both from a practical and a theoretical point of view. We introduce a novel procedure able to

prove satisfiability for NT A formulas, and theoretically characterize the sub-class of NT A
for which such procedure can terminate successfully. The aim of our work is two-fold: on

the practical side, we develop a prototype tool which is able to solve more than four times the

benchmarks solved by the best state-of-the-art SMT solvers; on the theoretical side, we prove

an original theorem that shows that a weaker notion of decidability holds forNT A formulas

(i.e., that there exists a procedure that always terminates on formulas that respect certain

robustness assumptions), contributing to closing the gap between the general undecidability

of NT A and practically relevant sub-classes that can be effectively solved.

The novel approach that we introduce leverages techniques coming from the fields of

numerical analysis and topology, and integrates them within the SMT context. Numerical

methods, which, albeit inexact, are very fast, are used to generate candidate approximate

solutions (we denote such approach Logic-to-Optimization). Topological methods, on the

other hand, are able to prove the existence of a solution within a given bounded region
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without having to explicitly express the solution. We design a procedure based on a fruitful

combination of these methods, and implement it in the prototype UGOTNL1. Extensive

experimental evaluation demonstrates that our tool significantly outperforms other tools on

NT A satisfiable benchmarks.

Secondly, we address the problem of verifying the result returned by a solver by introduc-

ing a notion of satisfiability certificate for NT A problems, and we show how formulating

the problem of proving satisfiability as the problem of finding a certificate allows the design

of more efficient procedures that show satisfiability by systematically searching for such

certificates. Furthermore, we study algorithmically solvable sub-classes of NT A, which we

characterize by providing lower and upper bounds in terms of relevant well-known classes,

and we prove that, despite the undecidability of NT A, one of such sub-classes admits a

procedure that always terminates successfully under certain robustness assumptions.

Finally, we study how the Logic-to-Optimization approach can fit in a general framework

such as the MCSAT calculus, guiding the model-construction phase and at the same time

benefiting from the conflict-driven reasoning in order to refine the optimization process.

We implement the new approach inside the YICES SMT solver, starting with the theory of

Non-linear Integer Arithmetic (NIA). Experimental evaluation onNIA benchmarks shows

that the new approach increases the solver performances on both satisfiable and unsatisfiable

instances.

To summarize the main contributions of the thesis, we:

1. Propose a novel procedure to prove satisfiability ofNT A formulas based on numerical

and topological techniques, that outperforms state-of-the-art SMT solvers.

2. Introduce a notion of satisfiability certificate for NT A, formulate the satisfiability

problem as the problem of searching for such a certificate, and introduce new heuristics.

3. Theoretically characterize a sub-class of NT A, for which we prove that a weaker

notion of decidability holds.

4. Propose an optimization-guided approach to the MCSAT calculus, and evaluate it over

Non-linear Integer Arithmetic (NIA) benchmarks.

1The name is an acronym of “Unconstrained Global Optimization and Topological degree for Non-Linear”,
and can be read as “You got Non-Linear”.



1.3 Contributions 8

1.3.1 Structure of the Thesis

The thesis is organized as follows.

In Chapter 2, we provide a formal introduction to the field of Satisfiability Modulo

Theories, introducing the common terminology and the notation that will be used in the

thesis. We will also provide the necessary background that will be used throughout the

thesis, treating topics such as zero-existence theorems, interval arithmetic, the concepts of

robustness and quasi-decidability, and unconstrained optimization.

The following four chapters will mostly follow the four main contributions listed at the

end of the previous subsection.

In Chapter 3, we introduce a novel procedure for SMT(NRA) and SMT(NT A) formu-

las. In particular, in Section 3.1 we introduce the Logic-to-Optimization (L2O) approach.

In Section 3.2 we show how L2O can be used together with the topological degree test and

interval arithmetic to prove the satisfiability of sets of constraints. In Section 3.3 we extend

to full SMT formulas, presenting both an eager approach (implemented in the prototype

UGOTNL) and a lazy approach (implemented as an integration of UGOTNL with MATHSAT).

In 3.4, we experimentally evaluate the two approaches over NRA and NT A benchmarks.

In Chapter 4, we formulate the problem of SMT(NT A) as a certificate search problem.

In particular, in 4.2, we give the definition of satisfiability certificate for NT A. In Section

4.3, we present our method. In Section 4.4, we describe several heuristics. In Section 4.5,

we experimentally evaluate different heuristics configurations implemented in UGOTNL on

NT A benchmarks.

In Chapter 5, we give a theoretical characterization ofNT A sub-classes that are solvable

by our method. In particular, in Section 5.1 we provide an extensive background on robustness

and on regularity (in the sense of differential topology), and we formally define the NT A
sub-classes of our interest (robust under instantiation, and robust under equation adding). In

Sections 5.2 and 5.3, we provide strict lower and upper bounds for the main sub-class of our

interest (i.e. robust under instantiation). In Section 5.4, we compare the two sub-classes. In

Section 5.5, we prove the existence of a variant of our method that is guaranteed to always

terminate on formulas robust under instantiation.

In Chapter 6, we study an integration between Logic-to-Optimization and MCSAT. In

particular, in Section 6.1 we outline the design of the integration between L2O and MCSAT.

In Section 6.2, we experimentally evaluate our approach in the SMT solver YICES over

NIA benchmarks. In Section 6.3, we compare with related works.



1.3 Contributions 9

Finally, in Chapter 7, we draw some conclusions and outline possible future research

directions.

1.3.2 Relevant publications

The publications relevant to the thesis are the following:

[71] Enrico Lipparini, Alessandro Cimatti, Alberto Griggio, and Roberto Sebastiani. (2022)

“Handling polynomial and transcendental functions in SMT via unconstrained optimi-

sation and topological degree test”, ATVA 2022

[72] Enrico Lipparini and Stefan Ratschan. (2023). “Satisfiability of non-linear transcen-

dental arithmetic as a certificate search problem“, NFM 2023

[73] Enrico Lipparini and Stefan Ratschan. (2024). “Satisfiability of non-linear transcenden-

tal arithmetic as a certificate search problem (extended version)“, Journal of Automated

Reasoning (under minor revision)

More in details: Chapter 3 is based on the work in [71], Chapter 4 is based on the work

in [72], and Chapter 5 is based on the work in [73]. Finally, Chapter 6 is based on an ongoing

work with Ahmed Irfan and Stéphane Graham-Lengrand from SRI International.

Other publications by the author, accomplished as part of the PhD program, but not included

in this thesis, include:

[11] Massimo Bartoletti, Angelo Ferrando, Enrico Lipparini, and Vadim Malvone. (2024).

“Solvent: Liquidity verification of smart contracts“, iFM 2024



Chapter 2

Preliminaries

In this chapter, we provide the necessary background.

In particular, in Section 2.1, we provide a formal introduction to the field of Satisfiability

Modulo Theories and to the theory of non-linear transcendental arithmetic, defining the

common terminology and notation that will be used in the thesis. In Section 2.2, we

introduce Interval Arithmetic, a building block of our method. In Section 2.3, we discuss the

topological degree test, a zero-existence theorem that will play a central role in the thesis. In

Section 2.4, we introduce the concepts of robustness and of quasi-decidability. Finally, in

Section 2.5, we give some background on the field of Unconstrained Optimization.

2.1 Satisfiability Modulo Theories (SMT)

2.1.1 Syntax

We now define the syntax of Satisfiability Modulo Theory (SMT) problems, and provide

some basic terminology.

Definition 2.1.1 (Signature). A signature Σ is a 4-tuple (F , P, Vars, ar) such that:

• F is a set of function symbols

• P is a set of predicate symbols

• Vars is a set of variables

• ar : (F ∪P)→ N is the arity function of function and predicate symbols
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Definition 2.1.2 (Constant). A 0−arity function symbol is called a constant

Definition 2.1.3 (Boolean atom). A 0−arity predicate symbol is called a Boolean atom

Definition 2.1.4 (Term). Given a signature Σ = (F , P, Vars, ar), a Σ-term is either a

constant, a variable, or built by applying function symbols to Σ-terms.

Definition 2.1.5 (Atom). Given a signature Σ = (F , P, Vars, ar), and a predicate R ∈ P
with ar(R) = n, then R(t1, · · · , tn) is called a Σ-atom.

Definition 2.1.6 (Literal). A Σ-literal is either an Σ-atom or the negation of an Σ-atom.

Definition 2.1.7 (Clause). A Σ-clause is a disjunction of Σ-literals.

Definition 2.1.8 (Formula). A Σ-formula φ is either:

• A Σ-literal

• φ ≡ φ1 ▷◁ φ2 or φ ≡ ¬φ1, where ▷◁∈ {∧,∨} and φ1 and φ2 are Σ-formulas

• φ ≡ ∃x.φ1 or φ ≡ ∀x.φ1, where x ∈Var and φ1 is a Σ-formula

Definition 2.1.9 (Quantifier-free formula). A formula φ is said to be quantifier-free if it does

not contain the ∃ nor the ∀ quantifier symbols.

Definition 2.1.10 (CNF). A formula is in Conjunctive Normal Form (CNF) if it is a conjunc-

tion of clauses.

Definition 2.1.11 (DNF). A formula is in Disjunctive Normal Form (CNF) if it is a disjunction

of conjunctions of literals.

2.1.2 Semantics

We now define the semantics of SMT.

Definition 2.1.12 (Interpretation). Given a signature Σ=(F , P, Vars, ar), a Σ-interpretation

I is a pair (D,α), where D is a domain, and α is an assignment that maps:

• Constants and variables to elements of D

• Function symbols F ∈ F with ar(F) = n, to n-ary functions

I(F) : Dn→ D
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• Predicate symbols R ∈ P with ar(R) = n to predicates I(R) : Dn→{⊤,⊥}

Definition 2.1.13 (Model). Given a signature Σ = (F , P, Vars, ar) and a quantifier-free

Σ-function φ , we say that a Σ-interpretation I is a Σ-model of φ if φ evaluates to ⊤ under I .

Given φ ≡ ∃x.φ1, a Σ-interpretation I is a Σ-model of φ (or I satisfies φ ) if there exists

v ∈ D such that I with the mapping x 7→ v is a Σ-model for φ1.

Definition 2.1.14 (Theory). A Σ-theory T is a set of Σ-interpretations.

Note that, traditionally, in logic a theory is defined by a set of axioms, and an interpretation

is said to belong to a theory if it satisfies such axioms. In the SMT literature, however, a

theory is directly defined as a set of interpretations.

Definition 2.1.15 (Satisfiability). We say that a Σ-formula φ is satisfiable in T (respectively,

unsatisfiable in T ) if and only if there exists (resp., there does not exist) a Σ-model from T
that satisfies φ .

Definition 2.1.16 (Equi-satisfiability). Two Σ-formulas φ1, φ2 are said to be equi-satisfiable

if and only if either both φ1 and φ2 are satisfiable, or both φ1 and φ2 are unsatisfiable.

Definition 2.1.17 (SMT problem). Given a theory T , the SMT problem is the problem of

deciding whether a formula is satisfiable in T or not.

From now on, for simplicity, we will omit the "Σ−" from the previous definitions, when

there is no risk of ambiguity.

2.1.3 SMT solvers

An SMT solver is a tool that solve SMT problems. Some of the most performant and

extensive state-of-the art SMT solvers include: CVC5 [8], MATHSAT [31], SMT-RAT [34],

YICES [41], and Z3 [37]. Many other solvers have contributed or continue to contribute to

the advancement of the field [33, 55, 14, 50, 19, 62, 110, 27, 16].

Besides being able to prove the (un)satisfiability of an SMT formula φ , SMT solvers

often provide additional features.

• Model generation. If the formula is satisfiable, the solver returns an assignment that

satisfies φ . Such assignment is sometimes called a witness, and it can be used to certify

that the satisfiability result returned by the solver is indeed correct.
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• Unsatisfiable cores. If the formula is unsatisfiable, the solver returns an unsatisfiable

subformula of the original formula.

• Incrementality and Backtracking. The solver is able to keep track of its computational

status from one call to another, so that, when presented with a new formula, obtained

by adding or removing constraints from a previously solved formula, it is able to

exploit such retained information to solve more efficiently the new call. We talk about

Incrementality when the solver uses previous information to solve a formula obtained

by adding constraints to a previously solved formula, and about Back-tracking when

the information is used to solve a formula obtained by removing constraints.

There are two main approaches to SMT solving:

• Lazy approach. The solver makes use of an integration between theory solvers (i.e.,

decision procedures for conjunctions of theory constraints) and SAT solvers [100, 5].

First, the atoms of the original formula are abstracted into Boolean propositions,

and the obtained abstracted SAT problem is passed to a SAT solver that checks its

satisfiability. If the SAT formula is unsatisfiable, then also the original formulas is

unsatisfiable. Otherwise, the SAT solver returns an abstracted model, which is then

concretized (the inverse process of abstracting), and the resulting conjunction of theory

constraints is fed to the theory solver, that assests its satisfiability in the theory. If it is

theory-satisfiable, then the procedure terminates; otherwise, the theory solver returns

a reason of unsatisfiability, that is used by the SAT solver to refine its search. The

most common lazy approach is DPLL(T) [89], a generalization of the classic DPLL

algorithm used in SAT, which is often used in a conflict-driven fashion (CDCL(T)).

• Eager approach. The solver directly encodes the original problem into an equisatisfi-

able SAT problem, and relies on SAT solvers to decide its satisfiability. This approach

has been applied, e.g., to equality logic [21], difference logic [105], bit-vectors [20], lin-

ear arithmetic [104], and algebraic datatypes [101]. In the case of theories with more

complex solution spaces, and that are not reducible to propositional logic, however,

such encoding is not feasible.

Sometimes, the term eager is used to indicate that theory solvers are called early during

the DPLL(T) search, i.e., before all abstracted Boolean have been assigned (compared

to lazy, that indicates that they are called only after a complete assignment has been
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found) [88]. In the rest of the paper, when we use the term eager, we will mostly refer

to this notion of eagerness.

2.1.4 Non-linear Transcendental Arithmetic (NTA)

Our theory of interest is the quantifier-free theory of non-linear real arithmetic augmented

with trigonometric and exponential transcendental functions, SMT(NT A).
Notation. We denote SMT(NT A)-formulas by φ ,ψ , clauses by C1,C2, literals by l1, l2,

real-valued variables by x1,x2, . . . , constants by a,b, intervals of real values by I = [a,b],

boxes by B = I1×·· ·× In, logical terms with addition, multiplication and transcendental

function symbols by f ,g, and multivariate real functions with F,G,H. For any formula φ , we

denote by VarsR(φ) the set of its real-valued variables. When there is no risk of ambiguity we

write f ,g to also denote the real-valued functions corresponding to the standard interpretation

of the respective terms. We assume that formulas are in Conjunctive Normal Form (CNF)

and that their atoms are in the form f ▷◁ 0, with ▷◁ ∈ {=,≤,<}. We remove the negation

symbol by rewriting every occurrence of ¬( f = 0) as ( f < 0∨0 < f ) and distributing ¬ over

inequalities.

Points and boxes. Since we have an order on the real-valued variables x1,x2, . . . , for any

set of variables V ⊆ {x1,x2, . . .} we can view an assignment p : V → R equivalently as

the |V |-dimensional point p ∈ R|V |, and an interval assignment β : V → {[a,b] : a,b ∈ R}
equivalently as the |V |-dimensional box B⊆ R|V |. By abuse of notation, we will use both

representations interchangeably, using the type RV both for assignments in V → R and

points in R|V |, and the type BV both for interval assignments in V →{[a,b] : a,b ∈ R} and

corresponding boxes. This will allow us to apply mathematical notions usually defined on

points or boxes to such assignments, as well. Given a point p ∈ RV , and a subset V ′ ⊆V ,

we denote by projV ′(p) ∈RV ′ the projection of p to the variables in V ′, that is, for all v ∈V ′,

projV ′(p)(v) := p(v). Finally, we will use variable assigments ν : V → Q as substitutions,

denoting by ν(φ) the result of replacing every variable v ∈V ∩VarsR(φ) in φ by ν(v).

Systems of equations and inequalities. We say that a formula φ that contains only

conjunctions of atoms in the form f = 0 and g≤ 0 is a system of equations and inequalities. If

φ contains only equations (inequalities) then we say it is a system of equations (inequalities).
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A system of equations f1 = 0∧·· ·∧ fn = 0, where the f1, · · · , fn are terms in the variables

x1, · · · ,xm, can be seen in an equivalent way as the equation F = 0, where F is the real-

valued function F := f1×·· ·× fn : Rm→ Rn and 0 is a compact way to denote the point

(0, · · · ,0) ∈ Rn. Analogously, we can see a system of inequalities g1 ≤ 0∧·· ·∧gk ≤ 0 as

the inequality G≤ 0, where G is the real-valued function G := g1×·· ·×gk : Rm→ Rk and

≤ is defined element-wise. We will write eq(φ) for the function F defined by the equations

in the formula φ and ineq(φ) for the function G defined by the inequalities in φ .

We say that a system of equations and inequalities is bounded if every free variable

appearing in the system has an associated bound consisting of a closed interval with rational

endpoints.

The handling of strict inequalities is an easy, but technical extension of our method,

which we will avoid for most of the work to stream-line the presentation, and address in local

points when necessary.

2.2 Interval Arithmetic

Interval Arithmetic [97, 86, 84] is a systematic approach to represent real numbers as intervals

by computing safe bounds that account for rounding errors.

In our context, we can see Interval Arithmetic as an algorithm IA that, given a box B

and an NT A-term representing a function H, is able to compute an interval IAH(B) that

over-approximates the image of H over B (i.e. the set {H(p) | p ∈ B}). Since such an

algorithm is based on floating point arithmetic, the time needed for computing IAH(B)

does not grow with the size of the involved numbers. Moreover, conservative rounding

guarantees correctness under the presence of round-off errors. In this thesis, we will use

interval arithmetic within topological degree computation [46], and as a tool to prove the

validity of inequalities on boxes.

We now give the definition of interval-computable functions. The intuition is that a

function is interval-computable if it is possible to compute arbitrarily precise images for

every interval domain.

Recall that the width of an interval I def
= [aI,bI] is defined as width(I) def

= bI−aI , and that

the width of a box is defined as width(B) def
= maxi(width(Ii)).
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Definition 2.2.1 (Function interval-computable). A function F : Ω⊆ Rm→ Rn is said to be

interval-computable iff there exists an algorithm IAF that, for every box B⊆Ω with rational

vertices, computes a box IAF(B) with rational vertices, such that:

• F(B)⊆ IAF(B); and

• ∀ε > 0 : ∃δ > 0 such that for every B having width(B)< δ , then width(IAF(B))< ε .

Theorem 2.2.1. Every function in NT A is interval computable.

Proof. We refer to section 5.4 of [84].

Given a formula φ in m real variables and a box B def
= I1×·· ·× Im ⊂ Rm (where Ii

def
= [ai,bi]),

we define the restriction of φ to the box B as

φ|B := φ ∧
∧

xi∈VarsR(φ)

(ai ≤ xi∧ xi ≤ bi) (2.1)

We say that φ|B is a bounded formula.

2.3 Topological degree test

The notion of the degree of a continuous function (also called the topological degree) comes

from the field of topology [43, 39]. For a continuous function F : B ⊆ Rn → Rn and a

point p ∈ Rn such that p ̸∈ F(∂B) (where ∂B is the topological boundary of B), the degree

deg(F,B, p) is a computable [1, 46] integer. For p = 0, this integer provides information

about the roots of F in B.

The topological degree can be defined in several ways. Here, we give its definition in the

sense of differential topology for real functions from a bounded domain Ω⊂ Rn to Rn, and

we refer the reader interested in a more in-depth discussion to [90]. We recall that Ωo is the

interior of Ω, and that ∂Ω is the topological boundary of Ω (that is, the set of points in the

closure Ω̄ of Ω that are not in Ωo). With F ′ we denote the Jacobian matrix of F , and with det

the determinant of a matrix.

Definition 2.3.1 (Topological degree). Let Ω⊂ Rn be open and bounded, let F : Ω̄→ Rn

be a real function continuous and infinitely differentiable in Ω, and let p ∈ Rn such that
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p ̸∈ F(∂Ω). If p is regular (i.e. for all y ∈ F−1(p), detF ′(y) ̸= 0) then the topological degree

of F in p is defined as

deg(F,Ω, p) def
= ∑

y∈F−1(p)

signdetF ′(y).

This definition can be extended to non-regular values p in a unique way by continuity of

deg(F,Ω, p) as a function in p, or alternatively, be defined axiomatically (see [90] for more

details).

In the following, given a box B, with an abuse of notation we will write deg(F,B, p) to

mean deg(F,Bo, p). Moreover, we will write deg(F,B) to mean deg(F,B,0).

The topological degree satisfies several interesting properties. The one that plays a pivotal

role in our work is the following, which we will call topological degree test.

Property 2.3.1 (Topological degree test). If deg(F,B) ̸= 0, then the equation F = 0 has a

solution in B.

Proof. See the Solvability property in Section 1.2 of [90].

The topological degree test belongs to the class of zero-existence theorems, i.e. theorems

that prove that, if a function satisfies certain conditions in a given domain, then it has

a zero in that domain. Other zero-existence theorems, which are less powerful than the

topological degree test, include, e.g., the Generalize Intermediate Value Theorem [86],

Miranda’s theorem [83], and Borsuk’s theorem [77].

The converse of Property 2.3.1 is not true, and the existence of a root does not imply

nonzero degree in general. Still, if a box contains one isolated zero with non-singular

Jacobian matrix, then the topological degree is non-zero [43].

To give a better intuition of the topological degree, we describe it in small dimensions.

For n = 1, the topological degree test is analogous to a corollary of the Intermediate

Value Theorem. Indeed, given a continuous function F : [a,b]→ R, it can be proved that

deg(F,B) is zero if and only if F(a) and F(b) have the same sign, otherwise it is either 1

or −1 depending on whether F(a)< 0 and F(b)> 0 or vice-versa. More precisely, we can

prove that deg(F,B) = sign(F(b))−sign(F(a))
2 . This formula implies that, in dimension one, the

topological degree test is equivalent to the corollary of the Intermediate Value Theorem

known as Bolzano’s theorem [15], which states that, if a continuous function has values of

opposite sign in an interval, then it has a zero in that interval.
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Example 2.3.1. Let consider three different functions, x, −x, and x2, with domain in the

interval I ≡ [−1,1].

◦ For F(x) = x, we have that deg(F, I,0) = 1−(−1)
2 = 1, which implies that F has a

solution in I.

◦ For F(x) = −x, we have that deg(F, I,0) = −1−1
2 = −1, which implies that F has a

solution in I.

◦ For F(x) = x2, we have that deg(F, I,0) = 12−(−1)2

2 = 0, which does not give any

information about the solutions of F in I.

For n = 2, given a rectangle R≡ [a,b]× [a′,b′] and F : R→R2, the topological degree is

the number of times that the image of the boundary of R wraps around the origin counter-

clockwise (in this dimension, the topological degree is commonly referred to as the winding

number). See also Example 2.3.2.

The topological degree has proven to be computable if 0 ̸∈ F(∂B) [1]. A practical tool for

computing the degree is TOPDEG1, which implements the interval-based algorithm described

in [46], and that is guaranteed to terminate for interval-computable functions.

Example 2.3.2. To give an idea of how TOPDEG works, let’s consider the function F : R⊆ R2→ R2,

defined by

F(x,y) =

sin(y)− ex (F1)

cos(y)− sin(8x2−0.2) (F2)

over the rectangle R≡ I1× I2 ≡ ([−0.023,−0.017], [1.756,1.779]). The solution spaces of

F1 and F2 are depicted in Figure 2.1.

TOPDEG checks the signs of F1 and F2 on the four edges of R, using interval arithmetic.

It finds that F1 is everywhere positive (+) on the left edge, everywhere negative (−) on the

right edge, and somewhere zero (0) on the upper and lower edges.

Vice-versa, it finds that F2 is everywhere negative on the upper edge (−), everywhere

positive (+) on the lower edge of R, and somewhere zero (0) on the upper and lower edges.

This suffices to prove that the image of the boundary of R wraps around 0 exactly one time

counter-clockwise. Intuitively, we can see that by the fact that, for example, F1, starting from

the left edge and moving counter-clockwise, has the following signs: +, 0, −, 0; similarly,
1Available at https://www.cs.cas.cz/~ratschan/topdeg/topdeg.html.

https://www.cs.cas.cz/~ratschan/topdeg/topdeg.html
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(−, 0)
(+, 0)

(0, -)

(0, +)

Figure 2.1 Computation of the topological degree in dimension 2, for the Example 2.3.2.

F2, starting from the lower edge, has the signs: +, 0, −, 0. This implies that deg(F,R) = 1,

which, by the topological degree test, proves that F has at least a solution in R.

We can better see the relation between the topological degree and the existence of a

solution through the lents of the Intermediate Value Theorem, at least in this simple example.

Given the signs (+) on {aI1}× I2 and (−) on {bI1}× I2, then, for every cy ∈ I2, the

univariate function F1|cy
: I1→ R, defined by F1|cy

(x) = sin(cy)− ex, has a solution in I1 by

the Intermediate Value Theorem.

Vice-versa, given the signs (+) on I1×{aI2} and (−) on I1×{bI2}, then, for every cx ∈ I1,

the univariate function F2|cx
: I2→ R, defined by F2|cx

(x) = cos(y)− sin(8cx
2−0.2), has a

solution in I2 by the Intermediate Value Theorem.

By the continuity of F1 and F2, their solution spaces must intersect in I1× I2. Hence, F

has a solution in R.

There exist more complex cases than the one presented in Example 2.3.2, for which the

non-zero topological degree cannot be simply inferred by a straight-forward application of

the Intermediate Value Theorem. These cases require splitting the starting box into smaller

sub-boxes, computing the signs of the functions over the faces of these sub-boxes, and then,
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using the information about the signs in a combinatorial way, calculate the degree. We refer

the reader interested in the details of the algorithm to [46].

2.4 Robustness and quasi-decidability

Intuitively, a formula is robust if its satisfiability status does not change under “small”

perturbations. Robustness is a desirable property in many real-world applications, as already

observed in the literature (e.g. [93, 53]).

The related notion of quasi-decidability [47, 48] is then a property that allows to circum-

vent general undecidability results for a class of formulas when focusing only on robust

inputs.

Both concepts are formalized below.

Definition 2.4.1 (Distance between two formulas). Let φ|B be a bounded formula, and let

T def
= {t1, · · · , tk} be set of the terms occurring in φ (including constants).

Let φ ′|B′ be a formula that can be obtained from φ|B by term substitution (i.e. φ ′|B′ ≡
φ|B[s1/t1, · · · ,sk/tk] for some terms s1, . . .sk).

If B′ = B, then we define the distance between φ|B and φ ′|B′ as

d(φ|B,φ
′
|B′)

def
= max

k
(∥tk− sk∥B)

where ∥tk− sk∥B
def
= sup{|tk(x)− sk(x)| : x ∈ B}.

For a bounded formula ψ|B′ that cannot be obtained from φ|B by term substitution, or for

which B′ ̸= B, then we define d(φ|B,ψ|B′)
def
=+∞.

Definition 2.4.2 (Robustness of a formula). Given α ∈R>0, a bounded formula φ is α-robust

iff for every φ ′ s.t. d(φ ,φ ′)< α , φ and φ ′ are equisatisfiable. A formula φ is robust iff there

exists α ∈ R>0 s.t. φ is α-robust.

Example 2.4.1. Let φ ≡ x2 = 1 and B = [0,2]. The formula φ|B is robust because we can

take α = 0.001 and show that there exists no ψ|B such that d(φ|B,ψ|B) < α and ψ|B is

unsatisfiable.

Example 2.4.2. Let φ ≡ sin(x) = 1 and B = [0,2]. The formula φ|B is not robust: in fact, for

every α > 0, the formula ψ ≡ sin(x) = 1+α is unsatisfiable and such that d(φ|B,ψ|B)< α .
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We now define the notion of quasi-decidability:

Definition 2.4.3 (Quasi-decidability). A class of problems is quasi-decidable if there exists

an algorithm that always terminates on robust instances, and that always returns the right

answer when terminating.

We remark that, according to this definition, a quasi-decidability algorithm is allowed to

non-terminate for instances that are not robust.

An important result, proven in [48], and that we will extend in Chapter 5, is the following:

Theorem 2.4.1. The class B of formulas of the kind

( f1 = 0∧·· ·∧ fn = 0∧g1 ≥ 0∧·· ·∧gk ≥ 0)|B (2.2)

where B is an m-box with rational vertices, fi and g j are functions in NT A, and n = m or

n = 0, is quasi-decidable.

2.5 Unconstrained Optimisation

We say that p∗ is a local minimum for H : Ω ⊆ Rm → R, if there exists a neighborhood

S := {p ∈Ω : ∥p∗− p∥< δ} for some δ > 0, such that ∀p ∈ S : H(p∗)≤H(p). We say that

p∗ is a global minimum for H if ∀p ∈Ω : H(p∗)≤ H(p).

Unconstrained global optimisation is the problem of minimizing a function H on its whole

domain Ω. A common approach to tackle this problem is leveraging fast local optimisation

techniques.

In this thesis, we use a Monte Carlo Markov Chain method called Basin-hopping [111],

based on the Metropolis-Hasting algorithm [82]. The idea of Basin-hopping is to do a random

sampling of H to simulate a target distribution, and then alternate a local minimization phase

with a stepping phase, used to decide, guided by the target distribution, how to jump from a

local minimum to another. In particular, we use a slight modification of the algorithm that,

given a maximum number of iterations, returns all the local minima found during the search.

Since unconstrained global optimisation is undecidable, what Basin-hoppin usually does

is returning the best local minimum found, either after a certain number of steps or whenever
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another given condition (such as a threshold) is satisfied. If no limit on iterations or other

stopping criterion is given, the algorithm never terminates.

We present a modified version of the algorithm that, given a maximum number of

iterations, returns all the local minima found.

Algorithm 1 BASIN-HOPPING

Input: A function H : Rm→ R, a starting point p ∈ Rm, and a limit of iterations k

Output: A set {p∗0, · · · , p∗k} of local minima

1: p∗0← LM(H, p) ▷ LM is a local minimization procedure

2: pcur← p∗0
3: for i = 1 to k do
4: d← a random perturbation generated from a predefined probability distribution

5: p∗i ← LM(H, pcur +d)

6: if h(p∗i )< H(pcur) then
7: accept← True

8: else
9: m← a real value randomly generated from the uniform distribution on [0,1]

10: accept← True if m < exp(H(pcur)−H(p∗i )) otherwise False

11: end if
12: if accept then
13: pcur← p∗i
14: end if
15: end for
16: return {p∗0, · · · , p∗k}



Chapter 3

Numerical Optimization and Topological
Degree for SMT(NRA) and SMT(NTA)
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When dealing with real arithmetic in SMT, a fundamental challenge is to go beyond

the linear case (LRA), by introducing nonlinear polynomials (NRA), possibly augmented

with transcendental functions like exponential and trigonometric ones (NT A). In fact, the

expressive power ofNT A is required by many application domains (e.g. railways, aerospace,

control software, and cyber-physical systems). Unfortunately, dealing with non-linearity is a

very hard challenge. Going from SMT(LRA) to SMT(NRA) yields a complexity gap that

results in a computational barrier in practice. Adding transcendental functions exacerbates the

problem even further, because reasoning onNT A is undecidable [94]. Existing SMT solvers

therefore have to resort to incomplete techniques in order to handleNT A constraints [30, 50],

which are however particularly ineffective at proving that a formula is satisfiable (i.e. that it

has at least one model). One of the main sources of complexity is the need to provide exact

answers: when an SMT solver says “sat”, the input problem must indeed be satisfiable, and

not just “likely satisfiable” or “satisfiable with high probability”. Removing this requirement

makes it possible to use approximate techniques, such as numerical methods or procedures

based on weaker notions of satisfiability such as δ -satisfiability [53], which are typically

significantly more scalable in practice than exact methods.

We present a technique for significantly improving the effectiveness of SMT(NT A)
solvers in determining that a formula is satisfiable, by exploiting a fruitful combination

of approximate and exact techniques. Our procedure uses numerical methods based on

unconstrained global optimisation to quickly identify (small) boxes containing candidate

solutions for a given set/conjunction ofNRA andNT A constraints, which are then analysed

with a procedure whose main ingredient is the topological degree test [90, 46] – a result from

topology that guarantees the existence of a solution for a set of equalities if certain conditions

are met – to confirm whether a candidate box contains at least one solution. The procedure is

then plugged into an SMT context, which allows us to handle problems containing arbitrary

Boolean combinations of constraints.

The main contribution of this chapter is an effective combination of numeric and symbolic

methods that allows to significantly enhance the capability of state-of-the-art SMT solvers

to determine the satisfiability of formulas containing NT A constraints, as demonstrated

by our extensive experimental evaluation. To this extent, although all the ingredients we

use are known, our overall procedure is, to the best of our knowledge, novel. The synergy

between numerical optimisation and the topological degree test is essential for the viability

of our approach, as none of the two techniques in isolation is effective in practice. On one
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hand, being based on numerical methods, unconstrained global optimisation alone cannot

detect exact solutions, but only approximate ones. On the other hand, the topological degree

test alone is not immediately applicable to arbitrary sets of constraints, as it works only

for problems in a specific form, in which (i) there are only equations, (ii) the number of

equations is equal to the number of variables, (iii) all variables are bounded, and (as a more

empirical requirement rather than theoretical limitation) (iv) the bounds on the variables

are “sufficiently small” for the practical effectiveness of the test. The first limitation has

been tackled in [48] by pairing the topological degree test with interval arithmetic to deal

with inequalities. We show how a further combination with numerical optimization can be

exploited to obtain a practical and effective method that can be easily integrated in a modern

SMT solver, thus overcoming the other three points.

In order to substantiate our claims, we have implemented our procedure in a prototype

tool called UGOTNL, and we have integrated it within the MATHSAT SMT solver [31]. We

have extensively evaluated our prototype on a wide range of NRA and NT A benchmarks,

comparing it to the main state-of-the art tools. Our experimental evaluation shows that it

vastly improves the performance of the MATHSAT solver for satisfiable NRA formulas,

significantly outperforming the other tools on NT A problems.

Content. This chapter is based on the work presented in [71], and it is organized as follows:

in 3.1 we describe how we use unconstrained optimisation to find candidate models through

the Logic-to-Optimization technique; in 3.2 we describe a general procedure, restricted

to conjunctions of NT A constraints, based on the topological degree test and interval

arithmetic; in 3.3 we extend the previous procedure to general NT A formulas, following

either an eager or a lazy approach; in 3.4 we present our experimental evaluation; finally, in

3.5, we discuss some related work.
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3.1 Logic-to-Optimization

In this section we explain how to exploit unconstrained global optimisation to help a generic

SMT solver to find models for sets of constraints in NRA and NT A. The general idea is

that of mapping a formula φ over real variables x1, . . . ,xm into a real-valued non-negative

function H : Rm 7→ R≥0, such that p is a model of φ only if H(p) = 0, and then use an

unconstrained optimisation routine to search for global minima of H. An ad-hoc encoding

for Boolean variables should be introduced. This technique, which we shall call Logic-to-

Optimisation, has already been applied successfully in other theories, e.g. [51]. In general,

logic-to-optimisation can be performed in different ways, that vary depending on which

logical theory is considered, what the purpose of the translation is, and which properties of

the cost function are desired.

We illustrate the specific translation that we use in our procedure. We assume w.l.o.g. that

our input formula consists of conjunctions and disjunctions of Boolean variables b1, . . . ,bk,

possibly negated, and constraints of the form f ▷◁ 0, where ▷◁ ∈ {<,≤,=}, and f is aNT A
term. We define an operator L2O that maps a formula to a non-negative real function from

Rm+k to R≥0 as follows:

L2O( f ▷◁ 0), ▷◁ ∈{≤,=} def
= (if ([ f ](p) ▷◁ 0) then 0 else [ f ]2(p))

L2O( f < 0) def
= L2O( f ≤ 0)

L2O(¬( f ▷◁ 0)), ▷◁ ∈{<,≤} def
= L2O(− f ▷◁ 0)

L2O(¬( f = 0)) def
= (if ([ f ](p) = 0) then 1 else 0)

L2O(b) def
= L2O(−xb ≤ 0)

L2O(¬b) def
= L2O(xb +1≤ 0)

L2O(φ1∧φ2)
def
= L2O(φ1)+L2O(φ2)

L2O(φ1∨φ2)
def
= L2O(φ1)∗L2O(φ2),

where xb is a fresh real variable.

Note that with this definition, our logic-to-optimisation transformation will produce an

overapproximation, meaning that not all the points in which L2O(φ) evaluates to 0 (the zero

set of L2O(φ), denoted Zφ ) are models of φ : specifically, this is due to the encoding used

for strict inequalities and Boolean variables. What is important for our purposes, however, is

the converse, i.e. the fact that Zφ contains the set Mφ of all the models of φ . Moreover, since

L2O(φ) has non-negative values, if Zφ ̸= /0, then Zφ contains all and only the global minima

of the function.
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Figure 3.1 Graph of f (x)≡ x3−2x− ex +5 Figure 3.2 Graph of L2O( f (x) = 0)

Example 3.1.1. Let’s consider the formula φ ≡ f (x) = 0, for f (x)≡ x3−2x− ex +5. From

Figure 3.1, we see that f (x) has two solutions, one near −2, and the other near 4. The

non-negative real function L2O(φ), depicted in Figure 3.2, has three local minimum: two

global minima, which correspond to the zeros of f (x), and a third non-zero local minimum.

We can exploit the Logic-to-Optimization approach as follows.

Through the unconstrained global optimisation algorithm Basin-hopping mentioned in

§2.5, we obtain a finite set of local minima Lφ ⊆{p∈Rm|p is a local minimum of L2O(φ)}.
Implementation-wise, the output will consist of rational approximations of local minima. We

denote this set by L̃φ . For each element p̃ ∈ L̃φ , we try to produce a model p for φ . We first

propose two simple tactics that work only in the case that φ is in NRA, and we will present

a more elaborate procedure for NT A in the next section. Moreover, in the following we

only consider formulas which are simply conjunctions of constraints, and that contain no

Boolean variables. We shall deal with general formulas in §3.3.

Given p̃ def
= {p̃1, · · · , p̃m} ∈ L̃φ , it is trivial to check whether p̃ is a model for φ by

substituting the variables with their values into the formula.1 If p̃ is not a model we can try

to look in the surroundings of p̃. An idea is to reduce φ to a linear under-approximation by

forcing all the multiplications to be linear, similarly to what is done in [30] equation (3),

in the context of the incremental linearization approach (we will refer to this technique as

check-crosses). A third more general idea is restricting the problem to a bounded subformula

φ|B, obtained by imposing that the variables range over a box B≡ I1×·· ·× Im ⊂ Rm (where

1We remind that, here, we are assuming to be in the NRA case.
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Ii
def
= [ai,bi] and p̃i ∈ Ii ). A naive choice of B is the hyper-cube having p̃ as its center (that is,

Ii
def
= [p̃i− c, p̃i + c] for a given small c ∈Q>0).

The reason to restrict to a box is that bounded problems are, in general, easier to solve,

and, if the cost of p̃ is zero or very close to zero, we can reasonably hope that a model lies

in the box. However, restricting to bounded instances by itself does not help much in terms

of classes of problems we are able to solve. In fact, if our SMT solver was unable to find

irrational models before, it still is. Nonetheless, as we will see in the next section, the idea of

finding a point p̃ very close to being a model and then restrict the problem to a (possibly very

tight) bounded instance, allows the adoption of a new procedure for NT A.
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3.2 Solving bounded instances with the topological degree

test and interval arithmetic

In this section we explain how, given a local minimum p̃ obtained as in the previous section,

we can prove the satisfiability of a bounded conjunction of constraints φ|B in NT A through

interval arithmetic and the computation of the topological degree.

First, in §3.2.1, we provide a practical quasi-decidability procedure for bounded formulas

in m variables that contain n equations and k non-strict inequalities, and for which either

n = m or n = 0. We then generalize this in §3.2.2, by providing a method that, given a

formula with the only condition that n≤ m (and no conditions on the kind of inequalities),

can generate subformulas for which the quasi-decidability procedure is applicable. Finally,

in §3.2.3, we discuss how we can integrate these results within the Logic-to-Optimisation

framework.

3.2.1 Quasi-decidability procedure

The procedure that we introduce in Algorithm 2 is inspired by that proposed in [48], although

some significant changes – discussed at the end of this subsection – have been made to

ensure its applicability in practice. We stress that the condition n = m∨n = 0 depends by

the fact that the topological degree cannot be defined for n ̸= m. Using symbolic rewriting

tricks (e.g. adding redundant equalities, or rewriting an equality as the conjunction of two

non-strict inequalities) to force a robust formula to satisfy the condition would not work, as it

would make the formula non-robust and so the procedure – albeit applicable – would just not

terminate. For the sake of brevity, we introduce the multi-valued functions F := f1×·· ·× fn,

and G := g1×·· ·×gk.

The idea of the algorithm is to iteratively divide the starting box into smaller sub-boxes

(the set of which is called a grid), removing at each step from the grid the sub-boxes for

which either an equation or an inequality does not hold (lines 4–6), and using the topological

degree test to prove if the system of equations admits a solution inside one of the sub-boxes

(line 27), provided that the inequalities hold in that sub-box (lines 20-23). The algorithm

terminates either returning True when a box respecting these last conditions has been found,

or returning False if the grid is emptied (line 9).

In order to be computable in a box A, the topological degree requires that no zero lies in

F(∂A). Because of that, we have to take some precautions, such as merging boxes having a
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Algorithm 2 QUASI-DEC

Input: A bounded formula φ|B like (2.2) in m variables, n equations f1 = 0, · · · , fn = 0,
and k non-strict inequalities gi ≤ 0, · · · ,gk ≤ 0 s.t. n = m or n = 0

Output: <False> or <True,Bsol> ▷ Bsol is a box containing a model
1: grid←{B}
2: conflict_indices←{0, · · · ,m}
3: while True do
4: for A ∈ grid do
5: if (0 ̸∈ IAF(A))∨ (IAG(A)∩ (−∞,0]k = /0) then ▷ IAF , IAG as in def. 2.2.1
6: grid.remove(A)
7: end if
8: end for
9: if grid= {} then return <False>

10: end if
11: if n ̸= 0 then
12: grid←Merge all the boxes in grid having a common face C s.t. 0 ∈ IAF(C)
13: grid∂ ← {A ∈ grid | exists C a face of A s.t. C ⊆ ∂B∧0 ∈ IAF(C)}
14: else
15: grid∂ ← {}
16: end if
17: for A ∈ grid\grid∂ do
18: conflict_indices_A←{}
19: demerge(A) := {E | E has been merged into A in line 12}
20: for E ∈ demerge(A) do
21: for i ∈ {0, · · · ,k} do
22: if IAgi(E) ̸⊂ (−∞,0] then
23: conflict_indices_A.add({ j ∈ {0, · · · ,m} | x j appears in gi})
24: end if
25: end for
26: end for
27: if conflict_indices_A= {}∧ (n = 0∨TopDeg(F,A) ̸= 0) then
28: return <True , A >

29: end if
30: conflict_indices.add(conflict_indices_A)

31: end for
32: refinement_index← Choose an index with the help of conflict_indices
33: grid← refine(grid, refinement_index) ▷ First, we demerge the grid; then,

each sub-box is split in two sub-boxes along the axis refinement_index
34: conflict_indices← /0
35: end while
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common face in which a zero lies (line 12) and avoiding boxes having a face contained on

the border of B and in which lies a zero (line 13). Regarding the last case we remark that,

if the only solution of φ|B lies in ∂B, then the formula is not robust (and the algorithm is

allowed to never terminate).

Another sensitive point is to make sure that, given a robust formula, the algorithm always

terminates. To this extent, it is essential that the following property is satisfied: “for every

ε > 0, there is a finite number of iterations after which each sub-box A in the grid has

width(A)< ε”. In order to satisfy this property, a necessary and sufficient condition is that,

for each i ∈ {0, · · · ,m}, the refinement index assumes infinitely many times the value i. One

naive idea would be to assign the refinement index to i+1 at each iteration. However, this

is not practical. In fact, refining the grid without considering the reasons for which the

algorithm does not terminate leads to an unmanageable growth in the size of the grid. Thus

we use a greedy approach: at each step we take note of the indexes for which there is a

conflict in the inequalities (line 23), and then we base our choice of the refinement index on

that (line 33), preferring indices that appear in the conflicts (but making sure that eventually

each index is chosen, even though with different frequency). This is a main difference

compared to the algorithm from [48], where the grid is divided along all the indices at each

step. This results in a double exponential growth in the number of sub-boxes to consider:

after i steps, in the worst case the grid will contain (2i)m sub-boxes. In our algorithm at each

step we choose exactly one index along which to split the sub-boxes, choosing the index that

most likely is causing the algorithm not to terminate. Avoiding splitting along indices that are

not responsible for conflicts is essential to prevent an explosion in dimension which would

make the algorithm impractical. Moreover, to the best of our knowledge, ours is the first

implementation of this kind of procedures. In the next subsection, we will further modify the

procedure to make it able to produce explanations for unsat cases.

3.2.2 From a formula with n≤ m to QUASI-DEC

Let φ|B be some bounded formula, with the only condition that n ≤ m. We define φ̂|B as

the formula obtained from φ|B by replacing every constraint e def
= (g > 0) with the constraint

ê def
= (g− ε ≥ 0), given a predefined constant ε > 0. It is straightforward to prove that every

model of φ̂|B is also a model of φ|B.

If n = m we can directly apply QUASI-DEC. If n < m, then we can try to assign m−n

variables to real values, and then apply QUASI-DEC to the formula obtained from the
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Algorithm 3 Solve a formula φ|B with n≤ m
Input: A formula φ|B in m variables, n equations, and k inequalities s.t. n≤ m

A candidate point p̃ ∈ Rm

Output: <True,Bsol> or <Unknown>
1: φ̂|B := the formula obtained from φ|B by replacing every g > 0 with g− ε ≥ 0
2: if n = m∨n = 0 then
3: res_quasidec← QUASI-DEC (φ̂|B)
4: if res_quasidec ≡ <True, Bsol > then return <True, Bsol >

5: else return <Unknown>
6: end if
7: end if
8: infeasible_var_subsets←{}
9: for vars_subset ∈ Combinations(Vars, m−n) do

10: if vars_subset ∈ infeasible_var_subsets then
11: continue
12: end if
13: µ := {xi 7→ pi | xi ∈ vars_subset}
14: <sat, r>← QUASI-DEC (µ(φ̂|B))
15: if <sat, r> = <True, Bsol > then
16: return <True, Bsol >

17: else if <sat, r> = <False, µ(h) > then
18: conflict_vars := {xi ∈ vars_subset | xi appears in H}
19: infeasible_var_subsets.add(conflict_vars)

20: end if
21: end for
22: return <Unknown>

substitution. We start from a given point p̃ ∈ Rm, and enumerate possible assignments to

m−n variables. In general, there are
(m

n

)
= m!

n!(m−n)! possible combinations to explore, but

we can reduce their number via conflict-driven learning, as commonly done in SAT and

SMT, by modifying the QUASI-DEC procedure (Algorithm 2), to make it return, before the

while cycle in line 3, <False , fi> if 0 ̸∈ IA fi(B), and <False , g j> if IAg j(A)∩ (−∞,0] = /0.

This modification helps the procedure by explaining why the problem is unsatisfiable, even

though only for simple cases where no grid refinement is required. Given an explanation,

we can extract the set E of variables involved, and use them to avoid the enumeration of

assignments to supersets of E. In general, we could extend the idea of returning explanations

for unsatisfiable instances to more complex situations. In this work, we do not delve into this

path, and leave further investigations for future work.
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Overall, our approach to reduce to the QUASI-DEC procedure given a formula with the

only restriction that n≤ m is illustrated in Algorithm 3.

3.2.3 A general procedure

Figure 3.3 Schema of the overall procedure.

We can now combine the results of the last two sections. First, we obtain several local minima

p̃1, · · · , p̃k as in Section 3.1 . The two tactics described in the section (i.e., the simple check

of p̃, and the reduction to a linear underapproximation) are reasonably inexpensive forNRA.

Thus, if the problem is in NRA, we first apply these two tactics to each local minimum. If

these two tactics fail, or the problem is inNT A, we apply the algorithm described in section

3.2.2 to each local minimum (starting from the minimum with the lowest cost). A sketch of

this procedure is shown in Figure 3.3.

Remark. Our general procedure is not a quasi-decidability procedure. However, relying

on a quasi-decidability subprocedure is a crucial point of our method. By construction, the

formulas that we feed to QUASI-DEC have the property that if they are unsatisfiable then they

are also robust (Lemma 3 from [48]).2 This means that QUASI-DEC always terminates on

unsatisfiable subformulas, guaranteeing that we always progress towards a solution.
2This is not true for formulas containing strict inequalities, but we replaced strict inequalities in Algorithm

3 at line 1.
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3.3 From constraint sets to formulas

So far we have considered only sets of constraints. In this section, we present two different

ways to solve a formula φ with arbitrary Boolean structure and that includes also Boolean

variables. In the first way, we apply L2O eagerly to the formula, and then try to decide the

disjunctions through the insight given by a local minimum, and then proceed to solve the

constraints set as in §3.2. In the second way, we use the procedure of §3.2 as a theory solver

inside a DPLL(T )-based lazy-SMT algorithm.

3.3.1 An eager approach

Let φ be a formula in CNF form. We can apply L2O to φ and obtain several local minima.

Given a local minimum p̃, if there are no transcendental functions, we can use the two

tactics discussed in section 3.1 (the simple check, and the call to an LRA-solver for a linear

underapproximation of φ – i.e. check-crosses). We cannot directly apply the tactic discussed

in section 3.2, since QUASI-DEC does not work with disjunctions.

In order to apply it, we can try to decide the disjunctions using p̃, to obtain an implicant

of φ which we can then feed to Algorithm 3. In line 1, we obtained a formula µ(φ̂ |B) that,

except for containing disjunctions, is in the form required by QUASI-DEC. In fact, µ(φ̂ |B)
has the form

∧
C j, where C j ≡

∨
i∈I j

(hi ▷◁ 0). If we substitute each C j with one of the atomic

formulas that appear in it, then we reduce to the case discussed in the previous section. Thus

we try to prove, for each C j, whether there is a constraint hi ▷◁ 0 such that p̃ satisfies it. For

constraints in NRA, a simple check suffices. For constraints in NT A, we try to prove it by

using interval arithmetic: we compute I def
= IAhi(p̃) and check if I is contained in (−∞,0]n

in case ▷◁ ≡ ≤, or if I is equal to [0]n when ▷◁ ≡ =. If we find one hi ▷◁ 0 satisfying this

condition, then we replace C j with hi ▷◁ 0 in µ(φ̂ |B).
If there is a C j that we are not able to decide through this method, we reject the assignment

µ . Note that we could reject also a feasible assignment: in fact, through interval arithmetic,

we are testing a sufficient condition, not a necessary one. As a matter of fact, we are not

interested in solving precisely an SMT problem, but rather in having a fast and uncomplicated

way to try to decide the disjunction. We have observed that this strategy, although far from

being a systematic approach, is often efficient in practice.
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As a last resort, if for each local minimum and for each partial assignment we are unable

to decide the disjunctions, then we rewrite the original formula into DNF and try to solve

each constraints set as in the previous section.

3.3.2 A lazy approach

In the lazy approach, the method defined in §3.2 is used as a theory solver inside a DPLL(T )

procedure. Since our method is able to prove only satisfiability, it needs to be paired with

a method able to prove unsatisfiability. In our implementation, we pair it with incremental

linearization [30], which is usually effective in proving unsatisfiability, and also good in

finding linear models, but whose weak spot is finding irrational models. In fact, for problems

that only have irrational models, incremental linearization is stuck (except for rare occasions):

neither it can produce a conflict, nor it can find a model, so that it continues indefinitely

trying to guess linear models. Our new method comes into play when this is the case (or,

better, when we assume this is the case).

Currently, our implementation is quite simple. Inside the DPLL(T ) algorithm, we intro-

duce a parameter n_calls_IncrLin that keeps track of the calls to incremental linearization,

and that is reset whenever the DPLL(T ) solver backtracks. After a given k number of calls to

incremental linearization, we call our method. If it returns sat, we are done. Otherwise it

returns unknown, and we proceed with incremental linearization.

3.4 Experimental evaluation

3.4.1 Implementation

We have implemented our method in a prototype written in Python, called UGOTNL (as in

Unconstrained Global Optimisation and Topological degree for Non-Linear). We refer to the

version based on the eager approach as UGOTNLEAGER. For the lazy approach, we integrated

UGOTNL as a theory solver inside the MATHSAT SMT solver [31]. We will refer to this

version as MATHSAT+UGOTNL.
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3.4.2 Setup.

We have run our experiments3 on a cluster equipped with 2.4GHz Intel Xeon E5-2440

machines, using a time limit of 1000 seconds and a memory limit of 9 Gb. We compared our

tools with z3 [37] and Yices[41] (CAD-based), raSAT [110] (that combines ICP and GIVT),

CVC5 [23] (that combines incremental linearization with cylindrical algebraic coverings [2]),

iSAT3 [50] (based on ICP), and dReal [54] (that operates in the δ -sat framework [53]). Only

the last three solvers can deal with NT A.

We checked that, when terminating, our tools always return the correct result when the

status of the benchmark is known, and never disagree with the other solvers; for NRA, we

checked with Z3 that every box returned by our tools contains indeed a model.

3.4.3 Benchmarks.

For NRA, we consider all the SMT-LIB [10] benchmarks from the QF-NRA category. This

is a class of 11523 benchmarks, among which 5142 are satisfiable, 5379 are unsatisfiable,

and 1002 have unknown status. For NT A, we considered the benchmarks from the dReal

distribution [54], and other benchmarks deriving from discretization of Bounded Model

Checking of hybrid automata. The problems in these classes come all with an unknown

status. Since iSAT3 is not able to work with unbounded instances, in order to include it in

the comparison, we generated for each benchmark a bounded version by adding constraints

that force all the real variables in the problem to assume values in the [−300,300] interval.

3.4.4 Results.

Results (sat).

First, we analyze the results for satisfiable instances, which are reported in Figures 3.1 and

3.2. The tables show, for each solver, the number of successfully solved instances, both

overall (1st column) and for each benchmark family (rest of the columns), with the best

results highlighted in boldface.

For NRA (Figure 3.1), we see that Z3 is overall superior. Nevertheless, we see that

both our new tools are very competitive, and perform significantly better than MATHSAT.

Moreover, since we are comparing new-born ideas implemented in a prototype with well-

3Available at https://drive.google.com/file/d/1qUB9X-IymEozabBfrbTxwz6zu7tG62zH/

https://drive.google.com/file/d/1qUB9X-IymEozabBfrbTxwz6zu7tG62zH/
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MATHSAT 3193 0 32 0 32 31 85 2718 3 11 18 263 0
UGOTNLEAGER 4388 0 0 1 52 32 68 4042 0 0 36 157 0
MATHSAT+UGOTNL 4441 0 32 0 63 27 84 3948 3 13 35 236 0
RASAT 4285 0 0 0 45 0 0 4225 0 0 15 0 0
YICES 4946 0 32 0 58 39 91 4369 0 227 10 120 0
CVC5 5108 0 32 0 63 36 89 4342 2 226 18 300 0
Z3 5153 2 30 0 72 47 93 4391 6 280 35 198 0
DREAL /(5021) /(9) /(0) /(274) /(153) /(55) /(126) /(4079) /(51) /(45) /(19) /(210) 0

Table 3.1 Summary of results for SMT(NRA) sat cases. The results in parenthesis indicate
"MAYBE SAT" answers.

To
ta

l

dr
ea

l

bm
c

MATHSAT 94 37 57
UGOTNLEAGER 304 255 49
MATHSAT+UGOTNL 170 70 100
CVC5 94 40 54
ISAT3 / / /
DREAL / (578) / (423) / (155)

To
ta

l

dr
ea

l

bm
c

MATHSAT 70 21 49
UGOTNLEAGER 253 203 50
MATHSAT+UGOTNL 140 35 105
CVC5 63 17 46
ISAT3 38 (828) 7 (599) 31 (229)
DREAL / (137) / (36) / (101)

Table 3.2 Summary of results for SMT(NTA) sat cases. On the left the original instances; on
the right the bounded instances.The results in parenthesis indicate "MAYBE SAT" answers.

optimised CAD-based techniques that have a decade of progresses on their shoulders, we

believe that these results are very encouraging.

Where our methods shine and go beyond the state of the art is when we consider problems

with transcendental functions. In the results for NT A (Figure 3.2) we see that both our

tools outperform the others. For this, the synergy between numerical optimization and the

procedure based on the topological degree test is essential, as neither of the two methods in

isolation is effective: when disabling either of the two components, in fact, the performance

is similar to that of the “stock” version of MATHSAT (we omit the details due to lack of

space). Moreover, there is a great complementarity between the two tools. For families in

which the Boolean component is huge (such as bmc) we see that MATHSAT+UGOTNL is by

far the best, whereas for benchmarks where the theory component is predominant (e.g. the

dreal ones) the situation is reversed.
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MATHSAT 5280 0 2 285 34 7 11 2251 1 2259 0 412 20
MATHSAT+UGOTNL 5043 0 2 163 32 5 11 2239 0 2253 0 323 20
RASAT 4094 0 0 2 14 0 0 2018 0 1950 0 0 20
YICES 5449 0 2 285 32 12 39 2587 12 2201 0 259 20
CVC5 5645 0 2 285 31 10 35 2581 7 2206 0 468 20
Z3 5281 5 2 153 27 12 19 2578 3 2225 0 248 9
DREAL 3889 0 0 131 4 0 3 1784 0 1946 1 0 20

Table 3.3 Summary of results for SMT(NRA) unsat cases.

To
ta

l

dr
ea

l

bm
c

MATHSAT 533 85 448
MATHSAT+UGOTNL 522 85 437
CVC5 453 75 378
ISAT3 / / /
DREAL 468 184 284

To
ta

l

dr
ea

l

bm
c

MATHSAT 524 88 436
MATHSAT+UGOTNL 521 88 433
CVC5 465 85 380
ISAT3 449 63 386
DREAL 446 156 290

Table 3.4 Summary of results for SMT(NTA) unsat cases. On the left the original instances;
on the right the bounded instances.

Results (unsat).

Now we analyze the results for unsatisfiable cases. Our methods are designed to finding

models, so, for unsatisfiable instances, there are no advancements whatsoever. Nevertheless,

we are interested in evaluating possible losses of the lazy version w.r.t. MATHSAT due to

the integration of our method. (The eager approach can never return unsat, so it does not

compete.)

We see that for NRA there are some losses (especially for very time-consuming bench-

mark families such as LassoRanker and MBO), that overall count for 4.5% of the benchmarks

that MATHSAT is able to solve before the timeout. For NT A, we observed that the losses

are even less: respectively 2.1% and 0.6% for unbounded and bounded instances. We remark

that these results do not imply that our new tool is unable to prove the unsatisfiability for

those cases, rather that it is unable to prove it within the same timeout. In fact, since our

theory solver always terminates for unsatisfiable instances (see Remark 3.2.3), we know that,

if MATHSAT returns unsat for a problem, then eventually MATHSAT+UGOTNL will return

unsat as well.

We stress the fact that our implementation is currently still a research prototype, imple-

mented in Python and integrated within MATHSAT in a quite inefficient manner, introducing
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a lot of overhead in the interaction with the DPLL(T ) solver. We are confident that a more

optimised and better integrated implementation can significantly reduce the overhead and

improve the situation for unsatisfiable instances. Therefore, we believe that these results

prove that our tool, albeit aimed specifically at proving satisfiability, works well even for

unsatisfiable instances, and, in particular for NT A (which is our privileged theory of in-

terest), there are no relevant downsides in pairing our sat-oriented theory solver with an

unsat-oriented theory solver based on incremental linearization.

3.5 Related work.

For NRA, various techniques have been explored. Complete methods based on quantifier-

elimination procedures such as Cylindric Algebraic Decomposition (CAD) [32] have been

successfully implemented in several SMT-solvers (such as Z3 [37], YICES [41], SMT-

RAT [34]), proving their effectiveness especially when tightly integrated into the Boolean

search through a model-constructing framework such as MCSAT [64] [38]. However, their

complexity is doubly-exponential in the worst case, and they cannot deal with transcendental

functions.

For NT A, there exist very few techniques able to prove satisfiability. Incremental

Linearization [30] starts from an abstract model and tries to check whether the formula

is satisfiable under all possible interpretations (within a given bounded region) of the

transcendental functions involved. This tactic works well when the transcendental functions

are isolated in the formula, but it is quite ineffective when the transcendental component is

more complex (especially in the presence of equations). ISAT3 [50] implements a method

based on a tight integration of Interval Constraint Propagation (ICP) [12] into the CDCL

framework, and it is able to prove satisfiability if it finds a box in which every point is a

solution.

Differently from these methods, our approach is not compelled to find more solutions

than needed, and it is able to prove satisfiability even when the only models of the formula are

isolated points. Interestingly, RASAT [110] combines ICP with the Generalized Intermediate

Value Theorem (GIVT) [86], but does not support transcendental functions.

Other approaches, e.g. DREAL [54] and KSMT [18], rely on the notion of δ -satisfiability [53],

which guarantees that there exists a perturbation (up to some δ > 0 specified by the user) of
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the original formula that is satisfiable.4 ISAT3 relies on a similar notion and, when not able

to prove satisfiability nor to detect conflicts, returns a candidate solution. In comparison with

these approaches, when we return “sat” we guarantee that the problem is actually satisfiable.

4Note that, according to this definition, a problem could be unsat and δ -sat at the same time
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Satisfiability of SMT(NTA) as a
Certificate Search problem
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SAT modulo theories (SMT) is the problem of checking whether a given first-order

formula with both propositional and theory variables is satisfiable in a specific first-order

theory. In this work, we consider the quantifier-free theory of SMT(NT A), non-linear

real arithmetic augmented with trigonometric and exponential transcendental functions.

This problem is particularly important in the verification of hybrid systems and in theorem

proving. Unfortunately, NT A is a very challenging theory. Indeed, it is undecidable [94],

and, moreover, there is no known way of representing satisfying assignments using a finite

string of bits (i.e., no finite representation of satisfying assignments) that could serve as

a direct certificate of satisfiability. This does not only make it difficult for an SMT-solver

to prove satisfiability, but also raises the question of how to verify the result given by an

SMT-solver.

In this chapter, we

• introduce the notion of a satisfiability certificate for NT A that allows independent

entities to verify the satisfiability of a given input formula without having to re-do a

full check of its satisfiability,

• introduce a method for computing such satisfiability certificates,

• describe computational experiments that analyze the efficiency of several variants of

the method, and

• provide a theoretical characterization of the class of problems for which such a certifi-

cate can be successfully computed despite the mentioned undecidability restrictions.

Based on the introduced certificate, the check of satisfiability of SMT(NT A) formulas is

both easier in terms of computational effort and effort needed to implement the checker and to

ensure its correctness. The certificate is based on the notion of topological degree [43, 1, 46],

that generalizes the idea that a sign change of a continuous function f implies the satisfiability

of the equation f = 0. The basic tool for checking correctness of the certificate is interval

arithmetic [97, 86, 84].

The idea to verify satisfiability of SMT(NT A) in such a way, is not new [71]. However,

the formulation as the problem of searching for a certificate is. In addition to the possibility

of independent verification, such a formulation makes the corresponding search problem

explicit. This allows us to introduce new, efficient search heuristics that guide the algorithm
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toward finding a certificate and prevent the procedure from getting stuck in computation that

later turns out to not to lead to success.

The experimental results are based on our implementation in the tool UGOTNL [71]. We

compare different heuristic configurations over a wide variety of NT A benchmarks. The

benchmarks also demonstrate that this new version of UGOTNL outperforms the previous

version, making it—to the best of our knowledge—the most effective solver for proving

satisfiability of NT A problems.

It is possible to integrate the resulting method into a conflict-driven clause learning

(CDCL) type SMT solver [71]. However, in order to keep the focus of the work on the

concern of certificate search, we ignore this possibility, here.

Content. This chapter is based on the work presented in [72], and it is organized as follows:

in Section 4.1 we provide some further preliminaries, on top on the ones presented in Chapter

2; in Section 4.2 we give the formal definitions of certifying SMT solver and of satisfiability

certificate for SMT(NT A); in Section 4.3 we outline our method for the certificate search;

in Section 4.4 we illustrate the heuristics that we introduce in detail; in Section 4.5 we

experimentally evaluate our method; finally, in Section 4.6, we discuss some related works.
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4.1 Preliminaries

Dulmage–Mendelsohn decomposition. Given a system of equations φ , it is possible to

construct an associated bipartite graph Gφ that represents important structural properties

of the system of equations. This graph has one vertex per equation, one vertex per vari-

able, and an edge between a variable xi and an equation f j = 0 iff xi appears in f . The

Dulmage–Mendelsohn decomposition [40, 3] is a canonical decomposition from the field of

matching theory that partitions the system into three parts: an over-constrained subsystem

(more equalities than variables), an under-constrained subsystem (less equalities than vari-

ables), and a well-constrained subsystem (as many equalities as variables, and contains no

over-constrained subsystem, i.e. it satisfies the Hall property [57]).

Example 4.1.1. Let φ := x− tan(y) = 0∧ z2 = 0∧w = 0∧ sin(w) = 0, as in Figure 4.1.

Through the Dulmage–Mendelsohn decomposition we obtain:

• an under-constrained sub-system x− tan(y) = 0 (two variables, one equation)

• a well-constrained sub-system z2 = 0 (one variable, one equation)

• an over-constrained sub-system w = 0 ∧ sin(w) = 0 (one variable, two equations)



x− tan(y) = 0 (eq1)

z+1 = 0 (eq2)

w = 0 (eq3)

sin(w) = 0 (eq4)

.

eq1

eq2

eq3

eq4

x

y

z

w

Eqs(φ) Vars(φ)

Figure 4.1 Example of Dulmage–Mendelsohn decomposition.
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Robustness. Recall that we say that a formula φ is robust if there exists some ε > 0 such that

either every formula that is the result of an ε-small perturbation of φ (i.e. a formula whose

distance from φ is less than ε) is satisfiable, or either every such formula is unsatisfiable.

For example, the satisfiable formula x2 = 0 is not robust, since for every ε > 0, the

perturbed formula x2 + ε/2 = 0 is unsatisfiable. In contrast to that, the satisfiable formula

x3 = 0 is robust. If φ is both robust and (un)satisfiable, we say that it is robustly (un)sat.

Hence, x3 = 0 is robustly sat.

For this chapter, an intuitive understanding of the notion of ε-small perturbation suffices.

In Chapter 5, we will make this more precise for a more formal analysis of our approach.

For more details, we refer the reader to the literature [48].

Relation between robustness and system of equations: An over-constrained system of

equations is never robustly sat [48, Lemma 5]. It easily follows that a system of equations

that contains an over-constrained sub-system (in the sense of the Dulmage–Mendelsohn

decomposition) is never robustly sat as well.

Relation between robustness and topological degree: Even in the case of an isolated zero,

the test for non-zero topological degree can fail if the system is non-robust. For example,

the function F(x)≡ x2 has topological degree 0 in the interval [−1,1], although the equality

x2 = 0 has an isolated zero in this interval. It can be shown that the topological degree test

is able to prove satisfiability in all robust cases for a natural formalization of the notion of

robustness [48]. We will not provide such a formalization, here, but use robustness as an

intuitive measure for the potential success when searching for a certificate.

Logic-To-Optimization. While symbolic methods usually struggle dealing with NT A,

numerical methods, albeit inexact, can handle transcendental functions efficiently. For this

reason, an SMT solver can benefit from leveraging numerical techniques. In the Logic-To-

Optimization approach [71, 51, 87], an SMT(NT A)-formula φ in m variables is translated

into a real-valued non-negative function L2O(φ)≡H : Rm 7→R≥0 such that—up to a simple

translation between Boolean and real values for Boolean variables—each model of φ is a

zero of H (not necessarily vice-versa). When solving a satisfiability problem, one can try to

first minimize this function through numerical methods, and then use the obtained numerical
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(approximate) solution to prove, through exact methods, that the logical formula has indeed

a model.

While for the complete definition of the L2O operator we refer to Chapter 3, we now

provide a simple example to recall through an intuition how the operator works. Given a

formula of the form F = 0, we have that L2O(F = 0)≡ F2, i.e., for every x in the domain

of F , (L2O(F))(x) = F(x)2. For conjunctions, L2O(F1∧F2)≡ L2O(F1)+L2O(F2). For

disjunctions, L2O(F1∨F2)≡ L2O(F1)∗L2O(F2)

Now, consider for example F1,F2 : R→ R defined by F1(x)≡ x2−2x and F2 ≡ sin(x).

The formula F1 = 0 has exactly 2 solutions, {0,2}, which are exactly the zeros (hence the

global minima) of the non-negative function F2
1 : R→ R, while the formula F2 = 0 has

infinitely many solutions {kπ | k ∈ Z}, which are exactly the zeros (and global minima) of

F2
2 : R→ R. Then, in order to find the solutions of φ ≡ (F1 = 0∧F2 = 0) (which, in this

case, consist of the singleton {0}), we can search for the zeros of L2O(φ).
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4.2 Goal

Consider an SMT solver that takes as input some formula φ and as output an element of

{sat,unknown,unsat}. How can we gain trust in the correctness of the result of such an

SMT solver? One approach would be to ensure that the algorithm itself is correct. Another

option is to provide a second algorithm whose output we compare with the original one. Both

approaches are, however, very costly, and moreover, the latter approach still may be quite

unreliable.

Instead, roughly following McConnell et al. [79] (see also Figure 4.2), we require our

solver to return—in addition to its result—some information that makes an independent

check of this result easy:

Definition 4.2.1. An SMT solver is certifying iff there is a property W such that for every

input formula φ , in addition to an element r ∈ {sat,unknown,unsat}, the solver returns an

object w (a certificate) such that

• (φ ,r,w) satisfies the property W, that is W (φ ,r,w),

• W (φ ,sat,w) implies that φ is satisfiable,

• W (φ ,unsat,w) implies that φ is unsatisfiable, and

• there is an algorithm (a certificate checker) that

– takes as input a triple (φ ,r,w) and returns ⊤ iff W (φ ,r,w), and that

– is simpler than the SMT solver itself.

solver
checker

yes/no

result r

certificate w
input ϕ

Figure 4.2 Certifying SMT Solver

So, for a given formula φ , one can ensure correctness of the result (r,w) of a certifying

SMT solver by using a certificate checker to check the property W (φ ,r,w). Since the

certificate checker is simpler than the SMT solver itself, the correctness check is simpler than

the computation of the result itself.
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The definition leaves it open, what precisely is meant by “simpler”. In general, it could

either refer to the run-time of the checker, or to the effort needed for implementing the certifi-

cate checker and ensuring its correctness. The former approach is taken in computational

complexity theory, the latter in contexts where correctness is the main concern [79]. Indeed,

we will later see that our approach succeeds in satisfying both requirements, although we will

not use complexity-theoretic measures of run-time, but will measure run-time experimentally.

The use of such certificates is ongoing research in the unsatisfiable case [9]. In the

satisfiable case, for most theories, one can simply use satisfying assignments (i.e., witnesses)

as certificates. Here the property W simply is the property that the given assignment satisfies

the formula, which can be checked easily.

For SMT(NT A), however, the situation is different. In this case, satisfying assignments

may involve numbers that are neither rational nor real algebraic. Indirect descriptions of

satisfying assignments using formulations such as

• “the number that is the solution of the equation sinx = 1”, or

• “the number corresponding to the infinite sequence of digits that the Turing machine T

writes onto its output tape”

also cannot be used as a basis for representing certificates. In the first case, the problem is

that it is not obvious how to check whether the represented number actually exists. In the

second case, it is not obvious how to check whether the represented number actually is a

solution.

In general, adding such information to NT A-formulas does not reduce the undecidable

satisfiability problem to any known decidable class that would enable a certificate checker in

the sense of Definition 4.2.1. Hence one needs to use certificates of a different form. For this,

we introduce the following definition:

Definition 4.2.2. Let φ be a formula in NT A. A (satisfiability) certificate for φ is a triple

(σ ,ν ,β ) such that W (φ ,sat,(σ ,ν ,β )) iff

• σ is a function selecting a literal from every clause of φ

• ν is a variable assignment in RV assigning floating point numbers to a subset V ⊆
VarsR(σ(φ)) (where σ(φ) is a compact way of writing

∧
C∈φ σ(C)), s.t. σ(φ) contains

as many equations as real-valued variables not in V .



4.2 Goal 49

• β is a finite set of interval assignments in BVarsR(φ)\V such that their set-theoretic union

as boxes is again a box Bβ and, for the system of equations F := eq(ν(σ(φ))) and the

system of inequalities G := ineq(ν(σ(φ))), it holds that:

– 0 ̸∈ F(∂Bβ ),

– deg(F,Bβ ,0) ̸= 0, and

– for every B ∈ β , IAG(B)≤ 0.

Example 4.2.1. Consider the formula

φ :=C1∧C2∧C3∧C4

C1 ≡ cos(y) = 0 ∨ sin(y) = ex C3 ≡ x− y≤ cos(z)

C2 ≡ sin(y) = 0 ∨ cos(y) = sin(8x2− z) C4 ≡ x+ y≥ sin(z)

The following (σ ,ν ,β ) is a certificate:

• σ := {C1 7→ sin(y) = ex ; C2 7→ cos(y) = sin(8x2− z) ;

C3 7→C3 ; C4 7→C4}

• ν := {z 7→ 0.2}

• β := {B}, where B := {x 7→ [−0.1,0.05] ; y 7→ [1.4,1.9]}

As can be seen in Figure 4.3, the solution sets of C1 and C2 cross at a unique point in B,

which reflects the fact that the degree of the function (x,y)→ (sin(y)−ex,cos(y)−sin(8x2−
0.2)) is non-zero. Moreover, the inequalities C3 and C4 hold on all elements of the box.

Due to the properties of the topological degree and of interval arithmetic discussed in the

preliminaries, we have:

Property 4.2.1. W (φ ,sat,(σ ,ν ,β )) implies that φ is satisfiable.

Such a satisfiability certificate can only serve as a certificate for an SMT solver if a

certificate checker—as required by Definition 4.2.1—exists. This certificate checker needs to

be able to check the conditions of Definition 4.2.2. The topological degree can indeed be

computed algorithmically [1, 46]. The condition 0 ̸∈ F(∂Bβ ) is necessary for the topological
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Figure 4.3 Solution sets of equalities for the certificate of Example 4.2.1

degree to be well defined. Due to this, such algorithms [1, 46] also check this condition, and

no separate check is necessary. Finally, the condition IAG(B)≤ 0 clearly is algorithmic.

Note that this definition could be applied to a broader class of formulas than NT A,

since the algorithms used to compute the topological degree and IA can work with any

interval-computable function (i.e. functions for which it is possible to compute arbitrarily

precise images for every interval domain [48]). However, in practice, the tools that implement

these algorithms do not go beyond the NT A case. For this reason, given that our approach

is application-oriented, we will keep our focus only on NT A.

We will show that in addition to the discussed benefits for correctness, formulating

satisfiability checking as the problem of search for such certificates also is beneficial for

efficiency of the SMT solver itself. Since we will concentrate on satisfiability, we will

simply ignore the case when an SMT solver returns unsat, so the reader can simply assume

that an SMT solver such as the one from Figure 4.2 only returns an element from the set

{sat,unknown}.
Note that the variable assignment ν can also be viewed as a system of equalities of

the form
∧

v∈V v = ν(v). In general, one could allow a system of equalities of a more

general form, for example, a system of linear equalities, arriving at the function F and G by

eliminating some of the involved variables by Gaussian elimination. One could even extend

the functions F and G by the left-hand sides of those additional equalities. However, our

computational experiments will demonstrate that this is not beneficial, in general, which

justifies the more specific form of Definition 4.2.2.



4.3 Method 51

4.3 Method

Our goal is to find a triple (σ ,ν ,β ) that is a certificate of satisfiability for a given formula φ .

So we have a search problem. In order to make this search as efficient as possible, we want

to guide the search toward a triple that indeed turns out to be a certificate, and for which the

corresponding conditions are computationally easy to check.

Intuitively, we view the search for a certificate as a hierarchy of nested search problems,

where the levels of this hierarchy correspond to the individual components of certificates.

We formalize this using a search tree whose nodes on the i-th level are labeled with i-tuples

containing the first i elements of the tuple searched for, starting with the root note that is

labeled with the empty tuple (). The tree will be spanned by a function ch that assigns to

each node (c1, . . . ,ci) of the tree a sequence ⟨x1, . . . ,xn⟩ of possible choices for the next tuple

component. Hence the children of (c1, . . . ,ci) in the tree are (c1, . . . ,ci,x1), . . . ,(c1, . . . ,ci,xn).

We will do depth-first search in the resulting tree, searching for a leaf labeled by a certificate

of satisfiability for the input formula φ .

Based on the observation that on each level of the tree one has the first i components

of the tuple available for determining a good sequence of choices, we will add additional

information as the first tuple component in the form of a variable assignment p that satisfies

the formula φ approximately. Hence we search for a four-tuple (p,σ ,ν ,β ).

It is easy to see that it would be possible to generalize such a search tree to a more

fine-grained one, where the individual levels are formed by parts of the choices described

above, and where the order of those levels can be arbitrary. For example, it would be possible

to first choose an interval for a variable (i.e., part of the box β ), then select a literal from

a certain clause (i.e., part of the selection function σ ), and so on. However, here, we keep

these levels separated, as discussed above, in order to achieve a clear separation of concerns

when exploring design choices at the individual levels.
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4.4 Certificate Search

In this section, we will discuss possibilities for search strategies by defining for every search

tree node labeled with tuple τ , the ordered sequence ch(τ) of choices for the next tuple

element. Our framework allows for many more possibilities from which we choose strategies

that both demonstrate the applicability of the framework to different search strategies, and

allow for efficient search, as will be demonstrated by the computational experiments in

Section 4.5.

In order to be able to refer to different variants of the search strategy in the description of

computational experiments, we will introduce keywords for those variants that we will write

in teletype font.

Here we will focus on strategies of the two following basic types:

• Filtering: We skip elements from the set of possible choices that cannot result in a

certificate or for which the probability of resulting in a certificate is negligible.

• Ordering: We choose elements from the set of possible choices in a certain order that

tries the reflect the probability of resulting in a certificate.

4.4.1 Points

The points ch() = ⟨p1, . . . , pk⟩ determining the first level of the search tree are generated

by an optimization problem defined on the formula φ following the Logic-To-Optimization

approach [71]. Here we translate the satisfiability problem into a numerical minimization

problem, mapping the logic formula φ into the non-negative real-valued function L2O(φ)≡
H : Rn→ R≥0 (called the objective function) such that for every satisfying assignment, this

objective function is zero, and for assignments that do not satisfy the formula, the objective

function is typically (but not always) non-zero. Then we find local minima of H through

an unconstrained optimization algorithm such as basin hopping [111], a two-phases Monte

Carlo Markov Chain method that alternates local minimization with random jumps. In our

implementation, we compute k = 100 local minima, and process them in the order of their

value.
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4.4.2 Literals

Given a point p, we now discuss how choose literal selector functions ch(p) = ⟨σ1, . . . ,σk⟩.
For filtering the set of literal selector functions, we will restrict ourselves, for each clause

C ∈ φ , to the literals l for which the objective function restricted to l and evaluated in the

point p is below a certain threshold. That is, we determine the set of approximately satisfiable

literals

LC := {l ∈C | L2O(l)(p)≤ ε}.

Our literal selector functions will then correspond to the set of all approximately satisfiable

combinations

{σ | for all C ∈ φ ,σ(C) ∈ LC},

that is, each σ selects exactly one approximately satisfiable literal from each clause. In order

to maximize the chances of choosing a better literal combination, we can sort the elements

of LC according to the value of the respective objective functions and then choose literal

combinations using the corresponding lexicographic order (we will refer to this heuristic as

(sort-literals)).

While the point p is usually a good candidate in terms of distance from a zero, it can

sometimes lead to an inconsistent problem:

Example 4.4.1. Consider the formula

φ :=C1∧C2

C1 ≡ (x+ y = 0)∨ (x = e106∗y) C2 ≡ (x+ y≥ ε1)∨ (x = tan(y+ ε1))

The numerical optimizer will be tempted to return first some point p1 such as {x 7→ 1;y 7→−1},
that almost satisfies (x+ y = 0)∧ (x+ y ≥ ε1), instead of a harder approximate solution

involving transcendental functions and heavy approximations, such as (x = e106∗y)∧ (x =
tan(y+ ε1)), that is exactly satisfiable in a point p2 near (0,−π).

Such inconsistencies may occur in many combinations of literals. We use a strategy that

detects them in situations where for certain clauses C, the set LC contains only one literal l.

We will call such a literal l a forced literal, since, for every literal selector function σ , σ(φ)

will include l. Before starting to tackle every approximately satisfiable literal combination,

we first analyze the set of forced literals. We do symbolic simplifications (such as rewriting

and Gaussian elimination) to check whether the set has inconsistencies that can be found
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at a symbolic level (as in the previous example). If the symbolic simplifications detect that

the forced literals are inconsistent then we set ch(p) to the empty sequence ⟨⟩ which causes

backtracking in depth-first search. We refer to the variant of the algorithm using this check

as (check-forced-literals).

Filtering out over-constrained systems. Given a literal selector function σ , we analyze

the structure of the system of equations formed by the equations selected by σ through the

Dulmage–Mendelsohn decomposition, that uniquely decomposes the system into a well-

constrained subsystem, an over-constrained subsystem and an under-constrained subsystem.

We filter out every literal combination having a non-empty over-constrained subsystem, since

this leads to a non-robust sub-problem, referring to this heuristic as (filter-overconstr).

4.4.3 Instantiations

We define the instantiations ch(p,σ) = ⟨ν1, . . . ,νk⟩ based on a sequence of sets of vari-

ables V1, . . . ,Vk to instantiate, and define νi := projVi
(p). The uninstantiated part of p after

projection to a set of variables Vi is then projVarsR(φ)\Vi
(p), which we will denote by p¬Vi .

For searching for the variables to instantiate, we use the Dulmage–Mendelsohn decom-

position constructed in the previous level of the hierarchy. We do not want to instantiate

variables appearing in the well-constrained sub-system, since doing so would make the re-

sulting system after the instantiation over-constrained. Hence the variables to be instantiated

should be chosen only from the variables occurring in the under-constrained subsystem. This

substantially reduces the number of variable combinations that we can try. Denoting the vari-

ables satisfying this criterion by Vunder, this restricts Vi ⊆Vunder, for all i ∈ {1, . . . ,k}. This

does not yet guarantee that every chosen variable combination leads to a well-constrained

system after the instantiation. For example , the under-determined system of equations

x+ y = 0∧ z+w = 0 has four variables and two equations, but becomes over-constrained

after instantiating either the two variables x and y, or the variables z and w. So, for each Vi,

we further check whether the system obtained after the instantiation is well-constrained (we

refer to this heuristic as (filter-overconstr-V)).

The method described in the previous paragraph only uses information about which

equations in the system contain which variables (i.e., it deals only with the structure of the

system, not with its content). Indeed, it ignores the point p.
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To extract more information, we use the following fact: If a zero of a function has

non-singular Jacobian matrix, then every box containing this zero and no other zeros has

a non-zero topological degree [43]. So we compute a floating point approximation of the

Jacobian matrix at point p (note that, in general, this matrix is non-square). Our goal is to

find a set of variables V to instantiate such that the Jacobian matrix corresponding to the

resulting square system at the point p¬V has full rank. This matrix is the square sub-matrix

of the original Jacobian matrix that is the result of removing the instantiated columns.

A straight-forward way of applying the Jacobian criterion is, given random variable

instantiations, to filter out instantiations whose corresponding Jacobian matrix is rank-

deficient (filter-rank-deficient), similarly to what is done in the previous paragraph

with the overconstrained filter. Note that, as the Jacobian matrix of non-well-constrained

system of equations is always rank-deficient, this filter is stronger than the previous one.

However, it may filter out variable instantiations that result in a non-zero degree (e.g., the

function x3 has non-zero degree in [−1,1], but its Jacobian matrix at the origin is rank

deficient since f ′(0) = 0).

We can further use the information given by the Jacobian matrix not only to filter out

bad variable instantiations, but also to maximize the chance of choosing good variable

instantiations from the beginning. Indeed, not all variable instantiations will be equally

promising, and it makes sense to head for an instantiation such that the resulting square

matrix not only has full rank, but—in addition—is far from being rank-deficient (i.e., it

is as robust as possible). We can do so by modifying Kearfott’s method [65, Method 2],

which fixes the coordinates most tangential to the orthogonal hyperplane of F in p by first

computing an approximate basis of the null space of the Jacobian matrix in the point, and then

choosing the variables corresponding to the coordinates for which the sum of the absolute

values in the basis is maximal. Since we are interested in more than just a single variable

choice, we order all the variables w.r.t. to this sum. Then, we extract the sets of variables

V1,V2, . . . through a lexicographic combinatorial algorithm. We refer to this heuristic as

(Kearfott-ordering).

Adding equations. An alternative approach for reducing from an underconstrained system

of equations to a square one is, instead of instantiating variables, to add equations. This

approach is justified by the fact that each variable instantiation can be seen as a system of

equalities (while the vice-versa is not true).
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While discussing Kearfott’s method, we showed that, given a point p, it is better to choose

variable instantiations that are the most orthogonal possible to the tangent hyperplane of F in

p. With the equations adding approach we can go further: we can directly choose the linear

equations that describe the hyperplane orthogonal to the tangent space of F in p. These

equations can be found through the QR-decomposition of the Jacobian matrix of F in p. We

can then add these equations to F in order to obtain a square system of equations. We refer

to this heuristic as (orthogonal).

Since the found equations are linear, we can further modify the previous heuristic by

applying Gaussian elimination to the linear part of the square system obtained, thus reducing

the dimension of the system of equations. We refer to this sub-heuristic as (gauss-elim).

4.4.4 Boxes

We construct boxes around p¬V , where V is the set of variables ν instantiates, that is,

ν ∈ RV . So we define ch(p,σ ,ν) := ⟨β1, . . . ,βk⟩ s.t. for all i ∈ {1, . . . ,k}, for all B ∈ βi,

B ∈ BVarsR(φ)−V and p¬V ∈
⋃

B∈βi
B.

We use two different methods, (eps-inflation) and (box-gridding):

• Epsilon-inflation [76] is a method to construct incrementally larger boxes around a

point. In this case, the β1, . . . ,βk will each just contain one single box Bi defined as

the box centered at p¬V having side length 2iε , where, in our setting, ε = 10−20. We

terminate the iteration if either IAG(Bi)≤ 0 and deg(F,Bi,0) ̸= 0, in which case we

found a certificate, or we reach an iteration limit (in our setting when 2iε > 1).

• Box-gridding is a well-known technique from the field of interval arithmetic based

on iteratively refining a starting box into smaller sub-boxes. Here we use a specific

version, first proposed in [48] and then implemented with some changes in [71]. In

the following we roughly outline the idea behind the algorithm, and refer to the other

two papers for details. We start with a grid that initially contains a starting box (in our

setting, having side length 1). We then iteratively refine the grid by splitting the starting

box into smaller sub-boxes. At each step, for each sub-box B we first check whether

interval arithmetic can prove that the inequalities or the equations are unsatisfiable,

and, if so, we remove B from the grid. We check also whether deg(F,B,0) ̸= 0 and

interval arithmetic can prove the satisfiability of the inequalities, and, if so, then we

terminate our search, finding a certificate with the singleton βi = {B}. In some cases,
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in order to verify the satisfiability of the inequalities, we will have to further split the

box B into sub-boxes, using the set of resulting sub-boxes instead of the singleton

{B}. After each step, if there are sub-boxes left in the grid, we continue the refinement

process. Otherwise, if the grid is empty, we conclude that there cannot be solutions

in the starting box. If a certain limit to the grid size is exceeded, we also stop the box

gridding procedure without success.

For both methods, if the method stops without success, we have arrived at the last

element of the sequence of choices ⟨β1, . . . ,βk⟩ without finding a certificate, which results in

backtracking of the depth-first search for a certificate.

Figure 4.4 Example of ε-inflation. Figure 4.5 Example of box-gridding

Example 4.4.2. Consider a small variation of the Example 4.2.1.

Figure 4.4 shows an instance of the ε-inflation method. Here, larger and larger boxes

β1,β2,β3 are constructed around a starting point p. In this example, the method does not

succeed, since the box β2 does not include a solution, and the following box β3 does not

satisfy the inequality anymore.

Figure 4.5 shows an instance of the box-gridding method. Here, the box is iteratively into

sub-boxes, and sub-boxes that cannot contain a solution are discarded. The first splitting is

the vertical dashed line in the center, which divides the starting box into two sub-boxes. The

sub-box on the right, cannot contain a solution for the equations (it does not intersect the

blue line) hence it is discarded. The sub-box on the left, β1, does indeed contain a solution

for the equations (that is proved by the topological degree test), but the inequality is not

satisfied everywhere in the box. Further splitting are performed, until a satisfying sub-box

β6 is found.
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Both mentioned methods have their advantages, and can be seen as complementary.

Epsilon-inflation is quite fast, and performs particularly well if the solution is isolated and

is near the center. However, if there are multiple solutions in a box, the topological degree

test can potentially fail to detect them1, and if the solution is far from the center then we

need a bigger box to encompass it, which is less likely to be successful than a smaller box,

as we require the inequalities to hold everywhere in the box, and, moreover, the chance of

encompassing other solutions (thus incurring in the previous problem) grows.

The box-gridding procedure, on the other side, can be quite slow, as in the worst case

the number of sub-boxes explodes exponentially. However, grid refinement leads to a very

accurate box search, which allows us to avoid the issues faced with epsilon inflation (i.e.

multiple solutions, or a solution far from the center). Moreover, if the problem is robust, we

have the theoretical guarantee that the procedure will eventually converge to a solution [48],

although this does not hold in practice due to the introduced stopping criterion.

Indeed, a third approach is to combine the two methods: first use epsilon inflation, that

is often able to quickly find a successful box, and, if it fails, then use the more accurate

box-gridding procedure.

1For example, for f (x) = x2 − 1, deg( f , [−10,10],0) = 0, while deg( f , [−10,0],0) = −1, and
deg( f , [0,10],0) = 1.
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4.5 Computational Experiments

Implementation. We implemented the different heuristics presented in the prototype tool

UGOTNL (firstly presented in [71]). In order to make the results comparable with the ones

obtained earlier, in addition to the search method discussed in Section 4.4, we preserve the

following heuristics used by UGOTNL: If the local minimizer cannot find any minimum of

L2O(φ) for which for every clause C ∈ φ , the set of approximately satisfiable literals LC is

non-empty, we restart the procedure on every conjunction resulting from the DNF of φ . The

tool handles strict inequalities of the form f < 0 directly until the box construction phase,

where they are replaced by f ≤−ε (with ε = 10−20). For computing the topological degree,

we use TOPDEG2. For the symbolic simplifications used in (check-forced-literals),

we use the simplify and the solve-eqs tactics provided by Z3 [37] 3. For the computation of the

rank used in (filter-rank-deficient), we observe that the rank of a matrix is equal to

the number of non-zero singular values, hence we consider a matrix far from rank-deficiency

iff all its singular values are bigger than some threshold (to account for approximation errors).

We use a threshold widely used by algorithms for determining the matrix rank, which is

σmaxdim(A)ε , where σmax is the largest singular value of A, and ε is the machine epsilon.

Setup. We run the experiments4 on a cluster of identical machines equipped with 2.6GHz

AMD Opteron 6238 processors. We set a time limit of 1000 seconds, and a memory limit

of 2Gb. We considered all SMT(NT A) benchmarks from the dReal distribution [54]

and other SMT(NT A) benchmarks coming from the discretization of Bounded Model

Checking of hybrid automata [95, 6], totaling 1931 benchmarks. All of these benchmarks

come with “unknown” status. According to experiments performed on other solvers (CVC5,

DREAL, ISAT3, MATHSAT), among these benchmarks 736 (respectively, 174) are claimed

to be unsatisfiable (satisfiable) by at least one solver5. We tested our tool with different

heuristics configurations (Table 4.1), and, for each configuration, we checked that our tool

never contradicts the other tools. We have arranged the heuristics into 3 columns (Literals,

Instantiations, and Boxes) according to the search level they are used in. As the number

2Available at https://www.cs.cas.cz/~ratschan/topdeg/topdeg.html.
3For a description of the two tactics: https://microsoft.github.io/z3guide/docs/strategies/

summary. The version of Z3 used is 4.5.1.0.
4The results of the experiments are available at https://doi.org/10.5281/zenodo.7774117
5For the results of such experiments, see [71].

https://www.cs.cas.cz/~ratschan/topdeg/topdeg.html
https://microsoft.github.io/z3guide/docs/strategies/summary
https://microsoft.github.io/z3guide/docs/strategies/summary
https://doi.org/10.5281/zenodo.7774117
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Heuristics (id.)
N. solved Literals Instantiations Boxes

323 (box-gridding) (1.a.)
355 (eps-inflation) (1.b.)

356
(eps-inflation)

(box-gridding)
(1.c.)

362 (sort-literals) (eps-inflation) (2.b.)

361 (sort-literals)
(eps-inflation)

(box-gridding)
(2.c.)

370
(sort-literals)

(filter-overconstr)
(eps-inflation) (3.b.)

367
(sort-literals)

(filter-overconstr)

(eps-inflation)

(box-gridding)
(3.c.)

406
(sort-literals)

(filter-overconstr)

(check-forced-literals)

(eps-inflation) (4.b.)

410
(sort-literals)

(filter-overconstr)

(check-forced-literals)

(eps-inflation)

(box-gridding)
(4.c.)

409
(sort-literals)

(filter-overconstr)

(check-forced-literals)

(Kearfott-ordering) (eps-inflation) (5.b.)

412
(sort-literals)

(filter-overconstr)

(check-forced-literals)

(Kearfott-ordering)
(eps-inflation)

(box-gridding)
(5.c.)

424
(sort-literals)

(filter-overconstr)

(check-forced-literals)

(Kearfott-ordering)

(filter-overconstr-V)
(eps-inflation) (6.b.)

426
(sort-literals)

(filter-overconstr)

(check-forced-literals)

(Kearfott-ordering)

(filter-overconstr-V)

(eps-inflation)

(box-gridding)
(6.c.)

427
(sort-literals)

(filter-overconstr)

(check-forced-literals)

(Kearfott-ordering)

(filter-overconstr-V)

(filter-rank-deficient)

(eps-inflation) (7.b.)

426
(sort-literals)

(filter-overconstr)

(check-forced-literals)

(Kearfott-ordering)

(filter-overconstr-V)

(filter-rank-deficient)

(eps-inflation)

(box-gridding)
(7.c.)

441 Virtual best
Table 4.1 Summary of the results for different heuristics configurations. Each row correspond
to a configuration. The first column from the left contains the number of benchmarks solved;
the central columns indicate the heuristics used, separated by search level; the last column
contains an identifier of the configuration. The last row is for the virtual best of the different
configurations.
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of possible configurations is quite high, we proceed as follows: We start with the simpler

configurations (just one method for finding a box that contains a solution), and then we add

heuristics. The configurations that use the equation adding method are discussed separately

at the end of the section.

Results. In the first configurations we tested the 3 possible ways to search for a box.

We note that (box-gridding) (1.a.) performs considerably worse than the other two,

(eps-inflation) (1.b.) and (eps-inflation) +(box-gridding) (1.c.), which pro-

duce comparable results. Because of that, and for readability’s sake, we did not use

(box-gridding) alone with other heuristics in the next configurations, but only considered

the other two options. We then added heuristics based on the following criteria: first heuristics

for the “Literals” choice, then heuristics for the “Instantiations” choice, and first ordering

heuristics (i.e. (sort-literals) and (Kearfott-ordering)), then filtering heuristics

(all the others). At every new heuristic added, we see that the number of benchmarks solved

grows regardless of the “Boxes” choice, with the best configuration reaching 427 benchmarks

Figure 4.6 Survival plots for some of the configurations presented in Table 4.1. For each
configuration, the plot shows the number of instances solved (x axis) within the given time (y
axis).
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using 7 heuristics. If we consider the virtual best (i.e. run in parallel all the configurations and

stop as soon as a certificate is found) we are able to solve 441 benchmarks. This is because

in cases such as (eps-inflation) vs. (eps-inflation) +(box-gridding), or such as

(filter-overconstr-V) vs. (filter-rank-deficient), there is no dominant choice,

with each configuration solving benchmarks that the other does not solve and vice-versa.

The cactus plot in Figure 4.6—in which we included only a subset of the configurations in

Table 4.1 for graphical reasons— substantiates the claim that new heuristics improve not only

effectiveness, but also performances. The plot of the virtual best remarks the complementarity

between different configurations.

Discussion. The first configuration (1.a.) essentially uses the method proposed in Chapter 4

and implemented in UGOTNLEAGER (of which the tool presented discussed is an upgrade).

Already in the previous paper, UGOTNLEAGER outperformed the other solvers able to prove

Figure 4.7 Survival plots for the best configuration of UGOTNL ((7.b.)) compared with the
other state-of-the-art SMT solvers. For each solver, the plot shows the number of instances
solved (x axis) within the given time (y axis). Note that the plots of CVC5 and MATHSAT
are extremely close to each other (this is not surprising, as both tool use the same technique,
incremental linearization).
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satisfiability in SMT(NT A), solving more than three times the benchmarks than MATH-

SAT [31], CVC5 [67], and ISAT3 [50], and almost as twice as the benchmarks solved by

the lazy version MATHSAT+UGOTNL (where UGOTNL had been integrated lazily inside

MATHSAT). The introduction of new heuristics further improved the performances of our

tool, that is now able to solve around 100 benchmarks more. Moreover, the best configu-

ration of our tool, (7.b.), was able to prove the satisfiability of 334 benchmarks among the

1021 that had status “unknown”, i.e. that had not been solved by any other solver. Now,

considering all the state-of-the-art SMT solvers that are able to prove satisfiability of NT A
benchmarks, including ours, the virtual best is able to solve 508 benchmarks, compared to

the 174 previously solved without the inclusion of our tool. This is depicted in Figure 4.7,

which also shows the complementarity between the different solvers. As can be noted, the

plot of UGOTNL is less steep than the plots of other solvers. This is in part due to the eager

approach of the tool, that first generates several candidate points, and only then chooses one

of these points to narrow down the search, in part due to the tool been a prototype written in

Python, compared to highly optimized solvers written in C/C++.

Run-time of the certificate checker. In Section 4.2 we claimed that, with our approach,

checking a certificate requires less run-time than the certificate search itself. Here we

experimentally quantify this amount: for each benchmark solved by the best configuration

(7.b.), we observe the run-time required to check the certificate (which amounts, essentially,

to the computation of topological degree and interval arithmetic for the successful box). In

terms of median (respectively, mean), checking the certificate requires 0.10% (1.07%) of the

run-time used by the solver.

Variable instantiations vs. equation adding In Section 4.4.3 we presented two different

approach to reduce to a square system of equations: variable instantiation and equation

adding. In Table 4.2 we experimentally compare these two approaches. In order not to

overload the table, we compare the new heuristics only against representative configurations:

(7.b.) - being the one that solved more benchmarks - and (4.b.) - being the one where only

"Literals" heuristics are used. We observe that the use of (orthogonal) does not seem to

pay off particularly well: comparing (4.b.) to (orth.1.), it increases the number of benchmarks

solved just by a small margin, while comparing (7.b.) to (orth.3.), the number of benchmarks
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Heuristics (id.)
N. solved Literals Instantiations Boxes

406
(sort-literals)

(filter-overconstr)

(check-forced-literals)

(eps-inflation) (4.b.)

409
(sort-literals)

(filter-overconstr)

(check-forced-literals)

(orthogonal) (eps-inflation) (orth.1.)

399
(sort-literals)

(filter-overconstr)

(check-forced-literals)

(orthogonal) (gauss-elim)(eps-inflation) (orth.2.)

427
(sort-literals)

(filter-overconstr)

(check-forced-literals)

(Kearfott-ordering)

(filter-overconstr-V)

(filter-rank-deficient)

(eps-inflation) (7.b.)

419
(sort-literals)

(filter-overconstr)

(check-forced-literals)

(orthogonal)

(Kearfott-ordering)

(filter-overconstr-V)

(filter-rank-deficient)

(eps-inflation) (orth.3.)

413
(sort-literals)

(filter-overconstr)

(check-forced-literals)

(orthogonal) (gauss-elim)

(Kearfott-ordering)

(filter-overconstr-V)

(filter-rank-deficient)

(eps-inflation) (orth.4.)

443 Virtual best
Table 4.2 Summary of the heuristics configurations using the equation adding approach.
Two configurations from from Table 4.1 are included for comparison. The last row is the
virtual best considering all the configurations.

solved decreases. If we consider the configurations that use the sub-heuristic (gauss-elim)

- (orth.2.) and (orth.4.) - we see that in both cases the performance are even worsened.

Discussion. While from a mathematical perspective the orthogonal method should perform

better, as it yields a more robust system and obviates the iteration through all the possible

variable instantiations, its effectiveness can be severely limited by the well-known numer-

ical instability of algorithms that compute orthogonal matrices. Moreover, the systems of

equations obtained via equation adding have a higher dimension than the ones obtained

via variable instantiations, leading to a more complex problem to solve for the topological

degree test and interval arithmetic. One could hope to lighten this negative effect by using the

sub-heuristic (gauss-elim) that reduces the dimension to the same obtained via variable



4.5 Computational Experiments 65

instantiation. Unfortunately, this procedure generates equations which are more complex then

the ones obtained by variable instantiation, as it substitutes the exceeding variables by a linear

combination of the remaining variables, and since our technique for proving satisfiability

relies on interval arithmetic (which is quite sensitive to syntactic manipulations and rounding

bounds propagation) this can severely impact on the effectiveness of the check. While we do

not rule out that a more engineered implementation of the equation adding approach could

yield better results, our experimental results show that the more straight-forward approach of

variable instantiation is more effective on the considered benchmarks.
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4.6 Related Work

The computation of certificates for formulas not being satisfiable in various first-order

theories has been an important research topic of the SAT modulo theory community [7]

over recent years. In the case of satisfiable formulas, this topic has—to our knowledge—

been restricted to the SMT(NT A), since for most other theories used in an SMT context,

satisfying assignments have a straight-forward representation.

One strategy for proving satisfiability in SMT(NT A) is to prove a stricter requirement

that implies satisfiability, but is easier to check. For example, one can prove that all elements

of a set of variable assignments satisfy the given formula [50], or that a given variable

assignment satisfies the formula for all possible interpretations of the involved transcendental

functions within some bounds [30]. Such methods may be quite efficient in proving satisfia-

bility of formulas with inequalities only, since those often have full-dimensional solution sets.

However, such methods usually fail to prove satisfiability of equalities, except for special

cases with straightforward rational solutions.

Computation of formally verified solutions of square systems of equations is a classical

topic in the area of interval analysis [97, 86, 84]. Such methods usually reduce the problem

either to fixpoint theorems such as Brouwer’s fixpoint theorem or special cases of the

topological degree, for example, Miranda’s theorem. Such tests are easier to implement, but

less powerful than the topological degree (the former fails to verify equalities with double

roots, such as x3 = 0, and the latter requires the solution sets of the individual equalities to

roughly lie normal to the axes of the coordinate system).

In the area of rigorous global optimization, such techniques are applied [58, 65] to

conjunctions of equalities and inequalities in a similar way as in this work, but with a slightly

different goal: to compute rigorous upper bounds on the global minimum of an optimization

problem. This minimum is often attained at the boundary of the solution set of the given

inequalities, whereas satisfiability is typically easier to prove far away from this boundary.

There are several fragments of NT A for which real root isolation methods have ap-

peared [107, 78, 106, 60, 24, 26]. However, those fragments only allow univariate functions,

they are restricted to certain transcendental functions, and only in certain positions. Moreover,

some [107, 106, 26] depend on a currently unproved conjecture (Schanuel’s conjecture).

Examples of such fragments are exp–log–arctan functions [107, 78], tame elementary func-

tions [106], poly-powers [60], mixed trigonometric-polynomials [24], and trigonometric

extensions [26]. Recently, by leveraging such real root isolation algorithms, decision proce-
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dures have been shown for the theory of univariate mixed trigonometric-polynomials [25]

and for trigonometric extensions [26]. Unlike these techniques, our method tackles all of

NT A, without any syntactical restrictions.

We are only aware of two approaches that extend verification techniques for square

systems of equations to proving satisfiability of quantifier-free non-linear arithmetic [110, 71],

one [110] being restricted to the polynomial case, and the other one also being able to handle

transcendental function symbols. Neither approach is formulated in the form of certificate

search. However, both could be interpreted as such, and both could be extended to return a

certificate. This work actually does this for the second approach [71], and demonstrates that

this does not only ease the independent verification of results, but also allows the systematic

design of search techniques that result in significant efficiency improvements.

An alternative approach is to relax the notation of satisfiability, for example using the

notion of δ -satisfiability [54, 18], that does not guarantee that the given formula is satisfiable,

but only that the formula is not too far away from a satisfiable one, for a suitable formalization

of the notion of “not too far away”. Another strategy is to return candidate solutions in

the form of bounds that guarantee that certain efforts to prove unsatisfiability within those

bounds fail [50].



Chapter 5

Theoretical Characterization of a subclass
of SMT(NTA)
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Since the problem addressed in this thesis is undecidable, the success of any algorithmic

approach to solving the problem must necessarily depend on heuristics. Still, in this chapter,

we contribute some results that provide insight into when one can reasonably expect an

approach such as the one presented in the last chapter to succeed.

Especially, we address a sensitive part of our method—the reduction from an under-

constrained system of equations to a well-constrained subsystem (Section 4.4.3). Indeed,

given a system of equations in m variables and n equations (m > n), in order to obtain a

well-constrained system, we need to either instantiate k := m−n variables, or, alternatively,

to add k equations. The contribution of this section is threefold:

• We bound the class of problems solvable through the variable instantiation method,

both from below and from above.

• We prove that the class of problems solvable through the variable instantiation method

is a (possibly non-strict) subset of the class of problems solvable through the equation

adding method.

• We show that for bounded systems of equations and inequalities a certain strategy in the

certificate search method presented in Section 4.3 will always succeed in determining

satisfiability under certain robustness assumptions.

For ease of discussion, first, we will consider only systems of equations (i.e., without

inequalities). It is however straightforward to see that including inequalities does not change

any of the results. We will then treat the general case of conjunction and disjunctions of

systems of equations and inequalities when discussing the last contribution.

We will start by introducing some notation for the relevant classes of problems. For now,

we will introduce these classes only informally, and define them precisely, later. We will

denote by FRobI and FRobLEq the problem classes, for which the two methods (instantiation

and adding equations, respectively) result in a robust system. More precisely, we will denote

byFRobI the class of C1-functions F : B⊆Rn+k→Rn for which there exists a point p∈Rn+k

such that the instantiation of k variables to the corresponding k values of p leads to a robust

system in Rn→ Rn (we will call such functions robust under instantiation), and we will

denote by FRobLEq the class of C1-functions F : B⊆ Rn+k→ Rn for which adding k linear

equations leads to a robust system in Rn+k→ Rn+k.
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First, we will bound FRobI from above by the class FRob of C1-functions F : B⊆Rn+k→
Rn that have a robust solution, and from below by the class FReg of C1-functions F : B ⊆
Rn+k→ Rn that have a solution that is regular in the sense of topology.

Based on this, we will prove the following:

Theorem 5.0.1. FReg ⫋ FRobI ⫋ FRob

As can be seen from the disequalities, the lower and upper bounds are strict, here.

Secondly, we prove that every problem that can be solved via variable instantiation can

be solved via adding equation, i.e. we have the following theorem:

Theorem 5.0.2. FRobI ⊆FRobLEq

Note that the inclusion, in this case, is not strict. Indeed, we conjecture that the equality

holds, but will leave the proof to future work.

Finally, we present a variation of our method that is guaranteed to always terminate on

problems in FRobI , and that will serve to prove the following theorem:

Theorem 5.0.3. There exists a procedure that, given a bounded system of equations and

inequalities F = 0∧G≤ 0,

• always returns the correct answer “satisfiable” or “unsatisfiable”, if it terminates,

• always terminates successfully when F = 0∧G ≤ 0 is robustly satisfiable and F ∈
FRobI ,

• always terminates successfully when F = 0∧G≤ 0 is robustly unsatisfiable.

This theorem can be seen as an extension of an earlier result [48] showing that the class

of bounded systems of equations and inequalities in m variables and n equations, with n≥ m

or n = 0, is quasi-decidable in the sense that there exists a procedure that always terminates

on robust instances, and that never returns a wrong answer.

Our contribution is to cover the case of under-constrained systems (i.e. when n < m), to a

certain extent. Indeed, it is not possible to simply remove the restriction on the number of

equations versus the number of variables [48, Theorem 2]. We overcome this by guaranteeing

termination in the satisfiable case only for problems for which the system of equations is

robust under instantiation (which is a stricter condition than general robustness). In this

sense, our procedure is not a quasi-decision procedure, as it does not terminate for all robust

instances, but it will cover a meaningful sub-class.
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Content. This chapter is based on the work presented in [73], and it is organized as follows:

in Section 5.1, we formalize the problem classes mentioned by the two theorems and provide

some further definitions and properties that will be useful in the following subsections; in Sec-

tion 5.2, we will prove the lower bound FReg ⊆FRobI (Lemma 5.2.2) and that FRobI ̸⊆ FReg

(Lemma 5.2.3); in Section 5.3 we will prove the upper bound FRobI ⊆FRob (Lemma 5.3.2)

and that FRob ̸⊆ FRobI (Lemma 5.3.1); in Section 5.4, we prove that FRobI ⊆FRobLEq; finally,

in Section 5.5, we prove Theorem 5.5.1.

5.1 Background on robustness and regularity

In this section, we first give a formal definition of robustness for multivalued functions, and

then proceed to provide all the definitions needed to formally define our four classes of

interest. We will also present some results regarding these definitions that will be used for

proving the main theorem.

Notation: Given a multivalued function F : Ω⊆Rm→Rn, we will denote with F1, . . . ,Fn :

Ω ⊆ Rm → R the univalued functions such that F = (F1, . . . ,Fn). With a slight abuse of

terminology, we will say that a function F : Ω⊆ Rm→ Rn is satisfiable if and only if it has

a zero.

5.1.1 Robustness.

First, we provide a formal definition of the concept of robustness. Since our main focus are

systems of equations, we will provide a definition of robustness only in terms of multivalued

functions. This concept, however, can be generalized and formalized for general formulas.

The definition that we give here is just a special case of the more general definition presented

in [48]. In fact, a multivalued function F is robustly satisfiable if and only if the logical

formula representing the equation F = 0 is. We will make use of the general definition of

robustness only in the last section, when discussing Theorem 5.5.1.

We first introduce the concept of distance between functions.

Definition 5.1.1 (Distance between two functions). Let F : Ω1 ⊆ Rm→ Rn and F ′ : Ω2 ⊆
Rm→ Rn be two multivalued continuous functions. Given Ω⊆ Rm such that Ω⊆Ω1 and
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Ω⊆Ω2, we define the distance between F and F ′ in Ω as

dΩ(F,F ′)
def
= max

k∈[1,n]
(∥Fk−F ′k∥Ω)

where ∥Fk−F ′k∥Ω

def
= sup{|Fk(x)−F ′k(x)| : x ∈Ω}.

When Ω is clear from the context, with an abuse of notation we will drop the subscript

and just write d(F,F ′). We say that F ′ is an ε-small perturbation of F if d(F,F ′)< ε .

Definition 5.1.2 (Robustness of a function). Given α ∈ R>0, we say that a continuous

function F : Ω⊆Rm→Rn is α-robust iff for every continuous function F ′ s.t. dΩ(F,F ′)< α ,

either both F and F ′ have a zero in Ω, or none of them has. A function F is robust iff there

exists α ∈ R>0 s.t. F is α-robust in Ω′.

For Ω′ ⊆Ω, we say that F is robust in Ω′ iff F|Ω′ : Ω′ ⊆ Rm→ Rn is robust.

Definition 5.1.3 (Robustly satisfiable function). A function F is robustly satisfiable iff it is

robust and satisfiable.

5.1.2 Robust solutions (FRob).

Robust satisfiability of a function—as defined by Definition 5.1.3—does not depend on any

specific solution. Indeed, it is the entirety of the solution set that accounts for the robust

satisfiability of the function. However, it will be useful to talk about the robustness of a

function around a specific solution, which also formalizes the definition of the class FRob.

Definition 5.1.4 (Robust solution). Given a function F : Rm → Rn, we say that a point

p ∈ Rm is a robust solution iff

1. F(p) = 0, and

2. for all ε > 0 there exists a δ > 0 such that for all F ′ with d(F,F ′)< δ , there exists p′

such that F ′(p′) = 0 and d(p, p′)< ε .

It follows by the definition of robust solution that if F has a robust solution, then F is

robustly sat.

Note that the converse, however, is not true in general:
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Example 5.1.1 (Robustly sat formula with no robust solution). Let F : R→ R defined by

F : x 7→


−x2 if x < 0

0 if 0≤ x≤ 1

(x−1)2 if 1 < x

This function is robustly sat, since every F ′ obtained by a small perturbation of F has still

a solution either near 0 or near 1. But no point in the solution set of F (i.e. the points in

[0,1]) is a robust solution. Indeed, 0 is not a robust solution, since, given ε = 0.1, for every

δ > 0, the function F ′
δ

defined by F ′
δ
(x) 7→ F(x)−δ ; for 0 has no solution in the open ball

B0.1(0). Symmetrically, for 1 we can take F ′′
δ

defined by F ′′
δ
(x) 7→ F(x)+δ . And for every

point p ∈ (0,1), we can take ε = min(d(p,0),d(p,1)), and for every δ either F ′
δ

or F ′′
δ

.

A partial converse is the following result, which states that if a function is locally robustly

satisfiable around a solution, the solution is robust.

Proposition 5.1.1. If p is a solution for F, and for every ε > 0 there exists a neighborhood

Ωε ⊆ Bε(p) of p such that F is robustly sat in Ωε , then p is a robust solution for F.

Proof. For every ε > 0, F is robustly sat in Ωε if and only if (by replacing the definition

of robustly satisfiable function) ∀ε , ∃δ s.t. ∀F ′ with d(F,F ′) < δ , F ′ has a solution in

Ωε . F ′ has a solution in Ωε if and only if there exists p′ s.t. F ′(p′) = 0 and p′ ∈ Ωε (i.e.

d(p, p′)< ε). So we obtain: ∀ε , ∃δ s.t. ∀F ′ with d(F,F ′)< δ , ∃p′ s.t. p′ is a solution for F ′

and d(p, p′)< ε which is the definition of robust solution for p.

5.1.3 Robust under instantiation (FRobI)

In general, even if a solution is robust, after the instantiation of some variables, the projec-

tion of the solution may not be a robust solution for the function obtained after variable

instantiation.

Now we provide some notation and some definitions regarding variable instantiation. We

start by formalizing the fact that k coordinates of a point have a finite representation in the

form of a dyadic rational number.
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Definition 5.1.5 (k-finite point). A point p = (p1, · · · , pm) ∈ Rm is a k-finite point (with

0≤ k ≤ m) if for at least k coordinates i ∈ {1, . . . ,m} there exist integers ni and ri such that

pi = ni2−ri .

Here, we use base 2 just for convenience. Any other base would work equally well for

our purposes.

Definition 5.1.6 (Robust instantiation of a point). Let F : B⊆ Rn+k→ Rn be a C1-function

and p= (p1, . . . , pn+k)∈Rn+k a k-finite point (with I denoting a set of k finitely representable

indices).

Given the partial assignment νI
def
= {xi 7→ pi}i∈I , we define the instantiation of F via νI as

the function F|νI : B|Rn ⊆ Rn→ Rn such that for every (x1, . . . ,xn) ∈ Rn, F|νI(x1, . . . ,xn) =

F(y1, . . . ,yn+k), where

for i ∈ {1, . . . ,n+ k}, yi =

{
pi, if i ∈ I,

xi, if i ̸∈ I
.

We say that the partial assignment νI is a robust instantiation of p if and only if the point

p|νI = (pi)i̸∈I ∈ Rn is a robust solution for F|νI .

If an instantiation is not a robust instantiation, then we say it is a non-robust instantiation.

Note that assignments are defined as maps to the set of finitely representable values. So if p

is not a k-finite point, then it admits no instantiations, and hence no robust instantiations.

For our method to succeed, we only have to be lucky once, and show the existence of

a single robust instantiation. So we are not interested in solutions that are robust under all

instantiations, but in solutions that are robust under at least one instantiation. Finally, we

have the following definition (from which the definition of FRobI follows):

Definition 5.1.7 (Robust under instantiation). Given a continuous function F : B⊆ Rn+k→ Rn

and a point p, we say that p is robust under instantiation if there exists at least one robust

instantiation of p.

If no robust instantiation of p exists, then we say that p is non-robust under instantiations.

If p is not a k-finite point, then, by definition, p is non-robust under instantiations.

In the following, for ease of notation and without loss of generality, we will assume that

I = {n+1, . . . ,n+ k}, unless otherwise specified. In this case, we will write ν instead of νI ,
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and we will denote p[1,n]
def
= (p1, . . . , pn) for the projection of p to the first n coordinates (i.e.

the ones not instantiated by ν), and p[n+1,n+k] for the projection of p to the last k coordinates

(i.e. the ones not instantiated by ν).

5.1.4 Robustness after equation adding (FRobLEq).

We define FRobLEq as the set of C1-functions F : Rn+k→ Rn such that there exists a linear

function L : Rn+k → Rk such that the function Fleq : Rn+k→ Rn+k, defined by Fleq : x 7→
(F(x),L(x)), has a robust solution.

5.1.5 Regular solutions (FReg).

We now define the last of our classes of interest. For doing so, we provide a brief background

on the notion of regularity from the field of differential topology.

Definition 5.1.8 (Regular point). Let F : B⊆Rm→Rn be a C1-function, with m−n = k≥ 0.

We say that p ∈ B is a regular point for F if and only if the Jacobian matrix of F at x has

maximal rank.

If F(p) = 0 and p is a regular point, we will say that p is a regular solution of F . If p is

not a regular point, we say that p is a critical point. We say that q ∈ Rn is a regular value if

and only if for every p such that F(p) = q, p is a regular point. If q is not a regular value, we

say it is a critical value.

Regularity is a very meaningful property, as it guarantees the "well-behavior" of the

system. In particular, a regular point p satisfies the hypothesis of the Implicit Function

Theorem [85], that we now recall and that we will use in Section 5.2:

Implicit Function Theorem: If F(p1, . . . , pn, pn+1, . . . , pn+k) = 0, and the Jacobian matrix

of F with respect to the first n coordinates has non-zero determinant in p (i.e. det(JF,x|n(p)) ̸=
0), then there exists a neighborhood U ⊆ Rk of (pn+1, . . . , pn+k) and a C1-function H : U →
Rn such that H(pn+1, . . . , pn+k) = (p1, . . . , pn), and such that, for all q ∈U , F(H(q),q) = 0.

5.2 Regularity and robustness under instantiation

In this section, we prove that the existence of a regular solution is a sufficient—but not

necessary—criterion for the existence of a solution robust under instantiation.
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We prove that, if F has at least one regular solution q, then there exists at least one regular

solution p such that at least k coordinates of p are finitely representable rational numbers,

and such that the subsystem induced from the instantiation of the k corresponding variables

is robustly sat.

We first show that any regular solution is also a robust solution (Lemma 5.2.1), which will

be useful to prove the main result of this section, Lemma 5.2.2, which implies FReg ⊆FRobI .

Then, we will show that this inclusion is strict by providing a counter-example in the form of

a system of equations that has a solution robust under instantiation but no regular solutions

(Lemma 5.2.3).

Lemma 5.2.1. Given a C1-function F : B⊆Rn→Rn, if p is a regular solution for F, then p

is a robust solution for F.

Proof. Assume that p is a regular solution of F . Hence the Jacobian of F at p has maximal

rank. We prove that p is a robust solution of F . So let ε > 0 be arbitrary, but fixed and

such that p is the unique solution of F in Bε(p). Such ε always exists, since by the inverse

function theorem F maps a neighborhood of p diffeomorphically onto an open set of Rn [81,

Chapter 1.2]. Hence 0 ̸∈ ∂Bε(p), and, since p is the only solution of F in Bε(p), and it is

regular, then, by definition, deg(F,Bε(p),0) = |det(JF(p))| ≠ 0. Let δ < minx∈∂Bε (p) |F(x)|.
By Lemma 1 [48], every F ′ with d(F,F ′)< δ has a zero in Bε(p). This proves that p is a

robust solution for F .

Lemma 5.2.2. Let F : B ⊆ Rm→ Rn (with m = n+ k) be a C1-function. If there exists a

regular solution q of F, then there exists a regular solution p of F in a neighborhood of q

such that p is robust under instantiation.

Proof. If q is a regular solution for F , then JF(q) has maximum rank. Since a rectangular

matrix has maximum rank if and only if one of its maximal square sub-matrix has maximum

rank, then, without loss of generality, we can reorder the variables so that the square sub-

matrix given by the first n columns has maximum rank, i.e. det(JF,x[1,n](q)) ̸= 0. By the

Implicit Function Theorem, there exists a neighborhood U ⊆ Rk of (qn+1, . . . ,qn+k) and a

C1-function H : U → Rn such that H(qn+1, . . . ,qn+k) = (q1, . . . ,qn), and such that, for all

q′ ∈U , F(H(q′),q′) = 0.

In general, it is not guaranteed that every (H(q′),q′) will be a regular point for F .

However, since the Jacobian JF : Rm → Rm×n, the projection πn×n : Rm×n→ Rn×n (that

projects a m×n matrix onto the n×n sub-matrix of its first n columns) and the determinant
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det : Rn×n → R are all continuous functions, then the set Ur ⊆ Rm, consisting of all the

points q′ for which det(JF,x[1,n](q
′)) ̸= 0, is open, since R \ {0} is open and, by definition,

Ur = (det ◦πn×n ◦ JF)
−1(R\{0}).

Let us consider the projection of Ur over Rk, i.e. Ur|k = πk(Ur) = {(q′n+1, . . . ,q
′
n+k) ∈

Rk|(q′1, . . . ,q′n,q′n+1, . . . ,q
′
n+k) ∈Ur}. Since projections are open maps, then Ur|k is open.

Since both U and Ur|k are neighborhoods of (qn+1, . . . ,qn+k), then their intersection U ′ def
=

U ∩Ur|k is again a neighborhood of (qn+1, . . . ,qn+k).

Now we prove that U ′ contains at least one k-finite point p′. The set of k-finite points

in Rk is exactly the set of points having coordinates with finite representation. Let us call

this set A. We have that A is dense in Rk, as, for every point z = (z1, . . . ,zk) ∈ Rk, z is the

limit of the sequence {([z1]i, . . . , [zk]i)}i∈N ⊆ A, where [z j]i is the truncation of z j to the i-th

digit after the zero. Since A is dense in Rk, then A intersects every non-empty open of Rk. In

particular A∩U ′ ̸= /0, hence there exists p′ ∈ A∩U ′.

Let p def
=(H(p′), p′)∈Rm. We have that p is a solution for F (since F(p)=F(H(p′), p′)=

0). Moreover, p is also regular, since p′ ∈U ′ ⊆Ur|k and hence (H(p′), p′) ∈Ur.

Let ν
def
= {xi 7→ pi}i∈[n+1,n+k]. We have that the point p[1,n] = H(p′) ∈ Rn is a regular

point for F|ν . Indeed, since p is a regular point, and JF,x|n(p) depends only on the first n

coordinates, then det(JF|ν (p[1,n])) ̸= 0.

Since p[1,n] is a regular solution for F|ν , by Lemma 5.2.1, p[1,n] is also a robust solution

for F|ν . Hence p is robust under instantiation.

Modifying the proof by choosing directly p as q we get:

Corollary 5.2.1. Let F : B ⊆ Rm → Rn (with m = n+ k) be a C1-function If q is both a

regular solution and a k-finite point, then q is robust under instantiation.

Now we show that the converse of Lemma 5.2.2 does not hold, i.e. that the existence

of a solution robust under instantiation does not imply the existence of a regular solution.

Consider the following example:

Example 5.2.1 (Critical solution, but robust under instantiation). Let F : [0,1]2 ⊆ R2→ R
defined by F(x,y) = (x2− y3), and let p = (0,0). JF(p) = (0,0) has non-maximum rank

(hence p is a critical solution), but the instantiation {x 7→ 0} leads to the subsystem −y3 = 0,

which is robust.

In this example, we could have chosen a different point, say p′ = (1,1), which is both

robust under instantiation and regular.
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However, this is not always possible. A system can have a solution robust under instantia-

tion, but no regular solutions. Indeed:

Lemma 5.2.3. FRobI ̸⊆ FReg

Proof. Let F : [−1,1]3 ⊆ R3→ R2 defined by

F(x1,x2,x3) =

x3
1 (F1)

x2 + x3 (F2)

The point (0,0,0) is robust under instantiation. Indeed, the instantiation {x3 7→ 0} leads to

the following system of equations

F ′(x1,x2) =

x3
1 (F ′1)

x2 (F ′2)

which has non-zero degree, hence it is robustly sat. It is easy to show that the degree of F ′ in

[−1,1]2 is non-zero. In fact, F ′1 depends only on x1 and F ′2 only on x2, and for both F ′1 and

F ′2 it suffices to apply the Intermediate Value Theorem to prove that deg(F ′i , [−1,1],0) ̸= 0

(for i = 1,2). Since the degree of the Cartesian product is the product of the degrees [39,

Theorem 7.1.1], deg(F ′, [−1,1]2,0) = deg(F ′1, [−1,1],0)∗deg(F ′2, [−1,1],0) ̸= 0.

So F ∈ FRobI . However, F does not have any regular solution. Indeed, the first equation

implies that for every every solution p its first coordinate has to be p1 = 0. Since, for such a

solution p, the first row of JF(p) is everywhere 0, then the Jacobian cannot have maximum

rank. Hence every solution p is not regular, i.e. F ̸∈ FReg.

5.3 Robustness preservation after variable instantiation

In the previous section, we have proven that, under the assumption of the existence of a

regular solution, there exists a solution that is robust under instantiation.

But what happens if we drop the assumption of regularity? In general, if we don’t put

any restriction on the functions we are considering, the solution space can be arbitrarily

complicated. Indeed, for every closed subset K ⊆ Rm, there exists a smooth function F such

that F−1(0) = K ([69, Theorem 2.29]).
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One may hope that, by restricting to functions that have a robust solution, we can always

find a solution robust under instantiation. In this section, we show that this, unfortunately,

does not hold. Consider the following example.

Example 5.3.1 (Robust solution, but non-robust under instantiations). Let F : [−1,1]2 ⊆ R2→ R
defined by F(x,y) = (x2−y2), and let p = (0,0). It is easy to show that p is a robust solution.

However, whether we instantiate {x 7→ 0} or {y 7→ 0}, the resulting subfunctions (resp.

F|{x 7→0}(y) = y2 and F|{y7→0}(x) = x2) are not robust.

In this example, we could have chosen another point, for example p′ = (1,1), which is

regular (since JF(p′) = (2,−2)), and hence, by Corollary 5.2.1, robust under instantiation.

But in general, this is not always possible. Indeed, we have the following result:

Lemma 5.3.1. FRob ̸⊆ FRobI

Proof. Let F : [−1,1]4 ⊆ R4→ R3 defined by

F(x1,x2,x3,x4) =


x2

1 + x2
2− x2

3− x2
4

2(x1x4 + x2x3)

2(x2x4− x1x3)

It is easy to show that p = (0,0,0,0) is the only solution of F . Moreover, p is robust

(see the discussion about Hopf maps in [45]) , hence F ∈ FRob. However, no instantia-

tion νi
def
= {xi 7→ 0} is robust. Indeed, (0,0,0) is the only solution of F|νi in [−1,1]3, but

deg(F|νi, [−1,1]3,0) = 0 (remember that, if a system of equations F has an isolated robust

solution in B, then deg(F,B,0) ̸= 0). So F ̸∈ FRobI .

Now we show that the converse holds, i.e. that every solution robust under instantiation

is robust:

Lemma 5.3.2. Let F : B⊆ Rn+k→ Rn. If p is a solution robust under instantiation, then p

is a robust solution.

Proof. If p is a solution robust under instantiation, then there exists a set of indices I (w.l.o.g.

say I = {n+ 1, . . . ,n+ k}) and a corresponding instantiation ν such that p[1,n] is a robust

solution for F|ν : B|Rn ⊆ Rn→ Rn, that is, for every ε > 0 there is a δ such that for all F ′|ν
with d(F|ν ,F ′|ν)< δ , there exists a solution p′[1,n] of F ′|ν with d(p[1,n], p′[1,n])< ε .
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To prove that p is a robust solution for F let ε > 0 be arbitrary, but fixed, and take

the corresponding δ as ensured by robustness under instantiation. For every F ′ with

d(F,F ′) < δ , we have that also d(F|ν ,F ′|ν) < δ , hence there exists p′[1,n] that satisfies F ′|ν
with d(p[1,n], p′[1,n])< ε . If p′[1,n] satisfies F ′|ν , then p′ def

= (p′[1,n], p[n+1,n+k]) satisfies F ′. Since

d(p, p′) = d(p[1,n], p′[1,n])< ε , p satisfies the definition of robust solution for F .

A straightforward corollary of Lemma 5.3.2, is that FRobI ⊆ FRob which concludes

the proof that FRobI ⫋ FRob. Together with Lemma 5.2.3 and Lemma 5.2.2, this implies

Theorem 5.0.1.

5.4 Variable instantiation vs. equation adding

Given an under-constrained system of equations, we showed that there are two different ways

to reduce to a well-constrained system of equations: decreasing the number of variables (i.e.

instantiations) or increasing the number equations. In this section we will show that the class

of systems that can be solved via variable instantiation is a subset of the class of systems that

can be solved via adding equations.

Recall our definition of FRobLEq as the set of functions F : B ⊆ Rn+k → Rn such that

there exists a linear function L : Rn+k→ Rk such that the function Fleq : B⊆ Rn+k→ Rn+k,

defined by Fleq : x 7→ (F(x),L(x)), has a robust solution.

Given any partial assignment ν
def
= {xi 7→ pi}i∈[n+1,n+k], we can consider the function

Fleq = (F,L), given by F and by the linear function L : B⊆ Rn+k→ Rk defined by

L : (x1, . . . ,xn+k) 7→ (xn+1− pn+1, . . . ,xn+k− pn+k). Equivalently, since L only depends on

the last k variables, we can consider it as a function L : B|Rk ⊆ Rk→ Rk.

While it is trivial to show that every solution of F|ν is also a solution of Fleq, we need to

prove that also the robustness of a solution is preserved.

Lemma 5.4.1. Given a system of equations F = 0 (with F : B ⊆ Rn+k → Rn), a point

p = (p1, . . . , pn+k) ∈ B and subset of indexes I := {n+1,n+2, . . . ,n+ k}, let us consider

the following statements:

1. For the function F|ν : B|Rn ⊆ Rn→ Rn, obtained by instantiating variables via ν =

{xi 7→ pi}i∈I , the point p[1,n]
def
= (p1, . . . , pn) is a robust solution
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2. For the function Fleq : B⊆ Rn+k→ Rn+k, defined by

Fleq(x1, . . . ,xn+k) 7→ (F(x1, . . . ,xn+k),L(xn+1, . . . ,xn+k))

where L : B|Rk ⊆ Rk→ Rk is defined by

L : (xn+1, . . . ,xn+k) 7→ (xn+1− pn+1, . . . ,xn+k− pn+k),

the point p is a robust solution.

Then, it holds that 1. implies 2..

Proof. To prove that 1. ⇒ 2., it will be useful to consider a third auxiliary condition:

3. For the function F|ν leq

def
= F|ν×L : B⊆Rn+k→Rn+k obtained by the Cartesian product

between F|ν and the linear function L, the point p is a robust solution

and prove first that 1.⇒ 3. and then that 3.⇒ 2.

(1.⇒ 3. ) By Theorem 7.1.1 [39], the degree of the Cartesian product is the product of

the degrees, i.e., for every Ω = Ω1×Ω2 ⊆ Rn×Rk,

deg(F|ν leq
,Ω,0) = deg(F|ν ,Ω1,0)∗deg(L,Ω2,0) (5.1)

Since JL(p[n+1,n+k]) is the identity matrix, the point p[n+1,n+k] is a regular solution for L.

Since p[n+1,n+k] is the only solution of L, then, for every Ω2 ⊆ Rk such that p[n+1,n+k] ∈Ω2,

deg(L,Ω2,0) = det(JL(p[n+1,n+k])) = 1.

Thus, for every Ω = Ω1×Ω2 ⊆ Rn×Rk such that p ∈Ω, we have that

deg(F|ν leq
,Ω,0) = deg(F|ν ,Ω1,0) (5.2)

If 1. holds, then, by Thm. 6 [48], for every ε > 0 there exists an open Ω1,ε ⊆ Bε(p[1,n])

such that deg(F|ν ,Ω1,ε ,0) ̸= 0. Let Ω2 be any neighborhood of p[n+1,n+k] s.t. Ω2 ⊆
Bε(p[n+1,n+k]), and let Ωε

def
= Ω1,ε ×Ω2. By Equation 5.2, deg(F|ν leq

,Ωε ,0) ̸= 0. Hence,

for every ε > 0, F|ν leq
is robustly sat in Ω1,ε . So we have constructed, for every ε > 0, a

neighborhood Ω1,ε ⊆ Bε(p)ε of p in which F|ν leq
is robustly sat. By Proposition 5.1.1, this

implies that p is a robust solution for F|ν leq
.
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(3.⇒ 2. ) Now we show that if p is a robust solution for F|ν leq
then it is a robust solution

for Fleq. We will construct a homotopy between F|ν leq
and Fleq, and then rely on the Homotopy

Invariance Property of the topological degree to prove the claim.

Let S : Rn+k× [0,1]→ Rn+k be defined by

S : ((x1, . . . ,xn,xn+1, . . .xn+k), t) 7→

(x1, . . . ,xn, txn+1 +(1− t)pn+1, . . . , txn+k +(1− t)pn+k)

The map H : B× [0,1]⊆ Rn+k× [0,1]→ Rn+k defined by

H : (x1, . . . ,xn+k, t) 7→ ((F ◦S)(x1, . . . ,xn+k, t) , L((xn+1, . . . ,xn+k)))

is a homotopy between F|ν leq
and Fleq since H(·,0)≡ F|ν leq

, H(·,1)≡ Fleq, and H is continu-

ous, being the composition of continuous functions.

It is easy to see that the functions Fleq and F|ν leq
have exactly the same solution space. In-

deed, every solution of Fleq has to satisfy the equations given by L, i.e. xn+1 = pn+1, . . . ,xn+k = pn+k.

By replacing in Fleq every xi with pi, for i ∈ [n+1,n+ k], we obtain exactly F|ν leq
.

Furthermore, for every t ∈ [0,1] the solution space of H(·, t) is the same as H(·,0)≡ F|ν leq
.

Indeed, for every t, a solution of H(·, t) has to satisfy the equations given by L. Then, by

replacing every xi with pi for i ∈ [n+1,n+ k], we have that every txi +(1− t)pi is replaced

by t pi +(1− t)pi, which is equal to pi. Thus we reduced again to F|ν leq
.

Now, suppose that 3. holds. Then, for every ε > 0, there exists Ωε ⊆ Bε(p) such that

deg(F|ν leq
,Ωε ,0) ̸= 0. This implies that 0 ̸∈ F|ν leq

(∂Ωε), hence 0 ̸∈ H(∂Ωε ,1). So, by the

previous observation, 0 ̸∈ H(∂Ωε , t) for every t ∈ [0,1]. Hence 0 ̸∈ H(∂Ωε , [0,1]), and we

can apply the Homotopy Invariance Property.

The Homotopy Invariance Property of the topological degree states that, if 0 ̸∈ H(∂Ωε × [0,1]),

then deg(H(·,0),Ωε ,0) = deg(H(·,1),Ωε ,0), i.e. deg(F|ν leq
,Ωε ,0) = deg(Fleq,Ωε ,0). So

we have constructed, for every ε > 0, a neighborhood Ωε ⊆ Bε(p) of p in which Fleq is

robustly sat. By Proposition 5.1.1, this implies that p is a robust solution for Fleq.

So robustness of the system obtained by variable instantiation implies robustness of

the system obtained by adding the equalities corresponding to this variable instantiation.

Theorem 5.0.2 is a straight-forward consequence.
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5.5 Termination

The method discussed in Section 4.4 made use of numerical optimization to enumerate

the points over which the variable instantiation method is applied. This technique, while

practically very efficient—as shown by our experiments—is not guaranteed to terminate, in

general. Indeed, even in the bounded case, numerical optimization does not guarantee full

coverage of the space.

In this section, we present a variation of our method that uses a different technique for

enumerating points, and that is guaranteed to terminate on problems in FRobI . While this

variation is not intended to be of practical use, it will serve the purpose of proving Theorem

5.5.1.

Given F : B⊆Rn+k→Rn, if F ∈FRobI , by definition we know that there exists a k-finite

point p that is robust under instantiation. Such a point p is, in general, not a (n+ k)-finite

point (indeed, there are problems for which no solution is a (n+ k)-finite point). Hence no

point enumeration technique is guaranteed to find precisely p, since only (n+ k)-finite points

can be expressed explicitly. However, this is not an actual limitation. Indeed, for our method

to succeed, we don’t necessarily need to explicitly produce a solution. We just need to find a

point sufficiently close to an actual solution, and that shares with the solution k indices, so

that, after the instantiation of the corresponding k variables, we end up with a subproblem

that is robustly satisfiable. This suffices to produce a certificate.

The following lemma shows that, for every problem in FRobI , it is always possible to find

a (n+ k)-finite point and a partial assignment such that the resulting subproblem is robustly

satisfiable.

Lemma 5.5.1. Let F : B⊆ Rn+k→ Rn. If F ∈ FRobI , then there exist a (n+ k)-finite point

p′ ∈ B and a partial assignment ν ′
def
= {xi→ p′i}i∈I (with I being a set of k indices), such that

the function F|ν ′ : B|Rn ⊆ Rn→ Rn is robustly satisfiable.

Proof. F ∈ FRobI means that there exists a k-finite point p (w.l.o.g. say the k finitely

representable indices are [n+1,n+ k]) that is robust under instantiation, i.e. there exists a

partial assignment ν
def
= {xi 7→ pi}i∈[n+1,n+k] such that p|ν is a robust solution for F|ν . This

implies that F|ν is robustly satisfiable in B|Rn .

Now, given any p′ ∈ B such that p′n+1 = pn+1, . . . , p′n+k = pn+k, and, given ν ′
def
= {xi 7→

p′i}i∈[n+1,n+k], we have that ν ′ ≡ ν , hence F ′|ν ≡ F|ν , which implies that F|ν ′ is robustly
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satisfiable in B|Rn . In order to find a p′ that respects the statement conditions, first we

fix the last k coordinates to be equal to (pn+1, . . . , pn+k). Then, since the set of n-finite

points is dense in Rn, and hence intersects Bo
|Rn (being an open), there exists a n-finite point

(p′1, . . . , p′n) ∈ Bo
|Rn . If we take such point, and append the last k coordinates previously

fixed, we obtain a point p′ def
= (p′1, . . . , p′n, pn+1, . . . , pn+k). Since the last k coordinates of p′

coincides with the last k coordinates of p, we have that F|ν ′ is robustly satisfiable in B|Rn .

Moreover, such p′ is a (n+ k)-finite point. Indeed, the part consisting of the first n coordinates

is n-finite by construction, while the second part consisting of the last k coordinates is k-finite

because pn+1, . . . , pn+k is.

Considering a bounded system of equations and inequalities satisfiable iff it is satisfiable

by a variable assignment the assigns values within the corresponding interval to all variables,

it is straightforward to extend the definitions from Section 5.1 analogically from systems of

equations to bounded systems of equations and inequalities. Based on this, we can prove the

following theorem.

Theorem 5.5.1. There exists a procedure that, given a bounded system of equations and

inequalities F = 0∧G≤ 0,

• always returns the correct answer “satisfiable” or “unsatisfiable”, if it terminates,

• always terminates successfully when F = 0∧G ≤ 0 is robustly satisfiable and F ∈
FRobI ,

• always terminates successfully when F = 0∧G≤ 0 is robustly unsatisfiable.

Proof. We first concentrate on the second point, by showing a procedure that always correctly

terminates on problems in FRobI .

By Lemma 5.5.1, we have that, for every F : B⊆ Rn+k→ Rn such that F ∈ FRobI , there

exists a (n+ k)-finite point p′ and a partial assignment ν ′ such that F|ν ′ is robustly satisfiable.

We can always find such p′ and ν ′. Indeed, since the set of (n+ k)-finite points is countable,

we can construct a well-order: say, for example, we first take the finite set of points whose

coordinates are represented by at most 1 digit (and sort it by lexicographic order), then the

finite set of points whose coordinates are represented by at most 2 digits, and so on 1. For

each such point p, and for each instantiation ν (note that the set of possible instantiations is

finite), we can consider the resulting subsystem F|ν ′ : B|Rn ⊆ Rn→ Rn, and then apply the

1Note that this is independent by the Axiom of Choice, which is needed only in the case of uncountable sets.
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box-gridding procedure discussed in Section 4.4.4, which—without the stopping criterion—

is guaranteed to terminate on robust instances [48]. Note that box-gridding method also

handles inequalities.

The procedure described so far is not yet guaranteed to converge. Indeed, while box-

gridding is guaranteed to terminate on robust instances, it could diverge on non-robust

instances, thus preventing the general procedure to terminate (either because one point

yielded before p′ was non-robust, or because one instantiation tried before ν ′ was a non-

robust instantiation).

We can overcome this problem by using, instead of depth-first search, a technique called

dove-tailing. Indeed, we have an infinite sequence of problems (given by the combination

of points and instantiations), and, for each, a (possibly infinite) sequence of box-gridding

iterations. We outline the following iterative procedure:

• For i = 1, we perform the 1-st box-gridding iteration on the 1-st problem.

• For i = 2, we perform the 2-nd box-gridding iteration on the first problem, and then

the 1-st box-gridding iteration on the second problem.

• . . .

• For i = N, we perform the N-th box-gridding iteration on the first problem, then

the (N− 1)-th box-gridding iteration on the second problem, . . . , and then the 1-st

box-gridding iteration on the N-th problem.

First, we are guaranteed to find the problem given by the point p′ and the variable instantiation

ν ′ after a finite amount of steps. Given such problem, we are guaranteed that also the box-

gridding procedure will terminate after finitely many iterations. Hence, also our general

procedure is guaranteed to terminate.

The third point regarding robustly unsatisfiable problems simply follows by the use of

box-gridding on the whole system using the bounds of the given system of equations and

inequations as its starting box. Indeed, if the system is robustly unsatisfiable, then this is

guaranteed to terminate with a correct result.

To finalize the proof of the theorem, it suffices to consider the procedure that runs the

two previous procedures in parallel.
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Note that for formulas of the given form (bounded system of equations and inequalities),

the procedure described in the proof of Theorem 5.5.1 can be seen as an instantiation of the

certificate search method presented in Section 4.3 that uses exhaustive enumeration on the

level of points and instantiations, and directly uses the given bounds as the starting box for box

gridding. The theorem shows that under robustness assumptions, such an instantiation will

always terminate successfully for bounded system of equations and inequalities. However,

complete enumeration makes this instantiation hopelessly inefficient in practice, and goal

oriented methods, as discussed in the first part of the paper, are necessary for practical

efficiency. Also, there is no known way of algorithmically deciding whether a given formula

satisfies the robustness precondition that ensures termination of the procedure, and hence

Theorem 5.5.1 is not a decidability result.



Chapter 6

Optimization-guided MCSAT for
SMT(NIA)

Historically, SMT solving techniques have been divided into two main approaches: the eager

approach, and the lazy approach. In the eager approach, an SMT formula is encoded into an

equi-satisfiable SAT formula, effectively reducing an SMT problem to a SAT one. The lazy

approach, on the contrary, clearly separates the Boolean reasoning by the theory reasoning,

relying on a SAT solver for the former and on a theory solver for the latter, usually within the

CDCL(T ) framework.

A generalization of CDCL(T ) that has gained considerable popularity in the last decade

is the Model-Constructing Satisfiability calculus (MCSAT). In the MCSAT approach, the

SMT solver tries to construct a theory model step-by-step, similarly to how SAT solvers

build Boolean models. Here, theory reasoning is used to assess the consistency of partial

assignments, to provide explanations of infeasibility, to decide theory variables, and to

propagate theory constraints.

A quite sensitive part of the MCSAT algorithm is the decision of theory variables. As for

the SAT case, where such topic has been extensively discussed [68], this choice can have a

tremendous impact on the success of the search. Differently from the SAT case, however,

where the choices are just two (⊤ or ⊥), for some SMT theories there can even be infinitely

many feasible assignments. MCSAT-based solvers have adopted some heuristics in order

to privilege certain assignments over others (in the case of NRA, for example, preferring

integer values over polynomial root values will ease future computations). Such heuristics,
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however, usually do not decide on the basis of which assignment is more likely to lead to an

actual model; rather, they decide on the basis of which assignment is cheaper.

In the Logic-to-Optimization framework (L2O), a logical formula is mapped into a cost

function that represents the distance from a model, and numerical minimization methods are

used to find candidate models with a small cost, that are therefore more likely to be actual

models, or close to actual models. Such approach has already been applied successfully in

the context of floating points [51] and of non-linear arithmetic (possibly augmented with

transcendental functions) [72, 71, 87].

In this preliminary report, we propose an optimization-guided MCSAT framework in-

spired by the L2O approach, where decision steps are chosen on the basis of hints provided

by an optimizer that tries to minimize a cost function.

Contrarily to previous works in which L2O has simply been used to statically generate

initial candidate points at the beginning of the search, here, we design a tight integration

between L2O and the MCSAT main algorithm. As the MCSAT trail evolves through decisions,

propagations, and conflicts, the cost function automatically gets updated accordingly. Vice-

versa, minimization steps performed by the optimizer on the cost function guide the MCSAT

search to make decisions that are more likely to lead to a model.

We have implement a preliminary version of such method in the YICES SMT-solver [41],

focusing on the theory of Non-linear Integer Arithmetic (NIA). We have performed

preliminary experiments on the whole quantifier-free NIA benchmark set from the SMT-

LIB distribution [10]. The results demonstrates that, by adopting the new approach, YICES

is able to solve more benchmarks than before, both for satisfiable and unsatisfiable cases.

6.1 Method

6.1.1 Logic-to-Optimization

Given any theory T for which it is possible to define a distance between terms, we can define

a Logic-to-Optimization operator L2O that maps a T -formula to a T -term which represents

the distance from a model (i.e., the cost). In the following, we will limit to the case of T
being an arithmetic theory.

First, we introduce a function symbol d of arity 2, and we assume a fixed interpretation d

that satisfies the properties of metric distance, i.e.:
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• symmetry: d(a,b) = d(b,a), for all a,b.

• positivity: d(a,b)≥ 0, for all a,b.

• reflexivity: d(a,b) = 0 if and only if a = b , for all a,b.

• triangle inequality: d(a,b)+d(b,c)≥ d(a,c), for all a,b,c.

Secondly, we assume the existence of a fixed constant term ε , such that ε > 0.

We recursively define L2O as follows:

L2O(b) def
= IT E(b,0,1)

L2O(¬b) def
= IT E(b,1,0)

L2O(t1 = t2)
def
= d(t1, t2)

L2O(t1 ≤ t2)
def
= IT E(t1 ≤ t2, 0, d(t1, t2))

L2O(t1 < t2)
def
= IT E(t1 < t2, 0, d(t1, t2)+ ε)

L2O(t1 ̸= t2)
def
= IT E(t1 ̸= t2, 0, 1)

L2O(φ1∧φ2)
def
= L2O(φ1)+L2O(φ2)

L2O(φ1∨φ2)
def
= L2O(φ1)∗L2O(φ2)

L2O(IT E(φc,φ1,φ2)
def
= IT E(φc, L2O(φ1), L2O(φ2))

L2O(¬IT E(φc,φ1,φ2)
def
= IT E(φc, L2O(¬φ1), L2O(¬φ2))

We say that L2O(φ) is the cost function of φ . Note that L2O(φ) is of arithmetic sort.

It is easy to check that L2O respects the following property:

Property 6.1.1. Let φ be a formula, and let µ be an assignment. Then, µ satisfies φ if and

only if L2O(φ) evaluates to 0 under µ .

As a consequence of this property, the satisfiability problem of φ is equivalent to the

problem of finding an assignment that evaluates L2O(φ) to 0. In the following, with a slight

abuse of notation, we will denote with L2O(φ) also the corresponding arithmetic function

determined by the interpretation d. Since, by construction, L2O(φ) is always non-negative,

then φ is satisfiable if and only if 0 is a global minimum for L2O(φ).

6.1.2 Local minimization through Hill-climbing

Here, we explain how to perform local minimization given a cost function over the integers

obtained as in the previous paragraph. We use the Hill-climbing algorithm [59], a simple yet

effective minimization technique.
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Given a NIA formula φ , let fc
def
= L2O(φ) be its cost function. Variables in fc can be of

both Boolean and integer sort. We denote the set of all the variables in fc by Vars( fc), the set

of Boolean variables by VarsB( fc), and the set of integer variables by VarsI( fc).

Given a full assignments µ on the variables Vars( fc), we call a move from µ an assign-

ments µ ′ obtained from µ by changing the assigned value of one variable. In particular, we

allow two types of moves:

• Boolean moves: Given b∈VarsB( fc), we have that the assignment µ¬b
def
= µ[b 7→ ¬µ(b)]

obtained by mapping b to the negation of its value assigned by µ is a move from µ .

• Integer moves: Given x∈VarsI( fc), we have that the assignments µx+1
def
= µ[x 7→ µ(x)+1]

and µx−1
def
= µ[x 7→ µ(x)−1] obtained by mapping x to the successor and predecessor

of its value assigned by µ are moves from µ .

The basic procedure of hill-climbing is as follows. It takes in input a cost function fc

and an assignment µ , and it computes the cost c def
= µ[ fc]. It cycles over all the variables

in fc, and, for each variable var, it tries either the one move possible (if var ∈ VarsB( fc)),

or two moves possible (if var ∈ VarsI( fc)). For each move µ ′, it computes c′ def
= µ ′[ fc]. If

c′ > c, then it updates the assignment and the cost (i.e., µ ← µ ′, and c← c′), and restarts the

cycle; otherwise, it goes to the next variables. If no move has improved the cost, then a local

minimum is found, and µ is returned.

6.1.3 Interplay with MCSAT

Here, we explain how the MCSAT procedure interacts with the L2O module, which consists

of the L2O operator and the local minimization algorithm.

We construct L2O(φ) one time at the beginning of the search, after the preprocessing

phase. We begin with a starting assignment µ0, that by default maps every arithmetic variable

to 0, and every boolean variable to ⊤. Then, we run the local minimizer, and obtain an

assignment µ∗0 which is a local minimum of L2O(φ) in the neighborhood of µ0.

We pass µ∗0 back to MCSAT as a hint, i.e. a cached assignment that will be used during

the decision phase of a variable, as long as the assigned value belongs to the set of feasible

values.

After a certain number of conflicts, if the procedure has not terminated, we call the L2O

module again after the last conflict has been resolved. In addition, we now pass to the L2O

module the trail M, and a cache assignment (if present). Each variable x in M is assigned to
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a value ax. This partial assignment represents the current status of the model construction

process, thus we do not want to change it. Hence, we fix each variable x in M to its respective

value ax, and we do not allow the minimizer to change the value of x. In practice, this

means that, given a trail M, we are now working with a new cost function L2O(φ)|M, whose

dimension is lower than the dimension of the original cost function L2O(φ). We then run

again the minimizer, now on L2O(φ)|M. For the choice of the starting point, if a variable

has an assigned cached value, we choose that; otherwise, we choose default value.

Given the new local minimum, we pass it back to MCSAT as a hint, and we repeat the

process.

6.2 Experiments

Implementation. We have implemented our optimization-guided MCSAT method in the

YICES SMT solver, which already supported MCSAT. We added a module for Logic-to-

Optimization, and a module to perform numerical minimization on the integers based on the

hill-climbing algorithm. We will denote this variant of YICES with YICESL2O.

Setup. We have run our experiments on a cluster equipped with AMD EPYC 7502 ma-

chines, using a time limit of 300 seconds, and a memory limit of 8GB. We have compared

the “stock” version of YICES with the new variant, YICESL2O.
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YICES
17651

(12038)
(5613)

14441
(10070)
(4371)

174
(79)
(95)

8
(8)
(0)

92
(4)

(88)

308
(7)

(301)

0
(0)
(0)

122
(115)
(7)

108
(106)
(2)

7
(7)
(0)

8
(8)
(0)

0
(0)
(0)

7
(0)
(7)

2344
(1628)
(716)

32
(6)

(26)

YICES-L2O
17953

(12283)
(5670)

14590
(10165)
(4425)

175
(79)
(96)

8
(8)
(0)

94
(4)
(90)

304
(6)

(298)

0
(0)
(0)

268
(261)

(7)

108
(106)
(2)

7
(7)
(0)

8
(8)
(0)

0
(0)
(0)

7
(0)
(7)

2352
(1633)
(719)

32
(6)

(26)

Table 6.1 Summary of results for SMT(NIA) benchmarks with a timeout of 300s. Strictly
better results are highlighted in underline and boldface for the “Total” entries, and only in
underline for the “(sat)” and “(unsat)” entries.
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Figure 6.1 Survival plots for the experi-
ments in Table 6.1. For each solver, the
plot shows the number of instances solved (x
axis) within the given time (y axis), in linear
scale.

Figure 6.2 Survival plots for the experi-
ments in Table 6.1. For each solver, the
plot shows the number of instances solved (x
axis) within the given time (y axis), in loga-
rithmic scale.

Benchmarks. We have considered all the SMT-LIB benchmarks from the QF_NIA cate-

gory. This is a class of 25443 benchmarks, among which 14990 come with status “sat”, 5183

come with status “unsat”, and 5270 come with status “unknown”.

Results. We can see from the results in Table 6.1 that YICESL2O solves more benchmarks

than YICES on both satisfiable and unsatisfiable cases, improving the solver performances

for most of the families. From the survival plots in Figure 6.1 and Figure 6.2, we see

that YICESL2O is overall faster than YICES, although for simple benchmarks it pays the

price of running the local minimization procedure, allowing YICES to be faster on easy

instances. Already for instances that take more than 2 seconds, however, we have the surpass

of YICESL2O. We stress that our implementation is still rudimentary, and a more efficient

implementation, better heuristics for the hill climbing algorithm, and a better interaction

between the L2O module and the main MCSAT module, will most likely lead to better

results.
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6.3 Related work

The Logic-to-Optimization approach has already been applied in the context of floating-point

arithmetic [51], as well as NRA and NT A [72, 71, 87], with positive results. However,

in such works, the employment of L2O has been limited to providing candidate points

at the beginning of the search, using a global optimization algorithm that adopts random

jumps to move from one local minimum to another, reducing the role of L2O to that of a

static assistant. Here, on the contrary, L2O is part of a tighter integration with the MCSAT

procedure, benefiting from the conflict resolution capability of the calculus, and influencing

its choices during the decision phase. Indeed, we take the best of a local minimization phase

that helps guiding the model construction toward a better assignment, and the best of a

conflict resolution process that moves away from the found local minimum through precise

reasoning.

Another line of work closely related to ours is local search, which has recently been

applied to SMT(NRA) [112, 70] and SMT(NIA) [22, 117]. A common trait of this

approach and ours, is that both apply local changes to partial assignments. However, the

criterion based on which these local changes are applied is quite different. Local search

techniques rely on critical moves, i.e. assignment changes that increase the number of literals

satisfied. Our approach, on the other side, relies on assignment changes that increase the

proximity to a solution in terms of arithmetical distance. As a simple example, consider the

formula φ ≡ (x2 = y ∧ x = y−2), and the assignment µ = {x 7→ 3,y 7→ 6}. The move that

changes the assignment of x from x 7→ 3 to x 7→ 2 would not be considered as a critical move

in the context of typical local search algorithms, as it does not change the truth value of any

of the two literals, which still evaluate both to false trough µ ′ = {x 7→ 2,y 7→ 6}. However,

µ ′ assigns x to the only possible value to construct a model. This can be of essential help

for decision procedures that work by substituting partial assignments to reduce to lower-

dimensional sub-problems (the CAD-based MCSAT algorithm used by YICES is an example

of that). Indeed, while the formula φ|x 7→3 ≡ (9 = y)∧ (3 = y−2) is unsatisfiable, the formula

φ|x 7→2 ≡ (4 = y)∧ (2 = y−2) is satisfiable.



Chapter 7

Conclusion

In this thesis, we have tackled the problem of non-linear real arithmetic augmented with

exponential and trigonometric functions (NT A). We have proposed a novel approach that

leverages techniques coming from the fields of numerical analysis and topology. Numerical

methods are used to quickly find candidate approximate solutions, while topological methods

are used to prove the existence of a solution within a given bounded region without having to

explicitly express such solution. Experimental evaluation showed that the proposed approach

is able to solve a significantly higher number of benchmarks than state-of-the-art SMT solvers

for satisfiable NT A formulas.

The success of our method, compared to the state-of-the-art, can be explained as follows.

Given that most solutions of NT A formulas contain transcendental values, and that no

known finite representation for such values is available, the only viable strategy for proving

the satisfiability of generalNT A formulas is to use indirect methods, such as zero-existence

theorems, that circumvent the representability issue. These methods are well-known in the

mathematical community, but have not found much space in SMT solving, yet. A notable

exception is RASAT, which had implemented a version of the Generalized Intermediate

Value Theorem, paired with Interval Constraint Propagation. However, being restricted to

NRA, its success has been limited, due to the tough competition of complete decision

procedures, such as Cylindric Algebraic Decomposition, that have dominated the scene for

the last decade. For NT A, however, such kind of procedures do not exist, and incomplete

procedures, such as Interval Constraint Propagation and Incremental Linearization, fail to

prove the satisfiability of even simple equations such as ex−3 = 0. This leaves zero-existence

theorems with no real competitors.
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The adoption of zero-existence theorems in the SMT context is, however, anything but

trivial. Indeed, these results are, theoretically, limited to systems of equations that respect

certain conditions on the number of variables and equations and whose domain is a bounded

region, and, practically, they require such regions to be very small, in order to be sufficiently

efficient. This led us to look for a way to reduce an unbounded problem to a bounded

one, possibly with very tight bounds. In general, if one can settle for approximate results,

numerical methods are the way to go. Being very fast and able to deal with transcendental

functions with not much overhead, this made them the perfect tool to be used as a guidance

toward local sub-regions of the original domain that can reasonably be expected to contain

a solution. However, such methods usually do not work with full formulas, which include

sets of equations and of inequalities, conjunctions and disjunctions. The missing link was

Logic-to-Optimization, a technique to translate an SMT problem to a numerical minimization

one, which had already been applied successfully to the theory of floating-points. This way,

we obtained a well-rounded procedure for proving satisfiability in NT A.

This procedure performed extremely well on satisfiable NT A benchmarks, being able

to find solutions for a huge amount of problems for which none of the state-of-the-art SMT

solvers succeeded. Still, it is theoretically guaranteed that there exist problems for which

also our procedure is unable to find a solution; this is due to the general undecidability of

NT A. We thus decided to study the class of problems for which our procedure is capable

of finding a solution. We provided a theoretical characterization, and found out that such

class is quite huge. Indeed, it suffices that the problem respects some reasonable robustness

assumptions. While some mathematical problems do not respect such assumptions, they are

quite rare in practical applications.

Finally, we decided to study the Logic-to-Optimization approach more in-depth (which,

in the case of NT A, had mostly been used as a static assistant), how can it be used for a

more general class of theories, and how can it be integrated into a comprehensive framework,

such as MCSAT. While this last part is still a work-in-progress, the optimization-guided

MCSAT approach has already shown promising results on NIA benchmarks.
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7.1 Future directions

Now, we discuss possible improvements over the methods presented in this work, and we

outline possible directions that can stem from the ideas presented in the thesis.

First, we note that the procedures presented in the thesis have been implemented in the

prototype tool UGOTNL, which has served as a proof-of-concept, but that is still far from

being a full-rounded SMT solver. While we plan to further improve UGOTNL and make it

more robust, we also hope that the techniques presented here could be of inspiration for, and

possibly be adopted by, top-level SMT solvers. Adopting these techniques inside modern

SMT-solvers is not trivial, though. One of the reasons is that, to the best of our knowledge,

the only available implementation of the topological degree test is TOPDEG, written in

OCaml, thus not easily integrable into solvers written in C/C++. A possible solution would

be to use other tests for zero-existence, such as Miranda’s or Borsuk’s, which, although

weaker than the topological degree test, are easier to implement.

We see several ways to further leverage techniques based on zero-existence theorems.

One possibility is to use a different method than Logic-to-Optimization in order to reduce

to small sub-regions. For example, tools based on Interval Constraint Propagation, such as

ISAT3 and DREAL, although in general not able to prove satisfiability, can return a candidate

solution, which could then be used to construct a box over which to run a zero-existence test.

Moreover, the use of indirect methods such as the topological degree test to witness the

existence of a model without actually returning a model but only a box that contains the

model, poses very interesting research questions. For example, how can this kind of answer

be used in the context of SMT-based model checking? It is often required for the back-end

SMT-solver to be able to return a model when the query is falsifiable. But for NT A, at best,

the solver can return a certificate, or an approximate solution.

Another very interesting research direction is how to tackle NT A within the MCSAT

framework. There are several aspects to keep in consideration. First, MCSAT works by

constructing a model step-by-step, i.e., it incrementally assigns values to the variables until a

satisfying assignment is found. For NT A, however, finding a complete assignment is, in

general, impossible. Yet, also in our method, partial assignments are needed to reduce to

a well-constrained system of equations. This suggests that the model construction phase

should probably be complemented with a stopping criterion, which, when the number of

variables that remain unassigned is equal to the number of equations containing at least one

unassigned variable, then shall halt the decision phase, and pass the ball to a zero-existence
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test. Secondly, in order to ensure termination, MCSAT requires the explanation function to

satisfy the finite-basis property, i.e. being able to generate explanation constraints that come

from a finite set of constraints. Whether this property holds, at least for certain sub-classes of

NT A, is an interesting question that should be further investigated. In general, while, for

NRA, explanations are based on CAD, it is not trivial to find what a good substitute could

be for NT A, even dropping the termination requirement (that we know is unfulfillable, due

to the undecidability of NT A). Thirdly, MCSAT requires an algorithm able to determine

the set of feasible values for a variable. An idea that we believe to be very promising, is to

leverage real root isolation methods for univariate functions. Recently, lots of research has

been made on relevant univariate fragments of NT A (e.g. exp–log–arctan functions, tame

elementary functions, poly-powers, mixed trigonometric-polynomials) for which real root

isolation methods exist. These techniques would go along well with the model-constructing

framework. Another option would be to use some interval arithmetic-based technique,

possibly weakening the condition that such an algorithm must be able to precisely separate

the feasible and unfeasible sets, allowing it to work with feasible, unfeasible, and maybe-

feasible sets. Interval Arithmetic could serve the purpose of producing explanations, too.

A further line of research that we envision, is a broader adoption of the Logic-to-

Optimization approach in the context of SMT solving. We have started working on this

line in Chapter 6, by proposing an optimization-guided approach to MCSAT. This approach

could potentially be adapted to most theories, and rival the growing popularity of local

search techniques. We see two main challenges to this approach: how to minimize the

run-time of the local minimization routines (e.g., concentrate only on a subset of possible

moves/directions), and how to increase the synergy between the model-construction phase

and the L2O phase (e.g., how many calls to L2O, after how many conflicts, on the whole

formula or just on a subset of constraints, etc.). Given that this line of research is still at its

very early stages, we believe that further research on heuristics, as well as novel ideas on

design choices, could enhance this framework to become a standard approach to MCSAT.
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