
Chapter 6

Image reconstruction model
formulation and approximation

In this Chapter we deal with the B-mode imaging model and we propose
to approximate the reconstructions provided by the classical Delay and Sum
algorithm (DAS) by means of deconvolution process.

DAS is a fundamental signal processing technique widely used in various
applications, particularly in the field of acoustics and ultrasound imaging,
specifically employed for beamforming signals received by an array of sensors.
Essentially, the DAS operates by introducing controlled delays to the signals
received by individual sensors within an array and then summing these
delayed signals. By tuning the delays appropriately, the algorithm can steer
the combined signal in a specific direction, thus forming a focused beam.
The primary objective of the DAS is to improve the signal-to-noise ratio and
enhance the detection and localization of a desired signal while suppressing
unwanted noise and interference from other directions. The simplicity and
effectiveness of the Delay and Sum algorithm makes it a popular choice in
real-time applications where quick and accurate spatial filtering of signals is
crucial. The goal of this chapter is to describe how to approximate the DAS
algorithm as a deconvolution process: in order to do so we first describe the
DAS algorithm as a time convolutional-like model where the point spread
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6.1 Receiving phase and dynamic focusing model

function (PSF) depends on the delays, which, in their term, depend on time.
Our approximation is then based on time-independent delays and provide a
local invariant formulation that can signicantly reduce DAS computational
costs.

6.1 Receiving phase and dynamic focusing model

We proceed by describing in our notation DAS algorithm for the classical
B-mode ultrasound images. A single image is obtained performing several
acquisitions and consists in building the image synthetically focalizing the
emitted and received ultrasound. For one focused transmission a slice of
the image is reconstructed by summing ad weighting many recorded signals.
The image obtained is an extimation of the tissue reflectivity function, which
measures the ability of the body to reflect ultrasounds signals, as described in
Chapter 3.

The signal recorded by the probe is the pressure wave scattered back from
the cells in the body. As for transmission, the reflected ultrasound propagates
from the field to the probe and hits the piezoelectric elements. The active ones
record a signal in time which was attenuated by the body, and have the same
impulse response function of the transmission phase and is proportional to
the reflectivity function of the body. The mathematical descrition of this set of
phenomena is given in section 3.5.2 and 3.5.3 of the thesis. According to this
description we suppose the body has a medium density level and the pressure
waves propagates with a medium velocity. When the pressure wave crosses
the cells, their density and velocity vary slightly, the tissue reflectivity function
represents in each point this variation.

We denote by N :=
⇥
�N, · · · , N � 1

⇤
the subset of active elements symmet-

rical with respect to the probe center and g(~r) the value of tissue reflectivity
function in a field point ~r. According to Chapter 4, we denote by SF

D(~r, ·),
defined in eq. (4.4), the transmitted signal focused in ~F that crosses the point~r.
The pressure wave scattered back from the point hits all the active elements,
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6.1 Receiving phase and dynamic focusing model

Figure 6.1: Picturing of how signals are recorded and how the delays interact with
them to dynamic focus them. After having applyied the correct delays curve, the
selected samples are summed together to estimate the corresponding pixel intensity

and thus we have a collection of recorded signals:

SF
n(~r, ·) = g†(~r)SF

D(~r, ·) ⇤ Hn(~r, ·) 8n 2 N, (6.1)

where Hn(~r, ·) defined in eq. (4.1) is the same attenuated impulse response as
the signal undergoes the same attenuation, as it depends only on the trajectory,
and N is the subset of active elements on the probe. In general, we do not
have a single scattering point but a collection of them, all scattering back the
transmitted signal. Relying on Born’s approximation, then discarding the
second order effects, as described in eq. (3.23), we consider the contribution
given by the mutual interaction of the scattered waves to be negligible. With
reference to section 2.5, we can state the recorded signal is the sum of all the
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6.1 Receiving phase and dynamic focusing model

waves reflected in the field W:

SF
n = Â

~r2W

h
SF

D(~r, ·) ⇤ Hn(~r.·)
i

g†(~r) (6.2)

B-mode images are usually obtained recombining the signals with the Delay
and Sum Algorithm [56], whose basic principle is that the signal emitted from
a single point hits different active elements of the probe at different times. The
algorithm performs the dynamical focusing by applying a different delay curve
for each point to be reconstructed, as displayed in Figure 6.1. The differences
in time of flight are exploited by summing together distinct signals samples
for each pixel. Thus, the value of tissue reflectivity function in a fixed point is
estimated as:

g(~r) = Â
n2N

SF
n ⇤ dDn(~r) (6.3)

As for transmission phase, we can introduce a multiplicative weight An(~r) 2 R

accounting for the importance of each active element. The rationale is the more
the point is aligned with an element, the less the received signal is attenuated
or affected by noise whereas if the trajectory is longer, the signal strength is
reduced due to attenuation and the signal-to-noise ratio decreases. Formally,
each pixel will be reconstructed as follows:

gA(~r) = Â
n2N

An(~r)SR
n ⇤ dDn(~r). (6.4)

Hereafter, we neglect this multiplicative weights, i.e. the apodizated form of
the reconstructions, and we will analyze the effects of delays on the PSF.

6.1.1 Single scatterer case

We focus on the case of single scatterer and describe th PSF formulation model.
Thus, we consider to have a single scatterer in a point~r that reflects the echo in
~r whereas the transmission is focused in ~F. The signal received by the element
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6.2 Geometrical considerations about receiving delays

n is:
SF,~r

n (t) :=
⇣

H~r
j ⇤ SF,~r

⌘
(t). (6.5)

The coresponding reconstructed value is:

g~r = Â
n2N

SF,~r
n ⇤ dD~r

n
. (6.6)

It is clear from the formulation that although the product in eq 6.6 takes the
form of a convolution, the candidate PSF depends on time, as the delays
D~r

n do. Thus, we introduce a local approximation of the delays to write the
reconstruction formula as a convolution, valid in a neighborhood of F. Our
analysis is restricted to the line along the geometrical center of a linear probe.

6.2 Geometrical considerations about receiving de-

lays

We proceed in describing how the number of active elements and the delays
are usually computed.

6.2.1 Active surfaces computation

We report the most common criteria to compute the number of active elements
depending on the depth of the target point. We introduce the focal number
criterium, that can be used both in transmission and in receiving phase, and
the Kossof criterium usually adopted in transmission phase. We can observe
that:

• the deeper the focus, the greater the number of elements needed to reach
it,

• the back-scattered signal will be more attenuated along depth, so it is
reasonable to increase the number of the receiving elements.
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6.2 Geometrical considerations about receiving delays

Definition 4. The focal number is the ratio between the depth of the returning echo
divided by the active aperture of the probe:

f =
z
A

, (6.7)

where z is the depth we are considering and A is the active surface.

Consequently, by choosing a focal number and fixing a single depth of inter-
est is possible to calculate the corresponding appropriate active surface. In
transmission phase it is possible to use the Kossoff criterium [49]. If we fix a
focalizing depth zF, we can estimate the transmission active aperture as:

MT =

s
3zFl

k f
, where

8
>>><

>>>:

k f � 1
2 p weak focusing

1
2  k f  1

2 p medium focusing

k f  1
2 strong focusing

(6.8)

where l is the wavelength of the emitted signal and z is the depth of focus.
We know the emitted field is focalized in a single point and results in an
hourglass-shaped field, the Kossoff parameter k f adjusts the axial intensity
level of the emitted beam then adjusts how tight is the shape in the focal point
[22, 53].

Clearly, in receiving phase the active surface increases with the depth. Thus,
fixing a focal number f we have:

N (z) =
z
f

.

Furthermore, the active aperture is limited by the structural properties of the
probe. Then, NR(z) is upper bounded by the length of the probe so that when
it reaches the maximum values it remains constant in time (Fig. 6.2).
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6.2 Geometrical considerations about receiving delays

Figure 6.2: The figure represents how the active aperture in receiving varies in depth.
The values are computed by using four different focal number and considering a
linear probe with a maximum length of 0.047 m.

6.2.2 Receiving delays

As we have done in Chapter 2 in eq (2.2), we identify each active element with
its geometrical center. Coherently on how we have defined the field, each
element center will be ~xn = (xn, 0). In Figure 6.3 we compute several delay
curves, corresponding to a dense sampling of the field space. Furthermore,
having fixed the image plane to be y = 0, the targets point will have coordinate
~r = (x, z). As we focus on the central line, our target point is~r = (0, z). With
these assumptions, the delay corresponding to point-element pair is:

Dn(z) :=
1
c

✓
z �

q
x2

n + z2
◆

, (6.9)

where c is the speed of sound across the field.
From a geometrical point of view, computing the delay curve for a point

leads to estimate a parabola. The fact that each point~r provides a differently
shaped curve is encoded in the dependence on z of eq. (6.9). It is reasonable to
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6.2 Geometrical considerations about receiving delays

Figure 6.3: Picturing of all the delays curve obtained for a linear probe of 192
elements making the depth vary between 1cm and 10cm. The image points out how
the variation is smooth even discarding the fact that usually nearby the probe not all
the elements are active.

expect the delays vary smoothly with respect to the depth, with the following
remarks (ref. to Figure 6.4):

• the closest to the probe the less elements are active,

• the farther from the probe the higher is the flattening of the curve, thus
reducing the variation between the curves.

It is possible to notice the slow variation of the delay curves. With reference
to Figure 6.5, representing the curves for a limited set of depths, it becomes
clear that the differences are smaller compared near the vertex to those along
the tails. Additionally, it is noteworthy to observe that the variances are more
pronounced in regions where the apodization weights are lower in standard
weighted reconstruction.

Here we perform a brief analysis of the variation of the delays shapes in
order to quantitatively assess the godness of the depth invariant assumption.
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6.2 Geometrical considerations about receiving delays

Figure 6.4: We display different delays curves used to reconstruct points at different
depths. For each depth, we take in account also the different aperture estimated by
the focal number rule, with focal number set to 1. The farther the target point is from
the probe surface the higher is the flattening of the curve.

Such approximation allow us to write the model as a convolutional one and
simplify the estimation of the PSF, which becomes time variant. We check
that the variation at each depth is lower nearby the vertex and decreases with
depth.

We fix a certain depth z0 and we consider a neighborhood of depths
Iz0 = [z0 � e, z0 + e]. Computing first order Taylor’s expansion of eqn. 6.9, we
get:

Dn(z) ' Dn(z0) +
∂Dn
∂z

�����
z0

(z � z0)

Leading to:
Dn(z)� Dn(z0)

Dn(z0)
' � 1q

x2
n + z2

0

(z � z0) (6.10)
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6.3 Empirical results on local delays invariance

Figure 6.5: The graph displays many delay curves in the neighborhood of a target
point. It is clear nearby the vertex the differences are smaller then along the tails.
It is also worthable noticing the differences are higher where in standard DMAS
reconstruction the apodization weights are lower.

We have
1q

x2
n + z2

0

 1
z0

.

Thus, in a neighborhood of depths, the relative difference between two delay
curves decrease:

1. when we are looking at values on the tails, i.e. xn increases;

2. when z0 increases.

6.3 Empirical results on local delays invariance

As shown in the previous section, it seems reasonable that if the scatterer
is in a neighborhood of the focal point we can apply constant the delay
curve to reconstruct the tissue reflectivity function in a neighborhood of z0
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6.3 Empirical results on local delays invariance

along the central line. In this section we numerically evaluate the validity
of this assumption and then we formulate a local approximation of the DAS
algorithm.

From now on, we will refer to one dimensional PSF as our reconstruction
will be performed only on the central line of the field. To simulate the process,
we have developed a Python code based on parUST [71].

In Figure 6.6 we display three different reconstructions. These three lines
has been obtained by applying eq. (6.6) to signals simulated in each case,
obtained by adding a single scatterer with reflectivity imposed to 1 in an
homogeneous field. After having applied DAS algorithm, we compute the
modulus of the signal and we have normalized the three reconstructions with
respect to the maximum value of the second reconstruction (displayed in
orange). It is worth noticing that the three lines seem to have very similar
gaussian shapes that differ the most only at the bottom.

Our guess is that reconstructions of the tissue reflectivity function of a
single scatterer, i.e. the PSFs of the imaging system, produced by the scattering
from different points~r along the central axis, mainly differ by their heights
or the height of their peaks. The idea is that differences between PSFs can be
dumped by introducing a multiplicative factor.

We start by validating our claim empirically. It is known that the point
with the best reconstruction is the one at the transmit focal depth. Thus, we
evaluate how much different are two reconstructions if performed with the
delays corresponding to that point, i.e. the DAS delays, or with the delays for
the focal point.

We performe the experiments according to the following settings:

• we consider a set of 600 scattering positions~r in the range from 0.002 m
to 0.042 m, uniformly sampled;

• we consider a linear probe of 192 elements with 0.245 mm pitch and 5 mm
height;

• we consider a Gaussian-modulated sinusoidal pulse in transmission with
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6.3 Empirical results on local delays invariance

Figure 6.6: Different reconstruction of 1D PSF along the central line. Each color
represents a reconstruction obtained in the case of just one scatterer present in the
field. To display them together we have normalized all the values with respect to the
maximum value of the blue one.

central frequency of 4, 5, 6, 7, 8, 9 and 10 MHz,

• we consider two different Kossof parameters k f = 0.6, 0.8 to establish
the transmission active surface and focal number 1.2 to establish the
receiving active surface;

• we do not introduce any steering;

• we consider three possible different focal points at 0.015, 0.025, 0.035 m in
depth.

Thus, we have 600 possible positions in 7 · 2 · 3 = 42 different configurations by
choosing differently central frequencies, Kossoff parameters and focal depths.
In each setting, for each point, we perform two reconstructions assuming to
have just a scatterer in the current point:

1. g(~r) the recostruction obtained by applying the classical DAS algorithm,
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6.3 Empirical results on local delays invariance

2. ĝ(~r) the reconstruction obtained by applying the delays of the focal point
to signals scattered from~r.

We will refer to g as the standard reconstruction and to ĝ as the approximated
one. Thus, in each setting, if ~rF is the transmission focal point, we have
that g(~r) = ĝ(~rF). To experimentally evaluate the error between the 600
reconstructions and evaluate the differences of each pair of reconstructions,
we compute:

1. the Wasserstein distance of each pair, encoding how much distant are the
two functions as energy distributions,

2. the absolute difference between the Full Width at Half Maximum (FWHM)
of the two reconstructions,

3. the ratios between the peak of g(~r) and ĝ(~r) .

Obtained results are displayed in Figures 6.7 6.8. These Figures include
experiments with different k f and display all the computed metrics for different
choices of central frequency and focal point (indicated by the blue vertical line).
We can observe some main trends:

1. the largest Wasserstain distance between pairs is about of order 10�4,

2. the approximated reconstructions have at most the same peak height of
the standard ones in a neighborhood of the focus,

3. the FWHM differences are always less than 1 µm.

In all the graphs of the two figures, we have highlighted a box to identify
a suitable neighborhood in which our approximation should be reasonable.
In particular, there is a neighborhood of ~rF where the Wasserstain distance
and the FWHM are small enough so that a suitable rescaling factor applied
to ĝ(~r) well approximate the curve g(~r). The oscillating behaviour in the
measure could be mostly attributed to high number of pixels in the row that
oversamples the field space.
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6.3 Empirical results on local delays invariance

Figure 6.7: Fixing k f = 0.6, each row shows the results for differerent focal points
in increasing order. Moreover, to vary the most the differences of solutions, we have
chosen a different frequency for each row, 9, 7, 5 MHz respectively. Each of the three
plot represents the Wasserstain distance, the peaks absolute difference and the FWHM
differences respectively. The yellow box underline a possible neighborhood.
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6.3 Empirical results on local delays invariance

Figure 6.8: Fixing k f = 0.8, each row shows the results for differerent focal points
in increasing order. Moreover, to vary the most the differences of solutions, we have
chosen a different frequency for each row, 8, 6, 4 MHz respectively. Each of the three
plot represents the Wasserstain distance, the peaks absolute difference and the FWHM
differences respectively. The yellow box underline a possible neighborhood.
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6.3 Empirical results on local delays invariance

Figure 6.9: Wasserstain distance mean values are displayed on the left side while
FWHM differences on the right side. For each choice of frequency (marked on the x
axis), k f (0.6 white background, 0.8 gray blackground) and depth of focus, we compute
the mean value over the 600 couple values and display also the standard deviation.

To describe in a concise way the results of several experiments we compute
and display some features of the otained reconstructions (see Figure 6.9). Each
point of the line represents the mean computed on the values of the Wasserstain
distance (on the left side) and of the FWHM differences (on the right side)
of the 600 values of each setting. The coloured area identifies the standard
variation of the value for each setting. The alternating background identify the
experiments with k f = 0.6 in white and with k f = 0.8 in gray. In each zone we
have the three focal points.

The fact that we have higher values when the focal point is closer to the
probe is reasonable as the delay curves vary faster as the flattening of the delay
curve is lower. This could mean that a suitable neighborhood to apply the
same delay curve varies in size, becoming bigger with increasing depth of
focus.

These results confirm we could find a local time invariant approximation
of classical DAS algorithm. Writing a model with a rescaling factor could lead
to performing exactly as DAS. In this scenario, the number of convolutions
needed to reconstruct a line should downgrade to the number of focal points
choosen. In the next paragraph we introduce a way to determine the weights
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6.4 Adaptive model for time-invariant DAS

by starting from the collection of received signals, which are available not only
in simulations but in real imaging applications.

6.4 Adaptive model for time-invariant DAS

In this paragraph, we present an approximation of standard DAS algorithm
with constant receiving delays by introducing a rescaling factor to the PSF ĝ(~r)
as discussed in 6.3.

We start defining the approximation according to the experiments by adding
a multiplicative weight depending on the scatterer position and using for the
reconstruction the delays of the trasmission focal point. We write:

g̃~r = q~r Â
n2N

SF,~r
n ⇤ dDF

n
, (6.11)

where q~r 2 R is the multiplicative weight to be determined. We expect |q~r| to
be exactly 1 when the scatterer position is in the transmission focus. Our goal
is to find the weight q~r such that

g̃~r ⇡ g~r. (6.12)

To do so, we compute the norm of the difference between the two reconstruc-
tion:

���
���g̃~r � g~r

���
���
2

2
=

�����

�����q~r Â
n2N

SF,~r
n ⇤ dDF

n
� Â

n2N
SF,~r

n ⇤ dDn(z)

�����

�����

2

2

=

�����

����� Â
n2N

⇣
q~rSF,~r

n ⇤ dDF
n
� SF,~r

n ⇤ dDn(z)

⌘�����

�����

2

2

=

�����

����� Â
n2N

SF,~r
n ⇤

⇣
q~rdDF

n
� dDn(z)

⌘�����

�����

2

2

Applying Plancherel theorem, we have the equality with the same equation in
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time-frequency domain:

���
���g̃~r � g~r

���
���
2

2
=

�����

����� Â
n2N

ŜF,~r
n ( f )

⇣
q~re�i2p f DF

n � e�i2p f Dn(z)
⌘�����

�����

2

2

(6.13)

From now on, we denote by:

8
>>><

>>>:

sn := ŜF,~r
n ( f )

xn := e�i2p f DF
n

yn := e�i2p f Dn(z)

8
>>><

>>>:

S :=
�
s�N, · · · , s�1, s0, · · · , sN�1

�

x :=
�

x�N, · · · , x�1, x0, · · · , xN�1
�

y :=
�
y�N, · · · , y�1, y0, · · · , yN�1

�

By using the properties of the norm, and considering f 2 [ fm, fM] the finite
interval of suitable frequencies (the recorded signal is band limited), we have:

���
���g̃~r � g~r

���
���
2

2
=

Z
fM

fm

 

Â
u2N

su (q~rxu � yu)

!⇤

Â
v2N

sv (q~rxv � yv) d f

=

Z
fM

fm

 

Â
u,v2N

(q~rxu � yu)
⇤ s⇤usv (q~rxv � yv)

!
d f

=

Z
fM

fm

Â
u,v2N

(q~rxu � yu)
⇤s⇤usv(q~rxv � yv) d f

=

Z
fM

fm

Â
u,v2N

s⇤usv(x⇤uq~r � y⇤u)(q~rxv � yv) d f

=

Z
fM

fm

Â
u,v2N

s⇤usv

⇣
q2
~r x⇤uxv � q~rx⇤uyv � q~rxvy⇤u + y⇤uyv

⌘
d f
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We observe that:
 

Â
u,v2N

s⇤usv(x⇤uyv)

!⇤

= Â
u,v2N

s⇤vsu(y⇤vxu) = Â
u,v2N

(y⇤uxv)s⇤usv. (6.14)

Thus, we obtain:

���
���g̃~r � g~r

���
���
2

2
=

Z fM

fm
Â

u,v2N
q2
~r (x⇤us⇤usvxv) d f+

� 2q~r

Z fM

fm
Â

u,v2N
<(s⇤usv(xvy⇤u)) d f+

+
Z fM

fm
Â

u,v2N
(y⇤us⇤usvyv) d f

= q2
~r ||Sx||2 � 2q~r

Z fM

fm
< (S⇤Sy⇤x) d f + ||Sy||2 ,

where we exploited the fact the sum is over all the indexes: while S⇤S is real,
this may not be true for the product y⇤x but the imaginary terms vanish by
computing the sum as they always compare two times each with switched
indexes. Thus, by denoting I :=

R fM
fm

< (S⇤Sy⇤x) d f , it holds:

���
���g̃~r � g~r

���
���
2

2
= q2

~r ||Sx||2 � 2q~r I + ||Sy||2 (6.15)

We define the operator

L : R ! R

q~r 7! L(q~r) (6.16)

that associates a value of q~r to the second term of equation (6.15) when the
other factors are determined by the experiment setting.
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6.4.1 Estimation of rescaling factor q~r

Now, we find the best q~r that minimizes the difference between g̃~r and g~r. We
want to solve the following minimum problem:

min
q~r2R

L(q~r) (6.17)

The derivative with respect to q~r is:

d
d~r
L = 2q~r ||Sx||2 � 2I (6.18)

and it is equal to zero in:

q~r =
I

||Sx||2
. (6.19)

Indeed, we can rewrite equation (6.15) as paraboloid in the variable q~r:

L(q~r) =
 

q~r �
I

||Sx||2

!2

+
||Sy||2

||Sx||2
� I2

||Sx||2
(6.20)

Hence, the stationary point found is a minimum. Thereafter, we could try
using

q⇤~r :=
I

||Sx||2
(6.21)

as possible optimum scaling parameter for our approximation. It is worth
noticing we have found a scaling parameter dependent from the received
signal. This makes our approximation, defined in eq (6.11), adaptive with
respect to the signal. Further studies on the estimation of q~r includes the use
of weighted norms in the function spaces allowing to correct the shape of g̃

mainly close to the focal point.

6.4.2 Convolutional DAS model

By approximating the term dDn(~r) in the definition of DAS algorithm with the
term q~rdDF

n
, we can define a convolutional method to reconstruct the central
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line. This is possible thanks to the definition on g̃ in which the convolution
is no longer dependent from the space but is a true convolution. Indeed,
this formulation of the algorithm could reduce significantly its computational
cost. By choosing a fixed number of focus point along the line in transmission
~F1, · · · ,~FQ, and associating them the scaling parameter sets for all the points in
their neighbourhood Q1, · · · , QQ, we have a partition of the line to reconstruct.
Thus, the line can be reconstructed performing Q convolutions resulting in the
reconstruction of several portions of the signal G1, · · · , GQ, where:

Gq := Qq Â
n2N

SFq
n ⇤ dDq

n
8q 2 Q (6.22)

By collecting the values of each portion we get the entire line:

LI :=
�

Gq
 

q2Q (6.23)

6.5 Preliminary results

We present some prelimirary results obtained by the same settings used in
section 6.3. In particular, we have the same 42 different configurations by
varying the central frequencies, the Kossoff parameters and the focal depths.
For each configuration, we have estimated q~r and reconstructed the 1D PSF
according to g̃ formulation in eq. (6.11).

To perform the experiments we have choosen to use

q̃~r :=
maxt2R+ g(t)
maxt2R+ g̃(t)

. (6.24)

Although it is not the theoretical prescription proposed in section 6.4, it is
a reasonable choice for compensating the differences in the peaks heigths
described in section 6.3.

We display the values of q̃~r in each setting in Figure 6.10. Clearly in the
transmission focal point q̃~r is equal to 1. It is reasonable that the values increase
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faster when the focal point is closest to the probe than in the other cases as
the signal attenuates along depth. To reconstruct the 600 1D PSFs, we have
used 1024 time samples, each coresponding to 0.01µs, where t0 is the first time
at which the target point is hit by the transmitted wave. Therefore, the time
interval lasts 10.24µs for each point thus being much longer than the time
required to reconstruct the signal dispersion of a single scatterer. This choice
leads to have many samples of g and g̃ negligible with respect to the peaks
heights. Indeed, to estimate the error we compute:

E% :=

���
���g̃~r � g~r

���
���
2����g~r

����
2

. (6.25)

In Figure 6.11, we display the obtained results. In each plot we represent,
for each couple of transmission central frequency and Kossoff parameter, a
possible choice of neighborhood for each focal depth by filling the area in which
E% is less then a certain threshold (5, 7.5, 10 %). We can observe the amplitude
of the neighborhoods seems to stabilize at increasing transmission central
frequency. By choosing lower thresholds the neighborhoods size decrease,
then the convolutional approach proposed in eq. (6.22) needs higher density of
focus points along the line. To better evaluate how many focal points we need
to reconstruct the line, we can look at Figure 6.12, in which for each experiment
we display the number of pixels contained in the coloured areas. It is clear the
worst case is achieved when f0 = 10 MHZ and the threshold is set to 5%. In
this case, the neighborhoods contain about 25 pixels that compared with the
600 composing the line lead to a possible choice of 24 focal points. This means
our line could be reconstructed computing 24 convolutions as described in eq.
(6.22), compared to the 600 oned used by eq. (6.6).

Although these are preliminary results, we think this is an encouraging
result. The next step will include the evaluation of achievable results by
estimating the paramenter according to eq. (6.21).

Furtermore, at this point, our method includes many transmission focal
point that may reduce the frame rate in real applications. To perform only a
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6.5 Preliminary results

Figure 6.10: Preliminary results of q estimation. Each row corresponds to a
different focal depth in transmission while on the column is k f to vary. In each
plot we display the values for all the seven frequencies.
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6.5 Preliminary results

Figure 6.11: In each of three plots we represent the neighborhoods estimated for
different tolerance of error. For each frequency we have two different possible
values coresponding to the two possibilities od k f . Each color represents a
different focal depth, the coloured area highlights the area in which the relative
error is under the tolerance.

Figure 6.12: In the same settings used in Figure 6.11, we plot the number of
pixels reconstructed with relative error under the tolerance corresponding to
the coloured area in the previous picture.
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6.5 Preliminary results

transmission to reconstruct the entire line a possible solution may be to chose
a focal point and reconstruct the approximations fixing the curve of another
point ~R for all the points. To explore this possibility we have to evaluate the
exact position of the points that can be chosen and if there is a criterium to
relate the position ~F and ~R.

We will look further to develop the theoretical model in more detail by
including the possibility of applying the scaling parameter specifically only
on the most significant times. This may reduce the effects on the background
noise in this 1D case.

Therefore, we will explore the 2D case: we need to evaluate the effect
our approximation could have on the side lobes generated. We may need to
consider all the lateral coordinates to tune finely the scale parameter to affect
the least possible the background noise.
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Chapter 7

Conclusions

In this thesis we investigate the ultrasound imaging problem by analizing first
the signal transmission problem, relevant to some specific applications such
as the ARFI and the Doppler technique, and then the reconstruction phase,
the usual B-mode imaging method. Both these problems depend on some
specific parameters and the main goal of this work was the estimation of such
parameters for some particular applications.

We can summarize the main contributions of this work as follows

1. a mathematical framework which uses a hybrid time-frequency domain
formulation for modeling beam patterns during the transmission step.
This framework defines the parameter space as an N-dimensional torus.

2. The introduction of a novel simulator, parUST [71], designed for gen-
erating beam patterns based on this framework. The study includes
experimental validation using simulated ultrasound data.

3. An effective approach for optimizing the narrowband transmit beam pat-
tern, thus providing a method that aims to ultimately improve accuracy
and reduce artifacts in important medical ultrasound applications with a
particular focus on ARFI elastography imaging.

4. An adaptive model for time-invariant DASin order to develop an alterna-
tive fast convolutional algorithm for B-mode image reconstruction.
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As far as the transmission phase is concerned, the developed model pos-
sesses several advantageous features. Firstly, it adopts a two-step approach
that enables the pre-computation of the system frequency response for a given
probe model and region of interest. This methodology proves particularly
effective when the simulator is employed as a kernel in optimization problems,
whether gradient-based or non-gradient-based, requiring testing of numerous
transmit parameter sets for beam pattern shape. In contrast, the reference
simulator, FIELD II, has a monolithic structure that needs restarting all com-
putations each time a single parameter is altered. Secondly, our frequency
domain approach eliminates time oversampling, simplifying time convolutions
between impulse responses and waveform or attenuation terms to element-
wise products on a limited set of frequency bins. Additionally, it specializes
in the narrowband case with a single frequency computation, resulting in
significant computational savings compared to FIELD II-like time-domain
approaches. This narrowband case formulation also facilitates the investiga-
tion of space transmit delays’ topology, paving the way to suitable manifold
optimization.

The simulator is an open-source Python package optimized with parallel
computations, providing a high-performance, trusted tool for parameter opti-
mization processes on manifolds for beam pattern formation. Numerical tests
demonstrate that the proposed model is both computationally efficient and
compatible with realistic measurements and existing numerical simulators,
contributing to the design of new medical diagnostic ultrasound equipment.

Taking advantage of this numerical model, we devised an optimization
scheme to deal with transmission delays optimization. The method yields sets
of beam patterns that exhibit uniformity along depth in terms of both BP width
and intensity, with low side lobe levels, meeting the desired requirements for
typical biomedical ultrasound applications. Moreover, the application to ARFI
elastography yields comparable results in terms of shear wave peak intensity
and even better results in terms of standard deviation of time of flights and
velocity estimation. We emphasize that, while we do not specifically address
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imaging improvements, our method provides quantitative tools to assess the
strengths of our optimization approach.

The adopted strategy facilitates extending calculations to convex probes
through a simple change from Cartesian to polar coordinates, as well as to
steered beam patterns. Despite these strengths, our work has limitations.
The advantages of the method are not demonstrated with optimized BPs
having different numbers of active elements or with different BP shapes. A
potential expansion could involve experimenting with neural networks using
various ground truth shapes as inputs and optimized delays as outputs. Future
developments will also include apodization weights in the set of optimized
variables, compensating for the slight deterioration of side lobe level observed
with the present method compared to standard delay laws [82].

Taking advantage of this numerical model, by starting from some consid-
erations of the geometry on the dynamic focusing problem, we developed a
very simple approximate model for DAS. The strength of this model lies in
the fact that, by drastically lowering the computational cost due to its pure
convolutional form, it could be a faster approximation of the DAS algorithm.
Although the study is currently confined to a specific 1D case, we hope to
develop the model to reconstruct an entire line with one, or at least few,
transmissions. Further development of our theoretical model involves consid-
ering the scaling parameter application specifically during significant times
to reduce background noise in the 1D case. Additionally, we plan to explore
the 2D scenario to assess the effect of our approximation on generated side
lobes. Tuning the scale parameter across all lateral coordinates may minimize
background noise effects.

152



153



Appendix A

Principal Component Analysis

The primary purpose of principal component analysis is to obtain a graphical
representation of the joint distribution of p numerical variables when p > 2.
Through this technique, it is also possible to visualize the correlation between
variables. The goal is to identify low dimensional representations of the
point that maintain the greatest dispersion of points, thus ensuring better
identification [26, 44, 68].

The reduction in the dimensionality of the space is performed replacing the
original p variables with a new set of q variables (called principal components),
which are linear combinations of the original ones.

The basic idea is to perform a translation of the axes by aligning the new
origin with the centroid of the data. Subsequently, new axes are sought
such that the variance of the projections of the points onto the first new
axis is maximized, the variance onto the second new axis is maximized once
the first axis is fixed, and so on. In detail, the system of axes that satisfies
the preceding conditions is the one formed by the eigenvectors (ordered
decreasingly) associated with the eigenvalues of the correlation (or covariance)
matrix of the variables.

We denote by X the n⇥ p matrix containing the X1, · · · , Xp feature columns
for n experiments and by G(X) its correlation matrix. If we denote by Y the
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matrix containing the standardized variables, it holds

G(X) =
1
n

YtY.

The rank of G(X) is equal to the rank of Y, that is, the range of X; it can be
initially assumed that the p statistical observations are linearly independent,
and therefore the rank of G(X) is p (otherwise, non-independent variables are
not considered). It is also assumed that there are no multiple eigenvalues.
Additionally, if the row points of Y are orthogonally projected along the
direction of a vector, the distances from the origin of the obtained points
can be considered as values of a new variable. This new variable is a linear
combination of the variables Y1, Y2, ..., Yp.

As previously mentioned, to find a reduced-dimensional space in which
to project the data while losing the least amount of information possible, a
suitable change of coordinates is performed. This is done so that the projections
of the points with respect to the first coordinate axes are the flat representations
that maintain the maximum dispersion of the data.

The new axes originate from the centroid of the data (whether considering
the correlation matrix or the covariance matrix). Furthermore, the direction of
the first axis coincides with the greatest intensity of point dispersion, and the
direction of the second axis (which must be orthogonal to the first) coincides
with the greater dispersion of all subsequent axes, and so on.

The dispersion of the projected points is measured by the variance of
the variable containing the distances from the origin of the projected points.
The orthonormal basis that has the desired characteristics consists of the
eigenvectors of the matrix G(X) associated with the eigenvalues arranged in
decreasing order.

Proposition 1. Let (u1, · · · , up) be the eigenvectors of the matrix G(X) associated
with the eigenvalues l1, · · · , lp, ordered in decreasing order. Let Cj be the vector with
the new j � th coordinates of the n points of Y:

Cj = Yuj.
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The following results hold:

1. the mean and variance of the points projected along the j � th vector uj are,
respectively:

E(Cj) = 0 V(Cj) = lj

2. The vectors of the projections of the points onto (u1, · · · , up) are pairwise
uncorrelated.

cov(Ci, Cj) = 0 if i 6= j

3. If v is a vector of length 1 in Rp, then:

• the variance of the points projected along u1 is the largest among the
variances of the points projected along any generic unit vector in Rp:

V(C1) = sup
v2Rp

{V(Yv) s.t. ||v|| = 1}

• The variance of the points projected along uj is the largest among the
variances of the points projected along any generic vector uncorrelated with
C1, · · · , Cj�1:

V(Cj) = sup
v2Rp

�
V(Yv)s.t.||v|| = 1, Yv uncorrelated with C1, · · · , Cj�1

 

Proof. If we denote by (e1, · · · , ep) the canonical base for Rp, it holds:

1.

C̄j = Yuj = 0 (A.1)

V
�
Cj
�
= V

�
Yuj

�
= ut

jGuj = ut
jULUtuj = et

jLej = lj (A.2)

2. cov
�
Ci, Cj

�
= cov

�
Yui, Yuj

�
= ut

iULUtuj = et
i Lej = 0, if i 6= j

3. if v 2 Rp and vtv = 1, then:

V(Yv) = vtULUtv =
�
Utv

�t L
�
Utv

�
= ṽtLṽ =

⇣
L1/2ṽ

⌘t ⇣
L1/2ṽ

⌘
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A.1 Relationship between PCA and Singular Value Decomposition (SVD)

where ṽ is vector v in the new basis, then is length is still 1. Thus,
V(Yv) =

�
L1/2ṽ

�t �L1/2ṽ
�
= Âp

j=1 ṽ2
j lj  l1 Âp

j=1 ṽ2
j = l1 = V (C1).

The equality holds if ṽ = u1. The second statement follows using the
Langrange’s multiplier method.

The eigenvector uj is called the j � th principal axis of the data. The vector
Cj is called the j � th principal component and is uniquely determined up to
sign (if lj is a simple eigenvalue, i.e., of multiplicity 1, which is almost always
the case in the context of statistical observations). The elements of the principal
axes are referred to as principal loadings, whereas the elements of the linear
combination generating the principal components are referred to as scores.

The principal components Cj can be interpreted as new variables, being
linear combinations of the original variables.

As previously observed, the principal components C1, · · · , Cp have the
following properties:

1. They have mean 0.

2. They have variances l1, . . . , lp in decreasing order, i.e., l1 � . . . � lp.

3. They are pairwise uncorrelated.

It’s important to note that the principal components are defined up to sign;
the orientation of the axes is arbitrary and depends on the algorithm used to
construct the matrices L and U.

A.1 Relationship between PCA and Singular Value

Decomposition (SVD)

We denote by (̃X) the centered values data matrix corresponding to X.
It holds that the associated covariance matrix C can be obtained as:

C =
X̃tX̃
n � 1

. (A.3)
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A.1 Relationship between PCA and Singular Value Decomposition (SVD)

As C is symmetric, it can be diagonalized:

C = VLVt,

where L is a diagonal matrix with eigenvalues li in decreasing order on the
diagonal and V the corresponding eigenvectors matrix. We apply SVD to
matrix X̃, obtaining the following decomposition:

X̃ = USVt,

where S is the diagonal matrix of singular values si, U is a unitary matrix and
V is the right singular vexctor matrix. By substituting the decomposition in eq.
(A.3), it holds:

C =
VSUtUSVt

n � 1
= V

S2

n � 1
Vt.

Thus the right singular vectors V are the principal axis and the principal
components are given by XV = US.

From the properties of SVD decomposition, it holds that the scatterplot
associated to X̃ of rank r  min n, p represent n points in a r-dimensional
subspasce of Rp centered in the centroid of the scatterplot. If we desire to
approximate this scatterplot in a q-dimensional subspace, the ’best’ subspace
is the one in which is minimized the sum of squared distances between
corresponding points in each scatterplot [44, 68].
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Appendix B

Particle Swarm Optimization

The Particle Swarm Optimization (PSO) algorithm, conceived by Dr. James
Kennedy and Dr. Russell Eberhart in 1995 [45], stands out as a potent and
adaptable optimization technique inspired by the collective behavior seen in
birds and fish. This metaheuristic algorithm can be categorized as a Swarm
Intelligence (SI) technique: this class of algorithms defines a system in which
agents engage in local interactions with their environment, leading to collective
behaviors that give rise to cohesive global patterns. In contrast to Evolutionary
Algorithms (EAs), SI techniques draw inspiration from the straightforward be-
haviors and self-organizing interactions of agents, exemplified by phenomena
like fish schooling, honey bee activities, bacterial growth, animal herding, bird
flocking, ant colonies foraging, and similar instances [23].

PSO has garnered widespread acclaim due to its simplicity, efficiency, and
broad applicability across various optimization problems in different fields
such as engineering design, machine learning, and image processing. In the
years researchers have extended and customized the PSO algorithm to address
a myriad of problem domains, underscoring its adaptability and efficacy in
tackling intricate, multidimensional optimization challenges [57, 95, 97, 98].

The swarm in PSO is a collection of potential solutions representing a bird
flying with a certain velocity across the solutions space. The movement of each
particle is shaped by its individual experience and the shared knowledge within
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B.1 PSO structure

the swarm. Through a process of iterative refinement, particles dynamically
adjust their positions in the search space, progressively converging towards
optimal solutions. The algorithm’s behavior hinges on two key components:
personal best and global best. The personal best denotes the most favorable
solution a particle has encountered thus far, while the global best represents
the optimal solution discovered by any particle in the entire swarm. These
components dictate the trajectory of each particle, fostering exploration of the
solution space while exploiting promising areas.

Even if PSO offers the distinct advantage of requiring few parameters to
tune, it achieves optimal solutions through interactions among particles, yet
when navigating high-dimensional search spaces, it tends to converge at a
notably slow pace toward the global optimum. Furthermore, when confronted
with complex and expansive datasets, PSO tends to yield sub optimal results.
Particularly in scenarios with a substantial number of dimensions, PSO often
struggles to uncover the global optimum solution. This challenge arises not
solely due to the presence of local optima traps but also because of potential
fluctuations in particle velocities [85], restricting the successive range of trials
to a sub-plane within the overall search hyperplane.

B.1 PSO structure

The algorithm proceeds, ad a SI system, following the self-organization rules
as interpreted by [4]:

• Robust dynamical non linearity: characterized by a combination of posi-
tive and negative feedback loops, facilitates the creation of advantageous
structures. Positive feedback plays a promotional role in their formation,
while negative feedback ensures a counterbalance, contributing to the
stabilization of the overall pattern.

• Trade-off between exploration and exploitation: a valuable avenue for
fostering creativity in artificial systems lies in the skillful management
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B.1 PSO structure

of the trade-off between exploration and exploitation. This optimal
balance, as identified by SI, offers a means to promote creativity without
compromising efficiency.

• Multiple interactions: within a swarm context, multiple interactions occur
as individual agents leverage information from neighboring agents. This
dynamic allows for the dissemination of information throughout the
network, enhancing the collective intelligence of the swarm.

We denote by f the objective function to be optimized, by x the swarm
containing N particles. At each iteration t, each particle is characterized by its
position xt

i ant its velocity vt
i . Moreover, we associate a personal best position

to each particle pt
besti

and a global best position in the swarm gt
besti

, defined as
follows:

pt
besti

:= min
k=1,··· ,t

⇣n
f (xk

i )
o⌘

(B.1)

gt
besti

:= min
k=1,··· ,t
i=1,··· ,N

⇣n
f (xk

i )
o⌘

(B.2)

To the swarm we associate three parameters: w the inertia weight, c1 the
cognitive coefficient, that modules the importance of the personal best result,
and c2 the social coefficient, that modules the importance of the global best
solution. Then, if the solution dimension is D, given r2 and r2 random vectors
uniformly distributed in [0, 1]D, each particle is updated following:

vt+1
i = wvt

i + c1r1

⇣
pt

besti
� xt

i

⌘
+ c2r2

�
gt

best � xt
i
�

(B.3)

xt+1
i = xt

i + vt
i . (B.4)

Referring to the velocity update in (B.3), the inertia component (first part)
embodies the preceding velocity. This component imparts suitable momentum
to the particles, enabling them to traverse the search space. The cognitive
component signifies the individual positivity for each particle, the term make
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B.1 PSO structure

them progress towards their best-known positions from prior iterations. Finally,
the third segment, "social component," reflects the combined influence of all
particles, working collaboratively to attain the global optimum solution.

We report a pseudocode for PSO in the case of a minimization task:

Algorithm 2 PSO algorithm
Require:

Initialize randomly v0 and x0

Set p0
besti

= x0 8 i in1, · · · , N
Find g0

best according to Eq. (B.2)
Set t = 1
while t  T do

for i = 1 to N do
Generate r2 and r2 random
Update velocity according to Eq. (B.3)
Update position according to Eq. (B.4)
if f (xt

i) > f (pt�1
besti

) then
f (pt

besti
) = f (xt

i)
end if

end for
Update global best position gt

best according to Eq. (B.2)
t = t+1

end while
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