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Centre de Recherche en Automatique de Nancy, Université
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Introduction

In mathematics, chemistry, and physics, a dynamical system consists of a set of data and a law that
governs how these data evolve over time, such as the swinging of a clock pendulum, the movement
of planets in the solar system, or the evolution of a computer’s memory.

One of the key points in the study of dynamical systems is their stability. Stability analysis ensures
that the system behaves predictably under conditions and disturbances and can determine whether
a system remains in equilibrium or exhibits chaotic behavior. For example, in engineering, the
stability of control systems is critical to prevent failures. Stability can be understood particularly
through, Lyapunovs’ methods [83], which provide an approach to determining whether a system
will converge to a desired state. Furthermore, Input-to-State Stability (ISS) [111–115], provides a
powerful set of tools for determining whether a system with external disturbances will converge to
a desired state or if it will exhibit undesirable behavior over time.

In parallel, state estimation is another critical challenge, especially in systems where direct mea-
surement of all states is not possible. In practice, all the state variables are not always available
for feedback. Possible reasons include expensive sensors; available sensors not acceptable (due to
high noise, high power consumption, etc.); and non-availability of sensors. Estimation techniques
allow for the reconstruction of internal states from available measurements, which is essential for
feedback control and monitoring in real-world applications. Estimators and observers are both
used to estimate the internal states of a system, but they differ in approach. A state observer is a
specific type of estimator, it’s a system that provides an estimate of the internal state of a given real
system, from measurements of the input and output of the real system. It is typically computer-
implemented. An observer focuses on real-time state estimation using deterministic models, mak-
ing it more computationally efficient but less robust to noise. Several observer methods have
been developed, including the sliding mode observer [118], dissipative type observers [26,27], the
high-gain observer approach [2,13,24,41,141], sliding mode observer [37,108] and the LMI-based
observer techniques [1, 71, 131, 136]. Estimators like the EKF and MHE incorporate statistical or
optimization methods to handle noise and uncertainties, making them suitable for systems with
significant disturbances. Among these methods, without being exhaustive, we mention the ex-
tended Kalman filter [66, 81, 110, 117], the moving horizon estimators [5–7, 10, 15, 105]. Every
observer is an estimator, but Not Vice Versa. The choice between them depends on the application’s
requirements for accuracy, computational complexity, and real-time performance.

1



Introduction

Thesis Contributions

This thesis proposes several contributions to the study of dynamical systems, particularly in the
areas of stability analysis and state estimation:

1. Analysis of robust moving horizon estimation (MHE) schemes using incremental ex-
ponential input/output-to-state stability (i-EIOSS) property of the system : Chapter 2
explores the application of i-EIOSS properties in robust MHE schemes. It provides both the-
oretical analysis and practical implementation strategies, including methods for bounding
estimation errors and improving prediction accuracy.

• Two numerical design procedures are proposed to ensure that a nonlinear system
achieves the i-EIOSS property and to compute the associated i-EIOSS parameters. The
first method is a new Linear Matrix Inequality (LMI) condition guaranteeing the com-
putation of the (i-EIOSS) coefficients. The proposed design method is easily tractable
by numerical software and may be used for several real-world applications. The second
method is an innovative LMI-based method for synthesizing the i-EIOSS coefficients.

• The robust stability of moving horizon estimation (MHE) is proven for a class of non-
linear systems satisfying the i-EIOSS property. Based on some new mathematical tools,
novel design conditions to tune the parameters of the cost function of the MHE scheme
are proposed. These conditions are linked to the size of the MHE window and coeffi-
cients associated with the system’s incremental exponential input/output-to-state stabil-
ity (i-EIOSS). To enhance the MHE’s robust stability while minimizing the window size,
various prediction techniques. Furthermore, innovative LMI-based methods for synthe-
sizing the i-EIOSS coefficients and prediction gains are established. The performances
resulting from adopting the proposed prediction methods are compared through numer-
ical tests.

2. Contributions to LMI-based and high-gain-based observers: the thesis presents new Linear
Matrix Inequality (LMI) based methods for the synthesis of stability criteria and observer de-
signs, providing practical tools for the design and implementation of robust control systems.
Chapter 3 can be divided into two parts:

• The first part deals with observer design for nonlinear systems via LMIs. The main goal
consists of showing that for some families of nonlinear systems, the LMI-based observer
design techniques always provide exponential convergent observer. Indeed, until now,
this advantageous feature is unique to some types of observers/estimators, such as the
high-gain observer, the sliding mode observer, and the moving horizon estimator, under
certain conditions of detectability or observability. More specifically, the proposed LMI
conditions always provide solutions to both systems in companion form and feedforward
structure. An extension to a general class of nonlinear triangular systems without linear
components is provided, which renders the applicability of LMI-based methods possible
for a wide class of nonlinear systems without the need for nonlinear diffeomorphism-
based transformations.

• The second part deals with nonlinear observer design for a class of non-triangular sys-
tems satisfying the sector condition. Under such a condition on the nonlinearity of the
system, contributions to the design of high-gain observers are proposed for systems with
arbitrary nonlinear structures contrary to the standard results on high-gain observer
methodology developed only for triangular nonlinearities. First, based on the use of a
convenient decomposition of the nonlinear function, a general design method is pro-
vided. Compared to the standard high-gain observer, the proposed method requires an

2



extra constraint on the tuning parameter to dominate the non-triangular components
of the nonlinearity of the system. To reduce the conservatism of the extra-condition,
further results are established by exploiting the LMI-based approach. A numerical de-
sign algorithm is provided to build all the observer parameters. Finally, an illustrative
example is presented to show the effectiveness and validity of the proposed technique.

3. Contributions to observer design for nonlinear systems with delayed measurements:
Chapter 4 deals with nonlinear observer design for systems with delayed nonlinear outputs.
The main idea behind consists of using a dynamic extension technique to transform a system
with delayed nonlinear outputs into a system with linear outputs and a delay-dependent in-
tegral term in the dynamic process. First, a general result for arbitrary nonlinear structures is
proposed, and then further contributions are provided for specific families of systems, namely
systems in companion form and feedforward systems. For systems in companion form, we
obtain novel high-gain observer synthesis conditions, while new low-gain results are obtained
in the case of feedforward systems. To relax the necessary conditions related to the observer
design procedure, a different state observer structure is proposed, and analytical comparisons
are provided. Moreover, to relax the design conditions, we propose an alternative design ap-
proach using a specific Lyapunov–Krasovskii functional. This method can handle high values
of the maximum allowable delay, however, it guarantees only asymptotic convergence of the
error rather than exponential convergence.

Thesis Organization

The thesis is organized into four chapters, each building on the foundational concepts introduced
previously:

• Chapter 1 introduces foundational ideas in stability analysis, starting with Introduction.
Then, Section 1.2, introduces the key concepts in stability analysis, including Lyapunov’s
methods and Input-to-State Stability (ISS). Section 1.3, follows with an overview of estima-
tion in dynamical systems, covering observers, LMI-based observers, and estimators.

• Chapter 2 begins with Section 2.2, which introduces the class of systems under considera-
tion and the associated assumptions. It also presents the mathematical tools necessary for
the main design methods. Section 2.3 outlines two methods for proving that a nonlinear
system satisfies the i-EIOSS property, providing expressions for computing the related param-
eters. Section 2.4 demonstrates that MHE schemes are robust for nonlinear systems with
the i-EIOSS property, addressing error bounds, predictions, and gain synthesis. Section 2.5
presents numerical results, featuring examples such as chaotic systems and tumor growth
models. The chapter concludes with Section 2.6.

• Chapter 3 is organized as follows: Section 3.2 focus of this section is on proving an "Always
LMI Feasibility Proof" for observer design in certain families of nonlinear systems including
those in canonical form, systems with feedforward structures, and extensions to a broader
class of systems. Next, Section 3.3 focuses on contributions to high-gain observer design
for non-triangular systems. This section starts by outlining the motivation and formulation
and presenting results specifically tailored to address non-triangular nonlinearities. Finally,
it discusses additional refinements to the observer design, emphasizing the innovations and
improvements made to overcome the challenges posed by non-triangular systems.

• Chapter 4 deals with observer design for nonlinear systems with delayed output Measure-
ment. Section 4.2 describes the problem formulation and presents the motivations of this

3
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work compared to the available methods in the literature. Section 4.3 provides the main
idea of this work, starting with a preliminary result as a main tool. Section 4.4 proposes
specific new results for particular families of systems, namely systems in companion form
and feedforward systems. Section 4.5 gives a relaxation technique to avoid certain required
assumptions on the system state. Section 4.6 introduces some constructive comments and
analytical comparisons. Section 4.7 presents an alternative method relaxing the existing re-
sults in the literature. Section 4.8 introduces an illustrative example to show the validity and
efficiency of the proposed methods. Finally, Section 4.9 concludes the work and discusses
future endeavors.

• Conclusion: The thesis concludes with a summary of the contributions and suggestions for
future research directions, highlighting the potential for further advancements in stability
analysis and estimation techniques.
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1.1 Introduction

This chapter gives some fundamental concepts of stability and estimation in dynamical systems.
It begins with Section 1.2, introducing some notions of stability, including Lyapunov’s methods
and the concept of Input-to-State Stability (ISS), both crucial for analyzing and ensuring system
robustness. Then, in Section 1.3 a brief recall of some estimation techniques is given, where key
topics such as observability, observer design, and estimation methods. These foundational tools
and methods are necessary to understand further contributions in designing reliable estimation
schemes.

1.2 Notions of Stability

Stability is a fundamental concept in the study of dynamical systems. It is crucial to determine
whether a system, when subjected to small disturbances, will return to its equilibrium state or

5



Chapter 1. Brief Overview on State Estimation

diverge away from it. This section introduces the foundational concepts of stability, particularly fo-
cusing on Lyapunov’s methods, which provide powerful tools for analyzing the stability of nonlinear
systems. Let us consider the following autonomous system described by the differential equation:

ẋ = f(x), (1.1)

where x ∈ D ⊂ Rn, and D is a domain containing the origin. We assume that the function
f governing the system’s dynamics is piecewise continuous for time t and locally Lipschitz with
respect to the state x. This implies that there exists a constant k > 0 such that:

‖f(x1)− f(x2)‖ ≤ k‖x1 − x2‖, (1.2)

for all x1, x2 ∈ D. Additionally, we assume that f(x0) is bounded, where x0 represents the initial
condition at t = 0.

Definition 1.2.1 ( [61, 109, 127]). An equilibrium point x∗ of the system (1.3) is a state where the
system remains at rest if it starts from that state. Mathematically, this is expressed as:

x(0) = x∗ ⇒ x(t) = x∗ ∀t ≥ 0.

Equivalently, x∗ is an equilibrium point if and only if:

f(x∗) = 0, ∀t ≥ 0.

Without loss of generality, we will focus on the stability of the origin (x = 0) for the autonomous
system (1.3). This simplifies the analysis while still capturing the essential behavior of the system.

1.2.1 Basic Concept of Stability

The concept of stability can be categorized into different types depending on how the system be-
haves when it is perturbed from its equilibrium state. These categories include stability, asymptotic
stability, and exponential stability.

Definition 1.2.2 ( [69]). The origin is said to exhibit different types of stability based on the following
criteria:

1. Stability: The origin is a stable equilibrium point if, for every ε > 0, there exists a δ = δ(ε) such
that:

‖x(0)‖ < δ ⇒ ‖x(t)‖ < ε, ∀t ≥ 0.

If this condition is not met, the origin is considered unstable.

2. Asymptotic Stability: The origin is asymptotically stable if it is stable, and in addition, δ can be
chosen such that:

‖x(0)‖ < δ ⇒ lim
t→∞
‖x(t)‖ = 0.

This means that solutions not only remain close to the origin but also converge to the origin as
time goes to infinity.

3. Exponential Stability: The origin is locally exponentially stable if there exist constants α ≥ 1
and β > 0 such that:

‖x(t)‖ ≤ α‖x(0)‖ exp(−βt), ∀t ≥ 0, ∀x(0) ∈ Br.

If Br = Rn, we say that the origin is globally exponentially stable. This indicates that solutions
decay to the origin at an exponential rate.
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In summary, an equilibrium point is stable if small deviations from the point do not cause the
system to diverge significantly from it. It is asymptotically stable if such deviations not only stay
small but also tend to zero over time. Exponential stability implies a stronger form of asymptotic
stability, where the rate of convergence is exponential.
These definitions highlight the importance of understanding the system’s behavior in response to
initial perturbations. However, directly applying these definitions to prove stability requires ex-
plicit solutions of the system, which can be challenging or even impossible to obtain. Alternative
methods, such as Lyapunov’s methods, are employed to overcome this difficulty.

1.2.2 Lyapunov’s Methods for Stability Analysis

Lyapunov’s methods provide powerful tools for determining the stability of equilibrium points with-
out requiring explicit solutions of the system’s differential equations. The two main approaches are
Lyapunov’s indirect method and Lyapunov’s direct method.

1.2.2.1 Lyapunov’s Indirect Method

Lyapunov’s indirect method relates the stability of the origin for the nonlinear system (1.3) to the
stability of the system’s linear approximation near the origin. This method is particularly useful
because linear systems are generally easier to analyze.

Theorem 1.2.3. [57, 109] Let x = 0 be an equilibrium point for the nonlinear system (1.3), where
f : D → Rn is continuously differentiable and D is a neighborhood of the origin. The linearized system
around the origin is given by:

ẋ = f(x)⇒ ẋ = Ax,

where A = ∂f
∂x

∣∣∣∣
x=0

is the Jacobian matrix evaluated at the origin.

The stability of the origin can be classified as follows:

1. The origin is locally asymptotically stable if all eigenvalues of A have negative real parts
Re(λi) < 0.

2. The origin is unstable if at least one eigenvalue of A has a positive real part Re(λi) > 0.

3. If some eigenvalues have zero real parts Re(λi) = 0 and the rest have non-positive real parts, the
system’s behavior is more complex:

• If Re(λi) ≤ 0 for all i, the origin may be marginally stable.

• Otherwise, the origin is unstable.

This theorem provides a criterion for local stability based on the linearized system, making it a
practical tool for stability analysis in many cases. However, when the linear approximation is
insufficient to determine stability, Lyapunov’s direct method can be used.

1.2.2.2 Lyapunov’s Direct Method

The direct method of Lyapunov is based on the concept of energy dissipation. In physical systems,
if the total energy of the system continuously decreases over time, the system will eventually settle
into an equilibrium state. This observation can be formalized using a scalar function V (x), often
interpreted as the system’s total energy.

7



Chapter 1. Brief Overview on State Estimation

Theorem 1.2.4 (Lyapunov Function and Lyapunov Stability [69]). Let x = 0 be an equilibrium point
for the nonlinear system (1.3), and let D be a neighborhood of the origin. Consider a continuously
differentiable function V : Rn → R satisfying the following conditions:

• V (x) = 0 if and only if x = 0.

• V (x) > 0 if x 6= 0 (i.e., V (x) is positive definite).

• The time derivative of V along the trajectories of the system is non-positive:

V̇ (x(t)) =
d

dt
V (x(t)) = ∇V (x) · f(x) ≤ 0, ∀x 6= 0.

Then V (x) is called a Lyapunov function, and the system is stable.

• The system is asymptotically stable if V̇ (x) < 0 for all x 6= 0.

• The system is globally asymptotically stable if, in addition, V (x) → +∞ as ‖x‖ → +∞ (this
condition is known as "radial unboundedness").

Lyapunov’s direct method provides a powerful way to prove stability without solving the differen-
tial equations explicitly. By constructing an appropriate Lyapunov function, one can conclude the
stability of the system’s equilibrium.

1.2.3 Input-to-State Stability (ISS) and Its Extensions

In practical applications, control systems are frequently influenced by noise, perturbations in con-
trols, and observational errors. Therefore, it is desirable for a system to be not only stable but
also input-to-state stable (ISS). ISS was first introduced in the pioneering work of E. D. Sontag in
1989in his work [111]. His research laid the foundation for understanding how external inputs or
disturbances affect the stability of nonlinear systems. Let the following differential equation

ẋ = f(x, u), (1.3)

where x ∈ Rn, where u : R+ → Rm is a Lebesgue measurable essentially bounded external input
and f is a Lipschitz continuous function w.r.t. the first argument uniformly w.r.t. the second one.
This ensures that there exists a unique absolutely continuous solution of the system. with input u :
[0,∞) → Rn (also called "controls" or "disturbances" depending on the context) being measurable
locally essentially bounded maps.

1.2.3.1 Comparison Functions Formalism

In the context of stability analysis, comparison functions are essential mathematical tools used to
describe the behavior of dynamical systems over time. These functions help formalize notions of
stability, such as global asymptotic stability (GAS) and input-to-state stability (ISS), using sets and
function properties. Below, we define three important classes of comparison functions: K, K∞,
and KL.

K := {α : R+
0 → R+

0 | continuous, strictly increasing, and α(0) = 0}
K∞ := {α ∈ K | α is unbounded}
KL := {β : R+

0 × R+
0 → R+

0 | continuous, β(·, r) ∈ K ∀r ≥ 0,

and β(s, t) converges strictly to 0 as t→∞ for all fixed s ∈ R+
0 }. (1.4)
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The class K represents continuous, strictly increasing functions that start at zero. The class K∞
is a subset of K that includes functions that are also unbounded, meaning they grow without
bound as their argument increases. Lastly, the class KL contains functions that depend on two
variables, where the first variable behaves as a K-class function, and the second variable ensures
strict convergence to zero over time. These comparison functions are useful for defining stability
concepts in dynamical systems. For more information about the comparison functions formalism
one can refer to the works [40, 63, 70, 111, 113, 120]. For instance, a system is said to be globally
asymptotically stable (GAS) if there exists a β ∈ KL such that the following inequality holds:

|x(t, x0)| ≤ β(|x0|, t), ∀x0 ∈ Rn, t ≥ 0 (1.5)

|x(t, x0)| denotes the Euclidean norm of the system state at time t starting from the initial condition
x0. The function β describes how the system’s state evolves over time, ensuring that the state
decays to zero as t increases, thereby demonstrating stability.

1.2.3.2 The Necessity of ISS

A linear system is 0-GAS if and only if its system matrix A is Hurwitz, meaning all eigenvalues
of A have negative real parts. A 0-GAS linear system satisfies reasonable input/output stability
properties: bounded inputs lead to bounded state trajectories and outputs, and inputs converging
to zero ensure the system’s solutions (and outputs) also converge to zero. In other words, for
linear systems, zero-detectability is equivalent to detectability: two trajectories that produce the
same output must approach each other. However, for nonlinear systems, 0-GAS alone does not
guarantee desirable behavior concerning inputs.

Example 1.2.5 ( [112]). Consider the following one-dimensional system, with scalar inputs:

ẋ = −x+ (x2 + 1)u

• This system is clearly 0-GAS, since it reduces to ẋ = −x when u ≡ 0. On the other hand,
solutions diverge even for some inputs that converge to zero. For example, take the control
u(t) = (2t + 2)−

1
2 and x0 =

√
2, there results the unbounded trajectory x(t) = (2t + 2)

1
2 as

shown in Figure 1.1.

• This is in spite of the fact that the unforced system is GAS. Thus, the converging-input converging-
state property does not hold.

0 1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

3.5

t

x
(t

),
u

(t
)

x(t) = (2t+ 2)1/2

u(t) = (2t+ 2)−1/2

Figure 1.1: Diverging state for converging input
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ISS extends the GAS property to nonlinear systems. Intuitively, ISS means that the system’s behavior
remains bounded when the inputs are bounded and tends towards an equilibrium point when the
inputs approach zero [113]. ISS is closely related to the concept of stability under perturbations
(total stability), which is well-studied in the classical dynamical systems literature. ISS requires
that the system remains GAS up to an error term dependent on the magnitude of the input u,
measured via the essential supremum norm:

‖u‖∞ := ess sup
t≥0
‖u(t)‖. (1.6)

Definition 1.2.6 ( [116]). System is called ISS, if there exist β ∈ KL and γ ∈ K∞ such that for all
initial values x0, all perturbation functions u and all times t ≥ 0, the following inequality holds:

|x(t, x0;u)| ≤ β(|x0|, t) + γ(‖u‖∞, t) (1.7)

ISS can be characterized via ISS Lyapunov functions. The ISS Lyapunov function provides a power-
ful tool for analyzing the stability of nonlinear systems subject to input disturbances. It guarantees
that the state trajectories of the system remain bounded, provided that the inputs are also bounded,
and the Lyapunov gain ensures that the inputs do not cause the system state to grow faster than a
certain rate.

Theorem 1.2.7 ( [113]). A system is ISS if and only if it admits an ISS Lyapunov function, i.e. a
smooth function V : Rn → R≥0 and K∞-functions α1, α2 and K- functions α3, γ such that

α1|x| ≤ V (x) ≤ α2|x| (1.8)

and
V̇ (x) ≤ −α3|x| (1.9)

hold for all x ∈ Rn, u ∈ Rm so that |x| ≥ γ(|u|); the function γ is called Lyapunov gain.

The ISS property of an observer ensures that its estimation error is bounded and decays over time,
despite the presence of input and measurement disturbances. The observer is said to be ISS if the
error between the estimated state and the true state of the system remains bounded in the presence
of input and measurement disturbances. This is captured by equation (1.10), which states that the
error |x(t)− x̂(t)| between the true state x(t) and the estimated state x̂(t) is bounded by a function
of the error and time, β(|x(t) − x̂(t)|, t), as well as the supremum of the magnitudes of the input
disturbance v(s) and the measurement disturbance w(s) up to time t.

Definition 1.2.8 (ISS-observer [112]). An observer is ISS if

|x(t)− x̂(t)| ≤ β(|x(t)− x̂(t)|, t) + γ1

(
sup
s∈[0,t)

|v(s)|

)
+ γ2

(
sup
s∈[0,t)

|w(s)|

)
(1.10)

for all t ≥ 0, for some β ∈ KL, γ1, γ2 ∈ K.

1.2.3.3 Output State Stability (OSS)

Output to State Stability (OSS) is a property of dynamic systems that relates the system’s output to
its state. Specifically, a system is said to be OSS if, for any bounded output, there exists a bound on
the initial state that ensures the state remains bounded for all time. In [113, 114] output-to-state
stability (OSS) was proposed as a generalization of the notion of detectability to nonlinear systems
without inputs. Consider the class of systems given by{

ẋ = f(x)
y = h(x)

(1.11)

where the map f : Rn → Rn is assumed to be locally Lipschitz with, and h : Rn → Rp is continuous
with h(0) = 0.
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Definition 1.2.9 ( [114]). The system (1.13) is output-to-state stable (OSS) if there exist some β ∈
KL and some γ ∈ K such that

|x(t, x0)| ≤ β(|x0|, t) + γ(‖y‖∞, t) (1.12)

1.2.3.4 Input to Output Stability (IOS)

Input-Output Stability (IOS) is a property that bridges the system’s input to its output. Specifically,
a system is said to be IOS if, for any bounded input, the system’s output remains bounded as
well. The notion of "input to output stability" (IOS) formalizes the idea that outputs depend in an
"asymptotically stable" manner on inputs, while internal signals remain bounded. When the output
equals the complete state, one recovers the property of input to state stability (IOS). Consider the
class of systems given by {

ẋ = f(x, u)
y = h(x)

(1.13)

where the map f : Rn → Rn is assumed to be locally Lipschitz with, and h : Rn → Rp is continuous
with h(0) = 0.

Definition 1.2.10 ( [115,121]). The system (1.13) is input-to-output stability (IOS): there exist some
β ∈ KL and some γ ∈ K such that

|y(t)| ≤ β(|x0|, t) + γ‖u‖∞. (1.14)

1.2.3.5 Input/Output to State Stability (IOSS)

Input/output-to-state stability (IOSS) is the combination of IOS and SS, it is the property of dy-
namic systems that relates the input-output behavior of the system to its internal state. An IOSS
system is stable in the sense that its output remains bounded for any bounded input, and its inter-
nal state remains bounded as well. IOSS was introduced in [113] since it is not possible to deal
with inputs and outputs separately in general. It combines the ’strong’ observability with ISS.

Definition 1.2.11 ( [112]). The system (1.13) is input/output to state stable (IOSS) if there exist
some β ∈ KL and some γ1, γ2 ∈ K such that

|x(t)| ≤ β(|x0|, t) + γ1(‖u[0,t]‖∞) + γ2(‖y[0,t]‖∞) (1.15)

The IOSS Lyapunov function is a useful tool for analyzing the IOSS property of a system, and for
designing control strategies that ensure IOSS.

Theorem 1.2.12 ( [76] (Lyapunov Characterisation)). A system is IOSS if and only if it admits
an IOSS Lyapunov function, i.e. a positive definite smooth function V : Rn → R and K∞-functions
α1, α2, α3 such that

V̇ (x) ≤ −α1|x|+ α2|u|+ α3|y| (1.16)

hold for all x ∈ Rn, u ∈ Rm.

1.2.3.6 Incremental Input/Output-to-State Stability i-EIOSS

Consider the following nonlinear discrete-time system:{
xt+1 = f(xt, wt)
yt = h(xt, vt)

(1.17)
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where xt ∈ X ⊆ Rn is the state of the system; yt ∈ Rm is the output vector; wt ∈ W ⊆ Rp and
vt ∈ V ⊆ Rq are unknown external disturbances. The functions f(·, ·) and h(·, ·) are assumed to
be continuous with respect to their arguments. For simplicity, we do not consider known external
input, which however does not undermine the generality of what follows. Let us denote by |x| the
Euclidean norm

√
x>x, x ∈ Rn.

Definition 1.2.13. System (1.17) is incrementally exponentially input/output-to-state stable (i-
EIOSS) if there exist constants cx, cv, cw > 0 and % ∈ (0, 1) such that for any pair of initial conditions
x0, x̃0 ∈ X and any disturbance sequences wt, w̃t ∈ W, the following holds:

∣∣xt(x0, w
t−1
0 )− x̃t(x̃0, w̃

t−1
0 )

∣∣2 ≤ cx|x0 − x̃0|2%t

+ cv

t−1∑
i=0

%t−1−i ∣∣yi(x0, w
i−1
0 , vi0)− yi(x̃0, w̃

i−1
0 , ṽi0)

∣∣2
+ cw

t−1∑
i=0

%t−1−i |wi − w̃i|2 . (1.18)

In practice, this i-EIOSS property ensures that the system is capable of maintaining accurate esti-
mation despite the presence of disturbances and uncertainties. This property guarantees that the
difference between the actual state of the system and the estimation obtained by MHE decreases
exponentially over time.
The i-EIOSS property is a stronger notion, ensuring that even when inputs and outputs vary in-
crementally, the estimation error converges exponentially, leading to more robust and reliable es-
timators. For more details on the above definition, we refer the reader to [85, 105] for a more
general case. These stability notions are interconnected, each offering a different perspective on
how inputs, outputs, and states interact in a dynamic system. Understanding these relationships
is crucial for designing robust and stable control systems. The ISS focuses on the boundedness of
the state with respect to the input, and OSS considers the boundedness of the state with respect
to the output. The OSS is a generalization of ISS for systems where the output is more accessible.
ISS ensures that the state remains bounded for bounded inputs, while IOS ensures that the output
remains bounded. IOS is particularly useful in output-driven systems where the main concern is
the behavior of the output. The IOSS combines the principles of both IOS and OSS, providing a
comprehensive stability criterion that links the input and output to the system’s state. The i-IOSS
extends IOSS by ensuring that the system’s behavior is robust to incremental changes in inputs and
outputs, with exponential convergence properties.

1.3 Estimation in Dynamical Systems

Dynamical systems are important in various fields such as engineering, economics, and biology,
where understanding the evolution of system states over time is crucial. However, in many practical
situations, it is impossible to directly measure all internal states of a system. This leads to the need
for state estimation, where the unmeasured states are inferred from available output measurements
and known system dynamics. State estimation lies in the concept of observability, which determines
whether the internal states of a system can be reconstructed from its output measurements.
In this section, we discuss the observability of both linear and nonlinear systems. We provide a
recall of both geometric and rank conditions for observability. We also explore the design and role
of observers and estimators.
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1.3.1 Observability

The observability of a process is a fundamental concept in the field of state estimation. Indeed, to
reconstruct the inaccessible states of a system, it is necessary to know, a priori whether the variables
are observable or not. Observability stands for the possibility of reconstructing the full trajectory
from the observed data, that is, from the output trajectory in the uncontrolled case, or from the
couple (output trajectory, control trajectory) in the controlled case. This property is fundamental
for both linear and nonlinear systems and dictates whether an estimator or observer can function
effectively.

1.3.1.1 Observability of Nonlinear Systems

Let us consider the class of nonlinear systems described by :{
ẋ = f(x, u),
y = h(x, u),

(1.19)

where f : Rn × Rm → Rn and h : Rn × Rm → Rp.

Definition 1.3.1. Observability of nonlinear systems (Geometric Condition) [28]

• Indistinguishability: Let y0
u(t) → x0 and y1

u(t) → x1. Then x0 and x1 are indistinguishable if
y0
u(t) = y1

u(t), ∀ t ≥ 0, ∀ u. Otherwise, x0 and x1 are distinguishable.

• The system (1.19) is observable in x0 if x0 is distinguishable from any x ∈ Rn. In addition, the
system (1.19) is observable if ∀ x0 ∈ Rn, x0 is distinguishable.

Definition 1.3.2 (Observability of nonlinear systems (rank condition) ). We say that system (1.19)
is observable if the following rank condition holds1:

rank
(
dh, dLfh, . . . , dL

n−1
f h

)>
= n

where the expression of dLkfh is given by

dLkfh =

(
∂Lkfh

∂x1
,
∂Lkfh

∂x2
, ...,

∂Lkfh

∂xn

)
.

For more details about the observability of nonlinear systems, one can refer to [28, 56, 56, 61, 93,
109].

1.3.1.2 Observability of Linear Systems

Now, let’s consider the observability of linear systems, which are easier to analyze due to their
linearity. Linear systems are described by the following equations:{

ẋ = Ax+Bu,
y = Cx,

(1.20)

where x ∈ Rn is the state vector, u ∈ Rm is the control and y ∈ Rp is the measured output.
The matrices A,B,C are constant matrices of appropriate dimensions. The Kalman observability
criterion provides a straightforward test for the observability of linear systems. If the system is
observable, then it is possible to reconstruct the entire state vector from the output data.

1Lie derivative: Let h : D → R, f : D → Rn, the Lie derivative of h along f is

Lfh(x) =
∑
i=1

fi(x)
∂h

∂xi
(x).
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Definition 1.3.3 (Kalman observability criterion [54]). the system (1.20) is said to be observable if
and only if

rank
(
O(A,C)

)
∆
= rank


C
CA
CA2

...
CAn−1

 = n (1.21)

O(A,C) is called Kalman observability matrix (of size np× n).

1.3.2 State Observers

A state observer is a system that provides an estimate of the internal state of a given real sys-
tem, from measurements of the input and output of the real system. It is typically computer-
implemented. There exist many types of observers: including the sliding mode observer [118],
dissipative type observers [26, 27], the high-gain observer approach [2, 13, 24, 41, 141], sliding
mode observer [37,108,118]. the LMI-based observer techniques [1,71,131,136].
A state observer is a typically computer-implemented system that estimates the internal state of a
given real system, from measurements of the input and output of the real system. Observers are
needed since the full state can not be measured or is too expensive to measure in many applications.
In addition, some variables in many applications have to be estimated and can not be measured
due to the unavailability of sensors at any cost.

(S) :

{
ẋ = f(x, u)
y = h(x, u)

u

(O) :

{
ż = Φ(z, u, y)
x̂ = Ψ(z, u, y)

x̂

y

Figure 1.2: State observer principle

Definition 1.3.4 (State Observer [77], [130] ). Consider the following dynamical system:

(S) :

{
ẋ = f(x, u),
y = h(x, u)

(1.22)

The dynamical system

(O) :

{
ż = Φ(z, u, y),
x̂ = Ψ(z, u, y)

(1.23)

is a local asymptotic observer for system (1.22) if :

• x(0) = x̂(0) ⇒ x(t) = x̂(t) ∀ t ≥ 0;

• ∃Ω ⊆ Rn : x(0)− x̂(0) ∈ Ω ⇒ lim
t→+∞

‖x(t)− x̂(t)‖ → 0.

1. ‖x(t)− x̂(t)‖ → 0 exponentially =⇒ Exponential observer.

2. Ω = Rn=⇒ Global observer.
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1.3.2.1 Luenberger Observer

The Luenberger observer is a classical observer widely used for state estimation in linear sys-
tems [64, 65, 82, 94]. It operates by estimating the internal states of a system through feedback
from the system’s output. The Luenberger Observer combines a model of the plant with a correc-
tion term. This correction, achieved through a feedback mechanism, adjusts the state estimates
based on the difference between the actual system output and the observer’s predicted output, us-
ing a designer-specified gain. This approach provides a simple yet effective and optimal solution
for state estimation in linear systems. We consider the dynamic model of a linear system defined as
follows: {

ẋ = Ax+Bu,
y = Cx,

(1.24)

where, at time t, x(t) is the plant’s state; u(t) is its inputs; and y(t) is its outputs. Luenberger’s
theory of observation is essentially based on pole placement techniques. The Luenberger observer
for the system (1.24):

˙̂x = Ax̂+Bu(t) +K(y(t)− Cx̂).

The dynamics of the estimation error e(t) = x(t)− x̂ has the expression

ė(t) = (A−KC)e(t).

Using a pole placement technique, it suffices to choose the gain K of the observer so that the
eigenvalues of the matrix A−KC are in the left complex half-plane.

1.3.2.2 Sliding Mode Observer

In the presence of unknown signals or system uncertainties, a Luenberger observer is generally
unable to drive the output estimation error to zero, and the observer states fail to converge to the
true system states. To address this limitation, a sliding mode observer offers an effective solution
by feeding back the output estimation error through a nonlinear switching term. This approach
enhances robustness against disturbances and uncertainties. For more details on sliding mode
observers, see [37, 79, 108, 124]. When a bound on the magnitude of disturbances is known, the
sliding mode observer can ensure finite-time convergence of the output estimation error to zero,
while the observer states converge asymptotically to the system states. Additionally, this technique
allows for the reconstruction of disturbances within the system.
In its simplest form, a sliding mode observer feeds back the output error through a discontinuous
switched signal rather than through a linear feedback mechanism. Initially, consider a linear system
as described by (1.24). We assume that C has full rank which means that each of the measured
outputs is independent and that the pair (A,C) is observable. Consider the change of coordinates
x 7→ Tcx whereby

Tc =

[
NT
C

C

]
where the submatrix Nc ∈ Rn×(n−p) spans the null-space of C. By construction det(Tc) 6= 0. Apply-
ing the change of coordinates x 7→ Tcx, the triple (A,B,C) are rewritten in the new coordinates as
follows:

TcAT
−1
c =

[
A11 A12

A21 A22

]
, TcB =

[
B1

B2

]
, CT−1

c =
[
0 Ip

]
, Tcx =

[
x1

y

]
m n− p
m p

where A11 ∈ R(n−p)×(n−p) and B1 ∈ R(n−p)×m. The system (1.24)can therefore be rewritten in the
form:
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{
ẋ1(t) = A11x1(t) +A12y(t) +B1uν,

ẏ = A21x1(t) +A22y(t) +B2u,
(1.25)

The observer {
˙̂x1(t) = A11x̂1(t) +A12ŷ(t) +B1u+ Lν,

˙̂y = A21x̂1(t) +A22ŷ(t) +B2u− ν,
(1.26)

where (x̂1, ŷ) the state estimates; L ∈ R(n−p)×p is a gain matrix; ν is a discontinuous injection term

νi = ρ sign(ŷi − yi), i = 1, 2, ..., p, ρ ∈ R+,

The term ν is designed to be discontinuous with respect to the sliding surface S = {e : Ce = 0} to
force the trajectories of e(t) onto S in finite time. Define e1(t) = x̂(t)− x(t) and ey(t) = ŷ(t)− y(t)
then, the error system is given by :

ė1(t) = A11ê1(t) +A12ey(t) + Lν, (1.27a)

ėy(t) = A21e1(t) +A22ey(t)− ν, (1.27b)

The gain L can be chosen to make the spectrum of A11 + LA12 lies in C−. Now define a further
change of coordinates by:

TL =

[
In−p L

0 Ip

]
The error system becomes {

˙̃e1(t) = Ã11ẽ1(t) + Ã12ey(t),

ėy(t) = A21ẽ1(t) + Ã22ey(t)− ν,
(1.28)

where ẽ1 = e1 + Ly, Ã11 = A11 + LA21, Ã12 = A12 + LA22 − Ã11L and Ã22 = A22 −A21L.
In the domain

Ω = {(e1, ey) : ‖A21e1‖+
1

2
λmax(Ã22 + ÃT22)‖ey‖ < ρ− η}

where η < ρ is some small positive scalar, the reachability condition eTy ėy < −η‖ey‖ is satisfied.
After some finite time ts, for all subsequent time, ey = 0 and ėy = 0. When every component of ey
has converged to zero, a sliding motion takes place on the surface

S0 = {(e1, ey) : ey = 0}

which, by choice of L, represents a stable system and so ẽ→ 0 and consequently, x̂→ x as t→∞.

1.3.2.3 Standard High-Gain Observer

The high-gain observer is based on the concept of applying a high gain to the error between the
observed output and the actual output. This approach forces the observer to converge quickly to
the true state values, even if the initial estimation error is large. We recall the basic high gain
observer as in [42]. Consider the class of nonlinear systems described by the equations:

ẋ =


ẋ1

ẋ2
...

ẋn−1

ẋn

 =


x2 + f1(x1)

x3 + f2(x1, x2)
...

xn + fn−1(x1, . . . , xn−1)
fn(x)


y = x1

(1.29)
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where x(t) ∈ Rn is the system state and y(t) ∈ Rp is the output measurement vector. For the sake
of brevity, we consider the system (3.14) without control input. We assume that the functions
fi : Ri −→ R, i = 1, . . . , n are respectively γfi−Lipschitz with respect to their arguments, and the
Lipschitz constraint is assumed to be global. That is there exists γfi > 0, i = 1, . . . , n such that

∣∣∣fi(x1 + ∆1, . . . , xi + ∆i)− fi(x1, . . . , xi)
∣∣∣ ≤ γfi i∑

j=1

|∆j | ,∀∆i ∈ R . (1.30)

If the Lipschitz assumption is not global and the system (3.14) admits a positively invariant compact
set on which f is Lipschitz, then we can apply the Hilbert projection theorem [90, 134] or the
Kirszbraun–Valentine extension theorem [125, 133] to extend f to a globally Lipschitz function.
The reader can also find details on this extension in [45]. To simplify the developments, we write
system (3.14) under the form: {

ẋ = Ax+ f(x)
y = Cx

(1.31)

where
C =

[
1 0 . . . 0

]
, f(x) =

[
f1(x1) . . . fn(x)

]> (1.32)

and the state matrix A is defined by

(A)i,j =

{
1 if j = i+ 1
0 if j 6= i+ 1

. (1.33)

Let us introduce the following linear transformation

ζ = Tτx, where Tτ
∆
= diag

(
1

τ
, . . . ,

1

τn

)
(1.34)

which transforms (3.14) into
ζ̇ = τAζ + Tτf(T 1

τ
ζ) (1.35)

where the relation T−1
τ = T 1

τ
is used. Now consider the following observer corresponding to (3.17):

˙̂
ζ = τAζ̂ + Tτf

(
T 1
τ
ζ̂
)

+ L
(
y − CT 1

τ
ζ̂
)

(1.36)

where L, independent from τ , is the constant observer gain to be determined. Then the dynamics
of the estimation error eζ = ζ − ζ̂ is expressed as

ėζ = τ
(
A− LC

)
eζ + ∆f (1.37)

where
∆f

∆
= Tτ

[
f(T 1

τ
ζ)− f

(
T 1
τ
ζ̂
)]
. (1.38)

From the Lipschitz condition (1.30), the equivalence of norms in Rn, the structure of Tτ in (4.37),
and the fact that τ ≥ 1, we can show as in [9] that there is a constant kf > 0, independent of τ ,
such that

‖∆f‖ ≤ kf‖eζ‖. (1.39)

Now, we can recall the following standard theorem from high-gain methodology.
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Theorem 1.3.5 ( [9]). Let P = P> > 0 and X be matrices of appropriate dimensions, and τ > 0 is a
scalar, such that the following conditions hold:

ATP + PA− C>X − X>C + λIn < 0, (1.40)

τ > max

(
1,

2kfλmax(P )

λ

)
. (1.41)

Then the observer (3.18) corresponding to (3.17), with L = P−1X>, converges exponentially towards
zero. Moreover, the estimated state x̂(t) = T 1

τ
ζ̂(t) exponentially converges to the state x(t) of the

original system (3.14).

The key advantage of the high-gain approach is that it guarantees the existence of an exponen-
tially convergent observer, achieved by adjusting a single parameter, which must be sufficiently
large [43, 44]. However, the necessity for a large gain poses a significant drawback. Specifically,
high-gain observers are highly sensitive to output measurement noise due to the large tuning pa-
rameter, which can become excessively high in systems with higher dimensions and nonlinearities
with large Lipschitz constants. To address this issue, numerous studies have proposed various
solutions : a time-varying high-gain observer can be designed where the gain starts high and grad-
ually decreases over time [29]; a high-gain observer with limited gain power [25]; LPV/LMI-Based
High-Gain Observer [138]. In [138], a new class of observers called the HG/LMI observer, was
introduced by combining the standard high-gain methodology with the LPV/LMI technique [131].
This new observer offers the benefit of reducing the tuning parameters compared to previous high-
gain observers, without resorting to saturation functions or filtering mechanisms. Our approach
adopts the standard high-gain methodology, maintaining a state observer structure of dimension
n. However, by utilizing the LPV/LMI technique developed in [131], the tuning parameter can be
reduced, thereby decreasing the gain power. This is achieved by introducing a "compromise index"
j0, where 0 ≤ j0 ≤ n. This modification limits the gain power to j0 but necessitates solving 2j0

LMIs instead of just one, as is required with the standard high-gain observer.
Despite these improvements, research in this domain remains ongoing, as many challenges still
need to be addressed to further enhance the high-gain observer’s performance, particularly in the
presence of measurement noise. The high-gain observer is typically developed for systems in trian-
gular form or for any system that can be transformed into such a structure. However, finding the
appropriate transformation, which is a diffeomorphism, can be challenging. This transformation is
crucial for reformulating the system into a suitable triangular structure, but determining it is often
complex and not always straightforward, especially for high-dimensional systems. To address this
issue, we propose in this thesis an approach that eliminates the need for any transformation of the
system into a triangular form.

1.3.3 LPV Approach

LMI (Linear Matrix Inequality)-based observers are designed using optimization techniques, where
the observer gain is derived by solving a set of LMIs. These LMIs are typically derived from stability
and performance conditions (e.g., Lyapunov stability). The LMI approach uses convex optimization
to find the observer gains that satisfy certain criteria. We consider a class of nonlinear systems
without a linear state part. Indeed, we will see later that the linear part is not necessary for the
design methods we develop. For simplicity of presentation, we consider, without loss of generality,
that the nonlinear function depends only on the system state, and the output is linear. The extension
to nonlinear output is straightforward. The class of systems we treat in this section is described by
the following equations: {

ẋ = Ψ(x)
y = Cx

(1.42)
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where the nonlinear function Ψ : Rn −→ Rn is assumed to be γΨ-Lipschitz, i.e.:∥∥∥Ψ(x)−Ψ(y)
∥∥∥ ≤ γΨ

∥∥∥x− y∥∥∥, ∀ x, y ∈ Rn (1.43)

This part is devoted to the reformulated Lipschitz property from [131]. This reformulation is
necessary for our developed LPV approach. A useful definition and two lemmas are presented.

Definition 1.3.6. Consider two vectors

X =

x1
...
xn

 ∈ Rn and Y =

y1
...
yn

 ∈ Rn.

For all i = 0, ..., n, we define an auxiliary vector XYi ∈ Rn corresponding to X and Y as follows:
XYi =



y1
...
yi
xi+1

...
xn


for i = 1, ..., n

XY0 = X

(1.44)

Lemma 1.3.7 ( [131]). Consider a function Ψ : Rn −→ R. Then, for all

X =

x1
...
xn

 ∈ Rn and Y =

y1
...
yn

 ∈ Rn

there exist functions ψj : Rn × Rn −→ R, j = 1, ..., n so that

Ψ(X)−Ψ(Y ) =

j=n∑
j=1

ψj

(
XYj−1 , XYj

)
eTn (j)

(
X − Y

)
(1.45)

Proof. The proof consists of rewriting Ψ(X)−Ψ(Y ) as

Ψ(X)−Ψ(Y ) =

j=n∑
j=1

[
Ψ
(
XYj−1

)
−Ψ

(
XYj

)]
Now, defining the functions ψj by

ψj

(
XYj−1 , XYj

)
=


0 if xj = yj

Ψ

(
XYj−1

)
−Ψ

(
XYj

)
xj−yj if xj 6= yj

(1.46)

we can write

Ψ(X)−Ψ(Y ) =

j=n∑
j=1

[
ψj

(
XYj−1 , XYj

)]
(xj − yj)

=

j=n∑
j=1

[
ψj

(
XYj−1 , XYj

)
eTn (j)

] (
X − Y

) (1.47)
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2

Lemma 1.3.8 ( [131]). Considering the function Ψ : Rn −→ Rn, the two following items are
equivalent:

• Lipschitz property : Ψ is γΨ-Lipschitz with respect to its argument, i.e.:∥∥∥Ψ(X)−Ψ(Y )
∥∥∥ ≤ γΨ

∥∥∥X − Y ∥∥∥, ∀ X,Y ∈ Rn (1.48)

• Reformulated Lipschitz property : for all i, j = 1, ..., n, there exist functions

ψij : Rn × Rn −→ R

and constants γ
ψij

and γ̄ψij , so that ∀ X,Y ∈ Rn,

Ψ(X)−Ψ(Y ) =
i=n∑
i=1

j=n∑
j=1

ψijHij

(
X − Y

)
(1.49)

and
γ
ψij
≤ ψij ≤ γ̄ψij (1.50)

where
ψij

∆
= ψij

(
XYj−1 , XYj

)
and Hij = en(i)eTn (j)

In fact, Lemma (1.3.8) provides a best less conservative Lipschitz condition. Indeed, the reformula-
tion (1.49)-(1.50) allows treatment of the nonlinearity with the best precision and exploits all the
interesting properties of the nonlinearity of the investigated system. For instance, the Lipschitz con-
dition (1.2) does not distinguish between the nonlinearities Ψ(x) = sin(x2) and Ψ(x) = tanh(x2).
However, with the reformulation (1.50), we can see the difference. Indeed, for Ψ(x) = sin(x2) we
have γ

ψ11
= −1 and for Ψ(x) = tanh(x2), we have γ

ψ11
= 0. Consider the following Luenberger

observer:
˙̂x = Ψ(x̂) + L

(
y − Cx̂

)
(1.51)

The dynamic of the estimation error e = x− x̂ is then given by:

ė =
[
Ψ(x)−Ψ(x̂)

]
− LCe (1.52)

Since Ψ(.) is γΨ-Lipschitz, then following Lemma 1.3.8 there are functions

ψij : Rn × Rn −→ R

and constants γ
ψij

and γ̄ψij , so that

Ψ(x)−Ψ(x̂) =
[ i=n∑
i=1

j=n∑
j=1

ψijHij

]
e (1.53)

and
γ
ψij
≤ ψij ≤ γ̄ψij (1.54)

where
ψij

∆
= ψij

(
x
x̂j−1

t , xx̂j
)
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is defined as in (1.46). By replacing Ψ by Ψi (the ith component of Ψ). In the sequel, for simplicity
of presentation, we use only ψij instead of ψij

(
xx̂j−1 , xx̂j

)
.

Now, define the matrices
Θ =

(
ψij

)
ij

(1.55)

and

A
(

Θ
)

=

i=n∑
i=1

j=n∑
j=1

ψijHij (1.56)

Consequently, the dynamics (1.52) can be rewritten as

ė =
[
A
(

Θ
)
− LC

]
e (1.57)

According to (1.54), the matrix parameter Θ belongs to a bounded convex set Hn for which the set
of vertices is defined by:

VHn =
{

Φ ∈ Rn×n : Φij ∈
{
γ
ψij
, γ̄ψij

}}
. (1.58)

The following theorem, which provides LMI conditions for observer design of Lipschitz systems.

Theorem 1.3.9 ( [131]). The observer (1.51) is asymptotically convergent if there exist a positive
definite matrix P, a matrix R of appropriate dimension so that the following LMI conditions hold:

A
(

Φ
)T
P + PA

(
Φ
)
− CTR−RTC < 0, ∀ Φ ∈ VHn (1.59)

Hence, the observer gain is given by
L = P−1RT .

It is clear that from the computational complexity point of view, the LPV method is less interesting,
viewing the cost of more demanding LMIs to be solved. In fact, in the LPV method, we have to
solve 2n

2
LMIs for n-dimensional nonlinear vectors. But, despite that, the LPV method provides

less restrictive LMI synthesis conditions. On the other hand, despite the cost of more demanding
LMIs, this does not play an important role in the feasibility of the proposed LMIs. In general,
computational complexity plays a role in online methods for real-time applications.

1.3.4 State Estimators

In many technological fields (telecommunication, remote sensing, geolocalisation, industrial con-
trol), useful information is not directly accessible as it is hidden in the observed signal; this issue
requires the development of hidden information methods.

1.3.4.1 Kalman Filter

A simple and optimal solution to the problem of estimating the state of linear systems is the Kalman
filter in the stochastic case [47,66,86]. The Kalman filter, based upon a linear state model puts into
equation the evolution of the useful signal and its relationship to the signal measured from a series
of incomplete or noisy measurements. Kalman filtering is an algorithm that provides estimates of
some unknown variables given the measurements observed over time.
The Kalman filter is a recursive predictive filter that is based on the use of state space techniques
and a recursive algorithm. It estimates the state of a dynamic system. This dynamic system can be
distributed by some noise. To improve the estimated state, the Kalman filter uses measurements
that are related to the state but distributed as well. Thus the Kalman filter consists of two steps,
the prediction and the correction.
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1.3.4.1.a Case of continuous Linear Time varying (LTV) systems:

For the LTV system of the form {
ẋ = Ax+Bu+ v(t),
y = Cx+ w(t),

(1.60)

where v(t) and w(t) are two Gaussian white noises of zero expectation, and non-correlated covari-
ances Q and R, respectively.

˙̂x = Ax̂+Bu+ PCTR−1(y − Cx̂), (1.61)

n∑
i=1

E(ei(t)
2) = E(eT (t)e(t))

˙̂x = A(t)x̂+B(t)u+ PCT (t)R−1(y − C(t)x̂), (1.62)

where P is a symmetric and definite positive solution of the following Riccati equation:

Ṗ = AP + PAT +Q− PCTR−1CP.

For the LTV system of the form {
ẋx+1 = Atxt +Btut + vt,
yt = Ctxt + wt,

(1.63)

where v and w are two Gaussian white noises of zero expectation, and non-correlated covariances
Q and R, respectively. Consider the best possible predictor model and estimating that the value
that the noise will take at the following instant will be zero, the best prediction that we can make
is given by

x̂t+1/t = Ax̂t/t +But.

As this prediction must be the same as:

x̂t+1/t = Ax̂t/t−1 +But +Kt(yt − Cx̂t/t−1).

We conclude that
x̂t/t = x̂t/t−1 +A−1Kt(yt − Cx̂t/t−1)

1.3.4.1.b Extended Kalman Filter (EKF)

As we saw previously, the Kalman filter is frequently used to analyze the behavior of a linear system
that operates under Gaussian noise conditions. In other words, it makes it possible to identify the
state of a system over time from the current inputs and outputs and the Gaussian noise covariances
that affect the system for the duration of the study. This method is very efficient, but since most
physical systems are nonlinear, it is impossible to apply the Kalman filter directly to them. The
Kalman filter for such nonlinear problems is the so-called Extended Kalman Filter (EKF). This
Kalman filter linearizes the estimated state. The extended Kalman filter is a direct extension of
the standard Kalman filter by replacing the state and output matrices, A,C of the linear system
(1.60) or (1.63) by the Jacobians of the system non-linearities in question. Consider the following
nonlinear system: {

ẋ = f(x, u) + v(t),
y = h(x, u) + w(t),

(1.64)
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Algorithm 1 Standard Kalman Filter Algorithm

1. Initialization: Set the initial covariance matrix P0 = µIn > 0.

2. Set the correlation matrices: Qt = E[vtv
>
t ], Rk+1 = E[wt+1w

>
t+1].

3. One-step prediction of the state vector: x̂t+1/t = Atx̂t +Btut.

4. One-step prediction of the covariance error: Pt+1/t = AtPtA
>
t +Qt.

5. Compute the Kalman gain: Kt+1 = Pt+1/tC
>
t+1

(
Ct+1Pt+1/tC

>
t+1 +Rt+1

)−1
.

6. Update the state estimate: x̂t+1 = x̂t+1/t +Kt+1et+1, where et+1 = yt+1 − Ct+1x̂t+1/t is the
innovation or measurement residual.

7. Update the covariance matrix of the estimation error: Pt+1 =(
P−1
t+1/t + C>t+1R

−1
t+1Ct+1

)−1
.

The EKF is expressed as follows:

ẋ = f(x̂, u) + PH(x̂, u)R−1(y − h(x̂, u)) (1.65a)

Ṗ = F (x̂, u)P + PF (x̂, u)> +Q− PH(x̂, u)>R−1H(x̂, u)P, (1.65b)

where
F (x̂, u) =

∂f

∂x
(x̂, u),

and
H(x̂, u) =

∂f

∂x
(x̂, u).

1.3.4.1.c EKF for discrete-time systems

The Extended Kalman Filter (EKF) is a nonlinear variant of the Kalman Filter, designed to handle
systems where the process and observation models are nonlinear.
Unlike the standard Kalman Filter, which is optimal for linear systems, the EKF approximates the
nonlinear system by linearizing the dynamics around the current estimate, making it suitable for
a wide range of real-world applications, such as robotics, aerospace, and signal processing. In the
case of a discrete-time system of the form:{

xt+1 = ft(xt, ut) + vt,
yt = ht(xt, ut) + wt,

(1.66)

where the functions ft : Rn × Rp −→ Rn and ht : Rn × Rp −→ Rm are differentiable functions;
xt ∈ Rn, ut ∈ Rp, yt ∈ Rm, υt and ωt represent respectively the state, the input, the output and the
two disturbances on the states and the output.
The standard form of the extended Kalman observer is

x̂t+1 = x̂t+1/t +Kt+1(yt+1 − h(x̂t+1/t, ut+1)) k = 1, ..., n.

We develop the error term et = xt − x̂t using the Taylor expansion for the nonlinear functions ft
and ht. We seek the gain Kt minimizing:

trace(Pt) = E[ete
>
t ],
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Algorithm 2 Kalman Filter Algorithm

1. Initialization: Set the initial covariance matrix P0 = µIn > 0

2. Computation of matrices: Ft = F (x̂t, ut) = ∂f
∂x (x̂t, ut); Ht = H(x̂t, ut) = ∂h

∂x(x̂t, ut)

3. Correlation matrices: Qt = E[vtvt>]; Rt+1 = E(wt+1w
>
t+1)

4. One-step prediction of the state vector: x̂t+1/t = f(x̂t, ut)

5. One-step prediction of the covariance error: Pt+1/t = FtPtFt>+Qt

6. Kalman gain: Kt+1 = Pt+1/tH
>
t+1

(
Ht+1Pt+1/tHt+1 +Rt+1

)−1

7. n+1-step estimation of the state vector: x̂t+1 = x̂t+1/t + Kt+1et+1, where et+1 = yt+1 −
h(x̂t+1/t, ut+1)

8. Covariance matrix of the estimation error: Pt+1 = (In −Kt+1Ht+1)Pt+1/t

where Pt is the estimation error covariance matrix.
Despite its effectiveness, the EKF has limitations, particularly when the system is highly nonlinear
or when the linearization does not accurately capture the system dynamics. In such cases, more
advanced techniques like the Unscented Kalman Filter (UKF) Filters may be preferred.

1.3.4.2 Moving Horizon Estimator

Moving Horizon Estimation (MHE) is a widely used technique for state estimation across diverse
fields [5, 8]. The success of MHE lies in its ability to account for constraints on system vari-
ables [51,91,100,101]. MHE infers the current system state by considering a recent batch of past
inputs and measurements, using a moving window of the past N data points (Fig. 1.3.4.2). An
optimization problem is solved to fit the available input/output data. By minimizing an objective
function that quantifies the discrepancy between actual measurements and estimated states, MHE
enables state estimation in the presence of noisy measurements. The MHE scheme is represented
in Figure 1.3.4.2.
MHE is a state estimation method that is particularly useful for nonlinear or constrained dynamic
systems. We consider the class of nonlinear systems given by (1.17). For simplicity, we do not
consider known external input, which however does not undermine the generality of what follows.
Let us denote by |x| the Euclidean norm

√
x>x, x ∈ Rn. MHE is based on the idea of minimizing

a quadratic estimation cost function defined on a backward sliding window composed of a finite
number of time stages, which will be denoted by the integer N ≥ 1. For this, we define the classic
quadratic objective function

JNt (x̂t−N ) = µ|x̂t−N − x̄t−N |2ηN + ν
t−1∑

i=t−N
ηt−1−i ∣∣yi − h(x̂i|t, 0)

∣∣2 (1.67)

where η ∈ (0, 1) and µ, ν > 0

under the constraints

x̂i+1|t = f(x̂i|t, 0) , i = t−N, . . . , t− 1 (1.68)

and thus x̂t−N+1|t, . . . , x̂t|t are generated by x̂t−N |t. We denote by MHEN what results from the
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State Transition
xt+1 = f(xt, wt)

Output Measurement
yt = h(xt, vt)

Sliding Window
[t − N1, t]

Sliding Window
[t − N2, t − N1]

Sliding Window
[t − N3, t − N2]

Cost Function
Minimization
JN
t (x̂t−N )

Optimization
MHEN

Final State Estimation
x̂t|t

wt, vt

Figure 1.3: Moving horizon estimation technique (MHE) scheme

x̄t−N |t yt−N · · · yt−1 yt

Jt: Optimization at t

Minimizes cost function

x̂t−N |t

x̄t−N+1|t+1 yt−N+1 · · · yt yt+1

Jt+1: Optimization at t+ 1

Minimizes cost function

x̂t−N+1|t+1

Prediction

Prediction

Time t

Time t+ 1

Sliding Window at Time t

Sliding Window at Time t+ 1

Figure 1.4: Sliding windows in (MHE) scheme.

minimization of the cost function (1.67) as follows
x̂0|t ∈

{
argmin
x̂0∈X

J tt (x̂0) s.t. (1.68) holds for t = 1, ..., N
}

x̂t−N |t ∈
{

argmin
x̂t−N∈X

JNt (x̂t−N ) s.t. (1.68) holds for t = N + 1, N + 2, . . .
} 25
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together with (1.68), which provides x̂t|t. For further ease of presentation, note that the cost
function

J tt (x̂0) = µ|x̂0 − x̄0|2ηt + ν
t−1∑
i=0

ηt−1−i ∣∣yi − h(x̂i|t, 0)
∣∣2 (1.69)

for all t ≤ N .
Both the Extended Kalman Filter (EKF) and Moving Horizon Estimation (MHE) are advanced tech-
niques used for state estimation in nonlinear systems. While the EKF is widely used due to its
efficiency and simplicity, its robustness is not guaranteed. Moving Horizon Estimation (MHE),
which is proven to be robust in Chapter 2, is more suitable for complex systems.

1.4 Conclusion

Estimators and observers are both used to estimate the internal states of a system, but they differ
in approach. An observer is a specific type of estimator that focuses on real-time state estimation
using deterministic models, making it more computationally efficient but less robust to noise. In
contrast, estimators like the EKF and MHE incorporate statistical or optimization methods to handle
noise and uncertainties, making them suitable for systems with significant disturbances. Every
observer is an estimator, but Not Vice Versa. The choice between them depends on the application’s
requirements for accuracy, computational complexity, and real-time performance.
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2.1 Introduction

A rigorous theoretical framework for the robustness of control and estimation schemes has been
developed in the last decades. In [114], the authors showed that systems admitting robust estima-
tors must be i-IOSS. However, these results do not apply to moving-horizon estimators [11]. The
use of i-IOSS, as defined in [12], allows for the synthesis conditions of the parameters of the MHE
cost function to be less restrictive than previously done. In this part, we propose novel conditions
for the robust stability of the MHE estimation error by considering the incremental exponential
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input/output-to-state stability (i-EIOSS) property. In more detail, the contributions of this chapter
can be summarized as follows:

1. We propose novel numerical design procedures ensuring the computation of the i-EIOSS-
related parameters which are necessary to tune the parameters of the robust estimators. We
first introduce a general simple Lyapunov-based method, then we develop a new Linear Ma-
trix Inequality (LMI) condition guaranteeing the computation of the i-EIOSS coefficients.

2. Based on the novel mathematical inequalities, we provide sufficient conditions to ensure the
robust exponential stability (RES) of the MHE error by only assuming that the system is i-
EIOSS. Such conditions involve the window size of the MHE, which needs to be appropriately
selected to ensure RES.

3. Three prediction techniques are analyzed in detail, where each prediction equation demands
different sufficient conditions for RES. To relax the conditions required by the two first predic-
tion techniques on the size of the MHE, the third prediction method is proposed that involves
an output correction term with additional design parameters.

4. The construction of the new proposed prediction strategy with a convenient selection of the
design parameters is investigated in detail and suitable selection methods based on linear
matrix inequalities (LMIs) are devised to the scope. A key innovation lies in the incorporation
of an output-based dynamic extension approach. This technique not only simplifies but also
enhances the outcomes compared to previous methodologies outlined in [19,104].

Such contents allow to complement literature results previously established on RES for MHE (see,
among others, [75,85,104,105]). This chapter is organized as follows: Section 2.2 provides some
preliminary results presented in lemmas that will be used to prove the main results in the rest of
the chapter. In Section 2.3, we introduce two novel numerical design procedures for computing the
parameters related to the i-EIOSS property. The first approach is based on Linear Matrix Inequalities
(LMI), while the second leverages a Lyapunov-based stability criterion. Section 2.4 is dedicated
to proving the robustness of Moving Horizon Estimation for nonlinear systems using advanced
prediction strategies. A numerical case study is presented in Section 2.5. Finally, we end the
chapter with conclusions in Section 2.6.

2.2 Preliminary Results

We start by introducing the class of systems and the related assumptions. Then, we will present
some mathematical tools we need to use to establish the main LMI-based design method. The
formulation of the problem we aim to solve and the motivations are given at the end. Consider the
following nonlinear discrete-time system:
For convenience of calculation, and brevity as well and to avoid cumbersome notations, we consider
the system (1.17) with the same disturbance input wt in the output yt. This is not a restriction.
It is assumed without loss of generality since there are no constraints on the dependence of the
functions f(.) and h(.) on wt and vt, respectively. To summarize, instead of system (1.17), we
consider the following form: {

xt+1 = f(xt,ωt)
yt = h(xt,ωt)

(2.1)

where ωt
∆
=
[
w>t v>t

]> ∈ Rq. Then, all the next definitions and results are based on the sys-
tem (2.1). This form is convenient in the LMI context as usual in the literature [131,137].
Before introducing the main definitions, we need to make some assumptions, which are necessary
for the developed design methodology.
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Assumption 2.2.1. The nonlinear functions f(·) and h(·) are differentiable with respect to their ar-
guments and satisfy the following conditions:

sup
x∈Rn
ω∈Rq

∣∣∣∣∂fi∂x
(x,ω)

∣∣∣∣ < +∞, sup
x∈Rn,
w∈Rq

∣∣∣∣∂fi∂ω
(x,ω)

∣∣∣∣ < +∞ (2.2)

sup
x∈Rn
ω∈Rq

∣∣∣∣∂hi∂x
(x,ω)

∣∣∣∣ < +∞, sup
x∈Rn
ω∈Rq

∣∣∣∣∂hi∂ω
(x,ω)

∣∣∣∣ < +∞. (2.3)

where the functions fi, i = 1, . . . , n and hi, i = 1, . . . , p are the ith component of the functions f and
h, respectively.

The above assumption means that the Jacobians
∂f(x,ω)

∂x
,
∂f(x,ω)

∂ω
,
∂h(x,ω)

∂x
, and

∂h(x,ω)

∂ω
are

bounded, then they belong to convex polytopic sets defined respectively by:

Vf,x
∆
=


nx∑
j=1

αjFxj , such that αj ≥ 0,

nx∑
j=1

αj = 1

 (2.4)

Vf,ω
∆
=


nw∑
j=1

αjFωj , such that αj ≥ 0,

nω∑
j=1

αj = 1

 (2.5)

Vh,x
∆
=


qx∑
j=1

αjHxj , such that αj ≥ 0,

qx∑
j=1

αj = 1

 (2.6)

Vh,ω
∆
=


qω∑
j=1

αjHωj , such that αj ≥ 0,

qω∑
j=1

αj = 1

 (2.7)

where Fxj , Fωj ,Hxj , andHωj are known constant matrices of appropriate dimensions and the known
integers nx, nω, qx, qω are the number of vertices of each convex set, respectively.
The result is standard in the representation of elements in a convex set. Indeed, since the Jacobians
are bounded, the partial derivatives admit lower and upper bounds from which we can construct
a convex polytopic set containing the Jacobians. We refer the reader to the classic book [103] on
the representation of elements in a convex set and the books [30, 106] for convex decomposition
of nonlinear functions.
We will introduce the main definition concerned by this section, which is the incremental exponen-
tial input-to-state stability of the system (2.1).

Definition 2.2.2. System (2.1) is incrementally Exponentially Input/Output-to-State Stable (i-EIOSS)
if there exist constants cx, cv, cw > 0 and % ∈ (0, 1) such that for each pair of initial conditions
x0, x̃0 ∈ X and each two disturbance sequences ωt, ω̃t ∈ Ω, the following holds:

|xt(x0,ω
t−1
0 )− xt(x̃0, ω̃

t−1
0 )|2 ≤ cx|x0 − x̃0|2%t

+ cv

t−1∑
i=0

%t−1−i|yi(x,ωi−1
0 )− yi(x̃, ω̃i−1

0 )|2

+ cw

t−1∑
i=0

%t−1−i|ωi − ω̃i|2 (2.8)

where xt(x0,ω
t−1
0 ) means the solution of (2.1) generated from the initial state x0 and ωt−1

0
∆
=[

ω0 . . . ωt−1

]>.
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In the following, we present some basic results, presented in lemmas, that we will exploit after
analyzing the i-EIOSS property of the system (2.1) by using quadratic Lyapunov functions. The
Lemmas are presented in a general framework so that they can be exploited in different cases for
different control design problems.

2.2.1 Tools for Stability Analysis

In this section, we present some key results, which we will exploit to analyze the robustness of the
MHE for system (1.17). These results are presented in a general framework so that they can be
exploited for other purposes as well.

Lemma 2.2.3 ( [14]). Let (ut)t≥−` be a sequence of nonnegative real numbers, and ` ≥ 1 is a natural
number. Assume that

ut ≤ αut−` + βzt, ∀t ≥ `
where α ∈ (0, 1), β ≥ 0, and the sequence (zt)t≥0 is non negative. Then, the following inequality holds:

ut ≤ αt/` max
−`≤j≤0

(uj) +
β

1− α
max
0≤j≤t

(zj) .

Furthermore, if uj = u0,∀j ∈ {−`, . . . , 0}, then

ut ≤ u0α
t/` +

β

1− α
max
j∈[0,t]

(zj) . (2.9)

Proof. Since we work in Archimedian space, then for any t ≥ `, there exists an integer s ≥ 1 so that
t ∈ Is = {s`, s`+ 1, . . . , (s+ 1)`}. Then by backward substitution, we get

ut ≤ αs+1ut−(s+1)` + β

s∑
j=0

αjzt−j`. (2.10)

It follows that

ut ≤ αs+1 max
t∈Is

(
ut−(s+1)`

)
+ β max

0≤j≤s
(zt−j`)

s∑
j=0

αj . (2.11)

Since t ∈ Is, then
− ` ≤ t− (s+ 1)` ≤ 0. (2.12)

Also, since 0 ≤ j ≤ s and t ∈ Is, then we have

0 ≤ t− j` ≤ t.

In addition, since t ∈ Is, then

s+ 1 ≥ t

`
. (2.13)

By using geometric sequence theory, it follows that
s∑
j=0

αj =
1− αs+1

1− α
≤ 1

1− α
. (2.14)

Consequently, by using(2.12)-(2.14), from (2.11) we obtain

ut ≤ max
−`≤j≤0

(uj)α
t/` +

β

1− α
max
0≤j≤t

(zj) . (2.15)

If, in addition, uj = u0, j = −`, . . . , 0, then inequality (2.9) is inferred. This ends the proof.
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2

Lemma 2.2.3 presented above can be beneficial for certain control design problems, such as time-
delay systems [78, 123] and model-trajectory based approaches [84]. However, the results re-
garding MHE provide a conservative bound. To overcome this conservatism, we introduce two
novel lemmas in the following sections, specifically tailored for the MHE context studied here.
Lemma 2.2.4 presents a new and less conservative bound applicable to general control design
schemes, not limited to the MHE problem in this chapter. Meanwhile, Lemma 2.2.5 provides a
specific bound relevant to a particular sequence (zt)t≥0 concerning the exponential robustness of
the MHE approach explored in this research.

Lemma 2.2.4 ( [15]). Let (ut)t≥−` be a sequence of non-negative real numbers and ` ≥ 1 such that

ut ≤ αut−` + βzt,∀t ≥ `,

where α ∈ (0, 1), β ≥ 0. The sequence (zt)t≥0 is non-negative. Then the following inequality holds for
any κ ∈ N, κ ≥ 2:

ut ≤ α
t
κ` max
−`≤j≤0

uj +

(
β

1− α
κ−1
κ

)
max

t−s`≤j≤t
t−j
`
∈N

(
αt−jκ`zj

)
. (2.16)

Further, since t− s` ≥ 0, the following strict inequality holds:

ut ≤ α
t
κ` max
−`≤j≤0

uj +

(
β

1− α
κ−1
κ

)
max
0≤j≤t

(
α
t−j
κ` zj

)
. (2.17)

Proof. As in Lemma 2.2.3, we easily get (2.10). By relabeling j with t − j`, the second term
in (2.10) becomes

s∑
j=0

αjzt−j` =
t∑

j=t−s`
t−j
`
∈N

α
t−j
` zj .

On the other hand, for any κ ∈ N, κ ≥ 2, we can write

t∑
j=t−s`
t−j
`
∈N

α
t−j
` zj =

t∑
j=t−s`
t−j
`
∈N

(
α
κ−1
κ`

)t−j
α
t−j
κ` zj

≤ max
t−s`≤j≤t
t−j
`
∈N

(
α
t−j
κ` zj

) t∑
j=t−s`
t−j
`
∈N

(
α
κ−1
κ`

)t−j

From the properties of geometric series, after changing the index i := (t− j)/`, it follows that

t∑
j=t−s`
t−j
`
∈N

(
α
κ−1
κ`

)t−j
=

s∑
i=0

(
α
κ−1
κ

)i
=

1−
(
α
κ−1
κ

)s+1

1− α
κ−1
κ

≤ 1

1− α
κ−1
κ

.
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Consequently, we obtain
s∑
j=0

αjzt−j` ≤
(

1

1− α
κ−1
κ

)
max

t−s`≤j≤t
t−j
`
∈N

(
α
t−j
κ` zj

)
.

By using (2.12)-(2.13) as in Lemma 2.2.3 and since

α
t
` ≤ α

t
κ`

for all integer κ ≥ 2, from (2.10) we get

ut ≤ max
−`≤j≤0

(uj)α
t
` +

(
β

1− α
κ−1
κ

)
max

t−s`≤j≤t
t−j
`
∈N

(
α
t−j
κ` zj

)

≤ max
t−s`≤j≤t
t−j
`
∈N

(uj)α
t
κ` +

(
β

1− α
κ−1
κ

)
max

t−s`≤j≤t
t−j
`
∈N

(
α
t−j
κ` zj

)
, (2.18)

which coincides with (2.16). Hence, if uj = u0, j ∈ {−`, . . . , 0}, then

ut ≤ u0α
t
κ` +

(
β

1− α
κ−1
κ

)
max

t−s`≤j≤t
t−j
`
∈N

(
α
t−j
κ` zj

)
.

Further, since t− s` ≥ 0 and t−j
` ∈ N, then we have

max
t−s`≤j≤t
t−j
`
∈N

(
α
t−j
κ` zj

)
≤ max

0≤j≤t
t−j
`
∈N

(
α
t−j
κ` zj

)
≤ max

0≤j≤t

(
α
t−j
κ` zj

)
. (2.19)

By substituting (2.19) in (2.18) the inequality (2.17) is inferred. This ends the proof.

2

Lemma 2.2.4 may be viewed as a versatile tool for stability analysis, which is useful in many control
design problems, including estimation and control of time-delay systems. It can also be used for
the MHE problem we handle. It is more suitable than Lemma 2.2.3 since it provides a lower value
of the coefficient of the second term in the upper bound. For the purpose of proving robust stability,
it is suitable to state the following Lemma 2.2.5, derived from Lemma 2.2.4 for a specific case of
(zt)t≥0 by judiciously using inequality (2.16) instead of (2.17).

Lemma 2.2.5 ( [15]). Let (ut)t≥−` be a nonnegative sequence of real numbers and ` ≥ 1 is a natural
number such that

ut ≤ αut−` + β zt ,

for all t ≥ ` with

zt =

t−1∑
i=t−`

ηt−1−i |di|2 (2.20)

where α ∈ (0, 1), β ≥ 0, and (dj)j≥−` is any arbitrary bounded positive sequence. Then the following
inequality holds for any κ ∈ N, κ ≥ 2:

ut ≤ λt max
−`≤j≤0

uj +

(
β

1− α
κ−1
κ

) t−1∑
i=−`

λt−1−i |di|2 (2.21)
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where
λ := max

(
η, α

1
κ`

)
. (2.22)

Further, if uj = u0 and dj = d0, for −` ≤ j ≤ 0, we get

ut ≤ u0 λ
t +

β

(1− λ)2

t−1∑
i=0

λt−1−i |di|2 . (2.23)

Proof. From (2.16) in Lemma 2.2.4 and the definition of λ in (2.22), we get

ut ≤ λt max
−`≤j≤0

uj +

(
β

1− α
κ−1
κ

)
max

t−s`≤j≤t
t−j
`
∈N

(
λt−jzj

)
.

On the other hand, by using (2.20) and (2.22) we obtain

λt−jzj =

j−1∑
i=j−`

λt−j ηj−1−i |di|2 ≤
j−1∑
i=j−`

λt−1−i |di|2 .

It follows that

max
t−s`≤j≤t
t−j
`
∈N

(
λt−jzj

)
≤ max

t−s`≤j≤t
t−j
`
∈N

 j−1∑
i=j−`

λt−1−i |di|2
max

(
t−s`−1∑
i=t−s`−`

λt−1−i |di|2 ,

t−(s−1)`−1∑
i=t−s`

λt−1−i |di|2 , . . . ,
t−1=(t−s`)+s`−1∑
i=t−`=(t−s`)+s`−`

λt−1−i |di|2


=
t−1∑

i=t−s`−`
λt−1−i |di|2 . (2.24)

Since t− s` ≥ 0, then from (2.24) we have

max
t−s`≤j≤t
t−j
`
∈N

(
λt−jzj

)
≤

t−1∑
i=−`

λt−1−i |di|2

which leads to (2.21).
Further, if uj = u0 and dj = d0, for −` ≤ j ≤ 0, then we have

max
−`≤j≤0

uj = u0 (2.25)

and
t−1∑
i=−`

λt−1−i |di|2 =

0∑
i=−`

λt−1−i |di|2 +

t−1∑
i=1

λt−1−i |di|2

=

t−1∑
i=1

λt−1−i |di|2 + λt−1 |d0|2
0∑

i=−`
λ−i

≤ max

(
1,

0∑
i=−`

λ−i

)
t−1∑
i=0

λt−1−i |di|2

≤ 1

1− λ

t−1∑
i=0

λt−1−i |di|2 . (2.26)
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On the other hand, from the definition of λ in (2.22), since κ ≥ 2, ` ≥ 1, which means that
κ− 1 ≥ 1, 1/` ≤ 1, then we have

α
κ−1
κ ≤

(
α
κ−1
κ

) 1
`

=
(
α

1
κ`

)κ−1
≤ α

1
κ` ≤ λ

which leads to
1

1− α
κ−1
κ

≤ 1

1− λ
. (2.27)

Hence, by substituting inequality (2.25), (2.26), and (2.27) in (2.21), the relation (2.23) is in-
ferred. This ends the proof of Lemma 2.2.5.

2

Lemma 2.2.5 can be used straightforwardly to show the estimation error of the MHEN is RES
according to Definition 2.4.1 for all t ≥ N . The following lemma is well-known as a generalization
of the differential mean value theorem, or the Taylor remainder exact formula, for vector-valued
functions [132].

Lemma 2.2.6 (Differential Mean Value Theorem). Let Ψ : Rn 7→ Rq be a differentiable function and
two vectors x ∈ Rn and y ∈ Rn. Then, there exists

z
∆
=


z1

z2

...
zq

 ∈ Rnq, zi ∈ Co(x, y), i = 1, . . . , q (2.28)

where Co(x, y) stands for the convex hull of convex combinations of x and y, such that

Ψ(x)−Ψ(y) = ∇Ψ
x (z)(x− y) (2.29)

where

∇Ψ
x (z)

∆
=


∂Ψ1(z1)
∂x

∂Ψ2(z2)
∂x
...

∂Ψq(zq)
∂x

 . (2.30)

The notation (2.30) is employed to represent the Jacobian matrix.

2.3 LMIs for the Design of the i-EIOSS-related coefficients

Determining the i-EIOSS coefficients by using (2.8) in Definition 1.2.13 based on system trajectories
is very challenging. The objective of consists of establishing design methods that can be easily
exploited by numerical software and may be used for the design of the tuning parameters of any
robust estimation scheme. The i-EIOSS notion has been investigated only recently in the discrete-
time setting and, to our knowledge, up to now no method has been proposed to find the parameters
involved in the i-EIOSS upper bound formulation.
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2.3.1 Lyapunov–Based Stability Criterion for i-EIOSS

We propose a novel LMI-based technique, which ensures not only the i-EIOSS property of a system
but more importantly allows the explicit computation of the i-EIOSS related coefficients while
optimizing their values by solving a simple convex optimization problem. The result is based on
the use of a convenient mathematical tool for stability analysis, which allowed us to develop a novel
Lyapunov function-based criterion. Hence, the combination of a quadratic Lyapunov function and
the convexity principle led to new LMI conditions.
The proposed LMI-based design procedure guaranteeing the i-EIOSS property plays an important
role in designing robust estimators. The main motivation for developing this LMI method is the
robust convergence analysis of the Moving Horizon Estimator (MHE). Indeed, the design of a robust
MHE as developed in [14, 15] requires the i-EIOSS coefficients as tuning parameters. It is worth
noticing that related results on ensuring the δ−IOSS property by using matrix inequalities are
established in [104], where the authors proposed general but not numerically tractable design
conditions. We provide a general criterion based on Lyapunov theory to guarantee the i-EIOSS
property of a given system. The result of this section is summarized in the following proposition.

Proposition 2.3.1. Let (xt, x̃t) be two arbitrary solutions of (1.17) generated from two initial condi-
tions x0, x̃0 ∈ X and two disturbance sequences wt, w̃t ∈ Ω, respectively. Let ϑ(xt, x̃t) be a Lyapunov
function and

∆θϑ(xt, x̃t)
∆
= ϑ(xt+1, x̃t+1)− θϑ(xt, x̃t)
∆
= ∆θϑt = ϑt+1 − θϑt (2.31)

where θ > 0. Define εt
∆
= xt − x̃t and assume that the following items hold:

(i) There exist two positive scalars ϑmin and ϑmax with ϑmin < ϑmax satisfying:

ϑmin|εt|2 ≤ ϑ(xt, x̃t) ≤ ϑmax|εt|2, ∀t ≥ 0; (2.32)

(ii) There exist θ < 1, cy > 0, c̄w > 0 such that

∆θϑt ≤ cy|yt − ỹt|2 + c̄w|wt − w̃t|2,∀t ≥ 0, (2.33)

where yt and ỹt are the outputs generated by system (1.17) with xt and x̃t, respectively.

Then system (1.17) is i-EIOSS according to (2.8) in Definition 1.2.13 with the following coeffi-
cients ∀κ ≥ 2: {

% = θ, cν =
cy

ϑmin(1−θκ−1)

cx = ϑmax
ϑmin

, cw = c̄w
ϑmin(1−θκ−1)

(2.34)

Proof. From item (ii) and (2.31), we can write

ϑt ≤ θϑt−1 + zt, ∀t ≥ 1, (2.35)

where zt = cy|yt−1− ỹt−1|2 + c̄w|wt−1− w̃t−1|2. Therefore, by applying (2.16) of Lemma 2.2.4 with
the parameters

` = 1, β = 1, s = t− 1, α = θκ, κ ≥ 2 (2.36)

35



Chapter 2. Robust Moving Horizon Estimation Using Advanced Prediction Strategy

and from ϑj = ϑ0,∀j ≤ 0, by convention and construction, we get

ϑt ≤ ϑ0θ
t +

(
1

1− θκ−1

)
max
1≤j≤t

(
θt−jzj

)
≤ ϑ0θ

t +
1

(1− θκ−1)

t∑
j=1

θt−jzj

=︸︷︷︸
i:=j−1

ϑ0θ
t +

1

(1− θκ−1)

t−1∑
i=0

θt−1−izi+1

= ϑ0θ
t +

cy
(1− θκ−1)

t−1∑
i=0

θt−1−i|yi − ỹi|2

+
c̄w

(1− θκ−1)

t−1∑
i=0

θt−1−i|wi − w̃i|2. (2.37)

On the other hand, from item (i), we have |εt|2 ≤ 1
ϑmin

ϑt and ϑ0 ≤ ϑmax|ε0|2. Hence, we deduce
the following inequality for all t ≥ 1:

|εt|2 ≤
ϑmax

ϑmin
|ε0|2θt +

cy
ϑmin (1− θκ−1)

t−1∑
i=0

θt−1−i|yi − ỹi|2

+
c̄w

ϑmin (1− θκ−1)

t−1∑
i=0

θt−1−i|wi − w̃i|2 (2.38)

which means that system (1.17) is i-EIOSS according to (2.8) with the coefficients given in (2.34).

2

Proposition 2.3.1 provides a criterion to guarantee i-EIOSS of a given system, which is in general
difficult to characterize. That is, without this Lyapunov-based characterization, computing the
values of the i-EIOSS coefficients cx, cν , and cw becomes a hard task. On the other hand, such
coefficients are necessary to design the tuning parameters of any robust estimator of system (2.1).
Thus the importance of establishing a quantitative synthesis procedure instead of a qualitative
one, namely a Lyapunov-based procedure. More specifically, we will propose an LMI-based design
procedure, which is easily tractable by numerical software.

2.3.1.1 New LMI-based i-EIOSS criterion

By considering a particular Lyapunov function, we will obtain sufficient conditions, expressed in
terms of LMIs, ensuring the property of i-EIOSS of the system (2.1). To this end, let us consider the
following quadratic Lyapunov function, usually used in the literature in the LMI context:

ϑ(xt, x̃t)
∆
=
(
xt − x̃t

)>
P
(
xt − x̃t

)
(2.39)

where P = P> > 0 and (xt, x̃t) are two arbitrary solutions of (2.1) generated from two initial
conditions x0, x̃0 ∈ Rn and two disturbance sequences ωt, ω̃t ∈ Rq, respectively. Consider εt

∆
=

xt − x̃t, the error between the two trajectories, εω
∆
= ωt − ω̃t, εy

∆
= yt − ỹt, and define ϑy as:

ϑy
∆
= ∆θϑ(xt, x̃t)− cy|εy|2 − c̄w|εω|2. (2.40)
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First, we have
εt+1 = ∇fx(zf ,ω)εt +∇fω(x̃,vf )εω (2.41)

εy = ∇hx(zh,ω)εt +∇hω(x̃,vh)εω. (2.42)

After developing ∆θϑ(xt, x̃t) and from Lemma 2.2.6, we get:

ϑy = ε>t

[(
∇fx(zf ,ω)

)>
P∇fx(zf ,ω) −cy

(
∇hx(zh,ω)

)>
∇hx(zh,ω)− θP

]
εt

+ ε>ω

[(
∇fω(x̃,vf )

)>
P∇fω(x̃,vf ) −cy

(
∇hω(x̃,vh)

)>
∇hω(x̃,vh)− c̄wIq

]
εω

+ 2ε>t

[(
∇fx(zf ,ω)

)>
P∇fω(x̃,vf ) −cy

(
∇hx(zh,ω)

)>
∇hω(x̃,vh)

]
εω (2.43)

which can be written under the matrix form[
εt
εω

]>
M
(
P, cy, c̄w

)[ εt
εω

]
(2.44)

where M
(
P, cy, c̄w

)
is defined in (2.61). Then, we have ϑy < 0 for all

[
ε>t ε>ω

]> 6= 0 if the

M
(
P, cy, c̄w

)
∆
=


N (P, cy)− θP

(
∇fx(zf ,ω)

)>
P∇fω(x̃,vf )− cy

(
∇hx(zh,ω)

)>
∇hω(x̃,vh)

(?)
(
∇fω(x̃,vf )

)>
P∇fω(x̃,vf )− cy

(
∇hω(x̃,vh)

)>
∇hω(x̃,vh)− c̄wIq


(2.45)

N (P, cy)
∆
=
(
∇fx(zf ,ω)

)>
P∇fx(zf ,ω)− cy

(
∇hx(zh,ω)

)>
∇hx(zh,ω)

−cy
(
∇hx(zh,ω)

)>
∇hx(zh,ω)− θP −cy

(
∇hx(zh,ω)

)>
∇hω(x̃,vh)

(
∇fx(zf ,ω)

)>
P

(?) −cy
(
∇hω(x̃,vh)

)>
∇hω(x̃,vh)− c̄wIq

(
∇fω(x̃,vf )

)>
P

(?) (?) −P


< 0

(2.46)

inequality M
(
P, cy, c̄w

)
< 0 is satisfied. Hence, from Schur Lemma, the previous inequality is

equivalent to (2.62). Before stating the main Theorem, we need to introduce some convex poly-

topic sets. As in (4.10)-(2.7), from Assumption 2.4.10, the Jacobians
(
∇hx(zh,ω)

)>
∇hx(zh,ω),(

∇hx(zh,ω)
)>
∇hω(x̃,vh), and

(
∇hω(x̃,vh)

)>
∇hω(x̃,vh) are bounded. Therefore, by using the con-

vex decomposition technique [103], they belong to the convex polytopic sets defined respectively
as:

V`h
∆
=


n∑̀
j=1

αjH`j , such that αj ≥ 0,

n∑̀
j=1

αj = 1

 (2.47)

for ` = 1, 2, 3, respectively. The matrices H`j , j = 1, 2, 3 are known and constant with appropriate
dimensions. As for the known integers n`, they represent the number of vertices of V`h, for ` =
1, 2, 3. Now we are ready to state the main Theorem, which provides LMIs ensuring the i-EIOSS
property of the system (2.1).
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Theorem 2.3.2. Assume that there exists a positive definite and symmetric matrix P, positive scalars
cy, c̄w, and θ < 1 such that the following matrix inequalities are satisfied:−cyH1

i − θP −cyH2
j (Fxl )>P

(?) −cyH3
k − c̄wIq (Fωm)>P

(?) (?) −P

 < 0 (2.48)

for all i ∈ {1, . . . , n1}, j ∈ {1, . . . , n2}, k ∈ {1, . . . , n3}, l ∈ {1, . . . , nx}, and m ∈ {1, . . . , nω}.
Then the system (2.1) is i-EIOSS according to (2.8) in Definition 1.2.13 with the coefficients defined
in (2.34) with ϑmax = λmax(P) and ϑmin = λmin(P).

Proof. From Schur Lemma we have equivalence between M
(
P, cy, c̄w

)
< 0 and (2.62). On other

hand, the left hand side of (2.62) is affine (then convex) with respect to all the Jacobian matrices

∂f(x,ω)

∂x
;
∂f(x,ω)

∂ω
;
∂h(x,ω)

∂x
;
∂h(x,ω)

∂ω
;

(
∇hx(zh,ω)

)>
∇hx(zh,ω);

(
∇hx(zh,ω)

)>
∇hω(x̃,vh);

(
∇hω(x̃,vh)

)>
∇hω(x̃,vh).

In addition, from (4.10)-(2.7) and (2.47), these Jacobians can be decomposed into a convex form
by using the convex decomposition technique [103]. Hence, from the convexity principle [30], the
inequality (2.62) is satisfied for any element on the convex sets defined by (4.10)-(2.7) and (2.47)
if it is satisfied on the vertices H1

i ,H2
j ,H3

k, Fxl , and Fωm. Since (2.48) are exactly (2.62) evaluated

on the vertices, then from the convexity principle, we have M
(
P, cy, c̄w

)
< 0, which leads to ϑy ≤ 0.

Hence, from Proposition 2.3.1 it follows that the system (2.1) is i-EIOSS with the coefficients given
in (2.34) with ϑmax = λmax(P) and ϑmin = λmin(P). This ends the proof.

2

Guaranteeing the i-EIOSS property of the system (2.1) with smaller values of the parameters
%, cx, cν , and cw may be useful in some applications. To optimize such values while solving the
LMIs (2.48), we need to solve the following convex optimization problem:

min
cy ,c̄w

(cy + c̄w) subject to (2.48). (2.49)

where the parameter θ is fixed by using the gridding method [21, Algorithm 1, Fig. 1]. However,
an ill-conditioned P would make λmin(P) small, which leads to large values of cν and cω even if cy
and c̄ω are small. To avoid this issue, one can resort to additional constraints on P such as

P ≥ In. (2.50)

by taking advantage of homogeneity. Nevertheless, the constraint (2.50) may increase the value of
cx = λmax(P)

λmin(P) ≤ λmax(P). To minimize cx, we need the additional constraint:

P ≤ αIn, (2.51)

while minimizing α. To sum-up, to minimize the values of cx, cν , and cω, we propose the optimiza-
tion problem (2.52):

min
cy ,c̄w,P,α

(
γ1α+ γ2cy + γ3c̄ω

)
subject to (2.50), (2.51), (2.48) (2.52)

where γj , j = 1, 2, 3 are constants to be fixed by the user. To give the same weight for α, cy, and c̄ω,
we take γj = 1.
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2.3.1.2 Case of a particular family of nonlinear systems

The class of systems (2.1) is general, thus the number of LMI conditions to be solved in (2.48).
However, generally several real-world application models are simpler than (2.1), namely the fol-
lowing class of systems is often used in the literature, especially in the LMI context:{

xt+1 = f(xt) + Eωt
yt = h(xt) +Dωt

(2.53)

In this case, the LMI (2.48) is reduced to the following one:−cyH1
i − θP −cyHxjD (Fxl )>P

(?) −cyD>D − c̄wIq E>P
(?) (?) −P

 < 0 (2.54)

for all i ∈ {1, . . . , n1}, j ∈ {1, . . . , qx}, and l ∈ {1, . . . , nx}.
In addition, if we consider systems with linear outputs, i.e.: yt = Cxt+Dωt, then the LMI condition
is much simplified as follows:−cyC>C − θP −cyC>D (Fxj )>P

(?) −cyD>D − c̄wIq E>P
(?) (?) −P

 < 0 (2.55)

for all j ∈ {1, . . . , nx}.

2.3.1.3 On the conservatism and feasibility of (2.48)

The conservatism related to the proposed approach lies, first, in converting (2.62) into (2.48) by
using the convexity principle [30,106]. Indeed, it is reported in [132] that using the polytopic ap-
proach based on the convexity principle always provides less conservative LMI conditions compared
to other strong upper bounding techniques, namely the use of Lipschitz inequality or the Young’s
inequality instead of the convexity principle. Furthermore, the use of a constant Lyapunov matrix
is conservative; however, it provides a systematic numerical procedure applicable to a wide class
of nonlinear systems. A more general Lyapunov function and matrices instead of the scalars cy, c̄ω
may be used; however, we will lose getting a systematic synthesis procedure, or even the linearity
of the synthesis conditions.
The decision variables in (2.48) are the matrix P and the positive scalars cy and c̄w, while θ is fixed
a priori. All these decision variables are free solutions returned by (2.48) and have not be fixed a
priori by the gridding method. Indeed, the gridding method on θ ∈]0, 1[ consists in subdividing the
interval ]0, 1[ into ` subintervals and solving the LMI (2.48) for each value θj = 1

` until a solution
is returned. All the other matrices are known and specific to the system at hand. Especially, the
matrices H1

i ,H2
j ,H3

k, Fxl , and Fωm are known and result from the convex decomposition of the
Jacobian matrices of the nonlinear functions. These matrices implicitly depend on the Lipschitz
constant and the structure of the functions f and h. Therefore, the feasibility of (2.48) depends
strongly on the structure of those matrices [131].
the advantages of our proposed method here can be summarized as follows:

• The method in [104] is based on the differential dynamics of the system and its linearization
at a given point. However, our technique uses the generalized version of the differential mean
value Theorem for vector-valued functions to transform equivalently, without linearization,
the nonlinear terms into a polytopic form.

• Our method is simpler than that of [104] due to the polytopic form of the error dynamics and
the convexity principle to get a finite number of LMIs.

39



Chapter 2. Robust Moving Horizon Estimation Using Advanced Prediction Strategy

• Our method does not require any coordinate transformation to convert the original system
into a new one with linear outputs as in [104]. Indeed, avoiding such a strong assumption
while preserving LMIs is a significant advantage for real-world processes.

2.3.2 LMI-based Synthesis of i-EIOSS Coefficients

The primary objective of this section is to pioneer an advanced LMI-based methodology that ensures
the i-EIOSS property of the system (1.17). This approach not only guarantees the desired property
but also enables the explicit computation of key coefficients, specifically, %, cx, cν , and cw.
Due to the presence of nonlinear outputs, the approach outlined in Subsection2.3.1, which relies
on the polytopic approach and the convexity principle, requires the construction of an extended
polytopic set with higher dimensionality. This, in turn, results in an exponential increase in the
number of LMI conditions that need to be solved. To address this challenge, this part introduces a
novel approach centered around a particular output-based dynamic extension technique.
To avoid cumbersome equations, we will use xt and x̃t instead of xt(x0,ω

t−1
0 ) and xt(x̃0, ω̃

t−1
0 ),

respectively. The same goes for the other variables.
As mentioned earlier, we aim to construct a novel nonlinear dynamical system with linear outputs.
Subsequently, we utilize the Lyapunov-based criterion presented in Proposition 2.3.1 to establish
the i-EIOSS property for the original system (1.17) with the appropriate coefficients. To achieve
this, we define the following new system based on the dynamics of (2.1):

zt+1 = h(xt,ωt)
xt+1 = f(xt,ωt)

yζt = zt
∆
=
[
Ip 0

]︸ ︷︷ ︸
C

ζt︷︸︸︷[
zt
xt

] def⇐⇒
{
ζt+1 = χ(ζt,ωt)

yζt = Cζt
(2.56)

which is a nonlinear system with linear output. Now we are ready to state the intermediate result
summarized in the following proposition.

Proposition 2.3.3. Assume that the system (2.56) is i-EIOSS. That is there exist constants cζ , c
ζ
v, c

ζ
w >

0 and %ζ ∈ (0, 1) such that for any pair of initial conditions ζ0, ζ̃0 ∈ Xζ and any disturbance sequences
ωt, ω̃t ∈ Wω, the following holds:∣∣∣ζt − ζ̃t∣∣∣2 ≤ cζ |ζ0 − ζ̃0|2%tζ

+ cζv

t−1∑
i=0

%t−1−i
ζ

∣∣∣yζi − ỹζi ∣∣∣2
+ cζw

t−1∑
i=0

%t−1−i
ζ |ωi − ω̃i|2 . (2.57)

Then, the system (2.1) is i-EIOSS according to Definition 2.2.2 with the corresponding coefficients{
% = %ζ , cν = cζv

%ζ

cx = cζ , cw = cζw.
(2.58)

Proof. The proof is intuitive. Let xt and x̃t be two solutions of (2.1) generated by the initial states
x0, x̃0 ∈ X and two disturbance sequences ωt, ω̃t ∈ Wω, respectively. Then, ζt =

[
zt xt

]> and

ζ̃t =
[
z̃t x̃t

]> are also solutions to (2.1) for any z0, z̃0 ∈ Y. On the other hand, we have
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

|xt − x̃t| ≤
∣∣∣ζt − ζ̃t∣∣∣∣∣∣ζ0 − ζ̃0

∣∣∣2 = |x0 − x̃0|2 + |z0 − z̃0|2

cζv

t−1∑
i=0

%t−1−i
ζ

∣∣∣yζi − ỹζi ∣∣∣2 ≤ cζv%t−1
ζ |z0 − z̃0|2

+
cζv
%ζ

t−1∑
i=0

%t−1−i
ζ |yi − ỹi|2

(2.59)

since yζi = yi−1 and ỹζi = ỹi−1. Consequently, if in particular we choose the solutions ζt and ζ̃t
generated by the same initial component z0 = z̃0, then from (2.57) and (2.59), the following final
bound is inferred:

|xt − x̃t|2 ≤ cζ |x0 − x̃0|2%tζ

+
cζv
%ζ

t−1∑
i=0

%t−1−i
ζ |yi − ỹi|2

+ cζw

t−1∑
i=0

%t−1−i
ζ |ωi − ω̃i|2 ,

which means that the system (2.1) is i-EIOSS with the corresponding coefficients in (2.58).

2

Instead of following the approach in [19], which utilizes an LMI-based method directly on the
system (2.1) with nonlinear outputs, we will focus on the derived system (2.56) featuring linear
output measurements. To start the development of the main LMI condition ensuring the i-EIOSS
property of the system (2.56), we consider the Lyapunov function ϑ(ζt, ζ̃t)

∆
= (ζt − ζ̃t)>P(ζt − ζ̃t).

Now define the error vectors εt
∆
= ζt − ζ̃t, εω

∆
= ωt − ω̃t, εy

∆
= yζt − ỹ

ζ
t and the function

ϑy
∆
= ∆θϑ(ζt, ζ̃t)− ε>y Syεy − ε>ωSωεω.

where Sy and Sω are two symmetric and positive definite matrices of appropriate dimensions. By
applying Lemma 2.2.6 on the function χ, we get the following expression of the dynamic of the
error εt:

εt+1 = ∇χζ (zχ,ω)εt +∇χω(ζ̃,vχ)εω

where
∇χζ (zχ,ω)

∆
=
[
∂χ1(z1

χ,ω)

∂ζ

∂χ2(z2
χ,ω)

∂ζ · · · ∂χq(z
q
χ,ω)

∂ζ

]>
and

∇χω(ζ̃,vχ)
∆
=
[
∂χ1(ζ̃,v1

χ)

∂ω

∂χ2(ζ̃,v2
χ)

∂ω · · · ∂χq(ζ̃,v
q
χ)

∂ω

]>
. (2.60)

By expanding the expression of ∆θϑ(ζt, ζ̃t), we obtain:

ϑy = ε>t

[(
∇χζ (zχ,ω)

)>
P∇χζ (zχ,ω)− C>SyC − θP

]
εt

+ ε>ω

[(
∇χω(ζ̃,vχ)

)>
P∇χω(ζ̃,vχ)− Sω

]
εω

+ 2ε>t

[(
∇χζ (zχ,ω)

)>
P∇χω(ζ̃,vχ)

]
εω
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which we can write under the form [
εt
εω

]>
Q
(
P,Sy,Sω

)[ εt
εω

]
where Q

(
P,Sy,Sω

)
is expressed in detail in (2.61).

Q
(
P,Sy,Sω

)
∆
=

(∇χx(zχ,ω))
> P∇χx(zχ,ω)− C>SyC − θP (∇χx(zχ,ω))

> P∇χω(x̃,vχ)

(?) (∇χω(x̃,vχ))
> P∇χω(x̃,vχ)− Sω


(2.61)

Therefore, ϑy < 0 for all
[
ε>t ε>ω

]> 6= 0 if Q
(
P,Sy,Sω

)
< 0 holds, which is equivalent, by Schur

Lemma, to the following inequality:
−C>SyC − θP 0

(
∇χζ (zχ,ω)

)>
P

(?) −Sω
(
∇χω(ζ̃,vχ)

)>
P

(?) (?) −P


< 0. (2.62)

Since the Jacobians ∇χζ (zχ,ω) and ∇χω(ζ̃,vχ) are bounded from the previous assumptions, they
belong to convex polytopic sets defined respectively by:

Vχζ
∆
=


nζ∑
j=1

βjz
ζ
j , such that βj ≥ 0,

nζ∑
j=1

βj = 1


Vχω

∆
=


nω∑
j=1

βjzωj , such that βj ≥ 0,

nω∑
j=1

βj = 1


where nζ and nω represent the number of vertices of Vχζ and Vχω, respectively; zζj and zωj are
constant matrices of appropriate dimensions. For more details on the representation of ele-
ments in a convex set and the convex decomposition of nonlinear functions, we refer the reader
to [19,30,103,106]. We are now ready to summarize the results of this section into the following
main Theorem, which establishes LMI conditions guaranteeing the i-EIOSS property of the system
represented by equation (2.56). Consequently, the Theorem provides the corresponding i-EIOSS
coefficients for system (2.1).

Theorem 2.3.4. Assume that there exist symmetric and positive definite matrices P,Sy, and Sω, of
appropriate dimensions, and θ ∈ (0, 1) such that the following matrix inequality is satisfied:

−C>SyC − θP 0
(
zζi
)>
P

(?) −Sω
(
zωj
)> P

(?) (?) −P

 < 0 (2.63)

for all i ∈ {1, . . . , nζ}, j ∈ {1, . . . , nω}. Then the system (2.1) is i-EIOSS according to (2.8) in
Definition 2.2.2 with the following coefficients ∀κ ≥ 2:{

% = θ, cν =
λmax(Sy)

θλmin(P)(1−θκ−1)

cx = λmax(P)
λmin(P) , cw = λmax(Sω)

λmin(P)(1−θκ−1)
.

(2.64)

42



2.4. Robust MHE Schemes for Nonlinear Systems

Proof. The proof is nearly complete. Given that the left-hand side of equation (2.62) is affine and,
therefore, convex with respect to the generalized gradients ∇χζ (zχ,ω) and ∇χω(ζ̃,vχ), the convex-
ity principle implies that if condition (2.63) is satisfied, then (2.62) is also fulfilled. Consequently,
Q
(
P,Sy,Sω

)
< 0, leading to ϑy < 0 for all non-zero vectors

[
ε>t ε>ω

]>. By invoking Proposi-
tion 2.3.1, we deduce that the system (2.56) is i-EIOSS as per (2.57), and this holds for all κ ≥ 2
with the following coefficients:{

%ζ = θ, cζv =
λmax(Sy)

λmin(P)(1−θκ−1)

cζ = λmax(P)
λmin(P) , c

ζ
w = λmax(Sω)

λmin(P)(1−θκ−1)
.

(2.65)

Finally, form Proposition 2.3.3 we conclude that the system (2.1) is i-EIOSS with the coefficients
given in (2.64). This completes the proof.

2

Remark 2.3.5. The optimization of the coefficients outlined in (2.65) can be accomplished by in-
troducing supplementary constraints to be jointly solved with the LMIs (2.63). For a more detailed
exploration of this aspect, we refer interested readers to [19], where valuable guidelines and insights
on this matter have been presented.

2.4 Moving Horizon Estimation Using Advanced Prediction Strategies

The use of the notion i-EIOSS in the concept of the MHE allows getting synthesis conditions of
the parameters of the cost function that are numerically or analytically easy to verify. As shown
in [114], systems admitting robust estimators must be i-IOSS. However, these results do not apply
to moving-horizon estimators [11]. This objective is the main motivation for the work presented
in this chapter, based on the i-EIOSS property of a given nonlinear system, we synthesize the
parameters of the cost function guaranteeing the robust convergence of the MHE.
In the following, we present sufficient conditions for achieving the RES of the MHEN , based on
the assumption that the system (1.17) is i-EIOSS. Likewise in [75,85,104,105], we study the RES
of the estimation error but, as novelty w.r.t. such literature, with different prediction methods,
for each of which sufficient conditions are established. Specifically, we will show that for a large
enough size of the moving window, namely N , the error given by MHEN is N−RES. We recall the
class of system (1.17) nonlinear discrete-time given by:{

xt+1 = f(xt, wt)
yt = h(xt, vt)

where xt ∈ X ⊆ Rn is the state of the system; yt ∈ Rm is the output vector; wt ∈ W ⊆ Rp and
vt ∈ V ⊆ Rq are unknown external disturbances. The functions f(·, ·) and h(·, ·) are assumed to
be continuous with respect to their arguments. For simplicity, we do not consider known external
input, which however does not undermine the generality of what follows. Let us denote by |x| the
Euclidean norm

√
x>x, x ∈ Rn.

To establish robust stability of the estimation error given by MHEN defined in (1.3.4.2), we first
introduce the following definition of the robust exponential stability of an estimator. In practice, the
property of robust exponential stability signifies the system’s ability to maintain accurate estimation
despite disturbances and uncertainties. This characteristic ensures that the disparity between the
actual system state and the estimated state computed by MHE diminishes exponentially over time.

43



Chapter 2. Robust Moving Horizon Estimation Using Advanced Prediction Strategy

Definition 2.4.1. An MHEN is robustly exponentially stable (RES) if the following inequality holds:

|xt − x̂t|t| ≤ α1|x0 − x̄0|λt + α2

t−1∑
i=0

λt−1−i|vi|2

+ α3

t−1∑
i=0

λt−1−i|wi|2 (2.66)

for some λ ∈ (0, 1) and αi > 0, i = 1, 2, 3. Further, if inequality (2.66) is satisfied for all t ≥ `, where
` ≥ 1 is an integer, we say that the MHEN is `−RES.

We propose novel robust stability conditions of the MHE for systems for which the property of
incremental exponential input/output-to-state stability holds. The i-EIOSS property given in 2.8
characterizes the stability and robustness of a dynamic system with respect to inputs, outputs, and
disturbances. This ensures that the difference between the system states, accounting for differ-
ent initial conditions and disturbances, remains bounded and exponentially decreases over time,
thereby ensuring reliable system behavior.

Remark 2.4.2. The previous definition 2.8 can be applied not only to states at time t and 0, respec-
tively, but also to account, for instance, for the exponential discount of the error on trajectories between
t and t− `. Since especially for the MHE problems studied here, we will need to apply the definition for
t ≥ `, and between t and t− `, then we will use the following inequality:

|xt(xt−`, wt−1
t−` )− x̃t(x̃t−`, w̃

t−1
t−` )|

2 ≤ cx|xt−` − x̃t−`|2%`

+ cv

t−1∑
i=t−`

%t−1−i
∣∣∣yi(xt−`, wi−1

t−` , v
i
t−`)

− yi(x̃t−`, w̃i−1
t−` , ṽ

i
t−`)

∣∣∣2 + cw

t−1∑
i=t−`

%t−1−i|wi − w̃i|2 (2.67)

in line with (2.8). For more details on this inequality, we refer the reader to [105] and [85, Defini-
tion 2, and Lemma 7] for a more general case.

The above definitions will be utilized in the following to analyze robust stability analysis of the
MHEN . We provide sufficient conditions ensuring the RES of the MHEN , according to the Defini-
tion 2.4.1 based solely on the assumption that system (1.17) is i-EIOSS. The observability condition
is not necessary with the approach we propose in the paper, which is a significant improvement
compared to previous results. Moreover, unlike [75,85,104,105], we focus on exponential stability
of the MHEN with quadratic cost functions and propose different prediction methods. PredictioR
plays an important role in the stability conditions in terms of required assumptions to ensure the
RES of the MHEN .

2.4.1 Upper bound of the estimation error

Before introducing the different prediction equations, we start by providing an upper bound on
the estimation error et := xt − x̂t|t. For that, we will exploit the minimization of the cost function
and the i-EIOSS property of the system (1.17). The upper bound on the error et depends on the
prediction error ēt := xt − x̄t (or ēt−N := xt−N − x̄t−N , at time t−N).
From the definition of minimizer x̂t−N |t, i.e.,

JNt (x̂t−N |t) ≤ JNt (xt−N ),
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we obtain

µ|x̂t−N |t − x̄t−N |2ηN + ν

t−1∑
i=t−N

ηt−1−i|yi − h(x̂i|t, 0)|2 + ω

t−1∑
i=t−N

ηt−1−i|wi|2

≤ µ|xt−N − x̄t−N |2ηN + ν
t−1∑

i=t−N
ηt−1−i|h(xi, vi)

− h(xi, 0)|2 + ω
t−1∑

i=t−N
ηt−1−i|wi|2 (2.68)

for any ω ≥ 0.
To get a bound on the estimation error, we need to upper-bound the term |h(xi, vi)−h(xi, 0)|. From
above, a specific assumption is required as follows.

Assumption 2.4.3. The function (x, v) 7→ h(x, v) is γh Lipschitz with respect to its second argument,
uniformly in x ∈ X , namely

|h(x, v)− h(x, ṽ)| ≤ γh |v − ṽ| , ∀v, ṽ ∈ V .

Assumption 2.4.3 is not conservative as it is easily satisfied by a large class of systems. For instance,
in case of additive noise h(x, v) := h(x) + v, we have γh = 1. Generally speaking, Assumption 2.4.3
turns out to be not restrictive as compared with standard hypotheses adopted in the current litera-
ture on MHE. Using Assumption 2.4.3 and

1

2
|et−N |2 ≤ |ēt−N |2 +

∣∣x̄t−N − x̂t−N |t∣∣2 ,
(2.68) yields

µ

2
|et−N |2 ηN + ν

t−1∑
i=t−N

ηt−1−i ∣∣yi − h(x̂i|t, 0)
∣∣2 + ω

t−1∑
i=t−N

ηt−1−i|wi|2

≤ 2µ |ēt−N |2 ηN + ν γ2
h

t−1∑
t=k−N

ηt−i−i |vi|2 + ω

t−1∑
i=t−N

ηt−1−i|wi|2.

Since the system (1.17) is i-EIOSS according to Definition 1.2.13, then by applying inequality (2.67)
with convenient parameters µ, ν, ω, and η such that{

% ≤ η < 1
µ ≥ 2cx, ν ≥ cv, ω = cw

we obtain the following inequality:

|et|2 ≤ 2µ |ēt−N |2 ηN + ν γ2
h

t−1∑
i=t−N

ηt−1−i |vi|2

+ cw

t−1∑
i=t−N

ηt−1−i |wi|2 . (2.69)

As the parameter ω is not subject to tuning in the cost function, we have explicitly set its value to
ω = cw.
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The inequality (2.69) allows us to obtain an upper bound on the estimation error et; however, the
term ēt−N prevents us from reaching a conclusion at this stage. The fate of this term depends
on the prediction step, specifically how we choose x̄t−N . Consequently, we propose three distinct
prediction strategies, each requiring specific conditions to ensure the robust stability of the resulting
MHEN . These strategies are denoted as follows:

1. Freeze-all prediction: In this prediction strategy, x̂t−N |t−N is chosen as the prediction of
xt−N at time t. This means that we directly use the state estimate obtained from the MHE
scheme for the prediction without any further adjustments. This prediction method is the
most popular in the current literature [75,85,104,105].

2. One-step-ahead prediction: Inspired by the past literature on MHE (see, among others, [5]).
It hinges upon x̄t−N = f(x̂t−N−1|t−N−1, 0) as a prediction of xt−N at time t to capture the
system dynamics more reliably by using the most recent estimate x̂t−N−1|t−N−1 of x̂t−N−1,
obtained by the MHE algorithm at the previous time step t−N − 1.

3. Output-driven one-step-ahead prediction: This new prediction strategy improves upon the
one-step-ahead approach by taking into account yt−N−1. In practice, it is based on

x̄t−N = f(x̂t−N−1|t−N−1, 0)

+ψ
(
x̂t−N−1|t−N−1, yt−N−1

) (
yt−N−1 − h(x̂t−N−1|t−N−1, 0)

)
(2.70)

where ψ(·, ·) is a smooth “prediction-gain" function, which will be analyzed later.

Before proceeding, let us focus on the special case for t ≤ N ; from (1.69) it follows that

|et|2 ≤ 2µ |ē0|2 ηt + ν γ2
h

t−1∑
i=0

ηt−1−i |vi|2 + cw

t−1∑
i=0

ηt−1−i |wi|2 , (2.71)

independently of the specific prediction strategy we will adopt. It can be obtained by using the
same arguments as in (2.68) and the i-EIOSS property. The objective here is to combine (2.69)
and (2.71) to get a unified and general RES bound for the estimation error for all t ≥ N + 1.

2.4.2 Freeze-all prediction

The most straightforward solution consists of keeping and forcing the term ēt−N in (2.69) to be
equal to et−N . To this end, the prediction x̄t−N is determined from the estimate via the following
scheme:

x̄t−N =

{
x̄0, t = 1, ..., N
x̂t−N |t−N , t ≥ N + 1.

(2.72)

In this case, the inequality (2.69) becomes as follows:

|et|2 ≤ 2µ |et−N |2 ηN + ν γ2
h

t−1∑
i=t−N

ηt−1−i |vi|2 + cw

t−1∑
i=t−N

ηt−1−i |wi|2 . (2.73)

The above inequality (2.73) allows concluding on the RES of the MHEN for N large enough.
Now that the essential stability analysis tools are provided in Section 2.2.1, we only need to apply
them with particular and convenient parameters. The result is summarized in the following main
Theorem 3.2.1.
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Theorem 2.4.4. Assume that the system (1.17) is i-EIOSS according to (2.8) with exponential dis-
count %. Then, the MHEN with prediction equation (2.72) is RES according to the following inequality:∣∣xt − x̂t|t∣∣2 ≤ max(2µ, 1) |x0 − x̄0|2λt

+
νγ2

h

(1− λ)2

t−1∑
i=0

λt−1−i |vi|2 +
cw

(1− λ)2

t−1∑
i=0

λt−1−i |wi|2 (2.74)

with exponential discount parameter

λ := max

(
η,
(
2µηN

) 1
κN

)
and integer κ ≥ 2 if µ, ν, η, and N ≥ 1 satisfy the following conditions:

(i) % ≤ η < 1

(ii) µ ≥ 2cx

(iii) ν ≥ cv

(iv) 2µ ηN < 1 .

Proof. First, notice that conditions (i)-(iv) guarantee the inequality (2.73). By applying
Lemma 2.2.5 to (2.73) with

di =

(
γh
√
ν vi√

cw wi

)
α = 2µηN β = 1, ` = N ,

and using (v), from (2.73) it follows that

∣∣xt − xt|t∣∣2 ≤ |x0 − x̄0|2 λt +
νγ2

h

(1− λ)2

t−1∑
i=0

λt−1−i |vi|2

+
cw

(1− λ)2

t−1∑
i=0

λt−1−i |wi|2

by means of Lemma 2.2.5 only for t ≥ N . On the other hand, (2.74) holds for t ≤ N − 1 by
considering (2.71) and the upper bounds

ν γ2
h ≤

ν γ2
h

(1− λ)2 cw ≤
cw

(1− λ)2 .

2

Remark 2.4.5. From condition (iv) of Theorem 3.2.1, we obtain that the window size needs to be
sufficiently high, namely

N ≥ 1 +

⌊
− ln(2µ)

ln η

⌋
where bzc denotes the largest integer less than z ∈ R. Thus, we deduce that the MHEN is RES for
any N ≥ 1 if the parameter µ is chosen such that ln(2µ) ≤ 0, i.e., µ ≤ 1/2. Taking into account the
condition (ii) of Theorem 3.2.1, the necessary condition for the MHEN to be RES for any N ≥ 1 is

4cx ≤ 1.
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Similarly, the RES of the MHEN is possible for anyN ≥ 2 if the necessary condition 4cx ≤ 1
η is satisfied.

Thus, in general, the necessary condition to design an RES MHEN for N ≥ `− 1, ` ∈ N, ` ≥ 2, is given
as follows:

1

4cxη`
≥ 1. (2.75)

Consequently, with the prediction equation (2.72), we cannot ensure exponential robustness of the
MHEN , with N ≤ `− 2, if (2.75) is not satisfied.

It is clear that the stability of the MHEN for any fixed window size, N , depends on the i-EIOSS-
related parameters, namely cx and η. On the other hand, the prediction equation (2.72) does
not provide any additional tuning parameter to overcome the limitation related to the necessary
condition (2.75). Hence we will analyze new prediction strategies in the next sections.

2.4.3 One-step-ahead prediction

To address this prediction strategy, we need to assume the following.

Assumption 2.4.6. The function (x,w) 7→ f(x,w) is uniformly (γx, γw) Lipschitz with respect to its
arguments, namely

|f(x,w)− f(x̃, w̃)| ≤ γx |x− x̃|+ γw |w − w̃|

for all x, x̃ ∈ X , w, w̃ ∈ W.

As previously pointed out, here we consider the prediction given by x̂t−N−1|t−N−1 instead of
x̂t−N−1|t−1 as usually adopted in MHE. Therefore, the prediction of x̄t−N is given by

x̄t−N = f(x̂t−N−1|t−N−1, 0) (2.76)

and thus the term ēt−N in (2.69) becomes

ēt−N = f(xt−N−1, wt−N−1)− f(x̂t−N−1|t−N−1, 0)

= f(xt−N−1, wt−N−1)− f(x̂t−N−1|t−N−1, wt−N−1)

+ f(x̂t−N−1|t−N−1, wt−N−1)− f(x̂t−N−1|t−N−1, 0). (2.77)

From (2.77) it follows that

|ēt−N |2 ≤ 2γ2
x|et−N−1|2 + 2γ2

w|wt−N−1|2 (2.78)

by using Assumption 2.4.6 and Young’s inequality2 By substituting (2.78) in (2.69), we obtain

|et|2 ≤ 4µγ2
x |et−N−1|2 ηN + νγ2

h

t−1∑
i=t−(N+1)

ηt−1−i |vi|2

+ max(4µγ2
w, cw)

t−1∑
i=t−N−1

ηt−1−i |wi|2 . (2.79)

Thus, based on the aforementioned we can state what follows.

2The bound 2ab ≤ a2 + b2 holding for all a, b ∈ R will be referred to as Young’s inequality.
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Theorem 2.4.7. Assume that system (1.17) is i-EIOSS according to (2.8) with exponential discount
%. Then, the MHEN with prediction equation (2.76) is RES according to the following inequality:∣∣xt − x̂t|t∣∣2 ≤ max(2µ, 1) |x0 − x̄0|2 λt

+
νγ2

h

(1− λ)2

t−1∑
i=0

λt−1−i|vi|2 +
max(4µγ2

w, cw)

(1− λ)2

t−1∑
i=0

λt−1−i|wi|2 (2.80)

with exponential discount parameter

λ := max

(
η,
(
4µγ2

xη
N
) 1
κ(N+1)

)
and integer κ ≥ 2 if µ, ν, η, and N ≥ 1 satisfy the following conditions:

(i) % ≤ η < 1

(ii) µ ≥ 2cx

(iii) ν ≥ cv

(iv) 4µγ2
x η

N < 1 .

Proof. Again notice that conditions (ii)-(iv) guarantee that inequality (2.73) holds. Without ex-
panding the computations, similarly to the proof of Theorem 2.4.7, by applying Lemma 2.2.5 with

di =

 γh
√
νvi√

max(4µ, cw)wi

 ,

α = 4µγ2
xη

N , β = 1, ` = N + 1, we obtain (2.80) since condition (iv) allows applying Lemma 2.2.5.
Again, as in the proof of Theorem 3.2.1, the bounds (2.71) for t ≤ N need to be treated similarly.

2

Likewise in what follows from Theorem 3.2.1, a sufficiently large window size N , i.e.,

N ≥ 1 +

⌊
− ln(4µγ2

x)

ln η

⌋
,

ensures the satisfaction of condition (iv), independently of all the system and other previously
selected design parameters.

Remark 2.4.8. With the prediction equation (2.76), the new necessary condition for the MHEN to be
RES for any N ≥ 1 is ln(4µγ2

x) ≤ 0, which means that 4µγ2
x ≤ 1. Taking into account the condition

(ii) of Theorem 3.2.1, the necessary condition for the MHEN to be RES for any N ≥ 1 is

8cxγ
2
x ≤ 1. (2.81)

Then, the MHEN is RES for N ≥ `− 1, ` ∈ N, ` ≥ 2, if the following necessary condition holds:
1

4cxη`
≥ 2γ2

x. (2.82)

Compared to (2.75), the robust stability of the MHEN can be guaranteed for some systems having
2γ2

x < 1, subject to (2.82), while with the prediction (2.72) it is not necessarily ensured. On the
other hand, for systems having 2γ2

x > 1, subject to (2.82), the prediction equation (2.72) is better
than the modified standard prediction-based equation. Hence, both prediction techniques can be
seen as alternative methods. It is for the user to fix which one is more appropriate for the model
at hand while ensuring the RES property of the MHEN . To overcome the limitation related to the
necessary conditions, we propose an improvement in the modified standard prediction equation by
introducing additional decision variables, which play the role of tuning parameters. This is the goal
of the next section.
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2.4.4 Output-driven one-step-ahead prediction

In this section, we present a novel prediction strategy that introduces an additional degree of
freedom, which aims at a less conservative satisfaction of stability conditions. The key innovation
lies in the incorporation of a correction term, linked to the output error. Specifically, the correction
term depends on the output error, resembling the structure of a Luenberger observer. To achieve
this novel approach, we rely on the following assumption.

Assumption 2.4.9. X , W, and V are compact sets and the functions f(·, ·), h(·, ·) are continuously
differentiable with respect to their arguments.

Therefore, Y := h(f(X ,W),V) ⊂ Rm is a compact set since f(·, ·) and h(·, ·) are assumed to be
continuous. We recall the prediction equation , namely,

x̄t−N = f(x̂t−N−1|t−N−1, 0) +ψ
(
x̂t−N−1|t−N−1, yt−N−1

)(
yt−N−1 − h(x̂t−N−1|t−N−1, 0)

)
(2.83)

where ψ(·, ·) to be determined in such a way as to ensure the RES of the MHEN . The aim is to select
ψ(·, ·) to overcome the necessary condition (2.81). Instead of γx in (2.81), we rely on a parameter
depending on ψ(·, ·) for which this condition can be satisfied with a convenient choice of ψ(·, ·).
Under the prediction equation (2.83), the term ēt−N in (2.69) satisfies the following equation:

ēt−N = f(xt−N−1, wt−N−1)− f(x̂t−N−1|t−N−1, 0)

−ψ
(
x̂t−N−1|t−N−1, yt−N−1

) (
h(xt−N−1, vt−N−1)− h(x̂t−N−1|t−N−1, 0)

)
= f(xt−N−1, wt−N−1)− f(x̂t−N−1|t−N−1, wt−N−1)

+ f(x̂t−N−1|t−N−1, wt−N−1)− f(x̂t−N−1|t−N−1, 0)

−ψ
(
x̂t−N−1|t−N−1, yt−N−1

) (
h(xt−N−1, vt−N−1)

− h(x̂t−N−1|t−N−1, vt−N−1)
)

−ψ
(
x̂t−N−1|t−N−1, yt−N−1

) (
h(x̂t−N−1|t−N−1, vt−N−1)

− h(x̂t−N−1|t−N−1, 0)
)
. (2.84)

From Lemma 2.2.6, there exist vectors zx, z̄x, zw, and zv with zix ∈ Co
(
xt−N−1, x̂t−N−1|t−N−1

)
,

z̄ix ∈ Co
(
xt−N−1, x̂t−N−1|t−N−1

)
, ziw ∈ Co (wt−N−1, 0), ziv ∈ Co (vt−N−1, 0), which trans-

form (2.84) into the following form:

ēt−N =

(
∂f

∂x
(zx, wt−N−1)−ψ

(
x̂t−N−1|t−N−1, yt−N−1

) ∂h
∂x

(z̄x, vt−N−1)

)
et−N−1

+
∂f

∂w
(x̂t−N−1|t−N−1, zw)wt−N−1

−ψ
(
x̂t−N−1|t−N−1, yt−N−1

) ∂h
∂v

(x̂t−N−1|t−N−1, zv)vt−N−1 (2.85)

where

zx :=


z1
x

z2
x
...
znx

 , zix ∈ X , z̄x :=


z̄1
x

z̄2
x
...
z̄px

 , z̄ix ∈ X , zw :=


z1
w

z2
w
...
znw

 , ziw ∈ W, zv :=


z1
v

z2
v
...
zpv

 , ziv ∈ V.
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From now on, we need some conditions on the nonlinearities of the system. More specifically, we
introduce the following Lipschitz-like assumptions.

Assumption 2.4.10. The following conditions hold:

γw := sup
x∈X
z∈W

∣∣∣∣ ∂f∂w (x, z)

∣∣∣∣ < +∞

γv := sup
x∈X
y∈Y
z∈V

∣∣∣∣ψ(x, y)
∂h

∂v
(x, z)

∣∣∣∣ < +∞

γψ := sup
z,z̄,z̃∈X ,
w∈W,v∈V

∣∣∣∣∂f∂x (z, w)− ψ(z̄, y)
∂h

∂x
(z̃, v)

∣∣∣∣ < +∞ .

Under the Assumption 2.4.10, from (2.85) we obtain

|ēt−N |2 ≤ 3γ2
ψ|et−N−1|2 + 3γ2

w|wt−N−1|2 + 3γ2
v |vt−N−1|2 (2.86)

and, by using (2.86), from (2.69) it follows that

|et|2 ≤ 6µγ2
ψ |et−N−1|2 ηN

+ max
(
6µγ2

v , νγ
2
h

) t−1∑
i=t−N−1

ηt−1−i |vi|2

+ max
(
6µγ2

w, cw
) t−1∑
i=t−N−1

ηt−1−i |wi|2 . (2.87)

Now we are ready to state the general Theorem 2.4.11, which provides conditions for the MHEN ,
under the prediction equation (2.83), to be RES. Such conditions depend on the choice of ψ(·, ·)
(through the parameter γψ), which can be selected appropriately together with the other condi-
tions.

Theorem 2.4.11. Assume that system (1.17) is i-EIOSS according to (2.8) with exponential discount
%. Then, the MHEN with prediction equation (2.83) is RES according to the following inequality:∣∣xt − x̂t|t∣∣2 ≤ max(2µ, 1) |x0 − x̄0|2λt

+
max

(
6µγ2

v , νγ
2
h

)
(1− λ)2

t−1∑
i=0

λt−1−i |vi|2

+
max

(
6µγ2

w, cw
)

(1− λ)2

t−1∑
i=0

λt−1−i |wi|2

with the exponential discount parameter

λ := max

(
η,
(
6µγ2

ψη
N
) 1
κ(N+1)

)
and integer κ ≥ 2 if µ, ν, η, and N ≥ 1 satisfy the following conditions:

(i) % ≤ η < 1;
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(ii) µ ≥ 2cx;

(iii) ν ≥ cv;

(iv) 6µγ2
ψη

N < 1.

Proof. Based on Theorems 3.2.1 and 2.4.7, the proof of Theorem 2.4.11 becomes straightforward.
In fact, we only have to apply Lemma 2.2.5 on the inequality (2.87) with

di =


√

max
(
6µγ2

v , γ
2
h

)
vi√

max (6µγ2
v , cw)wi

 ,

α = 6µγ2
ψη

N , β = 1, and ` = N + 1.

2

Remark 2.4.12. Theorem 2.4.11 provides more general design conditions as compared to Theo-
rem 3.2.1 and Theorem 2.4.7. The necessary condition for the MHEN to be RES is now

12cxγ
2
ψ ≤ 1.

Then, the MHEN is RES for any N ≥ `− 1, ` ∈ N, ` ≥ 2, if the following necessary condition holds:

1

4cxη`
≥ 3γ2

ψ. (2.88)

The difference between (2.88) and the previous necessary conditions (2.75) and (2.82) is that in (2.88)
we may exploit γψ by selecting ψ(·, ·) as to make inequality (2.88) feasible.
Notice that the condition (2.88) is slightly more stronger than the usual detectability condition (γψ <
1). If the system (1.17) is observable, then it is possible to find ψ(·, ·) for which (2.88) is satisfied,
contrarily to (2.75) and (2.82), where even observability cannot ensure the exponential robustness
of the MHEN , unless an analytical link between observability and the i-EIOSS property, namely the
parameters cx and %, is developed. This issue is another research direction on the existence of robust
estimators under the i-EIOSS property, which is not covered here and constitutes one of the future
research problems we aim to solve.

2.4.5 Synthesis of the Prediction Gain

This section is devoted to outlining a numerical procedure for designing the prediction gain. For
this, we examine a specific prediction feedback term, precisely, a linear correction term featuring
a constant matrix. This approach is borrowed from the methodology employed in the design of
nonlinear observers, as elaborated in [131]. Then, first, we consider the specific output-driven
one-step-ahead prediction equation:

x̄j+1 = f(x̂j|j , 0) + K
(
yj − h(x̂j|j , 0)

)
(2.89)

where j := t−N−1 is introduced from now on to avoid cumbersome equations and K ∈ Rn×p is the
constant prediction gain to be determined later. From (2.85) and according to the notation (2.60),
we have

ēj+1 =
(
∇fx(zx, wj)−K∇hx(z̄x, vj)

)
ej +

[
∇fw(x̂j|j , zw) −K∇hv(x̂j|j , zv)

]
ωj
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where ωj
∆
=
[
w>j v>j

]> ∈ Rq.
Before starting with the numerical design procedures, it is worthy noticing that from Assump-
tions 2.4.3-2.4.10, the Jacobians ∇fx(zx, wj), ∇fw(x̂j|j , zw), ∇hx(z̄x, vj), and ∇hv(x̂j|j , zv) belong to
convex polytopic sets defined respectively by:

Vfx
∆
=


nx∑
j=1

βjzxj , such that βj ≥ 0,

nx∑
j=1

βj = 1


Vfω

∆
=


nω∑
j=1

βjzωj , such that βj ≥ 0,

nω∑
j=1

βj = 1


Vhx

∆
=


px∑
j=1

βjkxj , such that βj ≥ 0,

px∑
j=1

βj = 1


Vhv

∆
=


pv∑
j=1

βjkvj , such that βj ≥ 0,

pv∑
j=1

βj = 1

 .

To design the prediction gain K, we propose in this section two different LMI-based methods. The
first method is borrowed from observer design techniques and the second one utilises conditions to
tune the spectral norm of the matrix ∇fx(zx, wj)−K∇hx(z̄x, vj).

2.4.5.0.a L2 observer-based design method

The idea here is to adopt the observer-based technique to design a prediction gain, K, which we
can consider also as the observer gain of the state observer

φj+1 = f(φj , 0) + K
(
yj − h(φj , 0)

)
which leads to an error dynamic of the form:

φ̃j+1 =
(
∇fx(zφ, wj)−K∇hx(z̄φ, vj)

)
φ̃j +

[
∇fw(φj , z̄w) −K∇hv(φj , z̄v)

]
ωj . (2.90)

where φ̃j
∆
= xj − φj . The prediction x̄j at time j is obtained by means of (2.89) with x̂j|j , where

the gain K is selected by using (2.90). More specifically, we will analyze the error associated with
x̄j and exploit well-known observer design techniques for nonlinear systems [131, 135]. The LMI
conditions ensuring an ISS bound on the estimation error φ̃j are summarized in the following
proposition.

Proposition 2.4.13. Assume there exists a symmetric and positive definite matrix P, a matrix X ,
of appropriate dimensions, and positive scalars α and λ, with α < 1, such that the following LMI
condition holds: 

−αP + In 0 (zxi )>P−
(
kxj
)>
X

(?) −λIq
[
Pzωk X>kωl

]>
(?) (?) −P

 < 0 (2.91)

for all i ∈ {1, . . . , nx}, j ∈ {1, . . . , px}, k ∈ {1, . . . , nω}, and l ∈ {1, . . . , pv}. Then with the observer
gain K = P−1X>, the estimation error φ̃t satisfies the following L2−optimality criterion:

‖φ̃‖L2 ≤
√
λ‖ω‖L2 + λmax (P) |φ̃0|2.
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Proof. The proof is straightforward and relies on well-established arguments in LMI-based
nonlinear observer design. Our approach involves utilizing the Lyapunov function defined as
V (φ̃)

∆
= φ̃>Pφ̃ and demonstrating that, under the conditions (2.91), the inequality

ϑj
∆
= ∆V (φ̃j) + |φ̃j |2 − λ|ωj |2 ≤ 0.

holds, where ∆V (φ̃j)
∆
= V (φ̃j+1) − αV (φ̃j). For a comprehensive understanding of this method-

ology, we recommend [131, 135] with details on the specific techniques of LMI-based nonlinear
observer design, clarifying the steps involved in establishing the aforementioned inequality.

2

Proposition 2.4.13 provides a numerical procedure to design the prediction gain K. Indeed,
since (2.91) guarantees the L2 stability of φ̃j . On other hand, although the LMI conditions (2.91)

imply that the eigenvalues of
(
∇fx(zx, wj)−K∇hx(z̄x, vj)

)
are smaller than α; however, they cannot

guarantee the norm
γK

∆
= sup
zx,z̄x∈X ,
wj∈W,vj∈V

∣∣∣∇fx(zx, wj)−K∇hx(z̄x, vj)
∣∣∣

to be upper bounded by α. This emphasizes the need for further exploration and refinement in
ensuring a bound on γK. These conditions do not provide the flexibility to select K in a way that
minimizes γK, thereby facilitating a reduction in the window size, N , of the MHE, while ensuring
robust stability. Addressing this limitation is the primary motivation behind the second numerical
design procedure outlined in the subsequent section.

2.4.5.1 Second method: Spectral norm-based design method

In this section, we provide an alternative LMI-based method allowing a bound on γK. First, we
need the following lemma.

Lemma 2.4.14. Let A ∈ Rn×n be an arbitrary matrix and P ∈ Rn×n a symmetric and positive
definite matrix. Let α be a positive scalar and κ ∈ N an integer with κ ≥ 2. Assume that the following
inequalities hold:

A>PA− α

κ
P < 0 (2.92)

P > In (2.93)

P < κIn (2.94)

Then, we have

|A| ∆
=
√
λmax(A>A) <

√
α (2.95)

where λmax(A>A) is the maximum eigenvalue of the matrix A>A and |A| is called the spectral norm
of A.

Proof. From (2.93), we get A>PA > A>A. On the other hand, from (2.94), we obtain

−α
κ
P > −αIn.

It follows from (2.92) that
A>A− αIn < A>PA− α

κ
P < 0

which implies that |A| <
√
α. The last inequality uses the fact that A>A < αIn implies λA>A < α.
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2

By applying Lemma 2.4.14, we obtain the following theorem, which provides a bound on γK.

Theorem 2.4.15. Assume that there exists a symmetric and positive definite matrix P, a matrix X , of
appropriate dimensions, a positive scalar λ and an integer κ ≥ 2 such that the following LMI condition
holds: −λ

κP (zxi )>P−
(
kxj
)>
X

(?) −P

 < 0 (2.96)

In < P < κIn (2.97)

for all i ∈ {1, . . . , nx}; j ∈ {1, . . . , px}. Then, with the prediction gain K = P−1X>, we have

γK ≤
√
λ. (2.98)

Proof. The proof straightforwardly follows from Lemma 2.4.14, bearing in mind that the inequal-
ity (3.61) is maintained, with a non-strict condition, while adhering to the supremum bound, which
leads to (2.98).

2

With the prediction equation (2.89), the condition (iv) in Theorem 2.4.11 becomes

6µγ2
Kη

N < 1 (2.99)

which means that

N ≥ N (γ2
K)

∆
= 1 +

⌊
−

ln(6µγ2
K)

ln η

⌋
.

It follows that if K is designed from Theorem 2.4.15, we have γ2
K ≤ λ. By definition, N (.) is a

non-decreasing function, then we have N (λ) ≥ N (γ2
K), and N (1/(6µ)) = 1. Consequently, if the

prediction gain K is designed from Theorem 2.4.15 with λ = 1/(6µ), then the MHEN with the
prediction equation (2.89) is RES for any N ≥ 1.
On other hand, the LMI conditions (2.96)-(2.97) are only sufficient conditions and they can be
infeasible for λ = 1/(6µ). To get the smallest possible value of λ satisfying (2.96)-(2.97), we have
to solve the minimization problem

min
P,X ,κ≥2

(λ) subject to (2.96)− (2.97). (2.100)

Let λ? be the smallest value returned by (2.100). Then, the MHEN with (2.89) is RES for any
N ≥ N (λ?).

Remark 2.4.16. While the first prediction design method may improve the prediction quality of x̄t−N
and its performance without controlling the bound γK; however, the second prediction method offers
the possibility to systematically tune this bound. This may allow the MHEN to be RES for small values
of the window size, N , which is important for real-time applications.
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2.5 Illustrative Examples

2.5.1 Example 1: chaotic system

Consider the second-order nonlinear discrete-time system with

(x,w) 7→ f(x,w) := (1− ax2
1 + x2 + w1 , bx1 + w2)

(x, v) 7→ h(x, v) := x1 + v

where x ∈ R2, w ∈ R2, v ∈ R, a = 1.4, and b = 0.3. The system exhibits a chaotic behavior [55]
and, through the generation of sufficiently small system noises, its state trajectories belong to the
compact set [−1.3, 1.3]× [−0.39, 0.39], on which the nonlinearity is globally Lipschitz.
The system exhibits a chaotic behavior and its state belongs to the bounded compact set [−1, 1] ×
[−1, 1], which is a bounded invariant compact set on which the nonlinearity is globally Lipschitz.
Both system and measurement noises are generated according to zero-mean Gaussian distributions
with covariances equal to 0.01.
We need only to determine the matrices Fxj since we have linear outputs and the system depends
linearly on the disturbance ωt. To compute Fxj , we have to decompose the Jacobian matrix into a
convex form. We have

∂f

∂x
(zf ,ω) =

[
−2azf (t) 1

b 0

]
where zf (t) comes from the differential mean value theorem in Lemma 2.2.6. Since zf (t) ∈ [−1, 1],
then we have −2a ≤ −2azf (t) ≤ 2a. By using the convex decomposition technique, there exists
0 < α(t) ≤ 1 such that

−2azf (t) = −2aα(t) + 2a(1− α(t))

which means that α(t) =
zf (t)+1

2 < 1 since zf (t) ∈ [−1, 1]. Hence, we can write the Jacobian matrix
under the form

∂f

∂x
(zf ,ω) = α(t)

Fx1︷ ︸︸ ︷[
−2a 1
b 0

]
+(1− α(t))

Fx2︷ ︸︸ ︷[
2a 1
b 0

]
.

It follows that Vf,x in (4.10) is given by:

Vf,x
∆
=


2∑
j=1

αjFxj , such that αj ≥ 0,

2∑
j=1

αj = 1


=

{
(z + 1)

2

[
−2a 1
b 0

]
+

(1− z)
2

[
2a 1
b 0

]
,

such that z ∈ [−1, 1]

}
. (2.101)

In this case, we have nx = 2 instead of nx = 2n
2

= 16, since we have only one nonlinear component;
the other components in the system are linear. Then we have two LMI conditions to solve in (2.55)
to obtain the i-EIOSS related coefficients.
Utilizing MATLAB Yalmip toolbox, % = 0.1, cx = 30.3171, cν = 193.4562, cω = 1.3585e+05. Thus,
we set η = %, µ = 2cx, ν = cv to complywith the conditions of Theorems 3.2.1, 2.4.7, and 2.4.11
by obtaining minimum values of N equal to 3, 4, and 4 for the freeze-all, standard one-step-ahead,
and output-driven one-step-ahead MHE settings, respectively. Specifically, for the output-driven
one-step-ahead predictor we obtained

P =

[
1.3607 0

0 3.0027

]
X =

[
0 0.9008

]
κ = 4
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as solution of (2.100) and thus K =
[
0 0.3000

]>.
We solved the minimization problems by using the general-purpose Matlab routine fmincon.
Fig. 3.1 illustrates the simulation results in a noise-free run with initial values of the actual and
estimated states

[
0.5 0.5

]> and
[
−0.5 −0.5

]>, respectively. As compared to Fig. 2.1,
system and measurement noises generated according to zero-mean Gaussian distributions with
dispersions equal to 0.02 and 0.1 were introduced in the simulation run of Fig. 2.2. Figs. 2.3 and
2.4 show the boxplots of the RMSEs and computational times over 1000 simulation noisy runs with
null initial conditions, respectively. In this case study, the three approaches provide about the same
performances in terms of precision (see Fig. 2.3), but, as to the computational load, the standard
and output-driven one-step-ahead predictions turn out to be more efficient, as shown in Fig. 2.4.

Figure 2.1: Simulation results in a noise-free run with N = 4.

Figure 2.2: Simulation results in a noisy run with N = 4.

2.5.2 Example 2: Application to a Tumor Growth Model

2.5.2.1 Tumor Growth Mathematical Model

Mathematical modeling provides a low-cost, low-risk way of exploring the dynamics of biomedical
processes.
In cancer research, mathematical models play a crucial role in analyzing various processes like
incidence, pathogenesis, tumor growth, metastasis, immune reaction, and treatment. Although
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Figure 2.3: Boxplots of the RMSEs obtained by MHE with N = 4 (medians equal to 0.2442 and
0.0346; 0.1950 and 0.0340; 0.2091 and .0343).

Figure 2.4: Boxplots of the computational times obained by MHE with N = 4 (medians equal to
0.0133, 0.0084, 0.0097).

conventional cancer treatments such as surgery, radiotherapy, chemotherapy, immunotherapy, and
stem cell transplants are employed, they are associated with harmful effects such as drug resistance
and damage to healthy cells. This has led to a growing interest in the use of angiogenesis inhibitors,
which have proven effective in curbing or slowing down the growth and spread of tumors. The
process of inhibiting tumor angiogenesis is illustrated in Fig. 2.5.

Figure 2.5: Tumor Angiogenesis Inhibition.
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The concept of anti-angiogenic therapies was introduced in the early 1970s in [39] and has since
been the subject of numerous theoretical and experimental studies [22,33,35,95]. By carrying out
a number of experiments on mice with Lewis lung carcinoma, the authors in [39] and [49] devel-
oped and biologically validated a system of ODEs for the interactions between the primary tumor
volume and the carrying capacity of the vasculature. The model they developed is a nonlinear one
that takes into account angiogenic stimulation and inhibition and is referred to as the Hahnfeldt
model. The ODEs system for this model is as follows: ẋ1 = − λx1 ln

(
x1

x2

)
,

ẋ2 = bx1 − (µ+ dx
2
3
1 )x2 − cx2x3,

(2.102)

where the model parameters are

• x1 [mm3]: the tumor volume ;

• x2 [mm3]: the carrying capacity of the vasculature.

The first equation describes the phenomenology of a tumor growth slowdown, as the tumor grows
and resorts to its available support;

• λ [day−1]: the tumor growth rate constant.

In the second equation the first term represents the stimulatory capacity of the tumor upon the
inducible vasculature (bx1), the second term accounts for a spontaneous loss (µx2) and for tumor-

dependent endogenous inhibition (dx
2
3
1 x2) of previously generated vasculature; the third term

refers to the vasculature inhibitory action performed by an exogenous drug administration (cx2x3),
with

• u [day−1(mg/kg)]: the actual control law ;

• b [day−1]: the vascular birth rate ;

• d [day−1mm−2]: the endothelial cell death (death rate) ;

• c [day−1(mg/kg)−1]: the sensitivity to the drug;

• µ [day−1]: the spontaneous vascular inactivation rate . According to the model literature [49],
without loss of generality, parameter µ will be set equal to zero in the following.

Being the anti-angiogenic drug not directly administrated in the vein, a further compartment is
considered to account for drug diffusion:

x3(t) =

∫ t

0
e−η(t−t′)u(t′)dt′, (2.103)

with

• u(t′)[day−1(mg/kg)], is the rate of administration of inhibitor concentration at time t′;

• η[day−1], being the diffusion rate into serum.

As a matter of fact, the whole system (2.102)-(2.103) (with µ = 0) may be written in a compact
ODE form: 

ẋ1 = − λx1 ln

(
x1

x2

)
,

ẋ2 = bx1 − (µ+ dx
2
3
1 )x2 − cx2x3,

ẋ3 = − ηx3 + u.

(2.104)
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2.5.2.2 Simulation results

To perform the optimization, we utilized the Matlab routine called fmincon. The values of the cost
function parameters are set to be equal to µ = 0.06, ν = 1, ω = 1, and η = 0.6. The initial state
and estimated state were set to be equal to

[
200 620 0

]
and

[
20 20 20

]
, respectively. Fig. 2.6

illustrates the results obtained in simulation runs with system and measurement noises generated
according to zero-mean Gaussian distributions with covariances equal to 0.01.
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Figure 2.6: The system states and their estimates.

As said earlier, both freeze-all and enhanced one-step prediction-based techniques can be seen as
alternative methods. Users must choose between them to determine which one suits their model
best while ensuring that the model remains stable over time. Figure 2.6 shows that the freeze-all
prediction-based method does not provide a good model estimation. In contrast, the improved
one-step prediction method is more successful and offers better estimation for the tumor growth
model.
The use of MHE for estimating the tumor growth model offers an advantage over observer-based
methods [22, 33, 35]. Unlike high-gain observers, it does not require system transformation into a
triangular form, which can be challenging and time-consuming for users.

2.6 Conclusion

In this chapter, we provided a simple but useful design method to check the i-EIOSS property
of nonlinear systems. This method may be used easily for a nonlinear system without using its
trajectories. Then, we explored the role played by prediction in MHE, while guaranteeing the
robust stability of the estimation error for systems being i-EIOSS and relying on “ad hoc” developed
mathematical tools. The three proposed prediction strategies are proven to ensure RES, while
offering different degrees of conservatism and flexibility in their application. As part of future work,
we plan to investigate further Lyapunov-based methods that can establish a rigorous mathematical
connection between detectability and the i-EIOSS property for nonlinear discrete-time systems.
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3.1 Introduction

Tremendous research activities have been paid to nonlinear observer design and various meth-
ods have been proposed in the literature. Among these methods, apart from the optimiza-
tion/minimization of cost functions-based techniques, like the extended Kalman filter, and the mov-
ing horizon estimator, we can mention the famous high-gain observer design methodology [45],
the sliding mode observer approach [36], and the LMI-based techniques [133].
Each of the above methods has advantages and drawbacks and offers reliable estimation for some
families of systems. This explains why all these various methods have been proposed.
The high-gain observer design methodology offers the significant advantage of ensuring the feasi-
bility of the Linear Matrix Inequality (LMI) and allows for state estimation. However, it necessitates
that the system be triangular, which is a stringent requirement. If the system is not already in this
form, it must be transformed into it using a diffeomorphism, a process that is often challenging to
determine.
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While the first two techniques guarantee the existence of the observer design under only some
assumptions on the nonlinearity of the system, however, the last one provides only sufficient con-
ditions expressed in terms of LMIs for which feasibility is not always ensured, which is the main
drawback of LMI-based observer design approach. We will address this problem and analyze the
feasibility of LMIs for some specific families of nonlinear systems, namely systems in companion
form, and systems having feedforward structure in the first section of this chapter. The second part
is dedicated to
This chapter is organized as follows: Section 3.2 defines the problem and discusses the necessary
preliminary tools. The focus of this section is on proving an "Always LMI Feasibility Proof" for
observer design in certain families of nonlinear systems including those in canonical form, systems
with feedforward structures, and extensions to a broader class of systems. Next, Section 3.3 focuses
on contributions to high-gain observer design for non-triangular systems. This section starts by
outlining the motivation and formulation and presenting results specifically tailored to address
non-triangular nonlinearities. Finally, it discusses additional refinements to the observer design,
emphasizing the innovations and improvements made to overcome the challenges posed by non-
triangular systems.

3.2 LMI Feasibility Analysis in Observer Design for Some Families of
Systems

Several LMI-based techniques have been developed in the literature, where each technique at-
tempts to reduce the conservatism of the LMI design conditions ensuring exponential convergence
of the observer (3.2). Among these methods, there are the old techniques, which are conserva-
tive [48, 96, 97, 122], and the recent approaches [1], which provide feasible LMI conditions for a
wider class of nonlinear systems. Feasibility of the LMI conditions depends on the Lipschitz con-
stant and the structure of the nonlinearity of the system. To overcome these limitations, the recent
LMI approaches use some mathematical tools in convenient ways to dominate the Lipschitz con-
stant and to compensate for the structure of the nonlinearity due to additional decision variables.
Despite the considerable efforts made to propose enhanced LMI conditions, this approach suffers
from a major drawback, which is the absence of a guarantee of feasibility for any Lipschitz constant.
This weakens the LMI techniques and sometimes makes them useless. Recently in [99], instead of
guaranteeing the feasibility of LMI conditions, the authors proposed new results on guaranteeing
infeasibility of the LMIs for systems where all the system components or all the output functions are
non-monotonic. In spite of this result, the problem of guaranteeing feasibility is the most important
and still remains open. It would therefore be interesting to work on the analysis and guarantee of
the feasibility of LMIs for at least some particular families of nonlinear systems as is the case with
some famous nonlinear observers, namely high-gain observers and sliding mode observers.

3.2.1 Problem Statement and Preliminary Results

Consider the class of systems described by the following equations:{
ẋ = Ax+ f(x)
y = Cx+ h(x)

(3.1)

where x ∈ Rn is the system state and y ∈ Rp is the output measurement vector. Without loss
of generality, and for the sake of brevity, we consider the system (3.1) without control input. We
assume that the functions f(.) and h(.) are respectively γf−Lipschitz and γh−Lipschitz with respect
to their arguments. Without loss of generality, the Lipschitz constraint is assumed to be global.
Otherwise, we need to apply the Hilbert projection theorem [74, 90] or the Kirszbraun–Valentine
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extension theorem [73,125] to extend f(.) and h(.) to global Lipschitz functions. We only need the
system (3.1) to admit a positively invariant compact set on which f(.) and h(.) are Lipschitz. The
reader can also find details on this extension in [45].
As usual in the LMI context, which is the objective of the chapter, we consider the following Luen-
berger observer structure corresponding to (3.1):

˙̂x = Ax̂+ f(x̂) + L
(
y − Cx̂− h(x̂)

)
(3.2)

where x̂ ∈ Rn is the estimate of x and the matrix L ∈ Rn×p is the observer gain to be determined
such that the estimation error ε ∆

= x− x̂ converges exponentially towards zero.
Of all the existing methods, the less conservative one is the LPV/LMI approach which is based on
transforming the dynamics of the estimation error into a polytopic system, and then the application
of the convexity principle leads to solving a finite number of LMI conditions without using strong
upper bounds to dominate the nonlinearity of the system. For this reason, we will exploit this
method and we will show that the LMIs are always feasible for some families of nonlinear systems.
Hence, we will first recall the LPV/LMI technique.
By applying [131, Lemma 7], there exist functions ψij(., .) and φij(., .) such that the dynamics of
the estimation error is given as

ε̇ =
(
A− LC

)
ε+

[
f(x)− f(x̂)

]
+
[
h(x)− h(x̂)

]
=
(
A
(
ψ
)
− LC

(
φ
))
ε (3.3)

where

A
(
ψ
) ∆

= A+

n,n∑
i,j=1

ψijHn,nij (3.4)

C
(
φ
) ∆

= C +

p,n∑
i,j=1

φijHp,nij (3.5)

− γfi ≤ γψij ≤ ψij ≤ γ̄ψij ≤ γfi (3.6)

− γhi ≤ γφij ≤ φij ≤ γ̄φij ≤ γhi (3.7)

with
ψij

∆
= ψij

(
xx̂j−1 , xx̂j

)
, φij

∆
= φij

(
xx̂j−1 , xx̂j

)
.

It is clear from (3.6) and (3.7) that the parameters ψ and φ belong to the bounded convex sets

Sf =
{
ϕ ∈ Rn×n : γ

ψij
≤ ϕij ≤ γ̄ψij

}
, (3.8)

Sh =
{
ϕ ∈ Rp×n : γ

φij
≤ ϕij ≤ γ̄φij

}
(3.9)

for which the sets of vertices are respectively given by

Vf =
{
ϕ ∈ Rn×n : ϕij ∈ {γψij , γ̄ψij}

}
(3.10)

and
Vh =

{
ϕ ∈ Rp×n : ϕij ∈ {γφij , γ̄φij}

}
. (3.11)

Hence, by using the quadratic Lyapunov function

ϑ(ε)
∆
= ε>Pε

and developing its derivative along the trajectories of (3.3), we obtain following theorem.

63



Chapter 3. Contributions to LMI-Based and High-Gain-Based Observer Design

Theorem 3.2.1 ( [20]). The estimation error ε satisfying (3.3) converges exponentially towards zero
if there exists a positive definite matrix P = P>, a matrix X ∈ Rn×p, and a scalar λ > 0 such that the
following LMIs are feasible:

A
(
ψ
)>P + PA

(
ψ
)
− C

(
φ
)>X> −XC(φ)+ λIn < 0 (3.12)

∀ψ ∈ Vf , ∀φ ∈ Vh. (3.13)

Moreover, the observer gain is computed by L = P−1X .

Proof. The proof is straightforward from the LPV/LMI technique in [131]. The term λIn is added
to get exponential convergence instead of asymptotic convergence.

2

Although (3.12) are the less restrictive LMI conditions that can exist in the literature, they are
still strongly dependent on the Lipschitz constants of the nonlinearities, namely the set of vertices
Vf and Vh. They are not always feasible for all values of the bounds γ

φij
, γ̄φij , γψij

, and γ̄ψij .
To improve the feasibility, some guidelines have been given in [17]. Therefore, this note is a
continuation of the work in [17]. We will not only improve the feasibility of LMI conditions as
in [17], but we will show that LMIs (3.12) are still always feasible for some classes of nonlinear
systems independently from the value of the Lipschitz constant of the nonlinearity of the system.

3.2.2 Feasible LMIs for Particular Families of Systems

For some classes of nonlinear systems, we can always guarantee feasibility of the LMIs for any
bounds γ

φij
, γ̄φij , γψij

, and γ̄ψij . This is the objective of this section.

3.2.2.1 Systems in canonical form

Here we will study the case where system (3.1) can be transformed into the following triangular
form through a diffeomorphism z = Φ(x):

ż =


ż1

ż2
...

żn−1

żn

 =


z2

z3
...
zn
fz(z)


y = z1

(3.14)

which can be written under the following compact form (3.15):{
ż = Azz +Bzfz(z)
y = Czz

(3.15)

where Az, Cz, and Bz have the companion structure as in [41]. Note that a more general class
of systems with a nonlinearity fi(z1, . . . , zi) in each component of the system can be considered,
without loss of generality. However, for the sake of brevity, we investigate (3.14) with only a single
nonlinear function in the last component of the system.
Now introduce the linear transformation

ζ = Tτz, where Tτ
∆
= diag

(
1

τ
, . . . ,

1

τn

)
(3.16)
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which transforms (3.14) into

ζ̇ = τAzζ +
1

τn
fz(T−1

τ ζ). (3.17)

Let us consider the following state observer corresponding to (3.17):

˙̂
ζ = τAz ζ̂ +

1

τn
fz
(
T−1
τ ζ̂
)

+ L
(
y − CzT−1

τ ζ̂
)

(3.18)

where L, independent from τ , is the constant observer gain to be determined. Then the dynamics
of the estimation error eζ = ζ − ζ̂ is expressed as

ėζ = τ
(
Az − LCz

)
eζ +Bz∆fz (3.19)

where
∆fz

∆
=

1

τn

[
fz(T−1

τ ζ)− fz
(
T−1
τ ζ̂
)]
. (3.20)

Applying [131, Lemma 7], there exist functions

ψj : Rn × Rn −→ R

and constants γ
j
≤ 0 and γ̄j ≥ 0, such that

∆fz =
[ j=n∑
j=1

ψj
τn−j

e>n (j)
]
eζ (3.21)

and
γ
j
≤ γj ≤ γ̄j , (3.22)

where e>n (j) is the jth element of the canonical basis of Rn.
Similarly to (3.4), we introduce the affine matrix A(τ ,Ψ) defined as

A
(
τ ,Ψ

)
= Az +

n∑
j=1

[ 1

τ1+(n−j)ψje
>
n (j)

]
(3.23)

where Ψ =
[
ψ1, . . . , ψn

]>. Then, the parameter Ψ belongs to a bounded convex set for which the
set of vertices is given by

Vfz
∆
=
{
v ∈ Rn : vj ∈ {γj , γ̄j}

}
. (3.24)

From (3.19), (3.21), and (3.23), it follows that the dynamics of the estimation error becomes

ėζ = τ
[
A
(
τ ,Ψ

)
− LCz

]
eζ . (3.25)

Consequently, we can state the following corollary as a particular case of Theorem 3.2.1.

Corollary 3.2.2 ( [20]). Let P = P> > 0 and X be matrices of appropriate dimensions, and τ > 0 is
a scalar, such that the following LMI conditions hold:

A
(
τ , w

)>P + PA
(
τ , w

)
− C>z X − X>Cz < 0, (3.26)

∀w ∈ Vfz . (3.27)

Then the observer (3.18) corresponding to (3.17), with L = P−1X>, converges exponentially towards
zero. Moreover, the estimated state x̂ = Φ−1

(
T−1
τ ζ̂
)

converges exponentially to the state x of the
original system (3.1).
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Proof. The proof is omitted.

2

Corollary 3.2.2 is an intermediate gateway that leads straightforwardly to the next important result
from the LMI point of view. Such a result is given in the following proposition.

Proposition 3.2.3 ( [18]). For any fixed values of the bounds γ
j

and γ̄j , j = 1, . . . , n, there exists
τ∗ > 0 such that the LMIs (3.26) are feasible for any τ ≥ τ∗.

Proof. Since (Az, Cz) is observable, then there always exists a matrix P = P> > 0 and a matrix X
such that

A>z P + PAz − C>z X − X>Cz < 0.

On the other hand, from the definition of A
(
τ ,Ψ

)
in (3.23), we have

lim
τ→+∞

(
A
(
τ , w

))
= Az, ∀w ∈ Vfz .

Then from continuity of A
(
τ , w

)
with respect to τ , there exists τ∗ > 0 large enough such that the

LMI (3.26) holds for any τ ≥ τ∗.

2

Proposition 3.2.3 means that the LMIs (3.26) are always feasible for any global Lipschitz nonlinear
function fz(.) independently from the value of its Lipschitz constant. This result is important in the
LMI context since it always guarantees the design of an LMI-based exponential observer for any
Lipschitz constant of the system. This is not the case in general for the arbitrary structure of the
system where the feasibility of the LMIs depends strongly on the value of the Lipschitz constant of
the system.

Remark 3.2.4 ( [20]). High-gain observer design is a particular case of the proposed methodology.
Indeed, as can be seen in the proof of Proposition 3.2.3, a sufficiently large value of τ guarantees
exponential stability of the estimation error. Such a sufficiently large value of τ leads to high values of
the observer gain.

Remark 3.2.5 ( [20]). The result of this section remains valid for the more general class of sys-
tems (3.28) with multi-nonlinearities, described by the following equations:

ż =


ż1

ż2
...

żn−1

żn

 =


z2

z3
...
zn
0

+


f1(z1)

f2(z1, z2)
...

fn−1(z1, z2, . . . , zn−1)
fn(z)


y = z1.

(3.28)

The generalization is straightforward, therefore it is not necessary to provide the developments. On the
other hand, we avoid repetition since in the next section, we will consider multi-nonlinearities in the
system description.
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3.2.2.2 Systems having feedforward structure

Consider the class of feedforward systems described by the equations below, which can be obtained
by transforming (3.1) through the diffeomorphism z = Φ(x):

ż =



ż1

ż2
...

żn−2

żn−1

żn


=



z2 + f1(z3, . . . , zn)
z3 + f2(z4, . . . , zn)

...
zn−1 + fn−2(zn)

zn
u(t)


= Azz + f feed(z) +Bu(t)
y = z1

(3.29)

where u(t) is any known signal. In general, when we consider system (3.1) with the presence of
control input, namely f(x, u) and h(x, u) instead of f(x) and h(x), we get the structure (3.29)
by using some backstepping transformation techniques [68]. Such a structure is encountered in
several works in the literature, namely in [80,89] and the references therein.
Similarly to the previous section, by using the transformation (4.37) and the observer (3.18), we
obtain

ėζ = τ
[
Afeed

(
τ ,Ψ

)
− LCz

]
eζ (3.30)

with

Afeed

(
τ ,Ψ

)
= Az +

n∑
i=1

n∑
j=i+2

[
τ j−(i+1)ψfeed

ij en(i)e>n (j)
]

(3.31)

where ψfeed
ij , independent from τ , comes from [131, Lemma 7] with

− γf feed
i
≤ γ

ψfeed
ij
≤ ψfeed

ij ≤ γ̄ψfeed
ij
≤ γf feed

i
(3.32)

where γ
ψfeed
ij
≤ 0 and γ̄ψfeed

ij
≥ 0. From the structure (3.29), in this case f feed, we have ψfeed

ij ≡ 0 for

i = n − 1, i = n, and ∀j = 1, . . . , n. It is obvious because from (3.29), the last two components of
f feed are zero. This means that the parameter Ψ belongs to an hyper-rectangle Sf feed for which the
set of vertices Vf feed is defined as follows:

Vf feed =
{
ϕ ∈ Rn×n : ϕij ∈ {γψfeed

ij
, γ̄ψfeed

ij
} (3.33)

ϕij = 0 for i = n− 1 and i = n
}
. (3.34)

It follows that
lim
τ→0

(
Afeed

(
τ ,Ψ

))
= Az, ∀Ψ ∈ Vf feed (3.35)

since ψfeed
ij is bounded and independent from τ .

Now we are ready to state the following proposition.

Proposition 3.2.6 ( [20]). There exists τ feed > 0, such that the following LMI conditions hold ∀τ :
0 < τ ≤ τ feed:

Afeed
(
τ , w

)>P + PAfeed
(
τ , w

)
− C>z X − X>Cz < 0,∀w ∈ Vf feed , (3.36)

where P = P> > 0 and X are matrices of appropriate dimensions, which are the decision variables
of the LMIs (3.36). Then the observer (3.18) corresponding to (3.17), with L = P−1X>, converges
asymptotically. Moreover, the estimated state x̂ = Φ−1

(
T−1
τ ζ̂
)

converges asymptotically to the state x
of the original system (3.1) for all τ satisfying 0 < τ ≤ τ feed.
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Proof. First, as for the Proposition 3.2.3, from observability of (Az, Cz), we deduce there always
exist a matrix P = P> > 0 and a matrix X such that

A>z P + PAz − C>z X − X>Cz < 0.

On the other hand, we have

Afeed
(
τ , w

)>P + PAfeed
(
τ , w

)
− C>z X − X>Cz

=

<0︷ ︸︸ ︷
A>z P + PAz − C>z X − X>Cz
+S(τ , w)P + PS(τ , w)> (3.37)

where

S(τ , w)
∆
=

n∑
i=1

n∑
j=i+2

[
τ j−(i+1)ψfeed

ij en(i)e>n (j)
]
.

Then, from (3.35) and the continuity of Afeed
(
., w
)

with respect to τ (we can also use the
Archimedean property), there exists τ feed > 0 such that

Afeed
(
τ feed, w

)>P + PAfeed
(
τ feed, w

)
− C>z X − X>Cz < 0∀w ∈ Vf feed . (3.38)

On the other hand, we have

Afeed
(
τ , w

)
= Afeed

(
τ feed, wτ

)
with wτij =

[
τ

τ feed

]j−(i+1)
wij . Since γ

ψfeed
ij
≤ 0 and γ̄ψfeed

ij
≥ 0, and we have w ∈ Vf feed , then wτ ∈ Sf feed

for any τ ≤ τ feed, i.e.: τ
τ feed ≤ 1. Hence, from the convexity principle, the inequality (3.38) is

preserved ∀τ ≤ τ feed, which ends the proof of Proposition 4.5.3.

2

3.2.3 Extension to a More General Class of Systems

This section is devoted to a more general class of systems, which does not contain necessarily linear
parts like in (3.14). Consider the class of systems (3.1) which can be transformed to the following
form through the diffeomorphism z = Φ(x):

ż =


ż1

ż2
...

żn−1

żn

 =


φ1(z1, z2)

φ2(z1, z2, z3)
...

φn−1(z1, z2, . . . , zn−1, zn)
φn(z)


= fnl(z)
y = ϕ(z1).

(3.39)

This extension can be useful in the sense that some real-world models are not in the form (3.14),
and then they do not need to be transformed into (3.14) with complex structure of nonlinearities.
For a motivating example, we can mention the tumor growth model investigated in [49] and the
references therein. Such a tumor growth model is under the form (3.39). To avoid repetition
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and cumbersome notations, we consider, in this section, only systems under the nonlinear canon-
ical form. Extension to systems having nonlinear feedforward structures can be straightforwardly
obtained.
We use again the same change of variable (4.37), ζ = Tτz, to design an observer for (3.39). We
then, first, introduce the state observer corresponding to ζ:

˙̂
ζ = Tτfnl

(
T 1
τ
ζ̂
)

+ L
[
y − ϕ

(
τ ζ̂1

)]
(3.40)

where we used T−1
τ = T 1

τ
; ζ̂ is the estimate of ζ. Then the estimation of z is expressed as ẑ = T 1

τ
ζ̂.

Hence, the estimation of the original state x is given by x̂ = Φ−1
(
T 1
τ
ζ̂
)

. Notice that in the case
of the tumor growth model in [49], the system is under the form (3.39), then there is no need for
nonlinear transformation. Therefore, we get directly from (3.40) an estimation of x as x̂ = T 1

τ
ζ̂.

Now let us return to the convergence analysis of the estimation error eζ = ζ − ζ̂. We have

ėζ = Tτ

∆fnl︷ ︸︸ ︷[
fnl
(
T 1
τ
ζ
)
− fnl

(
T 1
τ
ζ̂
)]

+ L
[
ϕ (τζ1)− ϕ

(
τ ζ̂1

)]
. (3.41)

By applying [131, Lemma 7] and after isolating the terms corresponding to the (i+1)th component
of the state and the ith component of the nonlinearity, fnl

i , we deduce that there exists functions

ψnl
ij : Rn × Rn −→ R

ϕ1 : R× R −→ R

and constants γ
ψnl
ij

, γ̄ψnl
ij

, γ
ϕ1

, and γ̄ϕ1 , such that

∆fnl = τ

[
n−1∑
i=1

ψnl
i,i+1(t)en(i)e>n (i+ 1)

]
eζ +

 n∑
i=1

i∑
j=1

[ 1

τ i−j
ψnl
ij (t)en(i)e>n (j)

 eζ (3.42)

ϕ (τζ1)− ϕ
(
τ ζ̂1

)
= τϕ1(t)Czeζ (3.43)

and
γ
ψnl
ij
≤ ψnl

ij (t) ≤ γ̄ψnl
ij

(3.44)

γ
ϕ1
≤ ϕ1 (t) ≤ γ̄ϕ1 (3.45)

where ψnl
ij (t) and ϕ1(t) are independent from τ ; ψnl

ij (t)
∆
= ψnl

ij

(
ζ ζ̂j−1 , ζ ζ̂j

)
and ϕ1(t)

∆
= ϕ1

(
ζ1, ζ̂1

)
are

introduced for simplification. Furthermore, we assume, as in the previous section, that

γ
ψnl
ij
≤ 0 and γ̄ψnl

ij
≥ 0, for all j ≤ i, i = 1, . . . , n. (3.46)

More importantly, we need the following assumption for the existence of the observer we propose:

γ
ψnl
i,i+1

> 0 and γ
ϕ1
> 0. (3.47)

Notice that conditions (3.47) are introduced first in [45] to guarantee the existence of a high-gain
observer for the system (3.39). Authors in [45, Eq.(75), page 96] used a slightly different, but
equivalent, condition, namely

0 < α ≤ ψnl
i,i+1(t) ≤ β and α ≤ ϕ1(t) ≤ β (3.48)
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which can be obtained from (3.44)-(3.45) and (3.47) with

α = min

(
min

i=1,...,n−1
γ
ψnl
i,i+1

, γ
ϕ1

)
, and

β = max
(

maxi=1,...,n−1 γ̄ψnl
i,i+1

, γ̄ϕ1

)
.

Now, we introduce the following notations:

ψt
∆
=


ψnl
1,2(t)

ψnl
2,3(t)

...
ψnl
n−1,n(t)

 ∈ Rn−1, ϕt
∆
=



ψnl
11(t)
ψnl
21(t)
ψnl
22(t)
ψnl
31(t)
...

ψnl
n1(t)

...
ψnl
nn(t)


∈ R

n(n+1)
2 (3.49)

A (ψt)
∆
=

n−1∑
i=1

ψnl
i,i+1(t)en(i)e>n (i+ 1)

=


0 ψnl

1,2(t) 0 . . . 0 0
0 0 ψnl

2,3(t) 0 . . . 0
...

...
...

. . .
...

...
0 0 0 0 . . . ψnl

n−1,n(t)
0 0 0 0 . . . 0

 (3.50)

Anl (τ ,ϕt)
∆
=

n∑
i=1

i∑
j=1

1

τ1+i−j ψ
nl
ij (t)en(i)e>n (j) (3.51)

C (ϕ1(t))
∆
= ϕ1(t)Cz.

The dynamic of the estimation error (3.41) can then be expressed under the following compact
form:

ėζ = τ
[
A (ψt) + Anl (τ ,ϕt)− LC (ϕ1(t))

]
eζ . (3.52)

By definition (3.49) and assumption (3.44), the time-varying parameters ψt and ϕt belong to
bounded convex sets for which the sets of vertices are respectively, given as follows:

Vψ =
{
ϕ ∈ Rn−1 : ϕi ∈ {γψnl

i,i+1
, γ̄ψnl

i,i+1
},where γ

ψnl
i,i+1

> 0, i = 1, . . . , n− 1
}
, (3.53)

Vϕ =
{
ρ ∈ R

n(n+1)
2 : ρ =

ρ1
...
ρn

 ,ρi =

ρi1...
ρii

 , ρij ∈ {γψnl
ij
, γ̄ψnl

ij
}, s.t (3.46)

}
. (3.54)

Now we are ready to state the main proposition of this section.

Proposition 3.2.7 ( [20]). There exists τ?nl > 0, such that ∀τ ≥ τ?nl, there exist matrices P = P> > 0
and X of appropriate dimensions, and a scalar λ > 0, such that the following LMI holds:[

A(v) + Anl
(
τ , w

)]> P + P
[
A(v) + Anl

(
τ , w

)]
−C(κ)>X − X>C(κ) < −λIn, (3.55)

∀v ∈ Vψ,∀w ∈ Vϕ, ∀κ ∈ {γϕ1
, γ̄ϕ1}. (3.56)

Then the observer (3.40) with L = P−1X>, converges exponentially. Moreover, the estimated state
x̂ = Φ−1

(
T 1
τ
ζ̂
)

converges exponentially to the state x of the original system (3.1), ∀τ ≥ τ?nl > 0.
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Proof. Since v ∈ Vψ, κ ∈ {γ
ϕ1
, γ̄ϕ1}, and taking in mind (3.47), it follows from [45, Lemma 2.1,

page 96] that there exist matrices P = P> > 0 and X of appropriate dimensions, and a scalar
λ > 0, such that

A(v)>P + PA(v)−C(κ)>X − X>C(κ) < −2λIn, (3.57)

∀v ∈ Vψ,∀w ∈ Vϕ, ∀κ ∈ {γϕ1
, γ̄ϕ1}. (3.58)

Also, since
lim
τ→0

(
Anl

(
τ , w

))
= 0n×n, ∀w ∈ Vϕ

then it is obvious that ∃τ?nl > 0 large enough, such that

Anl
(
τ , w

)>P + PAnl
(
τ , w

)
< λIn,∀w ∈ Vϕ, ∀τ ≥ τ?nl. (3.59)

Hence, summing (3.57) and (3.59), the relation (3.55) is inferred.

2

Remark 3.2.8 ( [20]). Notice that the condition (3.47) may also be replaced by

γ̄ψnl
i,i+1

< 0 and γ̄ϕ1 < 0 (3.60)

and the result remains valid. Indeed, the condition for the existence of solution to (3.57) is the strict
monotonicity of the nonlinearities φi and ϕ with respect to the variables zi+1 and z1, respectively.

3.3 Contributions to High-Gain Observer for Non-Triangular Systems

This section focuses on the high-gain observer design methodology while exploiting the LMI ap-
proach for improvements. To complete the work established in various works in the literature,
namely [67,139] and the references therein, we propose a generalization to systems for which the
nonlinearities are not in the triangular form. This extension, however, requires an extra constraint
on the high-gain tuning parameter. To improve the result and reduce the conservatism of the de-
sign conditions, we exploit the LMI approach to transform the extra constraint into a set of LMI
conditions. A design algorithm is then provided and a simple academic example is given to show
the validity of the proposed methodologies.
The advantages of the proposed methodology, with respect to the standard high-gain observer and
the LMI-based observer, are summarized in the following items:

• Compared to the standard high-gain methodology, there is no need for any transformation
of the system to get a triangular form. The non-triangular terms are handled by the extra
constraint or the set of LMIs;

• Compared to the LPV/LMI approach in [131], we get a significant reduction of the exponen-
tial number of LMIs since only a part of the nonlinearity is handled by the LMI approach.

Beyond the above advantages, the approach opens the door to important applications, such as
systems with nonlinear outputs with arbitrary structure and systems with delayed or sampled mea-
surements.
There are several other observer design techniques, such as LMI-based techniques [1, 131], high-
gain observer in the sense of Thau et al. [38, 98, 102], and many others, where different Lipschitz
formulations and structure of the linear part in the system are used to reduce the conservatism of
the design conditions. It is worthy noticing that we focus on the high-gain observer methodology
developed by J-P. Gauthier et al. in the sense of [41] for triangular systems. We propose to gen-
eralize such a method, while keeping the main design conditions of the same methodology. Only
one extra-condition on the tuning parameter is involved in addition to the well-known high-gain
synthesis conditions.
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3.3.1 Motivation and problem formulation

It is quite clear and well-known from the previous section that the result of Theorem 4.3.1 was
possible due to the structure (3.14). Without such a structure, the condition (2.93) is not sufficient
to ensure the exponential convergence of the estimation error. Indeed, in such a situation, we can
easily show that the upper bound kf in (1.39) depends on τ ; namely, we get kf (τ), which leads to
the following similar bound:

τ > max

(
1,

2kf (τ)λmax(P )

λ

)
. (3.61)

However, the bound (3.61) might not have explicit solutions, or even be infeasible. This means
that (3.61) is useless and the high-gain observer methodology cannot guarantee exponential con-
vergence of the estimation error towards zero. The followinf is devoted to solving this problem by
proposing a general observer design framework.

3.3.2 Results for Non-Triangular Nonlinearities

In this section, we propose results for a general class of systems with arbitrary structure of the non-
linearities. We will show that for some families of nonlinearities with Lipschitz constants satisfying
some explicit conditions, the design of an observer of the form (3.18) remains possible despite the
non-triangular form of the nonlinearity.

3.3.2.1 System description and assumptions

In this section, we introduce the. class of systems and the related main assumptions needed for the
proposed design methodology. First, consider the following class of nonlinear systems:{

ẋ = φ(x)
y = x1 = Cx

(3.62)

where x ∈ Rn is the system state and y ∈ Rp is the output measurement. The function φ(.) is
assumed to be γφ−Lipschitz with respect to x. Without loss of generality, φ(.) is differentiable with
respect to x. We also assume that there exist two positive scalars α and β such that the following
double inequality holds ∀x ∈ Rn:

0 < α ≤ ∂φj
∂xj+1

(x) ≤ β, ∀ j = 1, . . . , n− 1. (3.63)

We use the linear transformation (4.37) and propose the observer

˙̂
ζ = Tτφ

(
T 1
τ
ζ̂
)

+ L
(
y − Cζ̂1

)
(3.64)

corresponding to the transformed system

ζ̇ = Tτφ
(
T 1
τ
ζ
)
, (3.65)

which leads to the error dynamics

ėζ = Tτ

∆φ︷ ︸︸ ︷[
φ
(
T 1
τ
ζ
)
− φ

(
T 1
τ
ζ̂
)]

+τLCeζ . (3.66)
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By applying [131, Lemma 7], we deduce that there exist functions ψij : Rn × Rn −→ R and
constants γ

ψij
, γ̄ψij , such that

Tτ∆φ(ζ, ζ̂) =

 n∑
i=1

n∑
j=1

[ 1

τ i−j
ψij(t)en(i)e>n (j)

 eζ . (3.67)

and
γ
ψij
≤ ψij (t) ≤ γ̄ψij (3.68)

where ψij(t) are independent from τ and the notation ψij(t)
∆
= ψij

(
ζ ζ̂j−1 , ζ ζ̂j

)
is introduced for

simplification.

3.3.2.2 Convenient transformation of (3.66)

For establishing high-gain results for the general class of nonlinear systems (3.62), the transfor-
mation (3.67) is not convenient. For that, the idea consists in decomposing the right-hand side
of (3.67) into three terms as follows:

Tτ∆φ(ζ, ζ̂) = τ

[
n−1∑
i=1

ψi,i+1(t)en(i)e>n (i+ 1)

]
eζ

+

 n∑
i=1

i∑
j=1

[ 1

τ i−j
ψij(t)en(i)e>n (j)

 eζ︸ ︷︷ ︸
N1(eζ)

+

n−2∑
i=1

n∑
j=i+2

[
τ j−iψij(t)en(i)e>n (j)

 eζ︸ ︷︷ ︸
N2(eζ)

(3.69)

where en(i) =
[

0, ..., 0,

ith︷︸︸︷
1 , 0, ..., 0︸ ︷︷ ︸

n components

]> ∈ Rn, n ≥ 1 is a vector of the canonical basis of Rn.

By setting

A (ψt)
∆
=

n−1∑
i=1

ψi,i+1(t)en(i)e>n (i+ 1) (3.70)

the estimation error (3.66) is reduced to

ėζ = τ
(
A (ψt)− LC

)
eζ +N1(eζ) +N2(eζ). (3.71)

3.3.2.3 Design conditions for arbitrary nonlinear structure

From (3.63), the parameter ψt belongs to a bounded convex set for which the set of vertices is
defined as:

Vψ =
{
ϕ ∈ Rn−1 : ϕi ∈ {α, β}, i = 1, . . . , n− 1

}
. (3.72)
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In addition, since the nonlinearities are Lipschitz with respect to their arguments and due to the
structure of N1(eζ) and N2(eζ) with respect to τ , it is easy to show that there exist two positive
constants κ1 and κ2, independent of τ , such that

‖N1(eζ)‖ ≤ κ1‖eζ‖, (3.73)

‖N2(eζ)‖ ≤ τn−1κ2‖eζ‖. (3.74)

Hence, we are ready to state the following more general theorem.

Theorem 3.3.1 ( [18]). Let P = P> > 0 and X be matrices of appropriate dimensions, τ > 0 and
0 ≤ ε ≤ 1 are scalars, such that the following conditions hold:

A (ϕ)> P + PA (ϕ)− C>X − X>C + λIn < 0,

∀ϕ ∈ Vψ, (3.75)

τε > max

(
1,

2κ1λmax(P )

λ

)
, (3.76)

τ n−2
√

(1− ε) <
(

λ

2κ2λmax(P )

) 1
n−2

. (3.77)

Then the observer (3.64) corresponding to (3.65), with L = P−1X>, converges exponentially towards
zero. Moreover, the estimated state x̂(t) = T 1

τ
ζ̂(t) exponentially converges to the state x(t) of the

original system (3.62).

Proof. By using the Lyapunov function V (eζ)
∆
= e>ζ Peζ and computing its derivative along the

trajectories of (3.71), we obtain

V̇ (eζ) = e>ζ

[(
A (ψt)− LC

)>
P + P

(
A (ψt)− LC

)]
eζ

+ 2e>ζ PN1(eζ) + 2e>ζ PN2(eζ). (3.78)

Then, by using the change of variable X ∆
= L>P and from the convexity principle [31, 131], we

deduce that (3.75) leads to(
A (ψt)− LC

)>
P + P

(
A (ψt)− LC

)
< −λIn. (3.79)

On other hand, from (3.73) and (3.74), we have

2e>ζ PN1(eζ) ≤ 2λmax(P )κ1‖eζ‖2 (3.80)

and
2e>ζ PN2(eζ) ≤ 2λmax(P )κ2τ

n−1‖eζ‖2. (3.81)

Hence, by combining (3.78), (3.79), and (3.80), we get

V̇ (eζ) ≤ −
(
λτ − 2λmax(P )[κ1 + τn−1κ2]

)
‖eζ‖2

Now, from the convex decomposition τ = ετ + (1− ε)τ , for any 0 ≤ ε ≤ 1, the inequality

λτ − 2λmax(P )[κ1 + τn−1κ2] > 0

holds if

ετ >
2κ1λmax(P )

λ
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and

(1− ε)τ > 2κ2λmax(P )

λ
τn−1

are satisfied, which allows us to conclude.

2

3.3.2.4 Comments and discussion

This section is dedicated to some constructive remarks on the previous results.

3.3.2.4.a On the feasibility of (3.75)

Notice that the linear matrix inequalities (3.75) are always feasible due to the required condi-
tion (3.63). For more details on this issue, we refer the reader to [45, Eq. (75), page 96]. Then,
if there is any conservatism in the design procedure provided by Theorem 4.4.6, it could not come

from (3.75). On the other hand, however, since it is useful to minimize the value of
2κ1λmax(P )

λ
, we

need to introduce additional constraints to solve jointly with (3.75). From homogeneity of (3.75),
we can fixe λ = 1 and introduce a constraint like

P ≤ αIn (3.82)

where α > 0 is to be minimized. By using the Matlab/Yalmip software, we can efficiently solve this
optimization problem.

3.3.2.4.b On the conservatism of the bounds (3.76)–(3.77)

It is quite clear that both (3.76)–(3.77) are satisfied jointly if there exist P = P> > 0, λ > 0 and
0 ≤ ε ≤ 1 such that

max

(
1,

2κ1λmax(P )

ελ

)
<

(
(1− ε)λ

2κ2λmax(P )

) 1
n−2

. (3.83)

The above inequality (3.83) is more likely to be satisfied if the Lipschitz constant κ2 is small enough
compared to κ1. For instance, we can easily show that for κ2 ≥ κ1, inequality (3.83) does not admit
a solution. On the other hand, the proposed approach allows designing a high-gain observer for a
non-triangular system without performing any nonlinear transformation. It is only needed that the
nonlinearity of the system, namely κ1 and κ2, satisfies the above inequality:

κ1 <
ελ

2λmax(P )

(
(1− ε)λ

2κ2λmax(P )

) 1
n−2

(3.84)

by taking in mind that for κ1 ≥ 1, we often have max

(
1,

2κ1λmax(P )

ελ

)
=

2κ1λmax(P )

ελ
.

To avoid the conservatism related to (3.83), we propose in Section 3.3.3 a relaxation by exploiting
LMI-based techniques. As we can see in Section 3.3.3, the LMI technique makes it possible to
increase the value of the bound (3.77), or even to make it vanish completely.
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3.3.2.4.c Case of triangular systems

Although the Theorem 4.4.6 provides conservative design conditions for some systems, it proposes
a more general design than the standard high-gain observer. Indeed, the standard high-gain ob-
server for triangular systems may be viewed as a particular case of Theorem 4.4.6. Theorem 4.3.1
corresponds to the case κ2 = 0, ε = 1, and A (ϕ) ≡ A in Theorem 4.4.6. The advantage of the pro-
posed general design method is that for some specific systems where the non-triangular part of the
nonlinearity, namely κ2, satisfies (3.77), it is not necessary to perform any change of coordinates
to design a high-gain observer.

3.3.2.4.d On the sector condition (3.63)

Notice that (3.63) is a common condition to most of the existing work on high-gain observer in the
sense of observer developed by J-P. Gauthier et al. Such a condition is required for the existence of
solutions to the inequalities (3.75). Condition (3.63) is not exactly the sector condition only, but
it represents also the strict monotonicity of the nonlinear component φj with respect to the state
component xj+1. The bound α > 0 ensures the monotonicity of φj and then the observability of
the pair (A (ϕ) , C), ∀ϕ ∈ Vψ, then the feasibility of (3.75). On the other hand, the upper bound β
in (3.63) is required for the convexity principle leading to a finite number of LMI conditions (3.75).
To sum up, without (3.63) we cannot follow the technique proposed in this section, as is the
case with the standard high-gain observer methodology. Nevertheless, if we follow the proposed
methodology and consider relaxing the upper bound in (3.63), i.e.: β = +∞, therefore, according
to (3.76), we need to prove that the inequalities (3.75) admit solutions with bounded matrices
P = P> > 0 and X .

3.3.3 Further Results: Improved Design Procedure

To overcome the conservatism of the previous generalized high-gain design method, we propose
improved conditions by using LMI tools. Indeed, we will merge the constraint (3.77) with the
inequality (3.75) to obtain only one of them expressed as a set of LMIs to solve. To this end, we
have to gather the term N2(eζ) with the first sum on the right-hand side of (3.69).

3.3.3.1 Transformation of the error dynamics

We start by rewriting (3.69) as follows:

Tτ∆φ(ζ, ζ̂) = τ
(
A (ψt) + A (ϕτ (t))

)
eζ +N1(eζ) (3.85)

where

A (ϕτ (t))
∆
=

n−2∑
i=1

n∑
j=i+2

ϕτ(i,j)(t)en(i)e>n (j) (3.86)

ϕτ (t)
∆
=



ϕτ(1,3)(t)
...

ϕτ(1,n)(t)
...

ϕτ(n−2,n)(t)


∈ R

(n−1)(n−2)
2 (3.87)

ϕτ(i,j)(t)
∆
= τ j−(i+1)ψij(t). (3.88)
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By introducing the notation

F (ψt,ϕ
τ (t))

∆
= A (ψt) + A (ϕτ (t))

the dynamics equation (3.71) becomes

ėζ = τ
(
F (ψt,ϕ

τ (t))− LC
)
eζ +N1(eζ). (3.89)

Notice that the parameter ψt ∈ Hψ for which the set of vertices, Vψ, is defined in (3.72).
From (3.68), the hyper parameter ϕτ (t) belongs to a convex set Hτ for which the set of vertices is
defines as

Vτ =
{
ϕ ∈ R

(n−1)(n−2)
2 : ϕij ∈ {γψij , γ̄ψij}, j = i+ 2, . . . , n; i = 1, . . . , n− 2

}
. (3.90)

By considering γ
ψij
≤ 0 and γ̄ψij ≥ 0, we have the following set inclusion property:

∀τ ≥ 1, τmax ≥ 1 : τ ≤ τmax ⇒ Hτ ⊆ Hτmax . (3.91)

The above property (3.91) plays an important role in the design procedure. Indeed, it guarantees
that if given LMI conditions are feasible in Hτmax then they remain feasible in Hτ for any 1 ≤
τ ≤ τmax.

3.3.3.2 Improved design procedure

Now we are ready to state the following theorem providing an improved version of Theorem 4.4.6.

Theorem 3.3.2 ( [18]). Let P = P> > 0 and X be two matrices of appropriate dimensions, and
τmax ≥ 1, such that the following LMI conditions are fulfilled:

F (ϕ, φ)> P + PF (ϕ, φ)− C>X − X>C + λIn < 0,∀ϕ ∈ Vψ, ∀φ ∈ Vτmax . (3.92)

Then the observer (3.64) corresponding to (3.65), with L = P−1X>, converges exponentially towards
zero for all τ ≥ 1 satisfying the double inequality:

max

(
1,

2κ1λmax(P)

λ

)
< τ ≤ τmax (3.93)

Moreover, the estimated state x̂(t) = T 1
τ
ζ̂(t) exponentially converges to the state x(t) of the original

system (3.62).

Proof. From the convexity principle, if (3.92) holds for τmax, then it holds for any 1 ≤ τ ≤ τmax,
according to the property (3.91). Hence, since N1(.) satisfies (3.73), we can conclude as with the
standard high-gain observer.

2

Remark 3.3.3 ( [18]). Compared to Theorem 4.4.6, Theorem 3.3.2 provides a less conservative upper
bound on the tuning parameter τ . Due to the use of the LMI approach, the restrictive condition (3.77)
vanished from the required design constraints. From numerical viewpoint, the LMI conditions (3.92)
often provide high values of τmax, compared to (3.77).
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3.3.3.3 Numerical design algorithm

This section provides a numerical algorithm to design the observer gain L and the tuning parameter
τ . The algorithm consists of finding the maximum value of τmax for which the LMIs (3.92) are
feasible. Hence, we deduce the parameters λ, P , X , and τmax allowing the computation of L =
P−1X> and the value of the tuning parameter τ according to (3.93). The numerical procedure is
summarized in the following Algorithm 3.3.3.3. The algorithm is based on the use of the gridding
method on τmax. The gridding method is based on the introduction of a scaled variable σ ∆

= τmax
1+τmax

,
which means that τmax = σ

1−σ . Consequently, the maximum value of σ ∈ [1
2 1[ for which the

LMIs (3.92) are feasible will provide the maximum value of τmax ∈ [1 +∞[ for which (3.92) are
feasible.
ruled

Algorithm 3 Finding a maximum value of τmax

Step 1: Choose a small δ > 0 for the gridding and take σ = 1
2 . Then go to Step 2

Step 2: Solve LMIs (3.92) with the current value of σ
(3.92) is feasiblego to Step 3
if σ > 1

2 then go to Step 4
if σ = 1

2 then go to Step 5
Step 3:
while σ + δ < 1 do σ := σ + δ and return to Step 2
Step 4: Take σmax >

1
2 as the maximum value of σ for which LMIs (3.92) are feasible and check

condition (3.93) with the corresponding τmax = σmax
1−σmax

(3.93) is solvable go to Step 5 go to Step 6
Step 5: Choose a value of τ satisfying (3.93) and compute L = P−1X>
Step 6: STOP, return no solution.

3.3.3.4 Illustrative Example

To illustrate the proposed results, let us consider the following simple three-dimensional system:
ẋ1 = x2 + κ2 sin(x3)
ẋ2 = x3

ẋ3 = h(x)
y = x1

(3.94)

where h(.) is an arbitrary Lipschitz function with Lipschitz constant kh = 1. Through this example,
we provide a numerical comparison between Theorem 4.4.6 and Theorem 3.3.2 with respect to
the value of the Lipschitz constant κ2. Table 4.1 provides the κmax

2 tolerated by each method. It

Table 3.1: Numerical comparison

Method Theorem 4.4.6 Theorem 3.3.2
κmax

2 ≈ 10−3 ≈ 0.04

is quite clear from Table 4.1 that the value of κmax
2 tolerated by Theorem 3.3.2 is higher than that

of Theorem 4.4.6. It is 40 times greater than that of Theorem 4.4.6. The estimation errors are
depicted in Figure 3.1 for the case κ2 = 0.04 and h(x(t)) = cos(x2(t)).
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Figure 3.1: Behavior of the estimation error for κ2 = 0.04.

3.4 Conclusion

In this paper, we proposed several observer design techniques for nonlinear systems in the presence
of delayed and nonlinear outputs. Through a state augmentation technique and output transforma-
tion, the problem of the presence of delay and nonlinearities in the output measurement is easily
solved by transferring the delay and the nonlinearities to the dynamic process. Such a transfer is
achieved by creating a new output measurement and extending the dynamics of the system. For
the specific classes of systems considered in this paper, namely systems in companion form and
feedforward systems, novel specific synthesis conditions are proposed, which are less conservative
than those existing in the literature.
Moreover, a more relaxed and alternative technique is introduced to avoid the conservative as-
sumption regarding the boundedness of x2. This approach is accompanied by several constructive
comments and comparisons. For each class of systems, the new technique using the new observer
structure with integral term is thoroughly compared to the method relaxing the boundedness of x2

and to existing methods in the literature through rigorously expanded analytical arguments. Lastly,
utilizing a Lyapunov–Krasovskii functional, we introduce an alternative method requiring only LMI
conditions for ensuring the asymptotic convergence of the estimation error. This approach aims
to refine existing techniques in the literature while eliminating additional constraints associated
with the maximum allowable delay value. The efficiency of the proposed methods is demonstrated
through a compelling illustrative example.
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Chapter 4. Observer Design for Nonlinear Systems with Delayed Output Measurement

4.1 Introduction

Delayed outputs are naturally encountered in remote estimation [129, 143], cyberattacks detec-
tion [58–60, 62], and multiagent systems in general [53, 126, 128]. Estimating the state of a non-
linear system from delayed measurements is a challenging yet critical task in control theory. While
traditional observer design methods work well for systems with instantaneous measurements, The
presence of delays not only complicates the estimation of the state of the system but also affects the
stability and performance of the observer. Several methods have been proposed in the literature to
handle this challenge, but many of them are limited in their ability to handle large delays [107].
The main objective of this work is to develop a novel approach for estimating the state of a nonlinear
system from delayed measurements. Specifically, we aim to propose a method that can handle
arbitrarily long delays in the measurements while ensuring robust and accurate state estimation.
Existing methods in the literature include using a chain of observers or predictors-based observers
for handling long delays [3, 23, 34, 46, 52, 72, 88, 140, 142]. For feedforward systems, time-scaling
techniques have been proposed, and for systems in triangular form, high-gain observer method-
ology has been explored. However, these methods have limitations in terms of the maximum
allowable value of the delay.
To deal with arbitrarily long delays in the measurement, some methods are based on the use of a
chain of observers [34,46] while other methods exploit predictors-based observers [4,72]. For some
families of systems, namely feed-forward systems, the problem may be solved by using the time-
scaling technique as in [88]. On the other hand, different methods based on the high-gain observer
methodology have been proposed for systems in triangular form with some recent improvements.
However, these methods are valid for only systems with small values of the upper bound of the
delay, τ?. The aim is to overcome this limitation and propose a novel approach that will be both
simple and enhance the maximum allowable value of τ?.
This chapter introduces a new approach designed to overcome the constraints present in existing
methodologies. By leveraging a novel output-based dynamic extension technique, we substantially
increase the maximum allowable value of the delay. This technique, preliminary presented in [16],
allows the transfer of time-delay from the output to the dynamics of an augmented system. As a
result, the stability analysis and observer design become more straightforward, consequently en-
abling to achieve a significantly larger maximum allowable delay value. Furthermore, the proposed
approach incorporates the use of the Halanay inequality and the differential mean value theorem,
along with other mathematical tools, in the derivation of Lyapunov functions. While existing ob-
server designs for systems with delayed output measurements often focus on specific classes of sys-
tems, such as those in companion form or featuring feedforward structures, this work introduces a
unified approach applicable to a broader range of systems with arbitrary structures. Additionally,
specific results are derived for these particular classes of systems. Due to the dynamic extension
technique and system transformations, we propose a novel state observer structure. Through rigor-
ous analytical analysis, we demonstrate that this observer structure significantly enhance the upper
bound of the maximum allowable value of the delay compared to conventional state observer struc-
tures. However, this enhancement requires fulfilling certain Lipschitz assumptions as a trade-off.
For systems in companion form, it is shown that the maximum allowable delay value is increased
and correlates explicitly with the tuning parameter of the high-gain observer proposed in this case.
In contrast, the proposed design method for feedforward systems enables the accommodation of
arbitrarily long delay in the output. Moreover, to avoid the additional constraints required for
exponential convergence, which often introduce conservatism, we propose an alternative design
approach using a specific Lyapunov–Krasovskii functional. While this method accommodates high
values of the maximum allowable delay, it guarantees only asymptotic convergence of the error.
An illustrative example showcases how these methods enhance the techniques presented in [119]
and [92].
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4.2. Problem Formulation and Preliminary Tools

The rest of the chapter is organized as follows: Section 4.2 describes clearly the problem formu-
lation of the observer design for systems with delayed outputs and presents the motivations of
this work compared to the available methods in the literature. Section 4.3 provides the main idea
of this work, starting by a preliminary result as a main tool. Section 4.4 proposes specific new
results for particular families of systems, namely systems in companion form and feedforward sys-
tems. Section 4.5 gives a relaxation technique to avoid certain required assumptions on the system
state. Section 4.6 introduces some constructive comments and analytical comparisons. Section 4.7
presents an alternative method relaxing the existing results in the literature. Section 4.8 intro-
duces an illustrative example to show the validity and efficiency of the proposed methods. Finally,
Section 4.9 concludes the work and discusses future endeavors.

4.2 Problem Formulation and Preliminary Tools

This section is devoted to formulating the observer design problem, namely addressing observer
design in the presence of delayed output measurements. We start by defining the class of systems
under investigation and revisiting conventional observer design methods available in existing liter-
ature. To provide a strong motivation for the results developed in this chapter, we give a succinct
overview of the current state-of-the-art methodologies, thereby establishing the basis for the de-
velopment of our proposed method. Then, before dealing with the main results, we introduce the
primary mathematical tools used throughout the Lyapunov stability analysis.

4.2.1 Problem Formulation

The motivation of the work consists of developing a simple method to deal with nonlinear systems
with delayed nonlinear output measurements. The aim is to establish novel design conditions
allowing high values of the maximum allowable delay in the output measurement while ensuring
the exponential convergence of the observer. We stand out from the literature by proposing a simple
but useful method. The class of systems we consider is described by the following equations:{

ẋ(t) = f(x(t), u(t))
y(t) = h

(
x(t− τ(t))

) (4.1)

where x(t) ∈ Rn is the state of the system, u(t) ∈ Rm is the control input, and y(t) ∈ Rp represents
the output measurements vector. The delay τ(t) ≥ 0 is assumed to be known and bounded, i.e.:
there exists a positive constant τ? such that τ(t) ≤ τ?,∀t ≥ 0.
The main objective consists of estimating the system state, x(t), in real-time from the delayed
measurements y(t). While the problem in the case of delay-free outputs, is relatively easy to handle,
however, the presence of the delay makes the problem challenging.
Usually in the literature, the following Luenberger state observer is proposed for the class of sys-
tems (4.1):

˙̂x(t) = f(x̂(t), u(t)) + L
[
y(t)− h

(
x̂(t− τ(t))

)]
, (4.2)

where x̂(t) is the estimate of x(t) and L is the observer gain to be determined. Several methods
have been devoted in the literature for studying the convergence of this observer (4.2) for large val-
ues of the maximum allowable delay, τ?. Except some results for feedforward systems [88], most
of the contributions in this area concerns systems in companion form [3, 23, 34, 46, 72, 140, 142].
To the best of the authors’ knowledge, no results exist for systems of arbitrary structure as defined
by (4.1). Although recent improvements, as presented in [2], have leveraged the HG/LMI tech-
nique introduced in [140], the obtained results remain conservative. Moreover, the convergence
analysis, based on Lyapunov theory and the use of the observer (4.2), requires extensive compu-
tations and cumbersome mathematical developments. Additionally, the observer gain L explicitly
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amplifies the delay in the output, requiring the application of the Jensen inequality in mathemati-
cal derivations to achieve appropriate synthesis conditions, as suggested by the conditions outlined
in [2, Theorem 10], which are strongly interdependent, cumbersome, and conservative. All the
aforementioned drawbacks associated with the utilization of observer (4.2) have motivated us to
devise a novel approach to address both delay and nonlinearity in output measurements. Specifi-
cally, our objective is to develop a unified observer design method that:

• is applicable to systems of arbitrary structure without imposing specific forms;

• involves simple mathematical derivations and relies on less conservative tools, such as the
Jensen inequality;

• avoids the need for observer (4.2), wherein the observer gain is directly multiplied by the
delayed output, thereby amplifying the delay’s effect;

• enhances the design conditions for specific nonlinear systems compared to existing literature.

To achieve the aforementioned advantages, a natural solution is to construct a new output mea-
surement vector. Hence, the concept of employing a dynamic output-based extension technique
arises, aimed at generating a novel system with linear and delay-free output measurements.

4.2.2 Preliminary tools

Before stating the main results, we introduce the following simple and well-known mathematical
tools. First, we introduce the following Halanay inequality. The next Halanay lemma is important
to conclude on the stability conditions. Although an elegant improved variant of Halanay inequality
has been proposed in [87], the standard one is enough for the main results of this work.

Lemma 4.2.1 ( [50,87]). Consider a continuous, piece-wise C1, and non-negative function ϑ defined
in the interval [−τ?,+∞) such that

ϑ̇(t) ≤ −c1ϑ(t) + c2 sup
s∈[t−τ?,t]

ϑ(s). (4.3)

Assume that c1 > c2 > 0. Then, there exist two scalars α > 0 and β > 0 such that

ϑ(t) ≤ αe−βt sup
s∈[−τ?,0]

ϑ(s),∀t ≥ 0. (4.4)

Finally, we need the following Lemma 4.2.2.

Lemma 4.2.2. Let φ : I → R be a non-negative function, where I is an interval of R. Then the
following identity holds: [

sup
s∈I

(
φ(s)

)]2

= sup
s∈I

(
φ2(s)

)
. (4.5)

4.3 New Observer Design Results

This section is devoted to the main contributions of this chapter. We, first, present a preliminary
result on which the main contributions are based. It will be used straightforwardly as a tool to
conclude the main results.
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4.3.1 Preliminary result as a main tool

Consider the class of systems described by the following equations: ζ̇(t) = fζ (ζ(t), u(t)) +Bζ

∫ t

t−τ(t)
g(ζ(s), u(s))ds

yζ(t) = Cζ(t)

(4.6)

where ζ(t) ∈ Rnζ is the state of the system, u(t) ∈ Rm is the control input, and yζ(t) ∈ Rpζ
represents the output measurements vector. The delay τ(t) ≥ 0 is assumed to be known and
bounded, i.e.: there exists a positive constant τ? such that τ(t) ≤ τ?, ∀t ≥ 0. Without loss of
generality, we assume that the functions fζ and g are γfζ−Lipschitz and γg−Lipschitz, respectively,
with respect to ζ uniformly on u(t). Assume also that ζ(t) = ζ0,∀t ∈ [−τ?, 0].
As a preliminary result, we develop a simple state observer design method for the system (4.6). To
this end, we consider the following state observer :

˙̂
ζ(t) = fζ

(
ζ̂(t), u(t)

)
+Bζ

∫ t

t−τ(t)
g(ζ̂(s), u(s))ds+ L

(
yζ(t)− Cζ̂(t)

)
, (4.7)

where L ∈ Rnζ×pζ is the observer gain matrix to be determined such that the estimation error
ε(t)

∆
= ζ(t) − ζ̂(t) converges exponentially towards zero. Then, the estimation error dynamics is

given as:

ε̇(t) = ∆fζ

(
ζ(t), ζ̂(t), u(t)

)
− LCε(t) +Bζ

∫ t

t−τ(t)
∆g
(
ζ(s), ζ̂(s), u(s)

)
ds. (4.8)

For the sake of obtaining convenient checkable stability conditions, we have to transform the non-
linear term ∆fζ

(
ζ(t), ζ̂(t), u(t)

)
by using Lemma 2.2.6. Then, there exists zt ∈ Co

(
ζ(t), ζ̂(t)

)
as

in (2.28) such that
∆fζ

(
ζ(t), ζ̂(t), u(t)

)
= ∇fζζ (zt)ε(t)

where ∇fζζ is defined as in (2.30). Notice that here zt depends on u(t) but for the sake of brevity,
we use zt instead of zt(u(t)). It follows that the error system (4.8) is under the form:

ε̇(t) =
[
∇fζζ (zt)− LC

]
ε(t) +Bζ

∫ t

t−τ(t)
∆g
(
ζ(s), ζ̂(s), u(s)

)
ds. (4.9)

Since fζ is γfζ−Lipschitz, then there exist constant matrices Aζj ∈ Rnζ×nζ and functions λj(zt),

j = 1, . . . n̄ζ such that the generalized Jacobian ∇fζζ (zt) belongs to the convex polytopic set defined
as:

Hfζ
∆
=


n̄ζ∑
j=1

λj(zt)Aζj ,
n̄ζ∑
j=1

λj(zt) = 1, λj(zt) ≥ 0

 (4.10)

Notice that the matrices Aζj ∈ Rnζ×nζ , represent the vertices of the polytopeHfζ . Also, the jacobian

∇fζζ (zt) is affine on the variables λj(zt), j = 1, . . . n̄ζ .
Before stating the preliminary proposition, notice that since the function g is γg−Lipschitz with
respect to ζ, then we have ∥∥∥∆g

(
ζ(s), ζ̂(s), u(s)

)∥∥∥ ≤ γg‖ε(s)‖. (4.11)

Now we are ready to state the main theorem based on the use of the standard quadratic Lyapunov
function, i.e.: ϑ(ε(t))

∆
= ε>(t)Pε(t), where P = P> > 0. We can use a more general Lyapunov
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function with a matrix P(ε(t)) depending on ε(t), however, we obtain non-constructive conditions
difficult to deal with using numerical software algorithms. The second objective of using the stan-
dard quadratic Lyapunov function is to compare with available methods in the literature based on
the same Lyapunov function.

Theorem 4.3.1 ( [16]). Assume that there exist a symmetric positive definite matrix P ∈ Rnζ×nζ , a
matrix R ∈ Rpζ×nζ , and a positive scalar µ such that the following conditions hold:(

Aζj
)>
P + PAζj − C

>R−R>C + µP ≤ 0, j = 1, . . . , n̄ζ (4.12a)

τ? <
µλmin(P)

2γg‖PBζ‖
(4.12b)

Then the observer (4.7), with L = P−1R>, converges exponentially.

Proof. By computing the derivative of the Lyapunov function ϑ(ε(t))
∆
= ε>(t)Pε(t) along the trajec-

tories of (4.9), we obtain

ϑ̇(ε(t)) = ε>(t)

[(
∇fζζ (zt)− LC

)>
P + P

(
∇fζζ (zt)− LC

)]
ε(t)

+ 2ε>(t)PBζ
∫ t

t−τ(t)
∆g
(
ζ(s), ζ̂(s), u(s)

)
ds

≤ ε>(t)

[(
∇fζζ (zt)− LC

)>
P + P

(
∇fζζ (zt)− LC

)]
ε(t)

+ 2γg‖PBζ‖‖ε(t)‖
∫ t

t−τ?
‖ε(s)‖ds (4.13)

Conditions (4.12a) and the convexity principe [32] lead to(
∇fζζ (zt)− LC

)>
P + P

(
∇fζζ (zt)− LC

)
≤ −µP. (4.14)

On the other hand, from Lemma 4.2.2, we get

‖ε(t)‖
∫ t

t−τ?
‖ε(s)‖ds ≤ τ?‖ε(t)‖ sup

s∈[t−τ?,t]
‖ε(s)‖

≤ τ?
(

sup
s∈[t−τ?,t]

‖ε(s)‖

)2

= τ? sup
s∈[t−τ?,t]

‖ε(s)‖2

≤ τ?

λmin(P)
sup

s∈[t−τ?,t]
ϑ(ε(s)). (4.15)

Hence, from (4.14) and (4.15), we deduce that

ϑ̇(ε(t)) ≤ −µϑ(ε(t)) +
2γg‖PBζ‖
λmin(P)

τ? sup
s∈[t−τ?,t]

ϑ(ε(s)). (4.16)

Consequently, from (4.12b) and Lemma 4.2.1, there exist two positive scalars α and β such that

ϑ(t) ≤ αe−βt sup
s∈[−τ?,0]

ϑ(s),∀t ≥ 0, (4.17)

which means that the estimation error ε(t) is exponentially stable. This completes the proof.
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2

Remark 4.3.2 ( [16]). We are not interested in the values of α and β. We only need their existence to
ensure exponential convergence. To have an idea on the construction of α and β, we refer the reader
to [50,87].

Remark 4.3.3. [16] The condition (4.12a) can be converted to LMIs by using the term µInζ instead
of µP, i.e: (

Aζj
)>
P + PAζj − C

>R−R>C + µInζ ≤ 0, j = 1, . . . , n̄ζ . (4.18)

In this case, the inequality (4.12b) becomes

τ? <
µλmin(P)

2γgλmax(P)‖PBζ‖
. (4.19)

From a numerical point of view, to maximize the value of τ? tolerated by the proposed design condi-
tions (4.18)-(4.19), we can introduce the additional constraint

η1Inζ < P < η2Inζ (4.20)

to solve jointly with (4.18) while minimizing η2 > 0 and maximizing µ > 0 and η1. This leads, for
instance, to solve the following optimization problem:

min
P>0;η1>0;η2>0;µ>0

(c1η2 − c2µ− c3η1) , subject to (4.18), (4.20) (4.21)

where ci > 0, i = 1, 2, 3 are known constant scalars. The user can use advanced multi-objective
optimization algorithms to improve the value of τ?.

Remark 4.3.4 ( [16]). The detailed feasibility analysis of the conditions (4.12a) in Theorem 4.3.1 is
not introduced. Indeed, it is well-known in the literature that this LMI-based technique, called LPV/LMI
technique introduced in [131], is less conservative than the other LMI-based methods in the observer
design context. Conditions (4.12a) offer the less conservative way to handle Lipschitz nonlinearities,
as demonstrated analytically and numerically in [17, 20, 131]. Moreover, it will be shown in the next
sections that for some families of nonlinear systems, the feasibility of (4.12a) can always be guaranteed.

4.3.2 Main result: New observer design technique

In this section, we propose a simple observer design method for the class of systems (4.1) with
nonlinear delayed-output measurement, which is the main motivation of this work. As stated
in Section 4.2.1, to handle the delay in the output measurements, several techniques have been
proposed in the literature. We propose a novel and different observer design technique. To this
end, we, first, introduce the new state variable, z(t) ∈ Rnz×nz , defined by:{

ż(t) = fz(z(t), u(t)) + Yzy(t)
z(0) = z0,

(4.22)

where fz is a known globally Lipschitz function, the matrix Yz ∈ Rnz×p is known and constant, and
z0 ∈ Rnz is a known constant vector. The idea consists in using a state augmentation approach to
get a new system for which the created z(t) is the output measurement. Indeed, since fz, u(t), Yz,
and z0 are all known, then the state z(t) is known in real-time from the measured output y(t)
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of the original system (4.1). Before introducing the main transformation, notice that from the
Newton-Leibniz formula, y(t) can be written under the form:

y(t) = h(x(t))−
∫ t

t−τ(t)

∂h

∂x

(
x(s)

)
f
(
x(s), u(s)

)
ds. (4.23)

By exploiting (4.22) and (4.23), the system (4.1) can be transformed into the form (4.6) with

ζ(t)
∆
=

[
z(t)
x(t)

]
, yζ

∆
= z(t), C

∆
=
[
Inz 0

]
, (4.24)

fζ
(
ζ(t), u(t)

) ∆
=

fz(z(t), u(t)) + Yzh(x(t))

f(x(t), u(t))

 , (4.25)

g
(
ζ(t), u(t)

) ∆
=
∂h

∂x

(
x(t)

)
f
(
x(t), u(t)

)
, Bζ

∆
=

[
−Yz

0

]
(4.26)

Then, we propose the following generalized state observer:

˙̂
ζ(t) = fζ

(
ζ̂(t), u(t)

)
+Bζ

∫ t

t−τ(t)
g(ζ̂(s), u(s))ds+ L

(
yζ(t)− Cζ̂(t)

)
(4.27a)

x̂(t) =
[
0 In

]
ζ̂(t). (4.27b)

Before summarizing the result in a corollary, we need the following assumption.

Assumption 4.3.5. The function g defined in (4.26) is γg−Lipschitz with respect to x(t), uniformly
on u(t).

Now all the conditions to apply Theorem 4.3.1 are satisfied, we can summarize the result in the
following corollary. [ [16]] Consider the system (4.6) with the parameters and functions given
in (4.24)–(4.26). Assume that Assumption 4.3.5 is satisfied and there exist a symmetric positive
definite matrix P ∈ Rnζ×nζ , a matrix R ∈ Rpζ×nζ , and a positive scalar µ such that the condi-
tions (4.12a)–(4.12b) hold. Let L = P−1R> be the gain matrix of (4.27a). Then, the estimated
state x̂(t) given by (4.27b) converges exponentially to the state x(t) of the original system (4.1).

Remark 4.3.6 ( [16]). Without loss of generality, we consider in (4.22) a linear function fz depending
on z(t) only, i.e: fz(z(t), u(t)) = Azz(t). Even, for simplification, we can take fz(z(t), u(t)) ≡ 0. In
addition, these considerations allow reducing the dimension of the corresponding polytopic set Hfζ ,
which reduces then the number of LMIs (4.12a) to solve.

4.4 Results for Particular Families of Systems

This section considers the high-gain observer and its robustness with respect to the delay in the
output measurement. Although several techniques have been proposed in the literature for this
class of systems, we show that our method is simple and applies straightforwardly to this class of
systems under the companion form.
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4.4. Results for Particular Families of Systems

4.4.1 System description and assumptions

Without loss of generality, we consider the family of systems described by (4.1) with

f(x(t), u(t)) = Ax(t) +Bfx
(
x(t)

)
h
(
x(t− τ(t))

)
= hx

(
Cxx(t− τ(t))

)
(A)ij =

{
1 if j = i+ 1
0 if j 6= i+ 1

Cx =
[
1 0 . . . 0

]
B =

[
0 0 . . . 1

]>
. (4.28)

where fx and hx are γfx−Lipschitz and γhx−Lipschitz, respectively, with respect to their arguments.
For the sake of observability, the following assumption is necessary.

Assumption 4.4.1. There exists δh > 0, δh ≤ γhx such that

δh ≤
∂hx
∂v

(v) ≤ γhx , ∀v ∈ R. (4.29)

Without loss of generality, for the sake of simplification, we assume that

γhx
∆
= sup

v∈R

(
∂hx
∂v

(v)

)
= 1. (4.30)

Otherwise, we use for the observer the output

ynew(t)
∆
=

y(t)

sup
v∈R

(
∂hx
∂v (v)

) . (4.31)

As in the previous section, we create the following new variable, z(t) ∈ R, as in (4.22):{
ż(t) = γy(t)
z(t) = z(0) = z0,∀t ∈ [−t?, 0].

(4.32)

where γ > 0 is a constant scalar, which is considered a tuning parameter. Also, in this case, from
the Newton-Leibniz formula, (4.23) is reduced to

y(t) = h(x(t))−
∫ t

t−τ(t)

∂hx
∂x1

(
x1(s)

)
x2(s)ds. (4.33)

Remark 4.4.2 ( [16]). Notice that in the case of linear output y(t) = Cx(t − τ(t)), which is often
encountered in real application models, the identity (4.33) becomes

y(t) = x1(t)−
∫ t

t−τ(t)
x2(s)ds. (4.34)

In this case, Assumption 4.3.5 is clearly satisfied globally since g(x(t)) = x2(t) is linear.

Now, let us go back to (4.33). It is quite clear that the function

φ(x1, x2)
∆
=
∂hx
∂x1

(
x1

)
x2 (4.35)

is globally Lipschitz with respect to x2 because hx is γhx−Lipschitz, and then ∂hx
∂x1

(x1) is bounded.
However, it is not globally Lipschitz with respect to x1. Then, we need an additional assumption
on x2 that we will consider in the next theorem.
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As in the previous section, we consider the transformed system (4.6) with the parameters (4.24)–
(4.26) with Yz = γ, and according to (4.28) as follows: ζ̇(t) = fζ (ζ(t)) +Bζ

∫ t

t−τ(t)
g(ζ(s))ds

yζ(t) = Cζ(t)

(4.36)

where g(ζ) = φ(ζ2, ζ3).

4.4.2 System transformation: High-gain observer

By construction of the corresponding augmented system (4.36), without the integral term, the
triangular companion form is preserved. Then, we can apply the high-gain observer methodology.
To this end, we perform a second transformation, which is usual in this context, although it is often
applied to the error system. Let us introduce the following linear transformation:

ξ = Tθζ, where Tθ
∆
= diag

(
1

θ
, . . . ,

1

θn+1

)
(4.37)

which transforms (4.36) into ξ̇(t) = Tθfζ
(
T 1
θ
ξ(t)

)
+Bζ

∫ t

t−τ(t)
g
(
T 1
θ
ξ(s)

)
ds

yζ(t) = CT 1
θ
ξ(t)

(4.38)

To make the developments easy to follow and for any convenience, we express the system (4.38)
in the following detailed form:

ξ̇(t) =

γθhx(θ2ξ2(t))

θ[0 A]ξ(t)

+
1

θn+1

[
0
B

]
fx

(
[0 In]T 1

θ
ξ(t)

)
+

1

θ
Bζ

∫ t

t−τ(t)
φ
(
θ2ξ2(s), θ3ξ3(s)

)
ds

yζ(t) = θCξ(t) = θξ1(t)

(4.39)

Before summarizing the result, let us define the function ǧ as the Lipschitz extension of φ introduced
in (4.35):

ǧ(z1, z2) = φ
(
z1, πI(z2)

)
(4.40)

where πI(z2) stands for the Hilbert projection of z2 on I for any closed interval I ⊂ R.
Define also the matrix Aγ (.) as

Aγ (v)
∆
=

[
0

[
γv 01×n−1

]
0n×1 A

]
, ∀v ∈ R. (4.41)

Theorem 4.4.3 ( [16]). Assume that the component x2(t) of the system (4.1), with (4.28), belongs to
a compact interval I ⊂ R and that the function φ defined in (4.35) is Lipschitz in R×I. Assume there
exist a symmetric positive definite matrix P ∈ Rnζ×nζ , a matrix R ∈ Rp×n+1, and positive scalars µ
and γ such that the following conditions hold:

(Aγ (`))> P + PAγ (`)− C>R−R>C + µIn+1 ≤ 0, (4.42a)

` ∈ {δh, 1} (4.42b)

90



4.4. Results for Particular Families of Systems

θ > max

(
1,

2κfλmax(P)

µ

)
(4.42c)

τ? <
λmin(P)

[
µθ − 2κfλmax(P)

]
2θ2γκgλmax(P)‖PC>‖

(4.42d)

Then the output x̂(t) of the following observer

˙̂
ξ(t) = Tθfζ

(
T 1
θ
ξ̂(t)

)
+Bζ

∫ t

t−τ(t)
ǧ
(
T 1
θ
ξ̂(t)

)
ds

+ L
(
yζ(t)− CT 1

θ
ξ̂(t)

)
(4.43a)

x̂(t) =
[
0n×1 In

]
T 1
θ
ξ̂(t) (4.43b)

with L = P−1R>, converges exponentially to the state x(t) of the original system (4.1) with the
particular parameters in (4.28).

Proof. It is sufficient to show that ξ̃(t) ∆
= ξ(t)− ξ̂(t) is exponentially stable. Then, the dynamics of

the estimation error is given by:

˙̃
ξ(t) = θ

[
Aγ
(
∂hx
∂x1

(w(t))

)
− LC

]
ξ̃(t)

+
(
ψ(ξ(t))− ψ(ξ̂(t))

)
+Bζ

∫ t

t−τ(t)

[
g
(
T 1
θ
ξ(t)

)
− ǧ

(
T 1
θ
ξ̂(t)

)]
ds (4.44)

where

ψ(ξ(t))
∆
=

1

θn+1

[
0
B

]
fx

(
[0 In]T 1

θ
ξ(t)

)
(4.45)

and hx(θ2ξ2(t))−hx(θ2ξ̂2(t)) = θ2∂hx
∂v

(w(t))ξ̃2(t), w(t) ∈ Co
(
θ2ξ2(t), θ2ξ̂2(t)

)
, from the differential

mean value theorem in Lemma 2.2.6 applied to the scalar function hx.
In addition, since fx is γfx−Lipschitz and from the structure of ψ in (4.45), there exists a constant
κf ≥ γfx , independent from θ, such that∥∥∥ψ(ξ(t))− ψ(ξ̂(t))

∥∥∥ ≤ κf‖ξ̃(t)‖. (4.46)

Since θ3ξ3(t) = x2(t) ∈ I and the Hilbert projection preserves the Lipchitz constant in R2 and from
the structure of g in (4.39), there exists κg ≥ γg such that∥∥∥g (T 1

θ
ξ(t)

)
− ǧ

(
T 1
θ
ξ̂(t)

)∥∥∥ ≤ κgθ2‖ξ̃(t)‖. (4.47)

Now, after computing the derivative of ϑ(ξ̃(t))
∆
= ξ̃>(t)P ξ̃(t) along the trajectories of (4.44), and

by considering the bounds (4.46)-(4.47) and writing Bζ = −γC>, we get

ϑ̇(ξ̃(t)) ≤ ξ̃>(t)

[(
Aγ
(
∂hx
∂x1

(w(t))

)
− LC

)>
P

+ P
(
Aγ
(
∂hx
∂x1

(w(t))

)
− LC

)]
ξ̃(t)

+ 2θ2γκg‖PC>‖‖ξ̃(t)‖
∫ t

t−τ?
‖ξ̃(s)‖ds

+ 2κfλmax(P)‖ξ̃(t)‖2. (4.48)
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It follows from (4.42a) and the convexity principle that

ϑ̇(ξ̃(t)) ≤ −

(
µθ − 2κfλmax(P)

)
λmax(P)

ϑ(ξ̃(t))

+ τ?
2θ2γκg‖PC>‖

λmin(P)
sup

s∈[t−τ?,t]
ϑ(ξ̃(s)) (4.49)

Then, according to Lemma 4.2.1 and θ ≥ 1, the exponential convergence of ξ̃(t) is inferred if

µθ − 2κfλmax(P) > 0

and (
µθ − 2κfλmax(P)

)
λmax(P)

> τ?
2θ2γκg‖PC>‖

λmin(P)

which are equivalent to (4.42c) and (4.42d), respectively.

2

Remark 4.4.4 ( [16]). Notice that for systems with linear output, i.e: hx(x1) = Cx, the boundedness
of x2(t) is not needed because the function g does not depend on x1, then it is globally Lipschitz on x1.

Remark 4.4.5 ( [16]). Depending on the user’s needs and the model at hand, the condition (4.42c)
may be relaxed by applying the HG/LMI-based observer proposed in [140]. This leads to a smaller
value of θ, which allows improving the bound of the tolerated value of τ?.

4.4.3 Results for feedforward systems: Low-gain observer

For this particular class of systems, we show as in [88] that the proposed method works for arbitrary
long delays in the output measurement. To avoid repetition and cumbersome notations, in this
section, we present the results without detailing the mathematical developments. The class of
feedforward systems is described as (4.28) by replacing the matrix B and the function fx by the
following:

B
∆
=

[
In−2

0

]
, fx(x)

∆
=

fx1(x3, . . . , xn)
...

fxn−2(xn)

 . (4.50)

We perform exactly the same transformation as in Section 4.4.2 but with θ ≤ 1 instead of θ ≥ 1. The
only difference we get with the new structure of fx in (4.50) (or ψ in (4.45)) is the inequality (4.46)
which should be replaced by ∥∥∥ψ(ξ(t))− ψ(ξ̂(t))

∥∥∥ ≤ θ2κf‖ξ̃(t)‖. (4.51)

This difference leads to novel conditions which are always feasible for arbitrarily high values of τ?.
We summarize the new conditions in the next theorem.

Theorem 4.4.6 ( [16]). Assume that the component x2(t) of the system (4.1), with (4.28) and (4.50),
belongs to a compact interval I ⊂ R and that the function φ defined in (4.35) is Lipschitz in R × I.
Assume there exist a symmetric positive definite matrix P ∈ Rn+1×n+1, a matrix R ∈ Rp×n+1, and
positive scalars µ and γ such that the following conditions hold:

(Aγ (`))> P + PAγ (`)− C>R−R>C + µIn+1 ≤ 0, ` ∈ {δh, 1}. (4.52)
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Then, ∀τ? ≥ 0, there exists θτ? > 0 defined by

θτ?
∆
= min

(
1,

µ

2κfλmax(P)
,

λmin(P)µ

2τ?λmax(P) [γκg‖PC>‖+ κf ]

)
(4.53)

such that the output x̂(t) of the following observer

˙̂
ξ(t) = Tθfζ

(
T 1
θ
ξ̂(t)

)
+Bζ

∫ t

t−τ(t)
ǧ
(
T 1
θ
ξ̂(t)

)
ds

+ L
(
yζ(t)− CT 1

θ
ξ̂(t)

)
(4.54a)

x̂(t) =
[
0n×1 In

]
T 1
θ
ξ̂(t) (4.54b)

with L = P−1R> and θ < θτ? , converges exponentially to the state x(t) of the original system (4.1)
with the parameters and functions in (4.28) and (4.50).

Proof. The proof follows the same steps as the Theorem 4.4.3, except the inequality (4.49) which
becomes

ϑ̇(ξ̃(t)) ≤ −

(
µθ − 2θ2κfλmax(P)

)
λmax(P)

ϑ(ξ̃(t))

+ τ?
2θ2γκg‖PC>‖

λmin(P)
sup

s∈[t−τ?,t]
ϑ(ξ̃(s)) (4.55)

due to (4.51).
Then, according to Lemma 4.2.1 and θ ≤ 1, the exponential convergence of ξ̃(t) is inferred if

µθ − 2θ2κfλmax(P) > 0 (4.56)

and (
µθ − 2θ2κfλmax(P)

)
λmax(P)

> τ?
2θ2γκg‖PC>‖

λmin(P)
(4.57)

which means that we have respectively

θ <
µ

2κfλmax(P)

and

θ <
λmin(P)µ

2τ?λmax(P) [γκg‖PC>‖+ κf ]
.

Consequently, for L = P−1R> and θ < θτ? , where θτ? is defined by (4.53), the exponential conver-
gence is inferred. This completes the proof.

2

4.5 Relaxation of the Boundedness of x2

The main drawback of the previous results is the Lipschitz assumption of the function g defined
in (4.26), respectively, according to the corresponding case. In the case of Section 4.4.2 and Sec-
tion 4.4.3, this requires the boundedness of the state x2(t) of the original system and the Lipchitz
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assumption on the function φ defined in (4.35). Although these conditions vanish in the case of
linear outputs, however, such assumptions are conservative in general. The result of Section 4.3.2
is a straightforward consequence of the preliminary results of Section 4.3.1. Nevertheless, to avoid
the previous strong assumptions, we can proceed differently. The idea consists of applying the
Newton-Leibniz formula on the error system instead of on the output as in (4.23) and (4.33). To
this end, we have to transform the original system (4.1) into the following one:{

ζ̇(t) = fζ (ζ(t), ζ(t− τ(t)), u(t))
yζ(t) = Cζ(t)

(4.58)

and apply the following observer:

˙̂
ζ(t) = fζ

(
ζ̂(t), ζ̂(t− τ(t)), u(t)

)
+ L

(
yζ(t)− Cζ̂(t)

)
. (4.59)

Before stating the results, to avoid repetitions and cumbersome notations, it is worth noting that
the developments of this section are introduced without detailing the computations. For the sake
of organization and comparison with the results from the previous section, we present the findings
of this section on a case-by-case basis, starting with the general case, followed by specific cases,
namely companion systems and feedforward systems. This allows for clear and analytical com-
parisons with the previous results, thereby avoiding the need for comparisons through numerical
examples.

4.5.1 General case

The transformation (4.58) can be obtained from the output-based dynamic extension technique, as
in Section 4.3.2, by considering the augmented system:

ζ(t)
∆
=

[
z(t)
x(t)

]
, C

∆
=
[
Inz 0

]
, (4.60)

fζ
(
ζ(t), ζ(t− τ(t)), u(t)

) ∆
=

Yzh(x(t− τ(t))

f(x(t), u(t))

 ,
= Aζf(x(t), u(t)) +Bζh(x(t− τ(t)) (4.61)

where for simplicity, the vector z(t) is defined by{
ż(t) = Yzy(t)
z(0) = z0.

(4.62)

As a result, system (4.58) constitutes a time-delay system with output measurements free from
delay. Consequently, the Luenberger observer (4.59) is employed without an integral term. Notably,
contrarily to the standard observer structure discussed in Section 4.2.1, the observer gain, L, does
not directly affect the original output measurements by multiplication, as the delay is shifted to
the function fζ . This technique, unlike the results in [2], reduces the observer’s sensitivity to time-
delay and simplifies the complexity of both mathematical derivations and design conditions. The
analytical comparisons presented in the next section validate this assertion. These comparisons
show also that despite the simplicity of the observer (4.59), the observer (4.27) with integral term
leads to a less conservative bound on the maximum allowable value of the delay.
From Lemma 2.2.6, there exist zt and z̄t in Rn such that

fζ
(
ζ(t), ζ(t− τ(t)), u(t)

)
= Aζ∇fx(zt)εx(t) +Bζ∇hx(z̄t)εx(t− τ(t)) (4.63)

94
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where εx(s)
∆
= x(s)− x̂(s). By taking

∇f,hx
(
zt, z̄t

) ∆
=
(
Aζ∇fx(zt) +Bζ∇hx(z̄t)

) [
0 In

]
(4.64)

the estimation error dynamics is expressed as follows:

ε̇(t) =
[
∇f,hx

(
zt, z̄t

)
− LC

]
ε(t) +Bζ∇hx(z̄t)

[
0 In

] (
ε(t− τ(t))− ε(t)

)
(4.65)

where ε(s) ∆
= ζ(s)− ζ̂(s). Therefore, we can summarize the result in the following well-structured

Proposition 4.5.1. Before stating the proposition, notice that by construction of the dynamic exten-
sion technique, fξ, in (4.61), similar to, the jacobian ∇f,hx

(
zt, z̄t

)
, introduced in (4.64), belongs to

the convex bounded set Hfζ defined in (4.10).

Proposition 4.5.1 ( [16]). Assume that there exist a symmetric positive definite matrix P ∈ Rnζ×nζ ,
a matrix R ∈ Rpζ×nζ , and a positive scalar µ such that the conditions (4.12a) hold. Then the ob-
server (4.59), with L = P−1R>, corresponding to (4.58) and (4.61)-(4.62) , converges exponentially
if the maximum value of the delay, τ?, satisfies the following bound:

τ? <
µλmin(P)

2γh‖PBζ‖
√
‖Yz‖2γ2

h + γ2
f + ‖LC‖

. (4.66)

Proof. From the convexity principle, inequalities (4.12a) imply the following inequality:(
∇f,hx

(
zt, z̄t

)
− LC

)>
P + P

(
∇f,hx

(
zt, z̄t

)
− LC

)
≤ −µP. (4.67)

It follows that the derivative of the Lyapunov function

ϑ(ε(t))
∆
= ε>(t)Pε(t)

satisfies the inequality

ϑ̇(ε(t)) ≤ −µϑ(ε(t)) + Θ (P, L, Yz) τ? sup
s∈[t−2τ?,t]

ϑ(ε(s)) (4.68)

where

Θ (P, L, Yz)
∆
=

2γh‖PBζ‖
√
‖Yz‖2γ2

h + γ2
f + ‖LC‖

λmin(P)
. (4.69)

The bound (4.68)–(4.69) is obtained after developing the computations, applying Lemma 4.2.2,
and then by using the Newton-Leibniz formula on the term ε(t − τ(t)) − ε(t). The details
to prove (4.68)–(4.69) are omitted to avoid cumbersome repetitions. Consequently, from
Lemma 4.2.1, the estimation error converges exponentially if

Θ (P, L, Yz) τ? < µ (4.70)

which is equivalent to (4.66).

2
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4.5.2 Companion system (4.28)

For particular structures of systems, the bound (4.66) can be simplified. This is mainly the case
of systems under the companion form (4.28). Without expanding the developments, by following
similar steps as in Section 4.2 and Section 4.5, we summarize the results. First, the transforma-
tion (4.37) converts the system (4.58) into the following one:{

ξ̇(t) = Tθfζ
(
T 1
θ
ξ(t),T 1

θ
ξ(t− τ(t))

)
yζ(t) = θCξ(t)

(4.71)

with the corresponding observer

˙̂
ξ(t) = Tθfζ

(
T 1
θ
ξ̂(t),T 1

θ
ξ̂(t− τ(t))

)
+ L

(
yζ(t)− θCξ̂(t)

)
(4.72a)

x̂(t) =
[
0n×1 In

]
T 1
θ
ξ̂(t) (4.72b)

where z(t) is defined in this case by (4.32).
By considering the same notations as in Section 1.3, with the new observer (4.72a), and taking into
account (4.30), we get the following proposition.

Proposition 4.5.2 ( [16]). Let hx satisfy Assumption 4.4.1 and (4.30), and fx is γfx−Lipschitz.
Assume there exist a symmetric positive definite matrix P ∈ Rnζ×nζ , a matrix R ∈ Rp×n+1, and
positive scalars µ and γ such that the conditions (4.42a)–(4.42c) hold. If the following condition is
satisfied

τ? <
λmin(P)

[
µθ − 2κfλmax(P)

]
θ2
√

8γλmax(P)‖PC>‖max(1, |l2|)
(4.73)

where l2 is the second component of the gain L, then the state x̂(t) given by (4.72b), with L = P−1R>,
converges exponentially to the state x(t) of the original system (4.1) with the parameters and functions
in (4.28).

Proof. To avoid cumbersome repetitions, the proof is simplified. It uses the results and definitions
of the previous sections without repetitions. The estimation error dynamic satisfies the following
equation:

˙̃
ξ(t) = θ

[
Aγ
(
∂hx
∂x1

(w(t))

)
− LC

]
ξ̃(t)

+
(
ψ(ξ(t))− ψ(ξ̂(t))

)

+ γθ2∂hx
∂x1

(w(t))C>
∫ t

t−τ(t)

˙̃
ξ2(s)︷ ︸︸ ︷[

ξ̃3(s)− l2ξ̃1(s)
]

ds (4.74)

where ψ is defined in (4.45) and satisfies the Lipschitz inequality (4.46), and ξ̃(t) = ξ(t) −
ξ̂(t). Then, by expanding the derivative of the Lyapunov function ϑ(ξ̃(t)) = ξ̃(t)>P ξ̃(t), and
from (4.42a)–(4.42c) and (4.46), we obtain:

ϑ̇(ξ̃(t)) ≤ −

(
µθ − 2κfλmax(P)

)
λmax(P)

ϑ(ξ̃(t))

+ τ?
2
√

2θ2γ‖PC>‖max(1, |l2|)
λmin(P)

sup
s∈[t−τ?,t]

ϑ(ξ̃(s)) (4.75)

which implies that the estimation error is asymptotically stable if τ? satisfies (4.73). This ends the
proof.
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2

4.5.3 Feedforward system (4.28)/(4.50)

By analogy to the previous sections, for this class of systems, we get similar results but with different
bounds on τ?. We consider the class of systems (4.1) described by (4.28) and (4.50), which is
transformed through (4.37) into (4.71) with the corresponding state observer (4.72a). The only
difference compared to the previous section lies in the structure of fζ which leads to different
stability conditions. Then, we get the following proposition.

Proposition 4.5.3 ( [16]). Assume there exist a symmetric positive definite matrix P ∈ Rnζ×nζ , a
matrix R ∈ Rp×n+1, and positive scalars µ and γ such that the conditions (4.52) hold. Then, ∀τ? ≥ 0,
there exists θτ? > 0 defined by

θτ?
∆
= min

(
1,

µ

2κfλmax(P)
,

λmin(P)µ

2τ?λmax(P)
[
κf +

√
3γ‖PC>‖max(1, |l2|, κf )

]
 (4.76)

such that the observer (4.72a) corresponding to (4.71) under the structure (4.28) and (4.50), with
L = P−1R> and θ < θτ? , converges exponentially.

Proof. The proof follows the same steps as in the previous section for feedforward systems. Indeed,
in this case, the estimation error dynamic is given as follows:

˙̃
ξ(t) = θ

[
Aγ
(
∂hx
∂x1

(w(t))

)
− LC

]
ξ̃(t) +

(
ψ(ξ(t))− ψ(ξ̂(t))

)
+ γθ

∂hx
∂x1

(w(t))C>
∫ t

t−τ(t)

˙̃
ξ2(s)ds (4.77)

where
˙̃
ξ2(s) = θ

(
ξ̃3(s)− l2ξ̃1(s)

)
+

1

θ2

(
ψ2(ξ(t))− ψ2(ξ̂(t))

)
and ψ satisfies the Lipschitz inequality (4.51), with now θ < 1. We can show easily that ˙̃

ξ2(s)
satisfies the inequality

‖ ˙̃
ξ2(s)‖ ≤ θ

√
3 max(1, |l2|, κf )‖ξ̃(s)‖. (4.78)

Therefore, by following similar steps as in the previous sections, we can show that if the LMIs (4.52)
hold, then the derivative of the Lyapunov function ϑ(ξ̃(t)) = ξ̃(t)>P ξ̃(t) satisfies the following
inequality:

ϑ̇(ξ̃(t)) ≤ −

(
µθ − 2θ2κfλmax(P)

)
λmax(P)

ϑ(ξ̃(t))

+ τ?
2
√

3θ2γ‖PC>‖max(1, |l2|, κf )

λmin(P)
sup

s∈[t−τ?,t]
ϑ(ξ̃(s)). (4.79)

Consequently, from Lemma 4.2.1, ϑ(ξ̃(t)) converges exponentially towards zero for any θ < θτ? , if
θτ? satisfies the bound (4.76). This ends the proof.

2
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4.6 Comments and Discussion

This section is devoted to foster constructive discussions and insightful comments regarding the
results presented in the previous sections, particularly in contrast to established methodologies
within the field. The main goal is to clarify the contributions made and demonstrate the advan-
tages of both the output-based dynamic extension technique and the new state observer structure,
incorporating an integral term. To enhance readability, we split this section into distinct subsec-
tions, presenting each case separately: the general case, the companion forms, and finally, the
feedforward systems.

4.6.1 On the general case

It is quite clear that although the estimation strategy proposed in Section 4.3 needs the Lipschitz
assumption on the function g defined in (4.26), it leads, however, to a simpler and higher bound on
τ?. For an explicit comparison, let us define τ?1 and τ?2 the maximum bounds obtained by (4.12b)
and (4.70), respectively. Then, we have τ?1 < τ?2 if

γg
γh

>
√
‖Yz‖2γ2

h + γ2
f + ‖LC‖ (4.80)

which is not easy to evaluate in general. Indeed, this depends on the values of γh, γf , ‖Yz‖, and
‖LC‖. For instance, for systems with linear outputs, the inequality (4.80) cannot be satisfied
because γg ≤ γhγf . This means that for this class of systems with linear outputs, which is often
encountered in real-world applications, the bound obtained by the strategy of Section 4.3.2 is less
conservative than (4.70). In addition, the upper bound (4.70) depends on the observer gain L,
which is not convenient for the user. Indeed, the higher is the norm ‖LC‖ the lower is the bound
of τ? in (4.70). Further results and analytical comparisons are given in the next sections.
Additionally, it is worth noting that an alternative bound to (4.70) can be derived without resorting
to the state augmentation technique, as commonly seen in the literature [4, 23, 140]. However,
employing the state augmentation strategy offers notable advantages: it streamlines the develop-
ments and simplifies the problem to systems with linear outputs. Conversely, the bound (4.70) is
derived without the utilization of the well-known Jensen inequality, resulting, in general, in more
conservative upper bounds. Moreover, without the dynamic extension approach, when utilizing
the observer (4.2), the gain L directly multiplies the original output, y(t), thereby increasing the
impact of delay on estimation accuracy.

4.6.2 Case of the companion form

This category of systems holds particular significance, as it has attracted considerable attention in
the literature, with numerous studies dedicated to developing methodologies for addressing high
values of τ? in output measurements [3, 23, 34, 46, 52, 72, 142]. Recently, a novel approach using
the standard high-gain observer and exploiting the HG/LMI technique has emerged, as showcased
in [2]. The authors demonstrated notable enhancements in the maximum allowable value of τ?.
Therefore, the outcomes presented in this section for this class of systems will be compared to the
work in [2].

4.6.2.1 On the maximum bound in (4.42d) and (4.73)

Here, we provide the value of θ for which the bounds in (4.42d) and (4.73) reach their maximum.
We begin with the bound in (4.73). To do so, let us introduce the following function:

ρ76(θ)
∆
=

λmin(P)
[
µθ − 2κfλmax(P)

]
θ2
√

8γλmax(P)‖PC>‖max(1, |l2|)
.
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It is sufficient to study the function ρ76(θ) on the interval
[
max

(
1,

2κfλmax(P)
µ

)
, +∞

[
to find its

maximum value. By simple calculations, we deduce that the derivative dρ76

dθ (.) = ρ′76(.) is increasing

on the interval [max
(

1,
2κfλmax(P)

µ

)
,

4κfλmax(P)
µ ] and decreasing on the interval [

4κfλmax(P)
µ , +∞[,

with ρ′76

(
4κfλmax(P)

µ

)
= 0. This means that the maximum value of τ? in (4.73) is obtained for

θ? =
4κfλmax(P)

µ . That is, we have

τ? ≤ τ?76 = ρ76

(
4κfλmax(P)

µ

)
=

µ2λmin(P)

16
√

2γκfλ2
max(P)‖PC>‖max(1, |l2|)

. (4.81)

Of course, this is the case when κfλmax(P) > µ
4 . Otherwise, the maximum value τ?76 will be

τ?76 = ρ76(1) =
λmin(P)

[
µ− 2κfλmax(P)

]
√

8γλmax(P)‖PC>‖max(1, |l2|)
. (4.82)

We do the same to obtain the value of θ for which the bound in (4.42d) reaches its maximum. We
consider the function

ρ45(θ)
∆
=
λmin(P)

[
µθ − 2κfλmax(P)

]
2θ2γκgλmax(P)‖PC>‖

and for the same reasons as for ρ76, we get the following maximum bound in this case:

τ? ≤ τ?45 = ρ45

(
4κfλmax(P)

µ

)
=

µ2λmin(P)

16γκgκfλ2
max(P)‖PC>‖

. (4.83)

However, if κfλmax(P) > µ
4 , the bound τ?45 should be the following one:

τ?45 = ρ45(1) =
λmin(P)

[
µ− 2κfλmax(P)

]
2γκgλmax(P)‖PC>‖

. (4.84)

4.6.2.2 Comparison between (4.42d) and (4.73)

This subsection is devoted to analytical comparisons between the bound (4.42d) derived from em-
ploying the new observer structure with an integral term, and the bound (4.73) obtained by using
the observer (4.72). These comparisons enable us to avoid the necessity for numerical evaluations.
To this end, we compute the ratio, `76/45, between the bounds (4.73) and (4.42d) as

`76/45
∆
=
ρ76(θ)

ρ45(θ)
=

κg√
2 max(1, |l2|)

. (4.85)

We remind that κg represents the Lipschitz constant of the function g(ζ) = φ(ζ2, ζ3), where φ is
defined in (4.35). Clearly, the bound (4.42d) surpasses (thus, is higher than) that of (4.73), if
`76/45 < 1. However, this condition relies on the values of κg and l2. According to (4.30), we have

κg =

√√√√ sup
ζ2∈R,ζ3∈I

(∣∣∣∣∂2hx
∂ζ2

2

(ζ2)ζ3

∣∣∣∣2 +

∣∣∣∣∂hx∂ζ2
(ζ2)

∣∣∣∣2
)

=

√√√√1 + sup
ζ2∈R,ζ3∈I

(∣∣∣∣∂2hx
∂ζ2

2

(ζ2)ζ3

∣∣∣∣2
)
. (4.86)
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Therefore, `76/45 < 1 if the following inequality holds:

sup
ζ2∈R,ζ3∈I

∣∣∣∣∂2hx
∂ζ2

2

(ζ2)ζ3

∣∣∣∣ < 2 [max(1, |l2|)]2 − 1

= max
(
1, 2|l2|2 − 1

)
. (4.87)

Otherwise, if `76/45 > 1, the bound (4.73) surpasses (4.42d). In general, direct comparison between
the two bounds is challenging. However, the advantage of (4.42d) over (4.73) stems from the fact
that (4.73) explicitely depends on the observer gain component |l2|, which has the potential to be
high. More notably, in systems with linear output–common in the techniques developed for this
class of systems–the bound (4.42d) consistently exceeds that of (4.73). This is obvious because,
in the case of linear output, κg = 1 due to ∂2hx

∂ζ2
2
≡ 0. Consequently, (4.87) holds for any l2. This

underscores the significance of employing the new observer structure with an integral term.

4.6.2.3 Comparison with the bound in [2]

To provide a comprehensive comparison between (4.42d) and the bounds delineated in [2], it is
imperative to establish an analytical connection between the solutions of the LMI condition (18)
outlined in [2, Theorem 10] and those of our LMI conditions (4.42a). Although the observer
presented in [2, Theorem 10] operates within a dimension of n, contrarily to our observer, which
operates in a dimension of n+ 1, our design methods offer distinct advantages, notably:

• The LMI conditions presented in [2, Eq.(18), Theorem 10] depends on the maximum allow-
able delay value, τ?, presenting a notable limitation that necessitates the utilization of specific
numerical algorithms to solve the resulting inequalities. Furthermore, compared to our LMI
conditions (4.42a), those in [2, Eq.(18), Theorem 10] exhibit a certain conservatism from a
feasibility point of view, while notably, our LMI conditions remain consistently feasible for the
considered class of triangular systems.

• In contrast to our approach, the LMIs proposed in [2, Eq. (18), Theorem 10] incorporate an
additional decision variable beyond the Lyapunov matrix and the observer gain, which con-
tributes to the determination of the bounds on τ?. This introduces an additional conservatism
since this decision variable may decrease significantly the maximum allowable delay value,
τ?.

• In contrast to our method, the approach in [2] gives two different bounds on τ?, namely
τ1 and τ2, where τ? < min(τ1, τ2). However, the bound τ1 depends on λθ − 2κfλmax(P)
while τ2 depends on 1

λθ−2κfλmax(P) . Hence, regardless of the value of θ, whether it is close to
λθ − 2κfλmax(P) or not, it affects the value of τ? since either τ1 or τ2 is very small.

Furthermore, the design methods proposed in herein are characterized by their simplicity and
straightforwardness, contrary to the method presented in [2], which involves several intermediate
results and cumbersome developments. For a deeper understanding of this comparative analysis,
we refer the readers to explore [2] for a more detailed exposition.

4.6.3 Case of the feedforward form

Firstly, it should be noted that for this class of systems, regardless of the observer used, whether
it is the standard observer (4.72a) or the new structure (4.54), it converges for any arbitrarily
high value of τ?, as shown in Theorem 4.4.6 and Proposition 4.5.3 through the bounds (4.53)
and (4.76), respectively. Unlike other families of systems where the challenge lies in obtaining the
maximum allowable value of τ?, for feedforward systems, the objective is to achieve the maximum
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allowable value of θτ? . Indeed, a higher value of θτ? corresponds to a faster convergence rate.
For the comparison, let θ56 and θ79 be the bound θτ? in Theorem 4.4.6 and Proposition 4.5.3,
respectively. Then, for a given maximum value of the delay, τ?, Theorem 4.4.6 provides faster
convergence rate than Proposition 4.5.3 if π79/45

∆
= θ79

θ56
< 1. From (4.53) and (4.76), we have

π79/45 <
γκg‖PC>‖+ κf

κf +
√

3γ‖PC>‖max(1, |l2|, κf )
. (4.88)

Hence, according to the definition of κg in (4.86), inequality (4.88) holds true if the following
condition is satisfied:

sup
ζ2∈R,ζ3∈I

∣∣∣∣∂2hx
∂ζ2

2

(ζ2)ζ3

∣∣∣∣ < 3 [max(1, |l2|, κf )]2 − 1

= max
(
2, 3|l2|2 − 1, 3κ2

f − 1
)
. (4.89)

This condition is always fulfilled in the context of systems with linear outputs due to ∂2hx
∂ζ2

2
≡ 0.

Consequently, for linear outputs, Theorem 4.4.6 consistently yields a faster convergence rate than
Proposition 4.5.3.
It is worth noting that this class of systems has been studied in [88]; however, the condition stated it
is implicit. Only the existence of a constant τ? is mentioned, and determining its value necessitates
numerical computation through methods such as the groping method, which entails simulating
a given system. While the result in [88] guarantees exponential convergence despite arbitrarily
long delays in the output, the proposed techniques offer explicit bounds on the observer tuning
parameter θ, providing a more straightforward and practical solution.

4.7 Further Result

This section introduces a new approach for handling high values of delays in output measurements.
The method is based on solving a set of LMI conditions, sidestepping the necessity for additional
constraints on the maximum allowable delay, denoted as τ?, such as that required in (4.12b), for
instance. For more generality, we tackle the general case, leading to general outcome applicable
for any particular family of systems. As we can see from the previous sections, by exclusively em-
ploying the standard quadratic Lyapunov function, we have provided notable enhancements over
the existing findings in the literature, despite the utilization of more general Lyapunov functions
as studied in [2] and related references. In this section, by using a Lyapunov–Krasovskii functional
containing a double integral term, we avoid constraints on τ? similar to those described in (4.12b).
The aim of this section is to enhance the existing LMI-based design approaches in the literature
for a similar class of systems, as in [119] and [92]. What distinguishes this section apart from
the preceding results is the utilization of a Lyapunov-Krasovskii functional to ensure asymptotic
convergence of the observer, instead of exponential convergence. This enables us to derive LMI
conditions without the need for additional constraints similar to (4.12b).

4.7.1 Lyapunov-Krasovskii analysis

Consider the system (4.6) with the parameters and functions given in (4.24)–(4.26) and the ob-
server (4.27), with the function g satisfying Assumption 4.3.5. This leads to the estimation error
dynamic (4.9). By using Lemma 2.2.6, there exists z̄t ∈ Co

(
ζ(t), ζ̂(t)

)
as in (2.28) such that

∆g
(
ζ(s), ζ̂(s), u(s)

)
= ∇gζ(z̄s)ε(s)
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where ∇gζ is defined as in (2.30). Then, the error dynamic (4.9) is rewritten under the following
form:

ε̇(t) =
[
∇fζζ (zt)− LC

]
ε(t) +Bζ

∫ t

t−τ(t)
∇gζ(z̄s)ε(s)ds. (4.90)

Since the function g satisfies Assumption 4.3.5, then there exist constant matrices Bgj of appropriate
dimensions, and functions λ̄j(z̄t), j = 1, . . . n̄g such that the generalized Jacobian ∇gζ(z̄s) belongs
to the convex polytopic set defined as:

Hg
∆
=


n̄g∑
j=1

λ̄j(z̄s)Bgj ,
n̄g∑
j=1

λ̄j(z̄s) = 1, λ̄j(z̄s) ≥ 0

 . (4.91)

Now let us consider the following Lyapunov–Krasovskii functional:

ϑ (ε(t)) = ε>(t)Pε(t) +

∫ 0

−τ?

∫ 0

v
ε(t+ s)>Π(t+ s)ε(t+ s)dsdv (4.92)

with
Π(s)

∆
=
(
∇gζ(z̄s)

)>
S ∇gζ(z̄s)

where P and S are two symmetric and positive definite matrices of appropriate dimensions. By
expanding the derivative of the ϑ along the trajectories of (4.90), we get

ϑ̇(ε(t)) = ε>(t)

[(
∇fζζ (zt)− LC

)>
P + P

(
∇fζζ (zt)− LC

)]
ε(t)

+ 2

∫ t

t−τ(t)
ε>(t)PBζ∇gζ(z̄s)ε(s)ds+ τ?ε(t)>Π(t)ε(t)

−
∫ t

t−τ?
ε>(s)Π(s)ε(s)ds (4.93)

where we used
d

dt

∫ 0

−τ?

∫ 0

v
ϕ(t+ s)dsdv = τ?ϕ(t)−

∫ t

t−τ?
ϕ(ν)dv

for any continuous function ϕ(.) defined on [−τ?,+∞[→ R. No, by using the Young inequality on
the first integral term in (4.93) and the fact that τ(t) ≤ τ?, we obtain

2

∫ t

t−τ(t)
ε>(t)PBζ∇gζ(z̄s)ε(s)ds ≤ τ

?ε>(t) (PBζ)> S−1PBζε(t)

+

∫ t

t−τ?
ε>(s)Π(s)ε(s)ds.

It follows that
ϑ̇(ε(t)) ≤ ε>(t)M (P,S, t) ε(t) (4.94)

where

M (P,S, t) ∆
=
(
∇fζζ (zt)− LC

)>
P + P

(
∇fζζ (zt)− LC

)
+ τ?PBζS−1 (PBζ)> + τ?Π(t).

As a consequence, we deduce that ϑ̇(ε(t)) < 0, ∀ε(t) 6= 0 if

M (P,S, t) < 0, ∀t ≥ 0. (4.95)

In the next section, we present sufficient LMI conditions guaranteeing the inequality (4.95).
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

(
Aζj
)>
P + PAζj − C>R−R>C (PBζ)> Bgk

>S

PBζ − 1
τ?S 0

SBgk 0 − 1
τ?S

 < 0, j = 1, . . . , n̄ζ ; k = 1, . . . , n̄g.

(4.96)

4.7.2 Delay-dependent and extra constraints-free LMIs

This section is devoted to a new LMI-based method, where the provided LMIs are delay-dependent
and free of any extra constraint on the maximum allowable delay τ?. The result is summarized in
the following theorem.

Theorem 4.7.1. Assume that there exist two symmetric and positive definite matrices P ∈ Rnζ×nζ
and S ∈ Rns×ns , and a matrix R ∈ Rpζ×nζ such that the LMI conditions (4.96) hold. Then the ob-
server (4.27), with L = P−1R>, corresponding to the system (4.6) with the parameters and functions
given in (4.24)–(4.26) converges asymptotically.

Proof. Once the Lyapunov-Krasovskii functional is expanded to derive inequality (4.95), the subse-
quent steps of the proof unfold straightforwardly. Specifically, invoking the Schur Lemma confirms
the satisfaction of inequality (4.95) provided the following conditions are met:

(
∇fζζ (zt)− LC

)>
P + P

(
∇fζζ (zt)− LC

)
(PBζ)>

(
∇gζ(z̄t)

)>
S

PBζ − 1
τ?S 0

S ∇gζ(z̄t) 0 − 1
τ?S

 < 0 (4.97)

for all t ≥ 0. Therefore, using the convexity principle and introducing the change of variable
R = L>P−1, the inequality (4.97) is fulfilled if (4.96) holds true. Consequently, we infer that
ϑ̇(ε(t)) < 0,∀ε(t) 6= 0, implying asymptotic stability of the estimation error around the origin.
There is no guarantee of exponential convergence.

2

Remark 4.7.2. The design approach outlined in Theorem 4.7.1 is notably straightforward, requiring
only the fulfillment of a set of LMI conditions without imposing any additional constraints on the delay.
Nonetheless, it solely guarantees the asymptotic convergence of the observer. To attain exponential
convergence, even when using the Lyapunov-Krasovskii functional (4.92), extra constraints on the
delay become necessary. Furthermore, the utilization of the Halanay inequality remains unavoidable
in such cases. Further exploration in this research direction needs a deeper investigation along with
meticulous development and the utilization of advanced mathematical tools.

4.8 Illustrative Example

This section focuses on an illustrative example aimed at validating the proposed observer design
method. As discussed in earlier sections, thorough analytical comparisons have been made between
the newly proposed observer structure and existing techniques in the literature. Given the fact that
the analytical comparisons concern the companion systems and feedforward systems, numerical
comparisons are unnecessary. Hence, we present an illustrative example that covers the general
case, for which, to the best of the authors’ knowledge, there are only few existing results in the
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literature. As an application example, we consider the two-dimensional bioreactor model described
by the following equations:

ẋ =

[
−l1 c1

0 0

]
x+

[
0

c2 sin(x2) + c3 cos(x2) + c3u

]
y(t) = x1(t− τ(t))

(4.98)

where the input u(t) is given by u(t) = sin(0.35t) and the constants l1 and ci, i = 1, . . . , 4, are
given by l1 = 1, c1 = 1, c2 = c3 = 0.02, and c4 = 8. In this case, the function g in (4.26)
is reduced to g(ζ, u) = −l1ζ2 + c1ζ3, which satisfies Assumption 4.3.5 with Lipschitz constant
γg =

√
l21 + c2

1 =
√

2. We use the output augmentation technique by using the new variable z(t)
introduced in (4.32). Then, we have

Bζ =
[
−γ 0 0

]>
, fζ

(
ζ, u
)

=
[
γζ2 f(ζ, u)

]>
with

f(ζ, u)
∆
=

[
−l1ζ2 + c1ζ3

c2 sin(ζ3) + c3 cos(ζ3) + c3u

]
.

Therefore, the Jacobian of the function fζ is given by

∇fζζ (zt) =

0 γ 0
0 −l1 c1

0 0 c2 cos(zt)− c3 sin(zt)

 .
Also, the jacobian of the scalar function g is given by ∇gζ(z̄t) = Bg1 =

[
0 −l1 c1

]
. Utilizing the

LMI conditions (4.12a) subject to (4.12b) outlined in Theorem 4.3.1, and the LMIs (4.96) of The-
orem 4.7.1, we obtain the results presented in Table 4.1, contrasting them with the methodologies
introduced in prior works such as [2], [23], [119], and [92]. These references explore the same
example to show and compare the efficiency and validity of the approaches proposed therein.

Table 4.1: Comparison between different methods.
Method τ?

[23, Theorem 1] < 0.01

[2, Theorem 17] < 0.02

Theorem 4.3.1–LMI conditions (4.12) ≈ 0.03

[119, Theorem 2] ≈ 1

[92, Theorem 3] ≈ 23.60

Theorem 4.7.1–LMI conditions (4.96) ≈ 34.50

It is quite clear from Table 4.1 that whether based fully on LMIs or requiring extra constraints on
τ?, our methods significantly enhance existing techniques in the literature.
For τ? = 5s and γ = 1, we obtain the following observer gain from the LMIs (4.96):

L =
[
5.1004 1.0124 0.7387

]>
.

Figure 4.1 shows that the estimation errors converge towards zero despite the delay τ? = 5s.
To demonstrate the efficiency of the proposed output-based dynamic extension technique, we in-
troduce Gaussian noise with a mean of zero and a standard deviation of σ to disturb the output
measurement. Two distinct scenarios are examined in our simulations. In Figure 4.2, we illustrate
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Figure 4.1: Behavior of the estimation errors for τ? = 5s.

the behavior of estimation errors for σ = 1, while Figure 4.3 presents those for σ = 10. Notably,
even with significant values of σ, our new observer structure, augmented with an integral term, ex-
hibits commendable performance, showcasing robustness to measurement noise. This robustness
can be attributed to the inherent filtering capabilities of the new observer, which simultaneously
addresses substantial delays and noise in the output signal.
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Figure 4.2: Behavior of the estimation errors for τ? = 5s.

4.9 Conclusion

We proposed several observer design techniques for nonlinear systems in the presence of delayed
and nonlinear outputs. Through a state augmentation technique and output transformation, the
problem of the presence of delay and nonlinearities in the output measurement is easily solved by
transferring the delay and the nonlinearities to the dynamic process. Such a transfer is achieved
by creating a new output measurement and extending the dynamics of the system. For the specific
classes of systems considered in this chapter, namely systems in companion form and feedforward
systems, novel specific synthesis conditions are proposed, which are less conservative than those
existing in the literature. Moreover, a more relaxed and alternative technique is introduced to avoid
the conservative assumption regarding the boundedness of x2. This approach is accompanied by
several constructive comments and comparisons. For each class of systems, the new technique
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Figure 4.3: Behavior of the estimation errors for τ? = 5s.

using the new observer structure with the integral term is thoroughly compared to the method
relaxing the boundedness of x2 and to existing methods in the literature through rigorously ex-
panded analytical arguments. Lastly, utilizing a Lyapunov–Krasovskii functional, we introduce an
alternative method requiring only LMI conditions for ensuring the asymptotic convergence of the
estimation error. This approach aims to refine existing techniques in the literature while eliminat-
ing additional constraints associated with the maximum allowable delay value. The efficiency of
the proposed methods is demonstrated through a compelling illustrative example.
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Conclusion

In this Thesis, we first provided a brief overview of observer and estimation methods. Following
this, we provided an LMI-based design method to check the i-EIOSS property of nonlinear systems.
This method may be used easily for a nonlinear system without needing to use its trajectories. To
develop such an LMI method, we proposed a mathematical tool, which allowed us to develop a
general Lyapunov function-based result. The established outcome is significant within the field of
robust estimation techniques, as it simplifies the process of tuning the parameters of the estimator.
This is primarily because these tuning parameters directly rely on the coefficients associated with
the i-EIOSS property. based on the use of the i-EIOSS property.
Next, we demonstrated that LMI-based approaches can also guarantee the design of nonlinear
observers for a large class of nonlinear systems. We proposed LMI conditions for the synthesis of
nonlinear observers and showed that the feasibility of such LMIs is guaranteed for some families
of nonlinear systems. While the feasibility of the LMIs is not ensured for the arbitrary structure of
the nonlinearities, it is shown that such feasibility guarantee is applicable to important families of
systems, namely triangular systems and systems having feedforward structures.
Lastly, we proposed novel results on high-gain observer design for some families of nonlinear non-
triangular systems. The contributions are both simple but very useful for certain nonlinear models.
Indeed, in case the proposed new conditions are satisfied, there is no need to perform any nonlinear
transformation of the model to design a high-gain observer. By combining the LMI approach with
the standard high-gain methodology, an efficient design procedure is proposed in Theorem 3.3.2.
Many questions remain open in this area, offering several directions for future research based on
the results presented in this manuscript.

Future Work

1. The proposed results in Section 3.2 are not only motivated by the non-triangularity of non-
linearities of the model. They also build a bridge to important applications even for triangu-
lar dynamic models. Among these applications, the results may be generalized to systems
with any nonlinear measurements and systems with delayed outputs. For these applica-
tions, we could access the tuning parameter κ2 and choose it large enough to satisfy the
constraint (3.77) in Theorem 4.4.6 or (3.93) in Theorem 3.3.2. Although the LMI-based
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technique allows providing a less conservative bound bound (3.77), however, such a bound
may still be conservative for nonlinearities with a large value of κ2. Overcoming this limita-
tion is one of the future work we aim to address. One other relevant challenge we aim to solve
in the future consists of overcoming the sector condition (3.63). To address this challenging
limitation, one of the possible potential avenues is to propose an observer with a time-varying
tuning parameter, τ(t), which may lead to a general Riccati equation, instead of (3.75), for
which we need to prove the existence of bounded solutions.

2. In future work, we aim to extend the idea in Chapter 4 to several estimation problems, namely
unknown input observer design for systems with nonlinear outputs, adaptive observers for
systems with unknown parameters in the output measurements, and systems with delay in
the inputs. Combining the dynamic extension technique with output error saturation could
improve the performance of the estimation problem. We also aim to apply the proposed re-
sults to real-world models, namely applications for connected and autonomous vehicle track-
ing. To highlight the benefits of the proposed dynamic extension technique together with the
new state observer structure, we aim to establish several further theoretical results. First,
an extension to systems with disturbances in the measurements will be tackled by exploiting
a generalized version of the Halanay inequality. In this case, an Input-to-State Stable (ISS)
bound on the estimation error will be given. Finally, an extension to systems with unknown
time delay in the output will be investigated.
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Abstract

A dynamical system models how a system evolves over time, governed by specific laws or equa-
tions. Ensuring the stability of such systems, under a given control action, is vital for predicting
their long-term behavior. Stability analysis methods, such as LyapunovâÄôs theory and Input-to-
State Stability (ISS), provide essential tools to assess whether a system will remain stable. When
direct measurements of all system states are not possible, estimation techniques, such as observers
and estimators, play a crucial role in reconstructing internal states from available measurements,
enabling effective feedback control. Then, developing advanced estimation schemes and observer
design methods is the main motivation of this thesis. Towards this end, three major contributions
are proposed in this thesis, as detailed below:

1. Analysis of Robust Moving Horizon Estimation (MHE) Schemes: Since the incremental expo-
nential input/output-to-state stability (i-EIOSS) property is required to synthesize the param-
eters of the cost function in the MHE context, then, first, two numerical design procedures are
proposed to ensure that a nonlinear system achieves i-EIOSS property and to compute the as-
sociated i-EIOSS parameters. Then, the robust stability of moving horizon estimation (MHE)
is proven. Novel design conditions are established and advanced prediction techniques are
introduced.

2. Contributions to LMI-based and high-gain-based Observers: This chapter is split into two
parts: the first part deals with observer design for nonlinear systems via Linear Matrix In-
equalities (LMIs). The main goal consists of showing that for some families of nonlinear
systems, the LMI-based observer design techniques always provide exponential convergent
observer. The second part deals with high-gain observer methodology. A novel design method
is proposed for systems with arbitrary nonlinear structures contrary to the standard results
on high-gain observer methodology developed for triangular nonlinearities.

3. Contributions to observer design for nonlinear systems with delayed measurements: The
main idea behind consists of using a dynamic extension technique to transform a system
with delayed nonlinear outputs into a system with linear outputs and a delay-dependent in-
tegral term in the dynamic process. Based on this transformation, novel and less conservative
synthesis conditions are established, ensuring the exponential convergence of the observer
despite the large values of the delay in the output measurements.

Key words: Moving Horizon Estimation; Observer design; LMIs; ISS; i-EIOSS; Delayed-outputs.

Résumé

Un système dynamique modélise l’évolution d’un système au fil du temps, régie par des lois ou des
équations spécifiques. Assurer la stabilité de ces systèmes, sous une action de contrôle donnée, est
essentiel pour prévoir leur comportement à long terme. Les méthodes d’analyse de stabilité, telles
que la théorie de Lyapunov et la stabilité entrée-état (ISS), fournissent des outils essentiels pour
évaluer si un système restera stable. Lorsque la mesure directe de tous les états du système n’est
pas possible, des techniques d’estimation, telles que les observateurs et les estimateurs, jouent un



rôle crucial en reconstruisant les états internes à partir des mesures disponibles, permettant ainsi
un contrôle en retour de sortie efficace. Le développement de schémas d’estimation avancés et de
méthodes de conception d’observateurs constitue la principale motivation de cette thèse. Dans ce
cadre, trois contributions majeures sont proposées dans cette thèse, détaillées ci-dessous :

1. Analyse des schémas d’estimation à horizon glissant robuste (MHE) : Comme la propriété
de stabilité exponentielle incrémentale entrée/sortie-état (i-EIOSS) est nécessaire pour syn-
thétiser les paramètres de la fonction de coût dans le contexte du MHE, deux procédures
de conception numérique sont d’abord proposées pour garantir qu’un système non linéaire
réalise la propriété i-EIOSS et pour calculer les paramètres i-EIOSS associés. Ensuite, la sta-
bilité robuste de l’estimation en horizon glissant (MHE) est prouvée. De nouvelles conditions
de conception sont établies et des techniques de prédiction avancées sont introduites.

2. Contributions aux observateurs basés sur les LMIs et les observateurs à grand-gain : Ce
chapitre est divisé en deux parties : la première partie traite de la conception d’observateurs
pour des systèmes non linéaires via des inégalités matricielles linéaires (LMIs). L’objectif prin-
cipal est de montrer que, pour certaines familles de systèmes non linéaires, les techniques de
conception d’observateurs basées sur les LMIs fournissent toujours des observateurs expo-
nentiellement convergents. La deuxième partie concerne la méthodologie des observateurs à
grand-gain. Une nouvelle méthode de conception est proposée pour des systèmes avec des
structures non linéaires arbitraires, contrairement aux résultats standards sur la méthodolo-
gie des observateurs à grand-gain développés pour les non-linéarités triangulaires.

3. Contributions à la conception d’observateurs pour des systèmes non linéaires avec des
mesures retardées : L’idée principale consiste à utiliser une technique d’extension dynamique
pour transformer un système avec des sorties non linéaires retardées en un système avec des
sorties linéaires et un terme intégral dépendant du retard dans le processus dynamique. Sur
la base de cette transformation, de nouvelles conditions de synthèse moins contraignantes
sont établies, garantissant la convergence exponentielle de l’observateur malgré les valeurs
élevées du retard dans les mesures de sortie.

Mots-clés : Estimation à horizon glissant ; Observer design ; LMIs ; i-EIOSS; mesures retardées.

Riassunto

Un sistema dinamico è un sistema evolve nel tempo, governato da leggi o equazioni specifiche.
Garantire la stabilità di tali sistemi, sotto un’azione di controllo specifica, é fondamentale per
prevedere il loro comportamento a lungo termine. I metodi di analisi della stabilità, come la teoria
di Lyapunov e la stabilità ingresso-stato (ISS), forniscono strumenti essenziali per valutare se un
sistema rimarrà stabile. Quando non é possibile misurare direttamente tutti gli stati del sistema,
le tecniche di stima, come gli osservatori e gli stimatori, svolgono un ruolo cruciale nel ricostruire
gli stati interni a partire dalle misurazioni disponibili, permettendo un controllo a retroazione effi-
cace. Lo sviluppo di schemi avanzati di stima e metodi di progettazione di osservatori éla principale
motivazione di questa tesi. A tal fine, in questa tesi vengono proposte tre principali contribuzioni,
come dettagliato di seguito:

1. Analisi degli schemi di stima a orizzonte mobile robusti (MHE): Poich la proprietà di sta-
bilità esponenziale incrementale ingresso/uscita-stato (i-EIOSS) énecessaria per sintetizzare
i parametri della funzione di costo nel contesto MHE, vengono proposte due procedure di



progettazione numerica per garantire che un sistema non lineare raggiunga la proprietà i-
EIOSS e per calcolare i parametri i-EIOSS associati. Successivamente, viene dimostrata la
stabilità robusta della stima a orizzonte mobile (MHE). Vengono stabilite nuove condizioni di
progettazione e introdotte tecniche di previsione avanzate.

2. Contributi agli osservatori basati su LMIs e osservatori a guadagno elevato: Questo capitolo
édiviso in due parti: la prima parte tratta della progettazione di osservatori per sistemi non
lineari tramite disuguaglianze matriciali lineari (LMIs). L’obiettivo principale édimostrare
che, per alcune famiglie di sistemi non lineari, le tecniche di progettazione di osservatori
basate su LMIs forniscono sempre un osservatore esponenzialmente convergente. La sec-
onda parte riguarda la metodologia degli osservatori a guadagno elevato. Viene proposta una
nuova metodologia di progettazione per sistemi con strutture non lineari arbitrarie, in con-
trasto con i risultati standard sulla metodologia degli osservatori a guadagno elevato svilup-
pati per le non-linearità triangolari.

3. Contributi alla progettazione di osservatori per sistemi non lineari con misurazioni ritardate:
L’idea principale consiste nell’usare una tecnica di estensione dinamica per trasformare un
sistema con uscite non lineari ritardate in un sistema con uscite lineari e un termine integrale
dipendente dal ritardo nel processo dinamico. Sulla base di questa trasformazione, vengono
stabilite nuove condizioni di sintesi meno conservative, garantendo la convergenza esponen-
ziale dell’osservatore nonostante i grandi valori del ritardo nelle misurazioni in uscita.

Parole chiave: Stima a orizzonte mobile; Progettazione di osservatori; LMIs; ISS; i-EIOSS; Uscite
ritardate.
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