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Abstract 

The progressive shift from traditional vehicles to Electric Vehicles (EVs ) is considered one of the key 

measures to achieve the objective of a significant reduction in the emission of pollutants, especially in urban 

areas. EVs will be widely used in a not-so-futuristic vision, and new technologies will be present for charging 

stations, batteries, and vehicles. The number of EVs and Charging Stations (CSs) is increased in the last years, 

but, unfortunately, wide usage of EVs may cause technical problems to the electrical grid (i.e., instability due 

to intermittent distributed loads), inefficiencies in the charging process (i.e., lower power capacity and longer 

recharging times), long queues and bad use of CSs. Moreover, it is necessary to plan the CSs installation over 

the territory, the schedule of vehicles, and the optimal use of CSs. 

This thesis focuses on applying optimization methods and approaches to energy systems in which EVs are 

present, with specific reference to planning and scheduling decision problems.  

In particular, in smart grids, energy production, and storage systems are usually scheduled by an Energy 

Management System (EMS) to minimize costs, power losses, and CO2 emissions while satisfying energy 

demands. When CSs are connected to a smart grid, EVs served by CSs represent an additional load to the 

power system to be satisfied, and an additional storage system in the case of vehicle-to-grid (V2G) technology 

is enabled. However, the load generated by EVs is deferrable. It can be thought of as a process in which 

machines (CSs) serve customers/products (EVs) based on release time, due date, deadline, and energy request, 

as happens in manufacturing systems. 

In this thesis, first, attention is focused on defining a discrete-time optimization problem in which fossil fuel 

production plants, storage systems, and renewables are considered to satisfy the grid's electrical load. The 

discrete-time formalization can use forecasting for renewables and loads without data elaboration. On the other 

side, many decision variables are present, making the optimization problem hard to solve through commercial 

optimization tools. For this reason, an alternative method for the optimal schedule of EVs characterized by a 

discrete event formalization is presented. This new approach can diminish the number of variables by 

considering the time intervals as variables themselves. Of course, the solution's optimality is not guaranteed 

since some assumptions are necessary. 

Moreover, the last chapter proposes a novel approach for the optimal location and line assignment for electric 

bus charging stations. In particular, the model provides the siting and sizing of some CSs to maintain a 

minimum service frequency over public transportation lines. 
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Chapter 1 

Introduction and Motivation 

Sustainability is one of the most widespread words in recent years. It can be considered in different 

frameworks as economic, social, or environmental one. Deepening the latter one, it is necessary to focus on 

pollution. Among the numerous sources of pollution, transportation represents a considerable contribution. 

Through an improvement in this field, it is possible to affect global pollution positively. One of the most 

promising technologies is Electric Vehicles (EVs) for private and public (usually Electric Buses, EBs) 

transportation. According to many studies, they both are able to reduce the emissions, especially when 

integrated with renewable plants, typically photovoltaic (PV) ones. 

The introduction of these kind of vehicles, carries many drawbacks to be faced. In particular,the main issues 

for the transition to EVs from traditional ones are, on the users’ side, the high purchasing costs and the duration 

of the charging process; on the grid side, the impact of such large loads on the present infrastructure. 

The first issues can be addressed with researches on new technologies for the batteries, which is nowadays 

the most expensive component of the EVs. Instead, the increase of the maximum charging power can reduce 

by far the duration of the charging process. This last consideration is strictly linked with the issues relevant to 

the power grid. In fact, the EVs’ charging process can represent a significant load that, especially increasing 

the number of EVs, can lead to malfunctions of the power network. To address this issue, it is necessary to 

focus on the charging process, and to find new approaches well suited to real applications to define the optimal 

schedule under specific constraints as well as the optimal planning of the CSs 

In this thesis, both these aspects related to EVs will be considered; in particular, two approaches based on a 

discrete time model and a discrete events one will be presented for the charging scheduling.. 

1.1 Main Contributions 

The main contribution of this Ph.D. thesis can be summarized as: 

▪ Development of a discrete event optimization model for the optimal scheduling of some EVs in a smart 

grid. 

▪ Development of a multistep approach for determining the actual power flows as continuous functions 

starting from the discrete event model. 

▪ Comparison between the two proposed approaches in order to highlight the advantages and 

disadvantages of both the models. 

▪ Development of a new model for the optimal location and line assignment for electric bus charging 

stations. 



1.2 Thesis organization 

This thesis is the collection of several research works. The chapters are based on lecture notes, journal or 

conference papers, and book chapters, which are either published or currently under review that is reported at 

the beginning of each Chapter. This thesis consists of  six Chapters, namely: 

▪ Chapter 2 presents the introduction about the EVs framework focusing on their main characteristics 

and highlighting the possible application that would benefit from the introduction of the EVs as well 

as the many issues linked to this new actor in the modern grid architecture. 

▪ Chapter 3 is mainly voted to the analysis of the state of the art regarding the EVs modeling, in particular 

the focus is on the batteries and the charging process in the smart grids framework. 

▪ Chapter 4 consists of a discrete time model for the optimal scheduling of the charging processes in a 

smart grid. 

▪ Chapter 5 presents the discrete event optimization model for the optimal charging of EVs in a smart 

grid. In particular, the new approach is described and a focus on the piecewise linear characteristic of 

the battery is presented. This chapter also includes two extensions of the model to the multi-socket 

case and the periodic one. 

▪ Chapter 6 presents the optimal location and line assignment for electric bus charging stations. 

▪ Chapter 7 includes the conclusions and some proposals for future developments. 

1.3 List of Publication and editorial activity 

The publications, special sessions organization, and open invited track list of Luca Parodi is hereafter 

reported. My indexes are  

▪ H index Scopus 4, 38 citations 

▪ H index Scholar 4, 50 citations 
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▪ G. Ferro, R. Minciardi, L. Parodi, and M. Robba, “Discrete event optimization of a vehicle charging 

station with multiple sockets,” Discrete Event Dynamic Systems, vol. 31, no. 2, pp. 219–249, 2021. 

▪ V. Casella, D. Fernandez Valderrama, G. Ferro, R. Minciardi, M. Paolucci, L. Parodi, and M. Robba, 

“Towards the Integration of Sustainable Transportation and Smart Grids: A Review on Electric 

Vehicles’ Management,” Energies, vol. 15, no. 11, p. 4020, 2022. 

▪ G. Ferro, R. Minciardi, L. Parodi, and M. Robba, “Optimal Planning of Charging Stations in Coupled 

Transportation and Power Networks Based on User Equilibrium Conditions,” IEEE Transactions on 

Automation Science and Engineering, vol. 19, no. 1, pp. 48–59, Jan. 2022. 



▪ M. Caliano, F. Delfino, M. Di Somma, G. Ferro, G. Graditi, L. Parodi, M. Robba, and M. Rossi, “An 

Energy Management System for microgrids including costs, exergy, and stress indexes,” Sustainable 

Energy, Grids and Networks, p. 100915, 2022. 

▪ G. Ferro, R. Minciardi, L. Parodi and M. Robba, "Optimal Location and Line Assignment for Electric 

Bus Charging Stations," IEEE Systems Journal, pp. 1-12, 2023. 

1.3.2 Conference Papers-Published 

▪ G. Ferro, R. Minciardi, L. Parodi, M. Robba, and M. Rossi, “Optimal coordination of buildings and 

microgrids by an aggregator: A bi-level approach,” IFAC-PapersOnLine, vol. 53, no. 2, pp. 16587–

16592, 2020. 
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Chapter 2 

Introduction to Electric Mobility 

In this chapter, an introduction about the electric mobility is presented. In particular, in Section 2.1 a general 

description about EVs’ batteries and emissions is provided. Section 2.2 is relevant to the charging stations, the 

different charging modes and the available connnectors. Section 2.3 describes the role of EVs in the power 

network. The chapter ends with a discussion about the discrete event approach in Section 2.4. 

2.1 EVs 

Pure EVs are moved only by an electric motor, without the presence of an electric or mechanical power 

generator powered by an engine of another type. The general scheme of this type of vehicle (Fig. 2.1) can be 

represented by one or more electric motors and an energy storage system. 

 

Fig. 2.1. Configuration of an EV. 

Since not all the main technical characteristics of the EVs are necessary in the presentation of the thesis, the 

only component which is analyzed in the next sections is the battery. 

2.1.1 EVs: Batteries 

The whole commercial, marketing, and economic history of the EVs' production have been associated with 

the electric battery autonomy problems in terms of feasible distance and hours duration. They are used to store 

electrical energy that the electric motor uses to power the vehicle. Unfortunately, current battery systems tend 

to be heavy and costly, so the priority is to improve battery systems to make electrification as accessible as 

possible. In fact, the battery represents the most expensive component of an EV, since his cost is from 25% to 

50% of the total, depending of which technology is used [1]–[3]. 

Battery improvements are moving fast in order to make EVs competitive with respect of internal combustion 

engine vehicles (ICEVs): for instance, production costs of the Li-Ion batteries was expected to reach 225$/kWh 

in 2025 [4], but according to [5] the price reached a minimum price of about 150$/kWh in 2022 and it is 



expected to decrease in the next years. In fact, the literature review shows that an increase in gravimetrical and 

volumetric density can be expected at both cell and pack level. This may help reduce the fear of low ranges in 

the future, making EVs more attractive for buyers.  

Even if EVs are currently more expensive than ICEVs, the forecast shows that, from 2026, the parity with 

ICEV can be reached and EVs will be cheaper than other electrification solutions (such as plug-in hybrid EVs 

and fuel cells EVs). [3] 

Several battery-manufacturing technologies are suitable to equip an EV. Technologies that today are widely 

accepted by the companies in the manufacturing industry are listed in Table 2.1 [6]: 

Table 2.1 Battery Technologies 

Battery technology Main advantages Main disadvantages 

Lead-acid (Pb-acid) Well-known technology; Cheap 

manifacturing;  

Presence of Pb and acid substances; Low 

energy density; 

Nickel-Cadmium (NiCd) High lifespan Presence of Cadmium which is limited by 

EU directives 

Nickel-Metal-Hydride (NiMH) Lack of memory effect High costs; Problems of selfdischarge 

Lithium-ion (Li-ion) Large power storage capacity;  

High energy density  

High costs; Potential for overheating; 

Limited life cycle 

Lithium-ion Polymer Highel life-span than Li-ion High costs; Potential for overheating 

Sodium Nickel Chloride (NaNiCl) High stored energy density Operational safety (between 270 and 350 

°C) 

Li-Ion batteries nowadays represent the most used technology in EVs [7], mainly due to their high energy 

density, allowing the development of some types of batteries with reduced weight and dimensions at 

competitive prices. 

Lithium-ion batteries also have negative aspects: charging them at sub-zero degrees Celsius reduces battery 

life. The battery's cathode breaks down at extremely low temperatures, causing a short circuit. If the voltage is 

too low or the battery is overloaded, battery performance decreases. In addition, internal short circuits with 

potential security risks could occur. For example, extremely high voltage or excessive charge result in the 

production of a large amount of heat. Metallic lithium settles on the surface of the negative electrode, 

accelerating capacity reduction causing risky internal short circuits. Therefore, nowadays, the aim is to develop 

a new battery system capable of operating even in particularly unfavorable situations and equipping lithium-

ion batteries with a  management system to be controlled and managed effectively. 

For safety and reliability to be guaranteed, this type of battery must operate within an operating range, but 

temperature and power voltage constraints limit it. If these constraints are not met, battery performance is 

generally quickly attenuated, even with safety issues. 

Generally, the capacity and voltage of the cells used for EVs are relatively low. They are integrated into a 

module, and an EV's battery pack contains one or more modules depending on the requirements. The battery 



pack consists, therefore, of several individual cells. To handle such a large number of cells, a battery 

management system (BMS) is required, including sensors, actuators, and controllers in EVs. 

The main tasks of the BMS in vehicles are: protect cells and battery packs from damage; run the batteries 

within the correct voltage and temperature ranges, ensure safety and extend battery life for as long as possible; 

make batteries operate in a state where the battery meets the vehicle's requirements. 

Moreover, the battery is not symmetrical between the charge and discharge phases: this can be derived from 

the equivalent internal resistance having two different values depending on the current direction due to the 

different chemical reactions involved in the two different phases. Therefore, a battery discharged in a certain 

time will require more recharging. In addition, the maximum charging power can be quite low for certain types 

of batteries, as a result, it will take quite a long time (up to hours) to recharge the battery fully. This is inevitably 

a disadvantage compared to the traditional petrol and diesel vehicle, which instead has relatively low 

"recharge" times (to fill up the car takes one to two minutes at most). [8] 

It is essential to consider that the capacity of a lithium-ion battery does not have a constant value but is 

reduced due to aging processes. The "end of life" (EOL) of a battery is defined as an 80% remaining capacity 

(or as a doubled internal resistance, depending on what occurs before). 

The condition of the EOL is essential for sizing the battery capacity: there is, in fact, the necessity to consider 

a 20% bound as a reserve. The battery is used under strict constraints to limit and decelerate aging, and the 

"state of charge" (SOC) must fall within a predefined range. The lower threshold also referred to as the "safety 

limit", should never be exceeded to ensure battery reliability and performance stability. As soon as the SOC 

level drops below this threshold, the EV is recharged so that the battery is protected from excessive exhausting 

and a complete exhaustion does not stop the vehicle. 

On the other hand, the upper limit is set by the maximum level of charge status compatible with full charging 

power. If this threshold is exceeded, the charging power is reduced. The fast-charging causes a further 

reduction in usable capacity due to voltage limits. At high values of the charging state, the current with which 

the vehicle is recharged must be reduced not to exceed the battery's upper voltage limit. This effect increases 

with the battery's aging due to the increase in internal resistance. Reducing the current increases the charging 

time, going against the concept of "fast charging". The upper region of the SOC cannot, therefore, be loaded 

too quickly. Even with all these measures, the degradation of the battery must be taken into account with an 

initial oversizing of the battery capacity itself. 

In any case, the sizing of the battery is the result of a compromise between the required range and the weight 

and cost of the battery pack and, therefore, the EV. 

2.1.2 EVs: Emissions 

The present technologies used to build EVs (and battery packs) are complex, considering the length and 

structure of the production chain.  

Besides, EVs have the advantage of not emitting harmful exhaust gases on site. For assessing greenhouse gas 

(GHG) emissions, however, it is necessary to consider the entire life cycle of the vehicle and all its phases, 



starting with the production and transport of electricity. Therefore, the emissions analysis integrates two phases 

[9], [10]: 

▪ the assessment of the WTT (Well-to-Tank) provides the emissions during the extraction and 

distribution of fuel and the production and distribution of energy; 

▪ the TTW (Tank-to-Wheel) evaluation, on the other hand, measures the emissions during the use of the 

vehicle and, therefore, those measured at the tailpipe. 

Usually, it is common to talk about Well-to-Wheel (WTW) considering the combination of the WTT and the 

TTW. Of course, indirect emissions (WTT) depend on the primary source, the production method, and the 

distribution route. Furthermore, they are closely linked to the energy mix at the local level. In particular, if the 

energy mix is mainly based on producing energy from renewable sources, this type of emissions is very low. 

In general, the assessment of direct emissions (TTW) is complex, and their extent depends on the type of 

vehicle (fuel used, abatement devices, etc.) and the context (driving conditions, traffic situation, use of 

auxiliaries, load profile, etc.) but, when considering a "pure electric" vehicle, this type of emissions is zero. 

It can therefore be concluded that, if powered by a renewable source of electricity, "pure electric" vehicles 

are considered the ultimate solution to avoid greenhouse gas emissions in the road transport sector. 

Authors in [11] compare conventional diesel buses (DBs) and EBs regarding polluting emissions and 

consumption of oil and fossil fuels. The fossil fuels considered in this analysis are coal, oil, and natural gas. 

They show how most of an EB's energy demand and emissions are passed upstream in the production phase. 

In all the speed and traffic conditions taken into consideration, EBs are advantageous from the point of view 

of both oil and fossil fuel consumption. Considering that the cost of primary energy sources is constantly 

growing, reducing such consumption would lead to significant savings in terms of operating costs. 

Furthermore, they highlight how oil is reduced more than fossil fuels because there is still a significant 

consumption of coal for the production of upstream energy. Regarding carbon dioxide emissions, although 

EBs can be considered zero emissions in the TTW phase, thermoelectric power plants emit a significant amount 

of CO2. As a result, EBs only reduce carbon dioxide emissions by 19-24% compared to DBs. Therefore, this 

highlights the need to increase the contribution of renewable sources to electricity production to make the 

penetration of EBs advantageous. In fact, many studies show how the use of renewables can lead to 

significative reductions in greenhouse gases emissions. In [12] the authors estimate an overall reduction 

(WTW) of about 30% for hybrid EVs and about 50% for battery EVs. This last value is also confirmed by [13] 

in the countries with a larger integration of renewables in the energy production sector. Another examble is 

given by [14], where the authors estimate that, considering hybrid EVs, the emission reductions regarding CO2, 

CO, and NOx are 21.6%, 31.3%, and 53.0%(Toronto), and 41.0%, 28.9%, and 68.5%  (Beijing). Authors in 

[15] provide an accurate review about the emissions of ICEVs and EVs, confirming the great advantage 

brought by EVs in terms of WTW GHG emissions. Fig. 2.2 reports their main results 



 

Fig. 2.2 GHG emissions of electricity in the different locations are shown in (a) Well-to-wheel GHG emissions of 

internal combustion engine and electric crossover utility vehicles (CUVs) are used in (b) the US, (c) Arizona, (d) 

California, (e) New York, and (f) Oregon, from 2018 to 2030 for the three scenarios-baseline, best-case, and worst-case 

for the internal combustion engine CUV. [15] 

Another very useful charcteristic that must be taken into account is the Life Cycle Assessment (LCA). LCA 

can be used to assess the environmental impact of the relationship between input components (primary 

resources, energy, and materials) and output factors (emissions, trash). [16], [17] 

The main takeaway from the LCA of batteries is that for each type of vehicle, the environmental effect and 

longevity of the vehicle rely on every stage of the production, use, and EOL of the vehicle. 

An integral part of a comprehensive LCA is the recycling process. Valuable materials such as cobalt, nickel, 

manganese are recovered and sent to refining [18], [19]. Unfortunately, the lithium and rare earth elements go 

to the slag. Still, discussions on this issue highlight the need for continuous and further development of an 

efficient recycling process and an efficient material re-use strategy [20]–[22] 

Despite the advantages from an environmental point of view, all EVs, present a series of criticalities. Among 

them, a critical point is the one related to the charging process which usually has to be carried out in specific 

infrastructures. 



2.2 Charging Stations 

Before presenting the technical characteristics of the charging station, it can be helpful a brief introduction 

on the main differences between the charging processes. 

In general, there are four possible "speeds," namely: 

▪ Slow charging. 

▪ Fast charging. 

▪ Rapid charging. 

▪ Ultra-rapid charging. 

Slow charging rates range between 2.3 kW and 3 kW, depending on the location. A full charge on a 3 kW 

unit will typically take around 10-14 hours, and for cars with a larger battery, it could take even longer. Slow 

charging is usually considered for overnight charging. 

The fast-charging range is between 7 and 22 kW can be typically found in public areas such as parking lots. 

It is suitable for users who have few hours to charge the vehicle. 

Rapid charging refers to those chargers that allow (AC or DC) charges at 43 kW and 50kW. 

Ultra-rapid chargers can deliver 100kW, 150kW, or 350kW. These are only DC chargers. 

The well-known company Tesla uses the 150kW ultra-rapid chargers, which have the infrastructure for 

charging EVs. This chapter does not focus on this particular case, but the common characteristics identified 

by the international standards will be described. 

Describing the technical characteristics of the charging facilities, it is necessary to cite the IEC 62196 which 

is an international standard for a set of electrical connectors for EVs and is maintained by the International 

Electrotechnical Commission (IEC). 

The standard is based on the IEC 61851 [23], in which general characteristics are established, including 

charging modes and connection configurations, safety requirements of EVs, electric vehicle supply equipment 

(EVSE) in a charging system and further general requirements. For example, it specifies mechanisms such 

that, first, if the vehicle is not connected, the power is not supplied, and, second, the vehicle must be still for 

the whole connection time. IEC 62196 [24] comprises three main sections: (1) general requirements; 

dimensional compatibility and interchangeability requirements for (2) AC pin and contact-tube accessories, 

and (3) for DC and AC/DC pin and contact-tube vehicle couplers. 

According to the standard every connector includes control signaling, allowing the control of local charging. 

By means of adapters, all connectors can be converted, although not with intact charging modes. 

There are four connector types, namely: 

▪ SAE J1772 (Type 1), mainly used in North America; 

▪ VDE-AR-E 2623-2-2 (Type 2), known also as the Mennekes connector, it is used in Europe; 

▪ EV Plug Alliance proposal (Type 3), known as the Scame connector, it is mostly used in Italy and 

France; 



▪ JEVS G105-1993 (Type 4), traded as CHAdeMO, mostly used in Japan. 

2.2.1 Charging modes 

The standard applies to EV charging appliances with a rated operating voltage not exceeding 690 V (AC 

50/60 Hz, rated current ≤250 A) or 1550 V (DC, rated current ≤400 A). In particular, this standard's reference 

is represented by the charging modes defined in the IEC 61851, presented in the next subsections. 

Mode 1 

Mode 1 (Fig. 2.3) is characterized by a  direct and passive AC connection of the EV. It can be a 250 V 1-

phase or a 480 V 3-phase, at a maximum current of 16 A. The connection is not equipped extra control pins. 

For safety reasons, the EVSE must provide ground to the EV and have ground fault protection. The 

fundamental problem is that not all household installations have the necessary grounding; in fact, charging in 

Mode 1 is illegal in certain nations, including the US. 

 
Fig. 2.3 Connection in "Mode 1" configuration. 

Mode 2 

Mode 2 (Fig. 2.4) connects the EV directly and semi-actively to the AC mains with a maximum current of 

32 A at 250 V for a single phase or 400 V for a three-phase connection. In particular, the connection from the 

AC mains to the EVSE is a direct and passive while the connection between the EVSE and the EV is active, 

with the addition of the control pilot to the passive components.  



 
Fig. 2.4 Connection in "Mode 2" configuration. 

Mode 3 

Mode 3 (Fig. 2.5) is an active connection of the EV to a fixed EVSE. It can be  250 V (1-phase) or 480 V (3-

phase) and includes grounding and control pilot. It may include a compulsorily captive cable with extra 

conductors. The charging supply is not active by default, and to enable it, a proper communication over the 

control pilot is necessary.  

 

 
Fig. 2.5 Connection in "Mode 3" configuration. 

Mode 4 

Mode 4 (Fig. 2.6) is an active connection of the EV to a fixed EVSE. It is the only connection mode providing 

DC current (600 V), includes grounding and control pilot, and allows a maximum current of 400 A. The EVSE, 

which is more expensive than a Mode 3 EVSE, rectifies AC mains power into DC charging power. 

  



 
Fig. 2.6 Connection in "Mode 4" configuration. 

2.2.2 Connectors 

The connectors standardized in IEC 62196 are specialized for automotive use. The list of plug types includes 

four different connectors.  

The Type 1 connector is a single-phase vehicle coupler, reflecting the SAE J1772/2009 automotive plug 

specifications. The Type 2 connector can be either single-phase or three-phase and reflects the VDE-AR-E 

2623-2-2 plug specifications. As Type 2, Type 3 connector can be single or three-phase (includes also shutters), 

and reflects the EV Plug Alliance proposal. The last connector is Type 4, a direct current coupler, reflecting 

the Japan Electric Vehicle Standard (JEVS) G105-1993 specifications. 

Type 1 

As introduced, Type 1 (Fig. 2.7) connector comes from the standard SAE J1772/2009, which is a North 

American standard maintained by SAE International. The standard provides the fundamental physical, 

electrical, communication, and performance specifications for the conductive charge system and coupler of an 

electric vehicle.  

The Type 1 has five pins, with three different pin sizes from the grater to the smaller, namely: AC (2 pins), 

Ground (1 pin) ; Proximity detection and control pin. 

 



Fig. 2.7 Type 1 (SAE J1772) connector. 

Type 2 

The Type 2 connector (commonly referred to as Mennekes) is used for charging electric cars in Europe (Fig. 

2.8). The connector is specified for charging battery EVs at 3–120 kilowatts. Electric power is provided as 

single-phase or three-phase alternating current (AC), or direct current (DC). The Type 2 connector has been 

selected by the European Commission as official charging plug within the European Union. 

 
Fig. 2.8 Type 2 (Mennekes) connector. 

Type 3 

Type 3 is the EV Plug Alliance connector (Fig. 2.9). The IEC 62196 framework proposes an automotive 

plug, specified as Type 3, derived from the earlier Scame (italian company) plugs already in use for light EVs. 

Type 3 connector can provide 3-phase charging up to 32 A. 

 
Fig. 2.9 Type 3 connector. 

Type 4 

Type 4, connector is reported in Fig. 2.10. Commonly know by its trade name (CHAdeMO), this connector 

represents a quick charging method for battery EVs delivering up to 62.5 kW by 500 V, and 125 A direct 

current. CHAdeMO is an abbreviation of "CHArge de MOve", equivalent to "move using charge" or "move 

by charge". It is proposed as a global industry standard by an association of the same name and included in 

IEC 62196 as Type 4.  



 
Fig. 2.10 Type 4 (CHAdeMO) connector. 

Moreover, it is necessary to introduce the Combined Charging System (CCS) adds DC charging to the Type 

1 and Type 2 connectors. These are commonly known as Combo 1 or Combo 2 connectors (Fig. 2.11). 

Generally, Combo 2 is the most used except for the North America where Combo 1 is preferred. 

 
Fig. 2.11 CCS Combo 2 connector. 

Note that there are other available connectors. An example is given by the well known company, the american 

Tesla, which has developed its own connectors and its charging stations, but also provides adapter to Type 2, 

CHadeMO, and CCS Combo 2 connectors. 

2.3 EVs in the power network 

In this section a description of the main operations of the EVs in the power network is provided. First it is 

necessary to introduce the concept of Vehicle-to-Everything (V2X) [25], a communication between a vehicle 

and another entity. In particular, the most used terms used in the EVs’ charging processes are Vehicle-to-Grid 

(V2G) and Vehicle-to-Building/Home (V2B/V2H). Both of them refers to a power exchange from the EV to 

the grid/building. It is also quite common to find the opposite nomenclature when referring to the charging of 

the vehicle, i.e. Grid-to-Vehicle (G2V) and Building/Home-to-Vehicle (B2V/H2V) [26]. Since about 95 % of 



cars are parked [27], the batteries in EVs could be used to let electricity flow from the car to the electric 

distribution network and back. 

The idea behind the V2X is to provide a service to the grid by using the EV as an energy storage. Since the 

EVs’ batteries usually have quite large capacities, and since their presence in the grid is expected to grow 

significantly, this approach can provide to the power network a lot of flexibility. 

2.3.1 EVs as services providers 

Generally, all the controlled load variations are collected in the so-called Demand Response (DR), which can 

be considered as a part of the Demand Side Management (DSM). According to the requested operation, it is 

possible to distinguish among the valley filling (increase the load demand is low), peak shaving (increasing 

the generation when demand is high), and load shifting (moving a load from an high demand period to a low 

demand one); note that these operations are often related to the duck curve [28]. As previously introduced, 

V2X vehicles can provide power to the grid, and this can have a key role in balancing the loads (Fig. 2.12). 

 

Fig. 2.12 Vehicle-to-Grid mechanism. 

DR policies are also used to provide regulation services (keeping voltage and frequency stable [29], [30],[31]) 

and spinning reserves (meet sudden demands for power [32]). Through these applications, EVs could be one 

of the main actors in stabilizing the intermittency of renewable power and incentivating the penetration of 

renewables in the electric market [33].  

One of the most recent applications is using EVs in the energy communities (ECs) paradigm. It is not directly 

a topic faced in this thesis, but ECs are nowadays a new approach for energy management. They consist of 

communities of users from the same portion of the grid (whose size depends on national regulations, which is 

still a matter of discussion). The participants in the EC receive an incentive for the shared energy, which is 

virtually exchanged among them (defined as the maximum between the produced power and the consumed 

one). In this particular framework, since simultaneous production and consumption are the basis for the 

incentive, using EVs as temporary storage has a crucial role. In fact, they could allow a better fitting of the 

consumption and the generation profiles leading to higher incentives.In general, when discussing about the use 

of charging policies to provide services, it is also common to talk about Smart Charging (SC). 



2.3.2 Smart charging 

SC is the intelligent charging of EVs that can be shifted based on grid loads and under the vehicle owner's 

needs. The utility can offer EV owners monetary and non-monetary benefits in exchange for enrolment in a 

program that permits controlled charging when curtailment capacity is needed for the grid. 

The fundamental issue is the impact of EV charging on electricity supply and demand. Left unmanaged, EV 

owners may charge their cars when they return from work, producing spikes in electricity demand at the worst 

possible time (electricity use already peaks in the evening [34], [35]). This could, in turn, require companies 

to build costly new power plants that sit unused most of the day. 

Nevertheless, utilities can match supply and demand by coordinating EV charging with periods of cheap and 

abundant power. In some areas, this may mean charging cars in the middle of the day, when solar panels are 

most productive; in others, optimal charging may occur in the middle of the night, powered by the wind. 

These "smart charging" strategies can cut emissions, lower electricity rates, and provide a helpful new suite 

of grid services. 

A "smart charging" infrastructure must have the following fundamental features: 

▪ Load Balancing distributes the available capacity proportionally over all the active charging stations. 

In doing so, Load Balancing ensures that optimal charging is provided to all EVs at a specific location, 

within the limits of the charging stations' capacity. 

▪ HUB/satellite connection, which can collect in one time the data coming from multiple charging 

facilities. 

▪ Peak shaving, which automatically reduces the consumption of a charging session, or even pauses the 

sessions altogether until enough power becomes available, to not surpass the constraints given by the 

contract or by the EV charging component. 

▪ Drivers' priority. Drivers should not find their vehicles uncharged when they need them. This concern 

is lessened as more EVs are deployed. 

▪ Time-of-use pricing consciousness. Pricing electricity based on supply and demand can help avoid 

costly peak hour charging. 

Then, smart charging is used to provide ancillary services, which can bring advantages to the grid and thus 

lead to an advantage for the customers who can now have an income from these services. Of course, since this 

particular framework is currently evolving, there is no unique solution. Authors in [36] provide an interesting 

review of the latest advances in this topic. 

2.3.3 Integration of EVs and Smart Grids 

Smart grids are one of the most exciting topics of the last decade. They are usually medium and small size 

power networks characterized by sensors that give information about the system and control power 

management better. Usually, a smart grid integrates different technologies such as renewables and traditional 



plants. EVs recently hold an essential role in smart grids design since one of their main characteristics is the 

large amount of power they involve. An example is given by [37], which proposes a novel load management 

solution for coordinating the charging of multiple EVs in a smart grid system. They consider cost minimization 

by incorporating time-varying market energy prices and preferred charging time zones for EV owners. 

Regarding DR policies in the smart grids, an application is given by [38]. The authors present an EMS that 

manages the EVs charge-discharge plan and PV curtailment to reduce the operational cost while preserving 

the EVs' usage for driving. Another work focusing on DR policies is [39], where a mathematical formulation 

includes innovative distribution companies owners of renewable power plants and EVs parking lots.  

A pretty novel approach is presented in [40], where the authors present a model for managing the charging 

process of slow-charge EVs and fast-charge EVs while providing dynamic regulation of the grid. They 

consider that some slow-charge EVs can provide enough power to reduce the peak caused by the fast-charge 

EV. 

The authors in [41] investigate the optimal energy management problem of a microgrid with EVs. The 

objective is to minimize the cost by generating power with local generators and trading energy with the power 

market considering the market price. The EVs owners can be incentivized to take part in the DR programs as 

a flexible load since it brings profit for EVs and microgrid owners. However, the a linear model of the EV 

battery is considered. 

2.3.4 Aggregators and their role in EVs management 

In this section, attention is focused on the role of EVs in the newest regulation frameworks related to smart 

grids, which have introduced the presence of new actors such as Aggregators in the energy balancing market. 

Specifically, an Aggregator is an entity in charge of interacting with the Transmission System Operator 

(TSO) to reduce a load of a portion of territory through the coordination of different prosumers and users.  

Specifically referring to the management of EVs, Electric Vehicles Aggregators (EVAs) are defined. They 

have the responsibility to assemble the individual energy demands for overall management in smart buildings. 

An EVA can collect the specific EV information such as charging demand, arrival and departure times, 

maximal charging power, and driver preferences. In [42], EVs are pooled into forming virtual Local Electricity 

Markets, and it is investigated the impact of EVs' flexibility on its creation. The objective is to allow a set of 

EVs to trade electricity with other EVs or houses during their availability. In [43], it is assessed that Peer-to-

Peer (P2P) is expected to be particularly suitable to complement embedded PV generation and EVs. In 

particular, the authors simulate P2P energy sharing for a local microgrid of 50 households with community 

energy storage, PV and EVs (uni-directional EV chargers, chargers that can discharge EV battery energy to 

the home or the grid). According to the results, P2P trading with V2G can lead to an increase in shared energy, 

modest improvements to microgrid self-sufficiency, and improvements to household bills. However, the 

combination of P2P with V2H brings substantially greater advantages.  

As regards the balancing market driven by an Aggregator, the P2P mechanism is replaced by decision 

architectures. One arbiter/broker (i.e., the Aggregator) receives information from local users/prosumers and 



has the responsibility to coordinate the overall load reduction. These market structures are helpful both for 

providing economic advantages to the market participants and helping the distribution's grid manager alleviate 

the pressure over the grid of distributed and intermitted load and productions. EVs represent a huge and 

intermittent load over the territory. However, at the same time, they can provide flexibility (through load 

shifting, energy storage and V2G capabilities). Thus they can be used as a user/prosumer coordinated by an 

aggregator to participate in DR programs [44]. In this framework, the growing number of new EVs seems to 

be a real challenge. 

There are two different ways, i.e., direct or indirect, to achieve and incentivize DR to consumers. Indirect 

DR programs try to change the behavior of the loads through different methods of rewards: the use of different 

periods in which the price of electricity changes and incentive payments designed to induce lower electricity 

use at times of high wholesale market prices or when system reliability is at risk. In the latter case, there are 

DR programs such as the Special Case Resource  program or the Day-Ahead Demand Response Program  

promoted by New York Independent System Operator [45]. Special Case Resource provides an upfront 

payment for capacity, a payment for load reductions when dispatched, and it may include penalties for non-

compliance with capacity obligations. Day-Ahead Demand Response Program allows participants to submit 

load reduction bids in the Day-Ahead Market, where they compete with generators. 

Interestingly, attention to load management was promoted in the U.S. by the rise of air conditioning that 

caused short load peaks. Among the U.S., there was a real increase in the number of entities offering DR 

programs, from 126 in 2006 to 274 in 2008, an increase of 117% [46]. Direct DR programs happen when the 

aggregator or the distribution system operator adjusts the demand profile at its own decision, directly 

disconnecting the consumer's equipment, who are notified at short notice. Participants in the program are 

compensated for their participation with a bill credit or discount. In other cases, participating customers are 

rewarded with money based directly on the amount of load reduction during critical conditions.  

Most of the works in the recent scientific literature on DR include V2G technology. They are focused on 

deciding when and how frequently to charge or discharge the battery by using optimization models. For 

example, Saber et al. in [47] propose a Particle Swarm Optimization, a kind of evolutionary algorithm, to solve 

V2G of car parks; this technique has been demonstrated to solve complex constrained optimization reliably 

and accurately. In particular, V2G and EVs are included in an overall Unit Commitment decision problem. A 

multi-objective function minimizes costs (including fuel cost, start-up cost, and shut-down cost of a thermal 

device) to efficiently schedule on/off states of the available system resources.  

In [48], an aggregator using a combined portfolio with direct and indirect techniques of DR is proposed. The 

main problem here is to select a balanced combination of DR contracts to achieve the best results. For this 

purpose, it is proposed that the selection and the weight of each contract are defined by three different criteria: 

higher profit to the aggregator, higher utility for end-user, and higher reduction in electricity consumption. The 

work in [49] also applies the combination of two types of demand response for EVA, which avoids the limits 

of choosing a single type of DR. Incentive-based demand response is used to improve the total effect of demand 

response, while the price-based demand response forces unwilling users to participate in the program. EVA is 



the entity that provides charging facilities to a group of EVs and acts as an intermediary between the 

distribution system operator and EVs owners to solve techno-economic problems in the operation and control 

of the electrical grid [50]. Aggregators must sign an agreement with EVs user indicating remuneration, the 

method of charging or discharging, limits on power production and reduction, etc. Contreras-Ocana et al. in 

[51] develop a decentralized framework to jointly schedule loads in a commercial building and the charging 

behavior of an EVs fleet. Huang et al. [52] use a Building Integrated Energy System (BIES), a combination of 

on-site or DG technologies with thermally activated technologies to provide users with different energy 

sources, such as heating, cooling, and electricity.  

2.4 Discrete Event Approach 

Several systems in very different application areas deal with discrete quantities (typically involving counting 

integer numbers) and with processes that depend on instantaneous “events” such as the pushing of a button, a 

traffic light, the on/off status of a portion of the grid or of a charging station, etc.  

A discrete event system is characterized by a set (0,1,2…) and state transitions (or events). An event can be 

identified by a specific action taken or a spontaneous occurrence dictated by nature or suddenly met conditions 

(a water level in a reservoir, a temperature in the production plant, etc.). In discrete-state systems, the state 

changes only at a certain point through instantaneous transitions. The timing mechanism based on which the 

event takes place can be: 

▪ Time driven systems: state transitions are supposed to happen at times known in advance. If no event 

occurs, the state does not change, and the process repeats. State transitions are, in this case, 

synchronized. 

▪ Event-driven systems: every event represents a process in which times of occurrence are determined. 

They are asynchronous and concurrent. 

A discrete event system (DES) is a discrete-state, event-driven system in which the evolution of its state 

entirely depends on the occurrence of asynchronous discrete event over time. Thus, the state can only change 

at discrete points in time. As a consequence, time is not an independent variable. 

The continuous-time state equations are no longer valid, and the state equations for DES should be 

determined.  

Different systems can be represented like DES, such as queueing, computer, communication, traffic, and 

manufacturing. Often, a DES representation can help in reducing the number of variables in optimization 

problems and thus improve the computational time. In recent literature, Miao [53] focuses on prioritized DESs 

with real-time constraints, motivated by applications in power-limited systems where a trade-off exists 

between resource efficiency and system performance. For off-line control, structural properties of the optimal 

sample path have been found to reduce the search space of the optimal task execution sequence. In contrast, a 

receding horizon approach has been adopted for online control. In [54], a methodology is proposed to deal 

with planning problems in flexible manufacturing systems for the planning in large batches of production. The 



proposed methodology was tested in a plant of moderate size. The results show that planning for batches as 

large as desired can be achieved efficiently at a very reduced computational cost. In [55], a discrete event 

approach controls temperature through HVAC in buildings. An event-based control adjusts actions when 

certain events occur, which may be faster and more scalable than state-based or time-driven control methods. 

Since the choice of events is a tradeoff between the computational efficiency and the control performance, the 

authors study events for the HVAC control problem and define how to select events that capture sufficient 

state information with relatively small event space.  

The operational management of a grid with production plants and storage systems to satisfy an electrical 

demand is a problem usually faced through discrete-time models, with an optimization horizon and a time 

interval. However, a discrete-time formalization could lead to a high computational effort if the target is to 

schedule EVs.  

Later in Chapter 5, a discrete event approach is considered in the operational management of a microgrid. 

The system behavior is described as a discrete sequence of state transitions that coincides with discrete event. 

Thus, the system state immediately changes when an event occurs. The discrete event approach has been 

chosen because it reduces the number of variables in the optimization problem. Authors in [56] confirm that a 

discrete-time approach implies many decision variables when time intervals grow in number. Conversely, a 

discrete event approach can significantly reduce the number of variables and track the system behavior 

whenever an event takes place [57], [58].  

However, in the case of problems like the microgrid management presented, the discrete event approach has 

some difficulties. The problem statement is strongly conditioned by forecasted powers (e.g., renewables and 

load) in discrete time. This makes mandatory the introduction of some hypotheses. 

Certainly, the problem here considered and formalized falls among the scheduling problems [59]–[61]. This 

problem typology includes the assignment, sequencing, and timing of a given set of jobs to a given set of 

resources to provide a certain service for these jobs. In general, the solution of a scheduling problem requires 

the determination of optimal decisions as regards assignment, sequencing and timing.  In the present case, only 

“Timing decisions” are to be determined, that specify when (in which time interval) the resources execute the 

various jobs. 

In the recent literature, event-driven approaches for the integrated management of EVs, microgrids, charging 

stations, and parking areas are present in many works. In [62], the possibility of controlling the batteries' 

recharge processes (to smooth the peak energy demand during critical periods) has been investigated. In [63], 

the concept of a park and-charge system is introduced; this permits the customers to park their EVs at a parking 

lot, where the vehicles are charged during the parking time. Even model predictive control schemes are applied, 

like in [64], with the objective of finding a proper trade-off between minimizing the cost of energy withdrawal 

and the error in tracking a reference charging profile.  

All event-driven approaches previously mentioned are essentially online scheduling algorithms whose 

objective is that of “correcting” a previously determined schedule when something happens making this 

correction necessary. The necessity may occur, for instance, in case of the arrival of a new customer (a vehicle 



to be charged), or the occurrence of some failure in one of the servers (i.e., the charging stations). Instead, here 

the optimization of the charging schedule of a given set of vehicles is dealt with. 

  



Chapter 3 

Modelling, simulation, and optimization for the optimal 

management of EVs 

This chapter discusses the role of modeling and simulation for the optimal planning and management ofEVs). 

In particular, a crucial point for EVs is related to the modelling and simulation of batteries, which are very 

important to estimate the driving range of a vehicle but also for EVs’ integration in smart grids, microgrids 

and buildings as storage systems (both for smart charging and vehicle-to-grid operations). For these reasons, 

in this chapter, attention is focused on batteries’ models and management systems. Moreover, it is also 

discussed how these models are used in controllers for charging stations, and optimization models for smart 

grids and buildings. Indeed, when EVs are integrated in general power and energy systems, it is also necessary 

to model all the other elements that contribute to the overall power balance. These elements correspond to the 

electrical and thermal networks, the production plants, components like transformers, inverters, etc. at different 

spatial and temporal scales. This chapter is a general introduction to the topics of modelling and simulation. 

Then, in the next chapters, attention will be focused on the mathematical formalizations useful for the optimal 

scheduling of the EVs charging processes and the CSs’ optimal planning. A specific attention will be focused 

on the different possible representations of battery models, on how to deal with non-linear behavior and bi-

directional flows, both in the case of discrete-time and discrete event optimization problems.  

3.1 Storage systems modeling and management 

3.1.1 Modeling batteries 

Electrical storage systems play a crucial role in managing smart grids and EVs. As regards smart grids, they 

can store energy and use it in periods in which the power from the external grid has a high price or when 

demand response programs are needed. For EVs, when the V2G mode is possible, the vehicle’s battery works 

like a storage system in a smart grid, and thus it has cycles of charging and discharging. Moreover, in the case 

of EVs, it is also necessary to model the charge/discharge of the battery over a path that depends on many 

factors such as territorial characteristics, vehicle mass, velocity, acceleration, etc. Battery models aim to predict 

the operation of a battery based on discharge rate, charge rate, battery age, battery type, and temperature, and 

often, when accurate models are considered, result in complex non-linear functions [65]. There are many 

methods of modeling battery operation, and the major categories are mathematical models, electrochemical 

models, and electrical equivalent circuit networks [66]–[69]. 

Electrochemical models are based on the physics and are represented in general by non-linear equations, 

which may be simplified under many different approximations [66]. A popular model is the lumped parameter, 

which assumes a uniform spatial distribution of chemical products and it is described by a small set of 

differential equations. Indeed, this model is considered too simplified for modern Li-ion cells because it doesn’t 

well represent the complex electrochemical processes. Instead, the porous electrode theory is considered more 



reliable for Li-ion cells because it is possible to include mass transport and diffusion, side reactions, 

temperature, ion distribution, and aging. Finally, there are those models that use electrical components to model 

the battery behavior. These circuital models (of which the most common are the Thévenin models) can 

represent time-dependent effects and generally include a series of resistors and capacitors (see Fig 3.1). During 

discharging, the chemical products near the cathode and anode are consumed, and voltage gradually decreases, 

while during charging products diffuse from the battery’s body to the anode and cathode.  

 

Fig 3.1  Dynamic RC battery model. 

Fig 3.1 represents a circuital model in which Uoc is the open circuit battery voltage, R0 represents the internal 

Ohmic resistance of circuits and electrodes, Rp1 and Cp1 describe the fast battery dynamics related to reaction 

kinetics and surfaces effects on the electrodes arising from double-layer formation, whereas Rp2 and Cp2 

represent the slower dynamics typical of diffusion processes in the electrolyte and active materials. 

Also in the case of circuit-equivalent models, there exist different degrees of complexity that mainly depend 

on the numbers of elements (resistors, capacitors) that are included. Moreover, it is possible to improve these 

models by including different internal battery’s states and the effects of temperature. 

In the field of EVs, battery modeling is essential to estimate the recharging time at a charging station, the 

prediction of the range of an electric vehicle, and the optimal operation when inserted in microgrids, smart 

grids, and charging parks. In [67], a survey is presented to model batteries with specific reference to EVs. Also 

in this case, the major categories are mathematical models, electrochemical models, and electrical equivalent 

circuit networks. The literature also contains examples of combined model types (analytical–electrochemical 

models) and battery thermal models. In the specific case of battery modeling for EV application, the following 

issues are critical: 

▪ Battery State of Charge estimation (in this case, it is assessed that it is more important a rough 

estimation than a detailed model of the battery). 

▪ There is the need for real-time computations in a battery management system (BMS), and fast models 

are preferred rather than complex and accurate models. 

▪ High discharge rates might not be well represented by model simplification methods that, instead, 

work well at low discharge rates. 



3.1.2 Battery Management Systems 

A Battery Management Systems (BMS) is a tool for the monitoring and control of charging and discharging 

in a battery in order to optimally manage it, to prevent damages, and to guarantee a long life of the component 

[70]. In particular, it is important to reduce overcharging, to avoid that the battery is empty, to analyze and 

store the State-Of-Charge (SOC), to maintain low the supply voltage, and to receive and export data from/to 

external platforms. Fig 3.2 reports the architecture of a classical BMS. 

 

Fig 3.2 BMS architecture. 

A significant function of the BMS is the estimation of SOC [67], and, in this case, generally, simple models 

are used in order to guarantee a fast operation and control of the battery. In fact, the used techniques are for 

example: fuzzy-logic, least squares regression models, Extended Kalman Filter. Another important parameter 

(more difficult to estimate and measure) is the State-OfHealth (SOH), i.e. the battery’s gradual loss of 

maximum capacity. In [71], a comprehensive review is presented on battery modeling and state estimation 

approaches for advanced BMSs: the physically-based electrochemical models, the integral and fractional order 

equivalent circuit models, and data-driven models. The survey in [72]  regards methods for the SOC estimation 

for EVs. It assesses that algorithms based on control theory and intelligent algorithms are the focus of research 

in this field. A review on the SOH estimation is instead reported in [73], with specific reference to Li-Ion 

batteries.  

Regarding thermal issues, always concerning Li-ion batteries, a survey is presented in [74]. A battery thermal 

management system, which can keep the battery pack working in an acceptable temperature 

range, significantly affects the system performance and is also vital for safety and stability. The multi-

physical battery thermal management systems are divided into three categories based on different methods 

such as air-cooled system, liquid-cooled system, and heat-pipe-cooled system. For the specific case of 

electrical buses for public transportation, a survey is presented in [75]; in this case, BMSs are particularly 

important because vehicles have a shorter driving range compared with conventional internal combustion 

engines, require large battery packs, face practical challenges such as long charging time and high cost of 

battery with large size. In particular, the following issues are treated as a priority for the research in this field: 

the development of technologies such as energy storage systems, powertrains, interleaving elements, and 

electric motors; the development of tools and ICT based automation systems for energy storage systems sizing, 



power/energy management, range remedy methods, charging /design/scheduling, etc.; the modeling of 

charging demands and impact on power systems. 

BMSs can be also seen as ICT platforms that communicate with hardware in field and in relation with a local 

component, which may include simulation and optimization models and that can receive inputs from external 

platforms. The typical case is the one of a storage system/vehicle that is connected to a microgrid and/or to a 

building. In this case, the microgrid’s management system has to coordinate several components and provides 

to local controllers (i.e., BMS, building automation systems, controllers for production plants, etc.) reference 

working points. The BMS tries to follow such reference values but preserving at the same time the good health 

and operation of the component; this may result in a discrepancy between what the microgrid’s controller asks 

and what the battery really implements. For this reason, the modelling of storage systems is very important 

also for its inclusion in energy management systems for microgrids and building automation systems. 

3.1.3 Modeling energy consumption over a path 

EVs’ batteries have charging and discharging cycles during a trip. It is essential to model the state of charge 

over a path for several reasons: to quantify energy consumption to be used in optimal charging strategies, to 

develop optimization models for the optimal routing and charging of EVs, to design the size and the location 

of charging stations over a territory, and to control velocity and acceleration of an EV dynamically. The energy 

consumption over a path depends on the energy required to proceed on different slopes and the energy obtained 

by the Kinetic Energy Recovery System (KERS) in the downward stroke and the braking phases. In literature, 

there are many papers related to the motion of vehicles. In [76], a survey of the existing mathematical models 

of EVs is presented. Simple models and complex multi-body dynamic models are discussed in detail, focusing 

on their application in controllers’ design. In addition to vehicles’ dynamics, the paper consolidates dynamic 

models of the different components of an EV, including the transmission, brake, battery, wheel, and tire 

dynamics. In [77], a torque demand control approach is proposed to optimize the driving energy consumption 

of battery EVs, which consists of a demand control approach and model predictive controller. It is important 

to note that there are some simplifications of vehicle dynamics for EVs routing and charging, planning, and 

scheduling accepted in literature [78]–[80]. 

 

Fig 3.3 The forces of a vehicle in motion. 



The force required for the propulsion is the summation of the acceleration force, the force necessary for the 

elevation of the EV mgF , the force required to overcome the friction between the tires and the road rollF  and 

the drag force dragF  (see Fig 3.3) [78], [79]. The rolling resistance force rollF  is given by ( )cosroll rF C mg =

, with    the road gradient in radians or degrees, rC  is the rolling resistance coefficient (function of tire 

material, structure, temperature and inflation pressure, road roughness and material), m is vehicle mass, and g 

is the gravity acceleration. The aerodynamic drag force dragF  expressed as 
2

2

d
drag

AC v
F


=  , with dC  is the 

aerodynamic drag coefficient, A  is the electric vehicle’s frontal area,   is the air density, and v is velocity. 

The grading resistance mgF  is given by ( )sinmgF mg = . 

 The electric power consumption can be generally written as [80]:  
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where   is the mass factor for converting the rotational inertia of rotating components into translational mass, 

( )v t  the speed of the vehicle, e  the electrical motor efficiency, in  the power converter efficiency, te  the 

electric vehicle’s transmission efficiency and HVACP  the internal power consumption of the vehicle (e.g., for 

air-conditioning). 

The regenerative braking power rbP , which can be partially (according to factor [0,1]K ) recovered and 

restored into the battery, can be modeled as  

( )
2( ) ( )

= ( ) cos sin( )
2
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dt


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 
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 
 (3.2) 

It is important to note that there are other aspects that strongly influence the EVs’ consumption. The first one 

is related to the number of start-and-stops over a path. Let   be the number of start-and-stops over a path that 

can be estimated on the basis of traffic, length, road characteristics. Fig 3.4 shows the start and stop for a path 

with   =3 and constant velocity between start and stops. In this case, it is necessary to evaluate the additional 

contribution in consumption and recovery by the use of equations similar to (3.1) and (3.2) and multiplied by 

the number of start and stops   over a path. 

 

Fig 3.4 Start and stops over a path with   =3. 



3.2 Optimization models for EVs’ planning and scheduling in smart 

grids 

Optimization models are widely used for the planning and management of EVs. In particular, the main 

decision problems that should be faced are: 

▪ Optimal sizing and siting of charging stations. Decisions are taken in a long-term time horizon 

regarding installing plants and components. In particular, it is necessary to define the charging station, 

the size, the geographical location, and which bus of the electrical grid the charging station should be 

connected to. 

▪ Optimal schedule of the EVs’ charging in buildings and microgrids. This case refers to decisions in 

the short term (day-ahead, intra-day). It is necessary to define how much power to provide, when and 

at which vehicle, based on release time, due date, and deadline associated with each vehicle. Moreover, 

since the charging station is within an electrical network in which there are production plants, storage 

systems, and loads, it is necessary to jointly schedule the charging, the production and storage systems, 

and flexible loads. 

▪ Power management in charging stations. This is the case there are multiple vehicles already connected 

to a socket in a charging park. It is necessary to set all vehicles as soon as possible but respect the 

constraint of the maximum power taken from the external grid. Here the reference is to short-term and 

real-time decisions. 

▪ Optimal routing and charging of EVs. This is the case in which EVs transport goods or persons but 

also have to recharge in their path (and decide in which charging station to recharge, how much, and 

which route to follow). This case is referred to short-term decisions. 

In this thesis, the focus is on the first two classes of decision problems, which are detailed in the following. 

From the existing literature, it is clear that the siting and sizing of charging stations (CSs) are crucial issues 

for the wide spreading of EVs. Several points should be taken into account: 

▪ Territorial constraints. The characteristics of an area may influence the choice of the siting of CSs: a) 

in some places, it is not possible to install CSs due to lack of space or limits given by regulation or risk 

assessment (natural areas, hydrogeological risk, etc.); b) private citizens, commercial centers, public 

administration, and companies may have the willingness to install some CSs in priority areas. 

▪ Electrical grid management. CSs are connected to the distribution grid, and EVs represent intermittent 

and significant loads. Moreover, when V2G capabilities are enabled, EVs can be treated as a particular 

type of storage system and may help manage the electrical grid. From a purely electrical grid point of 

view, EVs charging and discharging are part of the overall power balance and optimal power flow. 

Typically, they are treated together with other loads and production systems. 



▪ Energy demand assessment. The energy demand for charging is a crucial point that, for private 

transportation, depends on user choices, traffic models, and the characteristics of the transportation 

network. For public transportation (electrical buses) energy demands for all possible paths can be 

estimated through a model of consumptions over the territory and the forecasting of the number of 

passengers and traffic modeling. 

In the literature of planning problems, Pagany et al., 2018 [81], present a survey of spatial localization 

methodologies for the electric vehicle charging infrastructure to minimize costs while guaranteeing a high 

coverage of a charging station and trip length. User choices’ modeling is present in various contributions in 

literature. For example, in [82], a User Equilibrium (UE) traffic assignment approach assesses traffic and 

energy demands in a transportation network. In contrast, in [83], [84], UE conditions are used as part of 

multilevel architectures in which they are considered as constraints of an optimization problem or part of an 

iterative procedure. Other articles extend these approaches to the case in which the electrical grid is modeled 

in detail [85]–[87] or stochastic equilibrium is considered [88]. 

Different from the sizing and sizing of charging stations, which refer to long-term decision problems for 

installing technologies, in the short term (when all CSs are all defined over the territory) there is another 

significant decision problem: the optimal scheduling of EVs’ charging. This should be integrated with the 

optimal management of the system in which CSs are located (i.e., smart grids, microgrids, buildings), as 

represented in Fig 3.5. EVs can fit this system since they represent not only a load that can be modulated but 

also a resource. In a not-so-futuristic vision, they can act as distributed energy resources since they can favor 

active short-response participation on storage resources by providing regulation services and power supply. 

 

Fig 3.5 A smart grid that includes EVs.  

In fact, with the arrival of the smart grid era and the advent of advanced communication and information 

infrastructures, bidirectional communication, and advanced metering infrastructure Energy Management 

Systems (EMSs) for microgrids and districts and home energy management systems are becoming crucial for 

the optimal scheduling of production systems, storage systems and loads [89]. An EMS is a system of ICT 



tools used by operators of electric utility grids microgrids and responsible for local areas to monitor, control, 

and optimize the performance of the generation and distribution systems. Optimization models are the 

“intelligence” of such EMSs, and in [90], a comprehensive survey of different control issues in microgrids is 

presented. All possible approaches are classified in centralized, decentralized, distributed, and hierarchical 

frameworks. In [91], the specific case of buildings is reviewed considering the management of loads under a 

demand response framework, including EVs, renewable resources, storage systems, and automation in the field 

for monitoring and control. In [92], the authors present a problem for the optimal control of a storage system 

in a microgrid. Authors in [93] propose a robust optimal energy management for a microgrid while considering 

uncertainties and find the optimal schedule solving a mixed integer quadratic programming problem. In [94], 

a multi-objective scenario-based day-ahead energy management system decreases the operation cost and 

increases a microgrid's reliability considering electrical and thermal loads. In [95], a comprehensive EMS at 

the Savona Campus pilot site includes different electrical models, EVs, storage systems, CHPs (combined heat 

and power production plants), and multiple objective functions. Wencong et al. [96] formulate a stochastic 

problem for microgrid energy scheduling, taking into account intermittent energy resources such as wind and 

solar and more controllable loads (e.g., plug-in EVs), distributed generators (e.g., micro gas turbines and diesel 

generators), and distributed energy storage devices (e.g., battery banks). In [97] the authors propose a 

decentralized strategy for the optimal charging of EVs with congestion management. Another decentralized 

approach which also take into account the uncertainties on inelastic demand is presented in [98]. You et al. 

[99] propose a charging strategy for EVs stations in the dynamic electricity pricing environment. The 

scheduling problem is formulated as a constrained mixed-integer linear program to capture the discrete nature 

of the battery states, i.e., charging, idle, and discharging. In the work proposed in [100] the authors solve the 

scheduling problem while taking into account the battery degradation. Authors in [101] also consider battery 

degradation as well as uncertainties on the energy prices in the optimal schedule of some EVs. Authors in [56] 

present a model for the optimal scheduling of some EVs in a microgrid characterized by the presence of 

renewables, storage systems, and traditional plants. It is thus clear that the primary modeling needs regarding: 

▪ Production systems (both renewables and fossil fuel plants); 

▪ Thermal and electrical storage systems; 

▪ Batteries of EVs in charging and discharging modes; 

▪ Charging stations; 

▪ Thermal and electrical distribution networks; 

▪ Performance indicators: costs, emissions, primary energy savings, etc. 

As described in the following chapters, optimization problems can be found in the literature for discrete-time 

and discrete event optimization problems.  

In the former case, required information and models are reported in Fig 3.6. Firstly, it is necessary to obtain 

the following data required in each time interval of the optimization horizon: 



▪ The prediction of power from renewable resources, which is calculated based on forecasted 

environmental parameters (temperature, solar radiation, wind velocity, etc.), and that can be derived 

by physically-based models, data-driven models, and the model of the plants; 

▪ Energy contracts can be used to derive the prediction of unit costs and benefits; 

▪ Forecasts over loads, which are generally derived by black-box models and the use of machine learning 

techniques; 

▪ Information about vehicles arrival, energy request, and due date. 

▪ Initial state of charge of the batteries (measured in the field). 

After all inputs have been calculated, it is necessary to run the optimization model with the desired 

performance criteria (costs, emissions, primary energy savings, etc.) and the system model’s constraints. 

By running the optimization problem, one obtains the optimal schedule in each time interval for all 

production plants and components. 

 

Fig 3.6 Inputs and outputs for an optimization model with time discretization. 

A similar approach can be done in the case of discrete event optimization, in which time intervals are not 

present and there is a system change whenever an “event” occurs at a certain time. The main difference, in 

terms of information in input and output to/from the optimization problem, is that the EMS collects data in 

discrete time, but then it is required to fit them with an analytical function (as described in the following 

chapters). Moreover, all control and state variables are not discretized in time. Fig 3.7 reports the inputs and 

outputs for an optimization problem in a discrete event approach. 



 

Fig 3.7 Inputs and outputs for an optimization model in a discrete event approach. 

Some examples of a discrete event approach are presented in [57], [58], where the authors use this approach 

in the optimal scheduling of some EVs charging processes.  



Chapter 4 

Optimal charging of EVs in smart grids discrete time 

optimization 

4.1 Introduction 

In this chapter, attention is focused on formalizing a discrete-time optimization problem for the scheduling 

of EVs. Specifically, all variables and parameters are discretized in time (therefore on a fixed time interval of 

length T).  

The choice of the time interval length and the time horizon is particularly important because it influences the 

number of decision variables and constraints and thus has implications on the run time of the optimization 

problem solution. Optimization problems for the scheduling of EVs are generally inserted in EMSs and 

modeled in discrete time [102]–[106]. EVs are typically considered as forecasted static loads in the decision 

models without considering the decisions related to their scheduling based on arrival, desired energy, and due 

dates. The reason is that EVs are few over the territory. Often a reservation service is not available, and EMSs 

do not exploit the similarities that the charging process has with the scheduling of manufacturing systems. In 

a future in which EVs will increase considerably, there will be a need for designing and managing the process 

in a more structured way to limit queues and negative impacts on the electrical grid. Such an approach is 

particularly interesting in the case of demand response programs, i.e. when there is the necessity of shifting 

power demands to help the distribution grid manager and/or receive remuneration from a market aggregator.  

In the literature,EMSs based on optimization models are used for the operational management of production 

and storage systems and also to manage demand response programs (see, for example, the works proposed in 

[95], [107]). EVs are generally considered as additional loads, and their schedule is not detailed. Usually, 

optimization-based EMSs are used to define the optimal operational management including cost and 

environmental performance indexes for a set of different technologies (renewables, EVs, traditional sources 

and storages). Zhao et al. [108] in this purpose, reviews different charging methodologies and strategies. 

Instead, the work of Delaimi et al. [109] investigates the contribution of plug in EVs in smart grids. While 

Allard et al. [110] compare the impact of smart charging strategy compared to traditional EVs charging in 

power grids with large penetration of renewables. Authors in [111] develop a strategy to regulate the vehicle's 

charging process, introducing different priorities for the various objectives, like achieving maximum 

flexibility, the effective management of the power flows to smooth the demand curve, increasing the system's 

power quality. 

In this chapter, the integration of EVs in smart grids is addressed. In particular, the decision problem is here 

characterized by the definition of the optimal charging strategies to feed EVs and the scheduling of production 

plants and storage systems. Specifically, the charging station is considered like a machine that has to schedule 

different jobs (i.e., EVs) whose sequence is fixed (according to the arrival order). Still, the charging pattern 

and time have to be defined. The approach is inspired by approaches usually adopted in smart manufacturing 



systems. The decision variables are represented by optimal scheduling of power plants and the recharging 

process of EVs while different classes of constraints have been introduced. 

The resulting optimization problem is deterministic, non-linear, and has continuous and binary variables, and 

it is based on forecasting for demands and renewable power availability. 

A microgrid's system model with a detailed dissertation about the electrical storage is presented in the 

following Section (4.2). Then, Section 4.3 reports the modeling of EVs. Finally, in Section 4.4, the 

optimization problem is formalized and then applied to a case study in Section 4.5. 

4.2 The system model 

For the entire thesis, these general rules about nomenclature hold: 

▪ upper case letters will be parameters. 

▪ lower case letters will be variables. 

▪ subscript letters will be indices. 

▪ superscript letters will be descriptive. 

▪ minimum (maximum) values are represented with a line below (above) the letter. 

The proposedsystem consists of a local area composed of the following elements (see Fig. 4.1) production 

from renewable resources (wind turbines and photovoltaics), internal combustion engines, electrical storage 

systems; a connection with the main grid, a CS for EVs, electrical loads.  

 

Fig. 4.1 The considered system 

The forecasts in each time interval (for all the duration of the optimization horizon) of power produced by 

renewable resources have been calculated based on meteorological forecasting and/or black-box models and 

machine learning techniques. To define the mathematical model, the following sets are introduced 



▪  1,..., TT N=  set of time intervals. 

▪  1,..., FL N=  set of fossil fuel generators. 

▪  1,..., SM N=  set of storage systems. 

▪  1,..., EVEV N=  set of EVs. 

The power flows in the system are: 

▪ ,

EV

i tp , that is the power flow to the i-th EV; 

▪ G

tp , that is the power flow from the main grid to the microgrid; the active sign convention is adopted; 

namely, the power flow is assumed positive when power is drawn (bought) from the main grid (and 

negative when power is given (sold) to the main grid; 

▪ 
PV

tP (
W

tP ), that is the (monodirectional) power coming from photovoltaic power plants (wind turbines) 

▪ ,

F

l tp , that is the (monodirectional) power flow from the l-th energy source fed by fossil fuel to the 

microgrid; 

▪ 
D

tP , that is the (monodirectional) power flow representing the non-deferrable power demand;  

▪ ,

S

m tp , that is the (bi-directional) power flow from the m-th energy storage element; this flow is assumed 

positive when power is drawn from this element. 

Photovoltaic and wind power forecasts must be provided as data, as well as the power demand.  

The net load is defined as the summation of all the contribution given by the renewables and the power 

demand. It is possible to write 

D W PV NL

t t t tP P P P− − =  t T  (4.1) 

The power balance constraint that should be satisfied is given by 
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where 
G

tp  is power exchanged with the main grid, ,

F

l tp  is the power from the l-th fossil fuel production plant, 

,

S

m tp  is the power exchange with the m-th storage system, ,

EV

i tp  is the power exchange with the i-th electric 

vehicle connected to the charging station, and 
NL

tP  is the power demand. Note that the EVs and the storage 

have opposite sign in the equation. This is because in the thesis the EVs are considered as a load while th 

storage is considered as a generator. 

Each storage system can be represented by the following state equation (active sign convention is 

considered): 
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where   is time interval length, ,

S

m tx  is the state of charge of the m-th battery with a capacity 
S

mCAP  [kWh], 

,S out  is efficiency in discharging mode, and ,S in  is efficiency in charging mode.  

Note that 
,

,

S out

m tp  is power exchange during discharging and 
,

,

S in

m tp  is power exchange during charging, being 

, ,
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Note that the mutual exclusiveness of 
,

,

S out

m tp  and 
,

,

S out

m tp  is ensured by the presence of the charging and 

discharging efficiencies in (4.3). This may be not evident at a first sight, but since the energy selling price is 

always lower than the energy buying price, the waste of energy that could be determined by a simultaneous 

charge/discharge of the battery cannot provide a benefit in the objective function and thus it is avoided. 

4.2.1 Piecewise linear storage modelling 

In real storage systems, the maximum power level depends on the state of charge [107]. Specifically, 

considering a storage system characterized by its battery management system and that receives commands 

from a central controller like an EMS for a microgrid, the maximum power that can be requested is lower when 

approaching the higher values of the state of charge. 

This phenomenon can be expressed through a piecewise linear formulation as follows 
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where 
,S rated

mP  is the rated power [kW], and , ,S S S

m m mA C D  are parameters typical of the specific storage system. 

The model (4.5) allows defining a polytope (see Fig. 4.2) in which the values of the power and the state of 

charge (SOC) are acceptable (the light grey area in the figure). 

 



 

Fig. 4.2 Piecewise storage constraints 

The feasible area represented in Fig. 4.2 is defined by the constraints 
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where 
S

mX and 
S

mX  are the minimum and maximum working limits for the state of charge, 
S

mP  is the maximum 

power the storage system can deliver when discharging (assumed constant) and ,( )S S

m tP x  is the (negative) 

lower limit of the power the storage can absorb when recharging, expressed as a function of the state of charge. 

4.3 Modelling EVs scheduling 

The EVs are identified by index i, which is assigned according to the arrival order. Since it is a discrete time 

approach, all variables are considered in discrete time instants t with unit length of ∆. Finally, the overall 

optimization horizon is t T  and consists of TN  time intervals. The charging process is defined by two 

different time intervals: 

▪ ( , 1)st st

i it t + i.e., the starting interval in which EV i begins the charging procedure; 

▪ ( , 1)fi fi

i it t + i.e., the final interval in which EV i concludes the charging procedure. 

The following data characterize each EV: 

▪ 
rel

iT  the release time in which the vehicle is available to charge. 



▪ dd

iT  the due-date time at which the charging process of the vehicle should be concluded. 

▪ dl

iT the deadline time at which the charging process of the vehicle must be concluded. 

▪ i  the tardiness penalty cost [€/h]. 

The state of charge of each vehicle is governed by first order integrator system 

( ), , , ,

, 1 , , ,

EV EV EV in EV in EV out EV out

i t i t i i t i i tEV

i

x x p p
CAP

+


= −  −  ,t T i EV   (4.9) 

,

EV EV EV

i i t iX x X   ,t T i EV   (4.10) 

,

,

,

, ,

( )

EV rated EV EV

i i t iEV EV

i t EV EV EV EV EV

i i t i i t i

P if x A
P x

C x D if x A

 
= 

+ 
 ,t T i EV   (4.11) 

,

, ,0 ( )EV in EV EV

i t i tp P x  −  ,t T i EV   (4.12) 

,

,0 EV out EV

i t ip P   ,t T i EV   (4.13) 

where 
,

,

EV out

i tp  is power exchange during discharging and 
,

,

EV in

i tp  is power exchange during charging, being 

, ,

, , ,

EV out EV in EV

i t i t i tp p p− + =  ,t T i EV   (4.14) 

Note that the battery model il the same described in equations (4.5)-(4.8), substituting the variables with the 

one relevant to the EVs. Moreover, note that the mutual exclusiveness of 
,

,

EV in

i tp  and 
,

,

EV out

i tp  is ensured by the 

presence of the charging and discharging efficiencies in (4.9). In fact, a simultaneous charge and discharge 

would lead to a waste of energy. 

4.4 The overall optimization problem  

The objective function includes four different terms of cost: 

▪ Fc : non renewable sources operating cost; 

▪ buyc : main grid energy purchase cost;  

▪ sellc : main grid energy selling benefit; 

▪ tardc : cost associated with the tardiness of the charging processes. 

The control variables for the optimization problem are.  

▪ 
G

tp  (unrestricted in sign): the power exchanged with the main grid [kW]; 

▪ ,

F

l tp : the power from the l-th fossil fuel production plant; 

▪ ,

S

m tp (unrestricted in sign):  the power exchange with the m-th storage system; 



▪ ,

EV

i tp  (unrestricted in sign):  the power exchange with the i-th electric vehicle connected to the charging 

station;  

▪ ( )st fi

i it t time in which vehicle i starts (finishes) the charging process; 

▪ ,

EV

i t : binary variable equal to 1 if vehicle i is connected to the charging station in a time interval 

( ), 1t t +  and 0 otherwise; 

The state variables for the optimization problem are.  

▪ ,

EV

i tx : state of charge of i-th vehicle at time t. 

▪ ,

S

m tx : state of charge of m-th storage at time t. 

Before introducing the cost function some further constraints must be introduced. In fact, it is necessary to 

avoid that more than sockN  are charged simultaneously 

,

EV sock

i t

i EV

N


  t T  (4.15) 

The binary variable ,

EV

i t  is linked with the power exchanged with the i-th EV by 

, , 0EV EV EV

i t i tK p −   t T  (4.16) 

where 
EVK  is a large number [112]. 

Note that, this avoids the charging of the i-th EV if it is disconnected ( , 0EV

i t = ). 

There is also the need of introducing a constraint that imposes the consistency of the beginning of the 

charging process with the release time 

st rel

i it T  i EV  (4.17) 

Similarly, the charging procedure must end before the deadline 

1fi dl

i it T +  i EV  (4.18) 

A further constraint has the function of relating the state of the charging station with the time interval during 

which the charging of a vehicle i takes place 

( )

( ) ( )( )

( ) ( )( )  

,

,

,

0 0

0 1 0 0

0 1 0 0,1

rel EV

i i t

rel f EV

i i i t

rel f EV

i i i t

if T t

if T t or t t

if T t and t t







−  → =

−  − +  → =

−  − +  → 

,t T i EV   (4.19) 



Constraints (4.19) can be substituted by the following linear constraints 

( ) ( ),1 EV avail rel

i t iK T t−  −  ,t T i EV   (4.20) 

( ) ( ),1 ( 1)EV avail fi

i t iK t t−  − +  ,t T i EV   (4.21) 

Afterwards, it is imposed that the EV leaves the charging station only when reaching the desired state of 

charge. 

,

,

EV EV fi

i t ix X=  ,fi

it t i EV=   (4.22) 

Then, it is necessary to consider the constraints relevant to the dynamics of the charging process. 

At the beginning of the charging process the state of charge must be equal to the initial one 

,

,

EV EV st

i t ix X=  ,st

it t i EV=   (4.23) 

Moreover, the power exchange with the external should be limited within the minimum and maximum values 

G G G

tP p P−    t T  (4.24) 

Similarly, the rated power should be considered for production plants from fossil fuels. That is, 

,0 F F

l t lp P   ,t T l L   (4.25) 

Finally, the overall objective function is given by 

min ( )F buy sell tardc c c c+ − +   (4.26) 

with 

,

F F F

l t

t T l L

c C p
 

=     (4.27) 

( )max ,0buy buy G

t t

t T

c C p


=    (4.28) 

( )max ,0sell sell G

t t

t T

c C p


=  −   (4.29) 

( )max 1 ,0tard fi dd

i i i

i EV

c t T


=  + −   (4.30) 

where (4.27) represents the overall energy production cost for all non-renewables, where FC  [€/kWh] is the 

unit cost; (4.28) is the cost paid to buy energy from the main grid, with 
buy

tC  [€/kWh] the time-varying unit 



price; (4.29) is the income due to the sale of energy to the main grid, with 
sell

tC  [€/kWh] the time-varying unit 

benefit; (4.30) is the total tardiness cost with respect to the due date. 

The optimization problem in (4.26) (MINLP) is solved with constraints (4.2)-(4.25). 

4.5 Case study Application 

In this Section, the developed optimization problem is applied to a case study. There are two traditional 

plants, one storage system, one photovoltaic plant, one wind turbine, one charging station equipped with only 

one socket ( 1sockN = ), and electrical demand.  

Data are reported in Table 4.1 (parameters of the microgrid) and Fig. 4.3 (forecasted power demand and 

production from photovoltaics) for a whole day. 

 

Fig. 4.3 Load and renewable generation 

The piecewise constant pattern of unit cost 
buy

tC  [€/kWh] for the energy purchased by the external grid is 

shown in Fig. 4.4, while the energy selling price 
sell

tC  is kept constant to 0.08 [€/kWh]. 



 

Fig. 4.4 Buying price pattern 

In Table 4.1 the overall parameters of the microgrid’s plants are reported 

Table 4.1 Microgrid data 

Parameter Value Parameter Value 

1

FP ,  30[kW],  
SD  80 

2

FP  65[kW] 
S

mX   0.2 

SCAP  100[kWh] 
S

mX  0.8 

,S out  1.1 
S

mP , 35[kW] 

,EV out  1.1 
FC   0.2 [€/kWh] 

,S in  0.9 
GP  300 [kW] 

,EV in  0.9 
,S rated

mP  -35 [kW] 

S

mA ,  0.8 EVK  1000 

EV

iA  0.8 
arrivalK  1000 

The optimization problem has been implemented , by using Lingo optimization tool [113] on a PC Intel i7-

6500U - 3.5GHz, 16 GB RAM. The overall optimization horizon consists of 24 hours and a time interval of 

15 minutes (Δ =0.25 [h]). In the proposed simulation, four vehicles are considered, whose data are reported in 

Table 4.2. 

Table 4.2 EVs’ data 



Parameter Vehicle 1 Vehicle 2 Vehicle 3 Vehicle 4 

,EV init

iX  0 0 0 0 

,EV fi

iX  0.6  0.75  0.95  0.53 

EV

iCAP  22 [kWh] 25 [kWh]  31 [kWh]  22 [kWh] 

EV

iP   13[kW] 13[kW] 13[kW] 13[kW] 

rel

iT  1.25[h] 2.5[h]  4.5[h] 8.75[h] 

dd

iT  5.5 [h] 9 [h] 12.5 [h] 15 [h] 

dl

iT  7.5 [h] 12 [h] 15.75 [h] 17.5 [h] 

i   0.1 [€/h] 0.1 [€/h] 0.1 [€/h] 0.1 [€/h] 

This instance of the scheduling problem has been solved in 33[s] with a cost of 340.12 [€]. The detailed 

scheduling of the microgrid is reported in Fig. 4.5. 

 

 

Fig. 4.5 Optimal microgrid scheduling 

It is important to note that the power into the storage system and into the vehicles is negative when they are 

charged. Fig. 4.5 shows a consistent behavior of the traditional generators concerning the buying price pattern, 

as a matter of fact, are used only when the fuel price FC  is less than 
buy

tC . 

Fig. 4.6 depicts the Gantt diagram of the charging station (corresponding to the evolution of ,

EV

i t  variable). 

As can be seen from this figure the process of vehicle 3 is preempted with respect to vehicle 4. 

Finally, as regards the charging vehicles, scheduling is reported in Fig. 4.7. Each vehicle is recharged with 

respect to the timing constraints. Particularly is the power pattern of vehicle 3, where is clear the activation of 

the constraints related to the battery charge (4.11) when the state of charge is close to 90%, the power absorbed 

is far from the maximum (i.e., 13 [kW]). 



 
Fig. 4.6 Charging station Gantt diagram 

 
Fig. 4.7 Optimal EV scheduling 

 

  



Chapter 5 

Optimal charging of EVs in smart grids: discrete event 

optimization for a-periodic scheduling 

In the next subsections, a discrete event approach is proposed for the optimal scheduling of EVs in which 

vehicles are the customers and charging stations are the machines. It has a central importance to highlight that 

in this formulation of the problem it is considered a system with one charging station, equipped with a single 

socket. The optimization model is applied to a real case study in the Savona Campus of the University of 

Genoa, which includes the connection to the main grid, different renewable source plants, an electrical storage 

system, a conventional plant for power generation, and a vehicle charging station. 

Specifically, the rest of the chapter is organized as follows. In Section 5.1 the system model will be 

introduced. Section 5.2 is dedicated to the piecewise linear model of the battery. In Section 5.3 the developed 

approach for determining the optimal schedule and the actual power flow is presented. The application of the 

proposed model to a case study is described in Section 5.4. 

Moreover, in Section 5.5 an extension to the multi-socket formalization is provided. Finally, in Section 5.6 

a discussion about the periodic scheduling is presented. 

5.1 The considered model 

As seen in the previous chapter, these general rules about nomenclature hold: 

▪ upper case letters will be parameters. 

▪ lower case letters will be variables. 

▪ subscript letters will be indices. 

▪ superscript letters will be descriptive. 

▪ minimum (maximum) values are represented with a line below (above) the letter. 

Fig. 5.1 represents the system considered in this model formulation. 

 



 

Fig. 5.1The considered system. 

In order to define the mathematical model, the following sets are introduced 

▪  1,..., TT N=  set of time intervals. 

▪  1,..., FL N=  set of fossil fuel generators. 

▪  1,..., SM N=  set of storage systems. 

▪  1,..., EVEV N=  set of EVs. 

The power flows in the system are: 

▪ ( )EV

ip t , that is the (monodirectional) power flow to the i-th EV; obviously, ( ) 0EV

ip t =  if at time instant 

t there is no vehicle under charge;  

▪ ( )Gp t , that is the (bi-directional) power flow from the main grid to the microgrid; the active sign 

convention is adopted; namely, the power flow is assumed positive when power is drawn (bought) 

from the main grid (and negative when power is given (sold) to the main grid; 

▪ ( )PVP t ( ( )WP t ), that is the (monodirectional) power coming from photovoltaic power plants (wind 

turbines) 

▪ ( )F

lp t , that is the (monodirectional) power flow from the l-th energy source fed by fossil fuel to the 

microgrid; 

▪ ( )DP t , that is the (monodirectional) power flow representing the non-deferrable power demand;  

▪ ( )S

mp t , that is the (bi-directional) power flow from the m-th energy storage element; here again, this 

flow is assumed positive when power is drawn from this element. 



The value of the state of charge at time instant t in the m-th storage element will be denoted by ( )S

mx t  

In the considered model, it is assumed that the service sequence is given, that is, the vehicles are charged 

following the order of their arrivals. Thus, the only decisions to be taken in the considered scheduling model 

are those concerning the timing of services (in this case, the starting time and the duration of the charging time 

intervals). 

For each vehicle Vi requiring the charging service, it is assumed that all information regarding arrival times, 

charging requests, and departure due times is known a priori. Such information is reported in Table 5.1 in 

detail. 

Table 5.1 Known parameters for EVs. 

Symbol Name Description 

rel

iT  
Release time the time instant at which the vehicle becomes available for 

service (this may correspond to the forecasted arrival time at 

the service station) 

dd

iT  
Due date the time instant at which the service for the vehicle should be 

completed (according to the customer’s preference) 

dl

iT  
Deadline the time instant at which the service must be completed 

(mandatory) 

iE  Energy request the amount of energy requested for the charging service 

i  Penalty coefficient the cost paid for a unit delay (with respect to the due date for 

the service completion, ddi), per unit of energy requested. It is 

expressed in [€/(h)]. 

In the considered model, the energy request iE  by the i-th vehicle must be completely satisfied. Thus, 

customer dissatisfaction may only refer to tardiness concerning the due date and not to the lack of complete 

demand satisfaction. In addition, no preemption in the charging services is allowed. It is assumed that the 

service station manager cannot refuse service to any customer. Finally, the presence of deadline constraints 

(regarding service completion times) is taken into account.  

The service sequence can thus be represented as in Fig. 5.2, where the lengths of the rectangles corresponding 

to the various services represent the charging service durations. 

 

Fig. 5.2 The service sequence for the charging of vehicles. 

The completion time instant of the charging of the i-th vehicle is denoted as 
C

it . Then, the time interval 

between the charging completion time instants of two subsequent vehicles can be divided into (see Fig. 5.3): 

▪ 
CH

it  that is the charging time (interval) for the i-th vehicle; 



▪ IDLE

it  that is the idle time interval before the charging of the i-th vehicle. 

 

Fig. 5.3 The time intervals between two successive completion time instants. 

Having chosen to adopt a discrete event representation of the dynamics of the system, the only values of the 

state variables of the system (i.e., ( )S

mx t ) that must be evaluated are those corresponding to the completion of 

the services, that is ( )S C

m ix t , assuming that the initial state ( )0S

mx  is given. 

Note that, for brevity all the variables referred to the interval corresponding to the i-th EV, will assume the 

index i .  

Then, the following restrictive assumption is introduced, with the objective of defining a parametric (instead 

of a functional) optimization problem. The values of the power purchased/sold from/to the main grid ( ),Gp t  

and the (costly) power generated by the l-th fossil source ( )F

lp t  l L  are kept at a constant value (resp. 
1G

ip  

and 
1F

lp ) within each idle time interval ( )1 1,C C IDLE

i i it t t− − +  and at another constant value (resp. 
2G

ip  and 
2F

lp )), 

within each charging time interval ( )1 ,C IDLE C

i i it t t− + , for ,i EV l L  . 

Although the value of the power flow to the charging station ( )EVp t  cannot be kept constant within each 

charging time interval ( )1 ,C IDLE C

i i it t t− + , owing to the necessity of modelling the non-linear behavior of the 

vehicles’ battery, in a first formulation of the problem the average values 
EV

ip  i EV  will be considered as 

decision variables. Note that due to the nature of the model, the index relevant to the vehicle (i) is automatically 

referring to the specific time interval in which the charging process will take place. In fact, the power 
EV

ip  is 

the power flow to the i-th EV in the time interval ( )1 ,C IDLE C

i i it t t− + . 

It is assumed that the forecasts of the renewable powers ( )WP t  and ( )PVP t , as well as the power demand 

( )DP t , and the selling/buying prices ( ( )sellc t  and ( )buyc t ) to/from the main grid, are available and completely 

reliable for 0t  . That is to say, no uncertainty modeling is introduced. Thus, the function ( )NLP t  which 

represents the net load and is defined as 

( ) ( ) ( ) ( )NL D W PVP t P t P t P t= − −   (5.1) 



5.2 Piecewise linear battery modelling 

In real storage systems, the maximum injectable power depends on the state of charge, as described in the 

results of [92]. Specifically, considering a storage system, equipped with its battery management system, which 

receives commands from a central controller like an EMS, it happens that, beyond a certain value of the state 

of charge, the maximum power that can be injected is lower than the rated value. This phenomenon can be 

(approximately) represented through a piecewise linear model as depicted in Fig. 5.4, where the feasible pairs 

(state of charge, injectable power) are those inside or on the contour of the grey polygon. For simplicity's sake, 

the following model for the EV's battery is presented in this section. However, it can be easily converted to the 

one relevant to the storage by specifying the proper variables' names in the superscripts. 

 

Fig. 5.4 Piecewise linear battery constraints (charging of EVs). 

The function represented in Fig. 5.4, providing the maximum injectable power for any value of the state of 

charge, can be expressed as 

,

( )
EV rated EV EV

EV EV i i i

i EV EV EV EV EV

i i i i i

P if x A
P x

C x D if x A

 
= 

+ 
 i EV  (5.2) 

where of course parameters 
EV

iA , 
EV

iC  and 
EV

iD  must satisfy the condition 
,EV EV EV EV rated

i i i iC A D P+ = . Besides, 

( )1 0EVP =  and thus it turns out 
EV EV

i iD C= − . 

Hence parameter 
EV

iD  is simply given by 

,

1

EV rated
EV i
i EV

i

P
D

A
=

−
 i EV  (5.3) 

In this chapter, it is assumed that the charging process of a vehicle battery takes place according to the profile 

represented in Fig. 5.5 by the blue line, indicated in the following as the function 



( )

,

( )
1

EV init EV EV

i i iEV EV

i EV EV EV EV

i i i i

p if x B
P x

D x if x B

 
= 

− 

 i EV  (5.4) 

 

Fig. 5.5 The charging profile of the battery. 

where 
,EV init

ip  is the “nominal” power at which the charging process takes place, and parameter 
EV

iB  satisfies 

the condition ( ) ,1EV EV EV init

i i iD B p− = , that is 

,

1
EV init

EV i
i EV

i

p
B

D
= −  i EV  (5.5) 

Of course, the choice of imposing that the charging process takes place according to a profile like the one 

represented in Fig. 5.6 is arbitrary. In fact, any profile lying below the piecewise function in (5.2) is acceptable. 

Nevertheless, as the aim is to defining a parameter optimization problem (and not a functional one), it is 

imposed that the charging profile is characterized by only a parameter, like 
,EV init

ip  in Fig. 5.5. 

The following conditions are assumed to be valid 

,EV init EV

i iX A  i EV  (5.6) 

,EV EV fin

i iB X  i EV  (5.7) 

so that the actual charging profile is that represented in Fig. 5.6. The above assumption that (5.6) and (5.7) 

hold is equivalent to assuming that the requested charging service for any vehicle starts from relatively low 

values and finishes at relatively high values of the state of charge of its battery. 



 

 

 

Fig. 5.6 The actual power profile of the battery (red line). 

In the following, the value of 
,EV init

ip , that of course has to satisfy the condition 
, ,EV init EV rated

i ip P , will be 

considered as a decision variable of the problem. 

On this basis, if the (known) initial state of charge of the battery at the beginning of the charging process is 

assumed to be 
,EV init

iX  and that the (known) required state of charge, at the end of the charging process is 

,EV fin

iX , the time needed for the charging process can be evaluated as  

( )

,

,

EV fin
i

EV init
i

X
CH EV

i i EV EVX
i

dx
t CAP

P x
=   i EV  (5.8) 

Given the above expression of 
EV

iB , condition (5.7) becomes  

,
, 1

EV init
EV fin i
i EV

i

p
X

D
 −  i EV  (5.9) 

that is, 

( ), ,1EV init EV EV fin

i i ip D X −  i EV  (5.10) 

The above inequality represents a constraint over the choice of the parameter 
,EV init

ip  that is induced by the 

value of the desired 
,EV fin

iX . 

Thus, the time interval required for charging can be evaluated as  
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 i EV  (5.11) 

Note that in (5.11) it has been put into evidence the dependence of the duration of the charging service time 

on the initial input power 
,EV init

ip . 

Moreover, it must be recalled that the following constraints 

, ,0 EV init EV rated

i ip P   i EV  (5.12) 

5.3 The proposed optimization approach 

To formalize the considered discrete event scheduling problem, the following approach is proposed. 

5.3.1 Expressing the length of the charging interval as a function of the initial 

power 

In fact, assuming the charging profile in Fig. 5.6 has been selected, ( )EV

ip t  can be represented as a function 

of the state of charge ( )EV

ix t  as given by (5.4).  

In the following, the simplified notation  
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will be used. 

The problem is that of integrating the differential equation 

( )p t
x

CAP


=   (5.13) 

over the considered time interval. Note that   is the charging efficiency and it is assumed to be constant during 

the charging process. 

Integrating to the interval 𝑋𝑖𝑛𝑖𝑡 ≤ 𝑥 ≤ 𝐵 

In this interval  

( ) initp t p=   (5.14) 

then 

initp
x

CAP


=   (5.15) 

and thus, the solution is simply 

( )
init

init p
x t X t

CAP


= +   (5.16) 

The time instant 't  at which ( )x t  reaches the value B  must be determined. That is 

' '
init init

init

init

p B X
B X t t CAP

CAP p

 −
= +  =


  (5.17) 



Since from (5.5) 1
initp

B
D

= − , it is possible to obtain 

1

'

init
init

init

p
X

Dt CAP
p

− −

=


  (5.18) 

Of course, it must be 1 'C IDLE C

i i it t t t− + +  .  

Thus, it is 

1 1( ) 'init C IDLE C IDLE

i i i ip t p for t t t t t t− −= +   + +   (5.19) 

Integrating to the interval 𝐵 ≤ 𝑥 ≤ 𝑋𝑓𝑖𝑛 

In this interval 

( )( ) 1p t D x= −   (5.20) 

Thus, the differential equation that has to be integrated is 

(1 )D x
x

CAP

 −
=   (5.21) 

that is 

D D
x x

CAP CAP

 
+ =   (5.22) 

with the initial condition ( ')x t B= . 

Solving the above differential equation (substituting
D

CAP


), it is obtained 

( ) ( )
( )

( )
'

( ) 1 ' 1 1 '
D

t t
CAPx t t t B e t t


− −

= − + − −   (5.23) 

Question. When does the charging process end? 

The conclusion of the charging process takes place when 

( ) finx t X=   (5.24) 

then the charging process ends at time instant ''t , where ''t  satisfies 



( )
( )

( )

( )

'' '

'' '

1 1

1

1

1
'' ' ln

1

D
t t

fin CAP

Dfin
t t

CAP

fin

X B e

X
e

B

CAP X
t t

D B


− −


− −

= + −

−
=

−

 −
− = −  

 − 

  (5.25) 

But, of course, it must be '' CH

it t= . And thus, 

1
' ln

1

fin
CH

i

CAP X
t t

D B

 −
= −  

 − 
  (5.26) 

and thus the expression of 
CH

it as a function of 
initp is 

( )1 11
ln

init
init

fin

CH

i init init

p
X D XCAP Dt

p D p

 
− −   −

 = − 
    

  

  (5.27) 

Of course, the power profile is given by 

( )

1 1

'

1

'
( )

'

init C IDLE C IDLE

i i i i

D
t t

init C IDLE CCAP
i i i

p if t t t t t t
p t

p e if t t t t t

− −


− −

−

 +   + +


= 
 + +  

  (5.28) 

5.3.2 Determining the minimum length of the charging interval 

As the physical meaning of 
CH

it , this function is a monotonic nonincreasing function (see Fig. 5.7) and its 

minimum coincides with the maximum value of 
initp , i.e. ratedP . Note that the function in (5.27) is in fact a 

function of 
initp . 



 

Fig. 5.7 Length of the charging interval according to the initial power. 

Then, by substituting ratedP  into (5.27), the minimum admissible duration for the charging interval 
CH

it  is 

found, namely CH

iT , given by 

( )1 11
ln

rated
init

fin

CH

i rated rated

P
X d XCAP DT

P D P

 
− −   −

 = − 
    

  

  (5.29) 

From this equation it is clear how this minimum length of the time interval depends only on the data and can 

be calculated during the pre-processing. 

5.3.3 Solving the optimization problem 

An optimization problem is considered, which provides the scheduling of the charging processes determined 

considering average power flows. Specifically, the objective function which is composed by the following 

terms: 

▪ The costs/benefits of energy taken/sold from/to the main grid during idle (
1G

ic ) and charging (
2G

ic ) 

time intervals; 

▪ The cost of production by power plants from fossil fuel plants during idle (
1F

ic ) and charging (
2F

ic ) 

time intervals; 

▪ The tardiness costs of the various vehicles (
tard

ic ). 

where terms referring to the idle intervals are characterized by a “1” in the apex, the ones referring to the 

charging intervals by a “2”. 



Namely, the optimization objective is 

 1 2 1 2

1

min
N

G G F F tard

i i i i i

i

c c c c c
=

+ + + +   (5.30) 

To express the first two terms inside the summation, it is convenient to define 

 1, 1max ,0G in G

i ip p=  i EV  (5.31) 

 1, 1max ,0G out G

i ip p= −  i EV  (5.32) 

and similarly 

 2, 2max ,0G in G

i ip p=  i EV  (5.33) 

 2, 2max ,0G out G

i ip p= −  i EV  (5.34) 

so that 

1 1, 1,G G in G out

i i ip p p= −  i EV  (5.35) 

2 2, 2,G G in G out

i i ip p p= −  i EV  (5.36) 

Thus, 

( ) ( )
1 1

1 1

1 1, 1,

C IDLE C IDLE
i i i i

C C
i i

t t t t

G buy G in sell G out

i i i

t t

c C t dt p C t dt p
− −

− −

+ +     
   = − 
        
   i EV  (5.37) 

( ) ( )
1 1

2 2, 2,

C C
i i

C IDLE C IDLE
i i i i

t t

G buy G in sell G out

i i i

t t t t

c C t dt p C t dt p

− −+ +

     
   = − 
        
   i EV  (5.38) 

It is important to note that the integral terms appearing in (5.37) and (5.38), are indeed known functions of 

C

it , 1

C

it − , and 
IDLE

it , since it has been assumed the availability and the reliability of a forecast of the patterns 

( )buyC t  and ( )sellC t .  

The production costs for each non-renewable plant l, is given by of the unit cost of production FC [€/kWh] 

(assumed equal for each fossil power plant) multiplied by the power produced by that plant and the duration 

of the time interval (for idle and charging, respectively). The value of the overall production cost, during each 

time interval, is given by  

1 1

,

F F F IDLE

i l i i

l L

c C p t


=   i EV  (5.39) 



2 2

,

F F F CH

i l i i

l L

c C p t


=   i EV  (5.40) 

The tardiness cost is given by the tardiness in charging 
tard

id  (  max ,0  tard C dd

i i id t T= − ) multiplied by a 

penalty coefficient i  [€/h] for unitary tardiness of the completion of charging service i. That is, 

tard tard

i i ic d=   i EV  (5.41) 

It is possible to define two power balance constraints, one for each type of time intervals in which the time 

horizon is divided (i.e. idle and charging time intervals). 

1 1 1 1

, ,

G F S NL

i l i m i i

l L m M

p p p p
 

+ + =   i EV  (5.42) 

2 2 2 2

, ,

G F S NL EV

i l i m i i i

l L m M

p p p p p
 

+ + = +   i EV  (5.43) 

when all the terms are defined as average values over the time intervals ( )1 1,C C IDLE

i i it t t− − +  and ( )1 ,C IDLE C

i i it t t− +   

respectively, apart from  

( )
1

1

1

C IDLE
i i

C
i

t t

NL NL

i

t

p P t dt
−

−

+

=   i EV  (5.44) 

( )
1

2

C
i

C IDLE
i i

t

NL NL

i

t t

p P t dt

− +

=   i EV  (5.45) 

which are indeed a known function of 
C

it , 1

C

it − , and 
IDLE

it , since the availability and the reliability of a forecast 

of the pattern ( )NLP t  has been assumed. Note that the variable 
EV

ip  is not specified for the idle interval 

according to its definition. 

Then, some basic constraints on the electrical storage must be introduced 

1, 1, , 1, , 1,

, , , ,

S fin S init S in S in IDLE S out S out IDLE

m i m i m i i m i ix x p t p t= +  −  ,m M i EV   (5.46) 

2, 2, , 2, , 2,

, , , ,

S fin S in S in S in CH S out S out CH

m i m i m i i m i ix x p t p t= +  −  ,m M i EV   (5.47) 

1, 2,

, ,

S fin S init

m i m ix x=  ,m M i EV   (5.48) 

2, 1,

, , 1

S fin S init

m i m ix x +=  ,m M i EV   (5.49) 

where the power flows are distinguished among charging and discharging contributions. Owing to the choice 

of the optimization objective, for any time interval ( )1, 2,

, ,

S in S in

m i m ip p  and ( )1, 2,

, ,

S out S out

m i m ip p  cannot be jointly positive. 

The constraints are  



1 1, 1,

, , ,

S S in S out

m i m i m ip p p= −  ,m M i EV   (5.50) 

2 2, 2,

, , ,

S S in S out

m i m i m ip p p= −  ,m M i EV   (5.51) 

The total energy request of the EVs 

EV CH

i i ip t E=  i EV  (5.52) 

where the energy request is given by 

( ), ,EV fin EV init EV

i i i iE X X CAP= −  i EV  (5.53) 

Then, the deadlines must not be overcome 

C dl

i it T  i EV  (5.54) 

Then, service cannot begin before the release time, and thus the difference between completion time and the 

time necessary for charging should be greater or equal to the release time: 

C CH rel

i i it t T−   i EV  (5.55) 

The idle time interval for the i-th vehicle should be greater or equal to a minimum duration and it is related 

to the completion time (of the i-th vehicle and of the preceding one i-1) and to the charging time: 

IDLE

it    i EV  (5.56) 

Some fundamental constraints that must be introduced are those relevant to the minimum length of the 

charging interval (determined in Section 4.5.2) and the proper definition of that interval. That is, 

CH CH

i it T   i EV  (5.57) 

1

CH C C IDLE

i i i it t t t−= − −  i EV  (5.58) 

Besides, the constraints related to the definition of tardiness must be imposed 

 max ,0  tard C dd

i i id t T= −  i EV  (5.59) 

Then, the bounds to limit some power flows (exchange with the external grid, power exchange with the 

storage systems, power production from traditional plants) are, respectively 

1G G G

iP p P−    i EV  (5.60) 

2G G G

iP p P−    i EV  (5.61) 



1

,

S S S

m m i mP p P−    ,m M i EV   (5.62) 

2

,

S S S

m m i mP p P−    ,m M i EV   (5.63) 

1

,

F F F

l l i lP p P   ,l L i EV   (5.64) 

2

,

F F F

l l i lP p P   ,l L i EV   (5.65) 

Moreover, some constraints relevant to the maximum and minimum state of charge 

1,

,

S S init S

m m i mX x X   ,m M i EV   (5.66) 

2,

,

S S init S

m m i mX x X   ,m M i EV   (5.67) 

1,

,

S S fin S

m m i mX x X   ,m M i EV   (5.68) 

2,

,

S S fin S

m m i mX x X   ,m M i EV   (5.69) 

It is also necessary to impose  

( ), ,1EV EV fin EV EV rated

i i i iD X p P−    i EV  (5.70) 

Finally, all variables are understood to be non-negative, but 
1 2 1

,, ,G G S

i i m ip p p , and 
2

,

S

m ip . 

Having introduced all the constraints it is possible then to solve the MINLP problem in (5.30) subject to 

constraints (5.35), (5.42)-(5.70) 

It is important to note that the formalization of the optimization problem has been carried out assuming the 

availability of the forecasts of net non-deferrable load and the buying-selling prices for the whole optimization 

horizon. In the problem statement, these forecasts are considered as completely reliable, and no uncertainty 

modelling is introduced. This fact gives rise to a predictive control scheme. Then, one can imagine to 

repeatedly apply the proposed approach, each time conditioned by the most recent information about the 

system state and by the availability of the freshest predictions. For instance, one can state and solve a new 

problem at any service completion time (taking into account possible new service requests). In this way, a 

predictive (rolling horizon) discrete event control scheme is applied. 

5.3.4 Determining the initial charging power 

Once the problem has been solved it is possible to find the initial power by determining  the relation between 

EV

ip  and the decision variable 
,EV init

ip , integrating the function ( )EV

ip t  in (5.28) and the following constraints 

are obtained: 



( )

 
( )

1

1 1

'
'

, ,

'

'
, ,

,

' 1

'

C IDLE C EV EV
i i i i

C IDLE C IDLE
i i i i

EV EV
CHi
iEV

i

t t t t D
t t

EV CH EV init EV init CAP
i i i i

t t t t t

D
EV t t

CAPEV init EV init i
i i EV EV

i

EV
EV init i
i EV

p t p dt p e dt

CAP
p t p e

D

CAP
p t

D

−

− −

+ + 
− −

+ + +


− −

 
= +  

  

  
 = + − − 

     

= −


 

( )'
1

EV EV
CHi
iEV

i

D
t t

CAP

EV

i

e


− −  

  −
  

  

 i EV  (5.71) 

Then, the average power is determined by 

( )'
, ' 1

EV EV
CHi
iEV

i

D
EV t t

CAPEV init i
i EV EV

i
EV

i CH

i

CAP
p t e

D

p
t


− −  

  − −
  

  
=  i EV  (5.72) 

Then, substituting 't  with 
,

,

EV EV init
EVi i

iEV EV init

i

B X
CAP

p

−


,and rearranging the equation 

,
,

,

1
,

,

,

,

1
1

1

EV init
EV initi
iCH EV

EV EV i i
i EV EV EV init

i i

p
X

EV init t D
DEV initi

CAP piEV init EV EV
EV i i i
i CH EV EV init EV

i i i

p
X

p CAP D
p e

t p D

 
− − 

 
− − 

 
 
 

  
  
− −  

  = − −
  
  
  

  

i EV  (5.73) 

Then the equation is solved and the optimal value of 
,EV init

ip  (for each vehicle i) is numerically determined. 

5.3.5 Determining the optimal power flow profiles to the vehicles 

Once calculated the value of 
,EV init

ip , it is possible to find the profile of the charging power as described by 

(5.28). Fig. 5.8 shows an example of how the result can appear.  



 

Fig. 5.8 Example of the time pattern of ( )EV

ip t . 

5.3.6 Determining the power flows from/to the storage element 

The same approach presented for the charging process of the EVs, can be extended to the electrical storage. 

In fact, the difference between the two elements is given by the energy request of the EVs which is mandatory 

while the storage is not constrained in that sense. Moreover, it is important to note that the storage is considered 

with the generator convention rather than the load one, thus the power is positive when the storage is 

discharged. The power profile must be within the region in Fig. 5.9. 

 

Fig. 5.9 Boundaries on the power exchange with the storage. 



Using an approach similar to the one presented before, and assuming that during a generic time interval the 

storage is charged or discharged, it is possible to obtain the power profile of the storage. 

If the storage is discharged, the solution is very simple 

,( )S S out

m mp t p=  m M  (5.74) 

Instead, if the storage is charged, there are three possible outcomes for the state of charge of the storage at 

the edges of each time interval: 

▪ Both 
1,

,

S init

m ix  and 
1,

,

S fin

m ix  fall within the constant part (i.e. they are less or equal 
S

mA ); 

▪ Both 
1,

,

S init

m ix  and 
1,

,

S fin

m ix  fall within the descendent part (i.e. they are greater than 
S

mA ); 

▪ 
1, 1,

, ,

S init S S fin

m i m m ix A x   as in the case considered for the EVs. 

In the first case the power profile is equal to the average value 

, ,( )S S in init

m mp t p=  m M  (5.75) 

In the second case the power is given by 

1,

,( ) (1 )

S S
m

S
m

D
t

CAPS S S init

m m m ip t D x e



= −  m M  (5.76) 

while, in the third case, it is 

( )'

, , '

1 1

, , '

1

( ) S S
m

SS
m

S in init C IDLE C IDLE

m i i i i S
S
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CAPS in init C IDLE C

m i i S i
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p t

p e t t t t t

− −


−

−

 +   + +


= 
 + +  

 m M  (5.77) 

where the initial power 
, ,S in init

mp  is determined by solving the following equation 
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, ,
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p e
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− − 

 
 
 
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  = − −
  
  
  
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 m M  (5.78) 

Note that here the initial (and final) state of charge of the storage is a solution of the optimization problem in 

Section 4.5.3, and also that in this case 
, ,S in init

mp  and 
S

mD  assume negative values. An example of what can be 

obtained is presented by Fig. 5.10. 



 

Fig. 5.10 Example of the charging (blue)/discharging (red) process of the storage. 

5.3.7 Establish the power exchanged with the grid 

It has simply established that 

1

, 1 1

2

, 1

( )

F C C IDLE

l i i i iF

l F C IDLE C

l i i i i

p if t t t t
p t

p if t t t t

− −

−

   +
= 

+  
 l L  (5.79) 

Once the patterns ( ), ( )F S

l mp t p t , and ( )EV

ip t  have been determined, the pattern ( )Gp t  can be determined as 

( ) ( ) ( ) ( ) ( )G F S NL EV

l m i

l L m M i EV

p t p t p t P t p t
  

= − − + +     (5.80) 

Of course, it will surely result that 

( )
1

1

1

C IDLE
i i

C
i

t t

G G IDLE

i i

t

p t dt p t
−

−

+

=  i EV  (5.81) 

( )
1

2

C
i

C IDLE
i i

t

G G CH

i i

t t

p t dt p t

− +

=  i EV  (5.82) 

where 
1G

ip  and 
2G

ip  are exactly the values determined by solving the scheduling problem. 

5.4 Application to a case study 

In this section, the optimization model is solved for two different scenarios. The first one is similar to the one 

presented in Chapter 3 with the discrete time model, the number ( EVN ) of the considered EVs is 4. In the 

second scenario the number of vehicles to be charged is larger ( 10EVN = ) and a higher value of the maximum 



charging power is considered. Note that only one electrical storage ( 1SN = ) and two fossil fuel generators (

2FN = ) are considered.  

The optimal schedule of production plants, storage systems and EV charging is obtained by solving the 

optimization problem above introduced, by using Lingo optimization tool [113] on a PC Intel i7, 16 GB RAM.  

5.4.1 Scenario I 

Table 5.2, provides the values of the parameters relevant to the elements of the microgrid in the first 

considered scenario. 

Table 5.2 Scenario I: System Parameters. 

Parameter Value Parameter Value 

1

FP ,  30[kW],  
S

mX   0.2 

2

FP  65[kW] 
S

mX  0.8 

S

mCAP  100[kWh]   0.08 [h] 

,S out  1.1 GP  300 [kW] 

FC   0.2 [€/kWh] ,EV rated

iP  10 [kW] 

,S in  0.9 
S

mA  0.8 

,S rated

mP  -30 [kW] EV

iA  0.8 

S

mP , 30[kW]   

In Table 5.3 the data relevant to each EV are reported. 

Table 5.3 Scenario I: EVs' data. 

 

 

 

 

 

 

 

In the statement of the optimization problem, one of the most critical issues is how to express function ( )NLP t

. It is assumed that the forecast of the net load ( )NLP t  is available over a whole day with a time discretization 

EV 1 2 3 4 

EV

iCAP  [kWh] 22 25 31 22 

,EV init

iX  0.35 0.20 0 0.42 

,EV fin

iX  0.95 0.95 0.95 0.95 

i  [€/h] 0.1 0.1 0.1 0.1 

rel

iT  [h] 1.25 2.5 4.5 8.75 

dd

iT  [h] 5.5 9 12.5 15 

dl

iT  [h] 7.5 12 15.75 17.5 



step equal to 15 minutes. Then, to compute the above function, it is possible to interpolate the available 

forecasts via a polynomial function of suitable order. In this case an eighth order polynomial has been 

considered 

( ) 8 7 6 5 4 3 2

8 7 6 5 4 3 2 1 0

NLP t a t a t a t a t a t a t a t a t a= + + + + + + + +  

Using the MATLAB tool, the parameters of the above function are determined as provided in Table 5.4. 

Table 5.4 Net Load Polynomial Approximation Parameters. 

Parameter Value Parameter Value 

8a  1.07E-05 3a  -3.05E+01 

7a  -1.06E-03 2a  4.77E+01 

6a  4.09E-02 1a  7.41E+01 

5a  -7.68E-01 0a  1.07E-05 

4a  7.20E+00 
  

In Fig. 5.11 the original pattern of the net load ( )NLP t  is represented, as well as the interpolating curve. 

 

Fig. 5.11 Net load function and its polynomial approximation. 

As for the net load, also in the case of the buying price a polynomial function has been determined. In this 

case the polynomial interpolation (see Fig. 5.12) is an eighth order one and the coefficient calculated by means 

of the previously introduced MATLAB tool are reported in Table 5.5. 



 

 

Fig. 5.12 Buying price function approximation. 

Table 5.5 Buying price polynomial approximation coefficients 

Parameter Value Parameter Value 

8b  1.35 E-09 3b  7.06 E-03 

7b  1.26 E-07 2b  -2.08 E-02 

6b  -4.85 E-06 1b  2.25 E-02 

5b  9.90 E-05 0b  1.94 E-01 

4b  -1.13 E-03 
  

The results of this scenario are presented in Fig. 5.13 and Fig. 5.14. 

 

Fig. 5.13 Scenario I: Power to the vehicles. 



 

Fig. 5.14 Scenario I: Power balance. 

From the results it is possible to denote that the EVs are charged at the maximum available power and the 

largest portion of the power demand is satisfied by the fossil plants. Since the energy cost function is higher in 

the last part of the day, the system finishes the charging process around 17 o’clock.  

The computational time in this case is about 1 second and the overall cost is 355.05€. 

5.4.2 Scenario II 

The second scenario considered in this case study has the same values of the parameters in Table 5.2 but for 

the maximum power available for charging the EVs which is now doubled (i.e. 
, 20 [ ]EV rated

iP kW= ). The data 

relevant to the vehicles are presented in Table 5.6. 

Table 5.6 Scenario II: EVs' data 

EV 1 2 3 4 5 6 7 8 9 10 

EV

iCAP  [kWh] 22.00 22.00 30.00 30.00 22.00 25.00 25.00 30.00 22.00 25.00 

,EV init

iX  0.35 0.20 0.00 0.42 0.55 0.60 0.30 0.15 0.42 0.50 

,EV fin

iX  0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 

i  [€/h] 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 

rel

iT  [h] 1.25 2.50 4.50 5.00 6.50 8.00 8.00 9.00 9.50 11.00 

dd

iT  [h] 5.50 9.00 12.00 12.50 13.00 16.00 16.00 19.00 20.00 22.00 

dl

iT  [h] 8.00 10.00 14.00 14.00 16.00 19.00 19.00 22.00 23.00 23.00 

The polynomial approximations for the net load function and the buying price are the same considered in the 

previous scenario. 

The results obtained from the optimization problem using these data are presented below in Fig. 5.15 and 

Fig. 5.16. 
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Fig. 5.15 Scenario II: Power to the vehicles. 

 

Fig. 5.16 Scenario II: Power balance. 

As it happens in the first scenario, the charging process takes place in the first part of the day but in this case 

the IDLE intervals are reduced as much as possible. The power flow which charges the EVs is close to the 

maximum value in each interval except for vehicles 1 and 5. The fossil plants still provide a large portion of 

the power demand. The problem is solved in few seconds (~3 s), the overall cost is 750.15€. 

5.5 Discrete event approach: multi-sockets extension 

This extension is due to introduce the possibility of considering a multi-socket system configuration. In the 

work published in [57], a multi-socket system has been considered but the battery of the EVs is described by 

means of a linear model. Introducing the piece-wise linear model becomes very complicated in this case since 

it is now necessary to take into account the intermediate states of the EVs’ batteries. In fact, it would be 

necessary to consider the three options in Fig. 5.17.  



 

Fig. 5.17 Multi-socket extension: possible scenarios for each interval's state of charge behaviour. 

This problem cannot be easily solved and several different approaches are now under investigation. A solution 

is the one presented below. 

The system architecture is exactly the one presented in Fig. 5.1. In order to allow multiple charging during the 

same interval a new variable is introduced, namely 
CS

ip , representing the overall contribution of the power 

flows coming from the EVs during time intervals ( )1 1,C C IDLE

i i it t t− − +  or ( )1 ,C IDLE C

i i it t t− + . Note that the IDLE 

intervals ( )1 1,C C IDLE

i i it t t− − +  are now characterized by the possibility of charging vehicle j, when j>i. Note that, 

this variation implies that both 
CS

ip  and 
,

EV

i jp  are now defined for 

   1,...,2 , 1,...,MS EV EVi EV N j EV N =   = . The average total power flow provided to the vehicles is then 

,

CS EV

i i j

j EV

p p


=   MSi EV  (5.83) 

0 CS CS

ip P   MSi EV  (5.84) 

Constraint (5.52), relevant to the total energy request, becomes  

2 1, 2 ,

1

j
EV IDLE EV CH

i j i i j i j

i

p t p t E−

=

+ =  j EV  (5.85) 

It is now necessary to introduce a binary variable ,

EV

i j  which is defined as 

,

1 if vehicle is under charging

0 otherwise

jEV

i j

V



= 


 ,MSi EV j EV   (5.86) 

This variable is then considered in the following constraints 

, , 0EV EV EV

i j i jK p  −   ,MSi EV j EV   (5.87) 

( ) ( )( ),1 0EV EV rel C CH

i j j i iK T t t− − − −   ,MSi EV j EV   (5.88) 

,

EV sock

i j

j EV

N


  MSi EV  (5.89) 



Constraint (5.87) is equivalent to imposing that when the power flow 
,

EV

i jp  is greater than zero, the binary 

variable 
,

EV

i j  is equal to 1. Note that EVK  is the so-called “big M” constant whose value is arbitrarily chosen 

provided that it is considerably higher than the possible values of the variables and parameters. In (5.88) it is 

imposed that the charging process of a vehicle cannot start before the release time of the vehicle itself.  

In this way, when C CH rel

i i jt t T−  , that is, when vehicle jV  is not yet ready for service at the end of time 

interval ( )1 1,C C IDLE

i i it t t− − + , ( ),1 EV

i j−  is forced to be equal to 1. This implies that 
,

EV

i j  is equal to 0, and for this 

reason vehicle jV  cannot be under charging in time interval ( )1 ,C IDLE C

i i it t t− + . The binary variable 
,

EV

i j  is also 

used to limit the number of vehicles that can be charged at the same time by using the constraint in (5.89). 

Now there is an important assumption of this formalization. In fact, the average power considered in the 

charging process of a vehicle jV  is supposed to be the same for any time interval in which the charging process 

takes place. Thus, it is possible to write 

, ,

EV EV CP

i j i j jp p=  ,MSi EV j EV   (5.90) 

where CP

jp  is the constant average rate of charge. 

It is also necessary to define the overall length of the charging process for each vehicle, which is 

( )2 1, 2 ,

CP EV IDLE EV CH

j i j i i j i

i EV

d t t −



= +  j EV  (5.91) 

and to impose the minimum length of these intervals calculated in the same way presented in the single socket 

formalization (now CP

jT  rather than CH

jT ) 

CP CP

j jd T   j EV  (5.92) 

Besides, according to (5.70) in the model of the battery in Section 5.4,  

( ),1CP EV EV fin

i i ip D X −  j EV  (5.93) 

The cost function to be considered in this case is  

 1 2 1 1min G G F G tard occ

i i i i i

i EV

c c c c c c


+ + + + +  

where the first five terms are exactly the same defined in (5.37)-(5.41) while the last one is related to the socket 

occupancy and is defined as  



2 1, 2 ,

occ EV EV

i i j i j

j EV

c  −



= +  j EV  (5.94) 

Constraints (5.42) and (5.43), according to the definition of 
CS

ip , must be substituted by 

1 1 1 1

, , 2 1

G F S NL CS

i l i m i i i

l L m M

p p p p p −

 

+ + = +   i EV  (5.95) 

2 2 2 2

, , 2

G F S NL CS

i l i m i i i

l L m M

p p p p p
 

+ + = +   i EV  (5.96) 

As already shown in the case of the single-socket formalization, once the problem is solved it is possible to 

find the actual charging power profile that, in this case, can look like the one in Fig. 5.18.  

 

Fig. 5.18 Multi-socket extension: actual power profile example 

As expected, thanks to the multi-sockets configuration, it is possible to have preemption of some EVs. 

5.5.1 Application to a case study 

In the following instance, the considered data are the same presented for Scenario I in Section 4.6 (Table 5.2 

and Table 5.3). Only the release time rel

jT  have been changed by fixing them to zero (the EVs are immediately 

available). 

The new data needed for the new formalization are reported in Table 5.7. 

Table 5.7 Multi-socket extension: system data 

Parameter Value 

sockN  3 

CSP  25 [kW] 



In the following (Fig. 5.19) the resulting Gantt diagram is presented 

 

Fig. 5.19 Multi-socket extension: Gantt Diagram 

5.6 Discrete event approach: EBs periodic scheduling 

In the EVs framework, a very interesting application is the one relevant to the EBs. They represent a particular 

type of EVs since they usually have large batteries, already defined time schedules, and know paths (then, 

energy consumption can be estimated more precisely). All these aspects can represent a huge advantage in the 

solution of a scheduling problem. In this section a variation to the model presented in this chapter is provided. 

In particular, a periodic scheduling of the charging process is presented.  

The considered system consists of a depot including the following elements (see Fig. 5.20): a connection to 

the main grid, an electrical storage element, a unique charging station, EBN  electric buses to be charged. 

 

Fig. 5.20 Periodic EBs charging scheduling: the considered system 

The system model includes the following power flows, that are functions of time t: 



▪ ( )Gp t : the power flow from the main grid. 

▪ ( )EBp t : the power flow to the bus in charge. 

▪ ( )Sp t : the power flow from the main gr the power flow from/to the storage unit (active sign 

convention is used, as in other cases). 

Each bus has an integer index  1,..., EBi EB N =  assigned according to the arrival order. The following 

information is known a priori for each bus: 

▪ Arrival time (
arr

iT ): the instant when the charging of the i-th bus can start. 

▪ Energy consumption ( iE ): the energy requested to charge the i-th bus (the request must be completely 

satisfied). 

▪ Available charging window (
,ch avail

iD ): time interval in which for charging service for the i-th bus can 

take place. 

The service times are controllable and are include within the set of the decision variables of the problem. Fig. 

5.21 represents the time windows concerning the i-th bus. 

 

Fig. 5.21 The considered time windows for the i-th vehicle 

The following decision variables must be introduced for each EB: 

▪ 
in

it : starting instant of recharge for the i-th bus. 

▪ 
fin

it : time instant at which the recharge for the i-th bus ends. 

Two additional decision variables, namely 
CH

it  and 
IDLE

it , are necessary, which are the time needed for 

charging the i-th bus and the time between the end of a charging process and the beginning of another one, 

respectively. They correspond to 

CH fin in

i i it t t= −  i EB  (5.97) 

1

IDLE in fin

i i it t t −= −  i EB  (5.98) 



The objective function includes the cost related to the power taken from the grid (that is comprehensive of 

operational costs, costs for emissions, calculated as a function of an emission factor, and the unit cost for 1 ton 

of CO2). That is 

1

min
N

G

i

i

J c
=

=   (5.99) 

with 

1

1 2

, ( ) ( )

finin
i i

fin in
ii

t t

G G G G

G i i i

tt

c C t dt p C t dt p

−

     
   = + 
       
   i EB  (5.100) 

where the power exchange with the grid is defined as 
1G

ip  and 
2G

ip  in the idle and charging intervals, 

respectively. It is important to note that control variables in the following are considered for idle (identified by 

subscript 1) and charging (identified by subscript 2) intervals. They are assumed to be constant during each 

event and this is valid for all control variables described in the following.  

Finally, the unit cost ( )GC t  considers the energy price as well as the CO2 emission cost.  

Then, the basic state equation of the system, describing the dynamics of the state of charge of the storage 

element ( )Sx t  can be represented, within a discrete event setting, as 

( ) ( ), 1, , 1, , 2, , 2,

1

S S S in S in S out S out IDLE S in S in S out S out CH

i i i i i i i ix x p p t p p t−= +  − +  −  i EB

 (5.101) 

1 1, 1,S S out S in

i i ip p p= −  i EB  (5.102) 

2 2, 2,S S out S in

i i ip p p= −  i EB  (5.103) 

1, 1, 2, 2,, , , 0S out S in S out S in

i i i ip p p p   i EB  (5.104) 

where the variables 
1, 1, 2, 2,, , ,S out S in S out S in

i i i ip p p p  are the “positive” and “negative” components of 
1S

ip  and 
2S

ip  

respectively, and ,S in and ,S out  are charging and discharging efficiencies. 

In equation(5.105), the initial state of charge 0

Sx  is not known, since the overall system has a periodical 

behavior. This will be modelled in the following through constraints. 

Then some constraints on the time variables are presented in (5.106)-(5.107). 

,fin arr ch avail

i i it T D +  i EB  (5.108) 

1

in fin idle

i it t+  +  i EB  (5.109) 

in arr arr

i it T +  i EB  (5.110) 

1 1

arr CH arr CH

i i i iT t T t+ ++  +  i EB  (5.111) 



In particular, inequality (5.108) imposes that the charging process for the i-th bus must end within the 

available charging window 
,ch avail

iD . Constraint (5.109) gives the minimum length of an idle interval, i.e. idle

. The minimum time difference arr  between the arrival time 
arr

iT  and the beginning of the charging process 

in

it  is given by (5.110). Constraints (5.111) are necessary to order the charging processes according to the 

arrival order. 

The periodicity of the problem is ensured by introducing constraints (5.112) and (5.113) where 0

Sx  and EB

S

N
x

are the states of charge (decision variables) of the storage at the time instants 0

fint  and EB

fin

N
t , respectively. 

0EB

fin fin

N
t t T= +   (5.112)  

0 EB

S fin

N
x x=   (5.113) 

Constraints from (5.114) to (5.119) are physical limits on the power flows and the state of charge.  

10 G G

ip P   i EB  (5.114) 

20 G G

ip P   i EB  (5.115) 

0 EB EB

ip P   i EB  (5.116) 

1S S S

iP p P   i EB  (5.117) 

2S S S

iP p P   i EB  (5.118) 

S S S

iX x X   i EB  (5.119) 

Then, there are constraints related to power balance during idle and charging time intervals. That is, 

1 1 0G S

i ip p+ =  i EB  (5.120) 

2 2G S EB

i i ip p p+ =  i EB  (5.121) 

Finally, it is necessary to introduce a constraint related to the satisfaction of the energy demand for each 

vehicle. That is, 

EB EB CH

i i iE p t=   i EB  (5.122) 

where EB  is efficiency of the EBs’ battery and represents energy consumption. 

It is important to note that, in the case of EBs, iE  corresponds to the bus energy consumption during the 

daily trips.  



5.6.1 Application to a case study 

This section applies the proposed approach to a specific case study. A scenario with five EBs is considered 

(i.e. 5EBN = ).  

The solve the nonlinear optimization problem previously defined, the software tool Lingo [113] has been 

used. 

The buses considered in the study are vehicles that work on lines 516 and 517 of the bus company operating 

in Genoa (AMT). In particular, on the software QGIS, a project for each route has been realized in order to 

calculate the mileage, the duration of the runs has been calculated based on the information reported by some 

data collected on the buses and, finally, Google Earth Pro has allowed calculating the overall height difference 

of each route. The height difference is calculated since it affects fuel consumption and the possibility of 

regenerative braking. 

Line 516 takes approximately 22 minutes to complete a full ride. The outward and return routes (Fig. 5.22) 

are equal, and the overall length is 6 km with 24 stops and a total height difference of about 280 m.  

Note that the bus must go to the Nervi terminus to start the assigned run at the beginning of the service and 

therefore travels about 8.9 km from the depot. 

 

 

Fig. 5.22 Line 516 path 

In line 517, a complete round trip takes about 22 minutes. Unlike line 516, the two round-trip routes (Fig. 

5.23 and Fig. 5.24) are very different: on the outward journey, the bus reaches the Nervi cemetery and makes 

22 stops, covering a distance of about 4.5 km, while on the return journey, it covers a distance of about 1.8 km 

divided into six stops. The outward journey covers a total height difference of about 127 m, while the return 

journey covers about 65 m. Also, in this case, at the beginning of the service, the bus must go to the Nervi 

terminus to start the assigned run. 



 

 

Fig. 5.23 Outward path of line 517 

 

 

Fig. 5.24 Backward path of line 517 

The data considered for the case study are presented in Table 5.8 and Table 5.9. The values relevant to the 

calculation of the energy consumption iE , for each of the considered paths, have been determined using the 

software tool QGIS. In particular, note that the first two buses are assigned to line 516 and the other three buses 

are assigned to line 517. 

Table 5.8 Data relevant to buses 

i 
,arr it  

[hh:mm:ss] 

,w ich  

[hh:mm:ss] 

iEC  

[kWh] 

1 12:00:00 3:12:00 65,55 

2 12:43:00 6:22:00 76,24 



3 16:58:00 13:22:00 75,86 

4 17:12:00 14:00:00 52,29 

5 18:49:00 17:58:00 59,42 

 

Table 5.9 System Parameters  

Parameter Value 

CAP  180 [kWh] 

1  0.1 [h] 

2  0.1 [h] 

minx  0.1 [-] 

maxx  0.9 [-] 

,g maxP  20 [kW] 

,ch maxP  30 [kW] 

,s minP  -30 [kW] 

,s maxP  30 [kW] 

To calculate the integral functions in (5.100), the cost function has been created via a sixth-order polynomial 

approximation of a stairs function, in the form 

( ) 6 5 4 3 2 1

6 5 4 3 2 1 0p x a x a x a x a x a x a x a= + + + + + +  

The coefficients are reported in Table 5.10. 

Table 5.10 Polynomial Function Coefficient 

Parameter Value Parameter Value 

6a  -1.18E-09 2a  -2.37E-03 

5a  1.70E-07 1a  8.35E-03 

4a  -9.10E-06 0a  2.04E-01 

3a  2.22E-04   

Note that this curve presents a lower cost around midday and a higher cost around midnight. 

In this scenario, the optimization problem results show that five buses can be recharged with one charging 

station. According to the results obtained, the total charging cost is equal to 70.87€, and the system starts the 

process cycle with a storage state of charge of about 0.5. 

Table 5.11 shows the results obtained using the Lingo software [113]. 

Table 5.11 Results 

BUS i , 1fin it −
 [h] 

,in it  [h] 
1,g iP  [kW] 

1,s iP  [kW] 
2,g iP  [kW] 

2,s iP  [kW] 
,ch iP  [kW] 

BUS 1 11.51 12.10 20.00 -20.00 20.00 2.24 22.24 

BUS 2 15.20 15.30 20.00 -20.00 20.00 1.28 21.28 

BUS 3 19.07 19.17 0.00 0.00 20.00 0.00 20.00 



BUS 4 23.16 27.45 0.00 0.00 14.68 0.00 14.68 

BUS 5 31.20 32.39 0.00 0.00 20.00 0.00 20.00 

The following figures show the power profiles. 

 
Fig. 5.25 Power purchased from the grid 

 

Fig. 5.26 Power exchanged with the storage 



 

Fig. 5.27 Power exchanged with the EBs 

As it is possible to see from the figures, the maximum power available from the grid is purchased for four 

buses out of five. The storage element remains almost unused but for the first time intervals in which the power 

is used to charge the buses. There is a long idle time between the third and the fourth vehicle because of the 

time constraints and the cost functions, which decreases in the night. 

  



Chapter 6 

Optimal location and line assignment for electric bus 

charging stations 

As anticipated in Chapter 3, in this thesis the focus is on scheduling and planning problems. After the 

presentation of the two models relevant to the optimal scheduling in both discrete time and discrete events, in 

this chapter, the work published in [114] is proposed. It consists of a new approach for the optimal location 

and line assignment for EBs’ charging station. In fact, public electric transportation represents a crucial topic 

in the transition from traditional fuels and the new CSs must be optimally located in order to ensure an optimal 

service. 

In particular, it is assumed that a given number of eligible sites for charging stations has been preliminarily 

identified. These sites could be, for example, already existing depots or areas in which the buses stop along 

the path that may be equipped with charging stations. Let this set of sites be  , 1,2,...,iS i N= . In the following, 

the symbol iS  will be used to indicate either the site or the (potential) charging station located at that site. These 

stations must ensure the charging service for the buses operating on a given set of lines  , 1,2,...,jL j M= . 

The routes corresponding to these lines are assumed to have been already established. Moreover, for any 

line jL , there is a set of sites that are allowed to be selected (according to the site localization and to the specific 

route for line jL ) to provide the charging service to the buses operating on that line. This set will be denoted 

by  , 1,2,...,j iR S i N = . 

A representation of an instance corresponding to this description is provided by Fig. 6.1. 

 

Fig. 6.1 Representation of some lines and eligible stations sites. 

Let, for each line jL  the following information be defined: 

▪ The initial energy contents [kWh] of the bus battery, namely init CAP
jX E , where CAPE  [kWh] is the 

capacity of the battery, and init
jX  is the initial state of charge; 



▪ The final energy contents [kWh] of the bus battery, namely fin CAP
jX E , where fin

jX is the final state of 

charge; 

▪ min
jF : minimum frequency for completion of charging services [#charg/h]; this is the lower bound on 

the value of the frequency at which the events corresponding to the completion of charging service 

take place; 

▪ ,min serv
jF : minimum transit frequency of buses [h-1];  

▪ trip
jD  : duration of a trip of a bus [h]; 

▪ trips
jN : number of completed trips between two successive recharges; 

▪ trips
jT : time necessary to complete trips

jN   trips without interruptions [h]. 

All parameters listed above are considered fixed and known. In particular, init
jX  is evaluated by considering 

the difference between the state fin
jX  and the consumption determined by using the model in [115]. 

Clearly, the following equalities hold 

min, minserv trips
j j jF N F=  1,...,j M=  (6.1) 

trips trips trip
j j jT N D=  1,...,j M=  (6.2) 

Note that CAPE , as well as the other parameters characteristics of the battery, are assumed to be the same for 

all lines. It is assumed that, for each line, the same minimum transit frequency characterizes all time intervals 

in which the service must be ensured. 

For any charging station (site) iS , the following (decision) variables are defined: 

▪ 
sock
in : number of sockets, that is, the maximum number of vehicles that can be simultaneously charged; 

▪ sock
ip : the maximum power flow through a socket [kW];  

▪ iy  : a binary decision variable that says whether the station is activated ( 1iy = ) or not ( 0iy = ). 

The maximum power that can be provided by the service station, namely 
tot
ip  [kW], is given by  

tot sock sock
i i ip n p=  1,...,i N=  (6.3) 

The frequency jf   of the events corresponding to the completion of charging services for line 
jL  is a decision 

variable, too. The value trips
j jf N  provides the actual transit frequency of buses on line jL . 

The assignment of lines to stations (one of the issues to be determined) is modeled through the following set 

of binary decision variables 
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 1,..., , : i jj M i S R=   (6.4) 

Note that, for simplicity, a line is assumed to be entirely assigned, for charging service, to a unique station. 

Different formulations with fractional assignments are possible but are not considered in this model. 

The model considered for the battery of the EBs is the same proposed in the previous chapter. Moreover, 

the same assumption on the profile of the power flowing into the battery holds (Fig. 6.2).  

 
Fig. 6.2 The actual power profile of the battery (red line). 

From this model, the only constraints that must be considered in the optimization problem are 

( )1in fin
j jp D X −  1,...,j M=  (6.5) 

( )
( )
1

ln1

finin
jj init

j in
jch CAP

j in
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  = −

 
 
 
 

 1,...,j M=  (6.6) 

Clearly, the number of charging services completed, over a time horizon of a given length H  [h], over the 

station i jS R , is given by 

,i j jf H  1,...,j M=  (6.7) 

where jf  (already defined) is the actual frequency of completion of charging services for line jL . 

Then, the overall duration [h] of services for buses of line jL   over the station iS  is  

,
ch

i j j jf H t  1,..., , 1,...,j M i N= =  (6.8) 

where the decision variables are the binary variables ,i j , as well as jf , and 
ch

jt . 

On this basis, the overall service time provided by the station iS , within time horizon H , is  

,

: i j

ch
i j j j

j S R

f H t



  1,...,i N=  (6.9) 



The overall potential service time, within a generic time horizon H , for station iS   is 
sock
in H   . Thus, the 

first basic requirement to be satisfied in the planning problem is  

,

: i j

sock ch
i i j j j

j S R

n H f H t



     1,...,i N=  (6.10) 

that is,  

,

: i j

sock ch
i i j j j

j S R

n f t



    1,...,i N=  (6.11) 

where the coefficient ( )1   is introduced to guarantee a certain safety margin of the solution of the planning 

problem. 

Besides, the following constraints must be fulfilled 

,

: i j

in sock
j i j i

j S R

p p



   1,...,j M=  (6.12) 

Constraints (6.12) impose that the initial value of the input power for (any vehicle of the) line jL  is lower 

than or equal to the maximum output power flow for any socket of the station to which the line is assigned. 

6.1 The optimal planning problem 

In the optimization problem statement, it is assumed that the buses are physically indistinguishable from 

each other and that each bus is assigned uniquely to a line. 

Let B
jn  the number of buses assigned (in the solution of the optimization problem) to line jL . 

The optimization problem whose solution jointly defines the optimum selection of the stations (sites) to be 

activated, their sizes (in terms of the number of sockets and maximum power for the sockets), along with the 

assignment of the lines to the stations, and the bus fleet sizing, can be stated as follows. 

( )

1 1

1
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M M
s B B T oper
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j j

M
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subject to (6.3), (6.5),  (6.11), (6.12), along with the following further constraints  

MC trips ch
j j jt T t= +  1,...,j M=  (6.14) 

B
j

j MC W
j j

n
f

t t
=

+
 1,...,j M=  (6.15) 
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, 1

j

i j

i R





=  1,...,j M=  (6.17) 

 , 0,1i j   1,..., , 1,...,i N j M= =  (6.18) 

 0,1iy   1,...,i N=  (6.19) 

0tot
i iy p −   1,...,i N=  (6.20) 

,sock sock max
i in N  1,...,i N=  (6.21) 

,sock sock max
i ip P  1,...,i N=  (6.22) 

,tot tot max
i ip P  1,...,i N=  (6.23) 

in rated
jp P  1,...,j M=  (6.24) 

min
j jf F  1,...,j M=  (6.25) 

Remark 1 

The objective function is composed of four terms: 

▪ sc  is the cost relevant to the stations. 

▪ 

1

M
B B
j j

j

C n

=

  is the cost of the buses. 

▪ 

1

M
T oper
j j j

j

C f T

=

  is the operational cost of each line. 

▪ 

1

M
ch oper
j j j

j

t f T

=

  is the cost related to the overall time needed for recharging each year. 

where B
jC [€/year] the unit cost (per year) for a bus, in general, depending on the line over which it is operating; 

T
jC [€/trip] is the cost corresponding to trips

jN of a bus on line jL ; oper
jT [h y-1] the number of operating hours on 

line 𝐿𝑗 in one year;   is a tradeoff coefficient [€/h]. Constraints (6.14) define the minimum cycle time MC
jt , 

i.e., the minimum time interval between two successive charging service completions on line jL . In (6.15) the 

overall (average) waiting time for a bus on line jL , namely W
jt [h], is introduced in order to express the (actual) 

charging frequency jf  [h-1]. In constraints (6.16) the cost for the stations sc [€/year] is defined as a sum of 

different terms where: 

▪ act
iC [€/year] is the yearly fixed cost of activation related to the presence of station iS ;  



▪ 1
iK [€/year·#of sockets] is the proportional term of the cost relevant to the number of sockets that are 

established in station iS ; 

▪ 2
iK [€/year·kWh] is the proportional term of the cost relevant to the maximum power for each socket 

for the station iS . 

Constraints (6.17) imply that each line is assigned, as regards the charging service, to one and only one 

station. Constraints (6.18) and (6.19) just specify that the interested variables are binary. Constraints (6.20) 

correspond, as usual, to the disjunctive constraints that impose that the station must exist (hence the activation 

cost must be paid) whenever its maximum power flow tot
ip  is different from zero.   is an arbitrary number 

very large with respect to the values of the parameters embedded in the problem formalization and to the values 

that the variables can assume. 

Constraints (6.21), (6.22), and (6.23) derive from physical limitations concerning the design of the stations 

over the eligible sites. The terms appearing on the r. h. s. of these inequalities are just the maximum allowable 

values for the variables appearing in the l.h.s. 

Constraints (6.24) limit the initial charging power for each service. 

Constraints (6.25) ensure the required quality of service for the bus lines (in terms of a required minimum 

frequency). The constraints are expressed in terms of charging frequency (instead of transit frequency) but, of 

course, this is equivalent to imposing a constraint on the transit frequency, owing to relationship (1).  

The considered problem is a mixed-integer nonlinear one, and thus it is characterized by high computational 

complexity. However, for small/moderate sizes of problem instances, it can be solved in acceptable times (note 

that this is planning problem, that has to be solved offline) even by use of commercial mathematical 

programming tools. 

The proposed approach can be summarized as in the Fig. 6.3. 

 

Fig. 6.3 The information flow diagram of the proposed procedure. 

It is important to remark that the main effort reported in this paper regards the formalization of the problem: 

the expression of the cost to be minimized and – more importantly – the constraints to be taken into account. 



In particular, among such constraints, a particular relevance characterizes constraints (6.6) that are written 

referring to a specific nonlinear model of the vehicle batteries. 

Remark 2 

Note that the logical structure of the optimization problem formalized in this paper may resemble that of the 

set-partitioning problem, one of the classical problems in the literature concerning combinatorial optimization 

[116]. Indeed, even in our case, the problem can be seen as that of selecting, among a set of feasible subsets 

(in this case, corresponding to the stations), a collection of such subsets capable of covering all elements of 

the overall set considered (such elements correspond to the lines, in our model) without redundancy, that is, 

ensuring that each element (=each line) is included (=is assigned) to a single selected subset (=each activated 

station). 

However, this similarity is only apparent because, in the proposed optimization model, not only the selection 

of the sites (i. e., the stations) has to be determined, along with the lines that are assigned to each station, but 

also the sizing of each of the selected station. This means that, for each station, the number of sockets and the 

maximum power deliverable by each socket are to be determined. Besides, the initial power at which the 

charging process for each bus of a certain line starts, and the number of buses traveling on each line is 

determined by solving the optimization.  

Thus, unfortunately, it is impossible to formalize this problem as a set partitioning problem, in which the 

cost of any feasible subset is computable a priori. For this reason, the well-known and efficient methods to 

solve the set-partitioning problem cannot be used for the problem considered in this paper. 

Remark 3 

Given the general formulation of our problem, one could believe that it is quite similar to the so-called 

nonlinear resource allocation problem (see, for instance, [117] and [118]). In fact, our problem may be viewed 

as having the purpose of allocating some resources (the charging stations) to jobs (the lines) under some 

constraints.  

However, even this resemblance is only apparent for several reasons. First, the quantities of resources 

assigned to the various jobs are not the only decision variables in our problem. It is not easy in our case to 

speak of a quantity of resources assigned to a given line since the total sizes of the resources to be shared (i.e., 

in our case, for each resource, the number of sockets and their maximum power) are themselves issues to be 

determined by the solution of the optimization problem. Besides, the charging process for each line (that is, 

the initial charging power) itself is something to be determined by solving the problem. Finally, the problem-

solution also determines the number of buses for each line (of course, affects the service request, from each 

line to the resource to which it is assigned).  



6.2 Application to a case study 

This section applies the proposed approach to a specific case study, providing a detailed presentation of the 

results.  

The electric power consumption of an electric bus is retrieved by using a model presented in [119]. In 

particular, all aspects affecting the vehicles’ dynamic are considered, such as the forces acting on the vehicle 

during departure and movement (which give rise to a waste of energy), and the energy recovery in the 

downward stroke and in the braking phases, which is peculiar of electric buses. 

The following features influence the electricity consumed by an electric bus: 

▪ the total mass of the bus that includes the curb mass and the loaded cargo; 

▪ the gradient of the terrain, since proceeding uphill requires a higher energy amount than traveling on 

flat terrain or downhill; 

▪ the characteristics of the electric drive, i.e., the efficiencies due to the energy conversion and power 

electronics; 

▪ the travel speed that affects the rolling and aerodynamic resistance. 

This section considers the first instance as a basic case study, and the results are analyzed in detail. Then, 

the results obtained for case studies of higher dimensions are briefly discussed to analyze the performance of 

the method from the computational viewpoint. 

Moreover, some results regarding a sensitivity analysis performed varying the battery size, and the minimum 

service frequency will be presented. 

6.2.1 The basic instance 

The first instance is relevant to an instance with three (N=3) available sites and twelve lines (M=12). The 

data come from the public transportation company AMT which operates in the Genoa area.  

The data relevant to this instance are reported in Table 6.1,Table 6.2, and Table 6.3.  

Table 6.1 Data for the first instance 

Symbol Quantity Unit 

N  3 - 

M  12 - 

CAPE  600 kWh 

  1.2 - 

ratedP  80 kWh 

  500 - 



  5 €/h 

A  0.8 - 

B

jC j  20000 €/y 

T

jC j  150 €/trip 

oper

jT j  7000 h/y 

Table 6.2 Data relevant to sites 𝑆𝑖 , 𝑖 = 1, … ,3 (First Instance). 

i  

,sock max

iN  

[#] 

,sock max

iP   

[kW] 

,tot max

iP  

[kW] 

1

iK  

[€/year·#of sockets] 

2

iK  

[€/year·kWh] 

1 10 100 1000 1000 10 

2 10 100 1000 1000 9 

3 10 100 1000 1100 11 

Table 6.3 Data relevant to lines 𝐿𝑗 , 𝑗 = 1, … ,12 (First Instance). 

j  
init

jX  
fin

jX  
trips

jT [h] 
min

jF [h-1] 

1 0.40 0.90 5 0.2 

2 0.50 0.95 5 0.2 

3 0.40 0.90 5 0.25 

4 0.50 0.85 5 0.25 

5 0.40 0.90 5 0.25 

6 0.45 0.95 5 0.25 

7 0.40 0.90 5 0.2 

8 0.50 0.95 5 0.2 

9 0.40 0.90 5 0.2 

10 0.50 0.85 5 0.2 

11 0.40 0.90 5 0.2 

12 0.45 0.95 5 0.2 

The optimization problem has been solved (finding an optimal solution) by use of Lingo [113] with an Intel 

Corei7-6500U, 3.5 GHz processor. It turns out that this instance of the Mixed-Integer Nonlinear Problem 

(MINLP) formalized in this chapter is characterized by 54 integer variables and 114 continuous variables, 

along with 123 constraints (of which 47 are nonlinear). The runtime needed to obtain an optimal result has 

been equal to 36 seconds. The results are reported in Table 6.4 and Table 6.5. 

Table 6.4 Results for Sites 𝑆𝑖 , 𝑖 = 1, … ,3 (First Instance). 

i  
sock

in  [-] 
tot

ip  [kW] 
sock

ip  [kW] 



1 4 320 80 

2 9 720 80 

3 0 0 0 

As it is provided in Table 6.4, the solution of the problem leads to the installation of 13 sockets between site 

1 and 2. More specifically, 4 sockets are installed in station 1 and 9 in station 2. Station 3 is not activated at 

all. 

Table 6.5 Results for lines 𝐿𝑗 , 𝑗 = 1, … ,12 (First Instance). 

j  
ch

jt [h]  B

jn  [-]  W

jt  [h] 

1 4.04 2 0.96 

2 4.33 2 0.67 

3 4.04 3 2.96 

4 2.68 2 0.32 

5 4.04 3 2.96 

6 4.70 3 2.30 

7 4.04 2 0.96 

8 4.33 2 0.67 

9 4.04 2 0.96 

10 2.68 2 2.32 

11 4.04 2 0.96 

12 4.70 2 0.30 

From Table 5.5 it is possible to observe that at least 2 buses are necessary for each line. 

An important performance index is the utilization factor iu  of station iS   that is defined as the fraction 

i
i

Overall working timeof a socket

inS during atimeinterval H
u

H
=   (6.26) 

that is equivalent to 

,

: i j

ch
i j j j

j S R

i sock
i

f t

u
n




=


 1,...,i N=  (6.27) 

This performance indicator (always lower than or equal to 1) allows to evaluate the criticality or the stress 

level of a station, as well as its possible poor utilization. 



In this case study, the value assumed by iu  is 0.83 in site 1 and 0.78 in site 2, which can be considered 

satisfactory values. 

6.2.2 Analysis of computational requirements 

A further campaign has been carried out to evaluate the capability of the proposed approach to cope with 

instances having higher dimensions. However, it has not always been possible for large dimension instances 

to obtain an optimal solution in a reasonable computing time. Nevertheless, during the program's execution, 

the used solver provides current upper and lower bounds for the optimal cost. Thus, even when the time 

required to obtain an optimal solution is quite long, the run can be stopped whenever the gap between the upper 

and lower bounds is sufficiently low. In this case, the current best feasible solution found is retained as the 

problem’s solution. This corresponds to a common practice in optimization applications and may also be 

justified by considering that instance data are affected by some imprecision that may be comparable with the 

inaccuracy due to the acceptance of a suboptimal solution. It must be reminded that this is a planning problem 

whose solution must be determined offline. Thus the allowable runtime can be adjusted in order to achieve a 

maximum level of suboptimality of the solution that is retained when the run is stopped. 

Table 6.6 reports the computational performances obtained in connection with 9 instances of increasing 

dimension. The information provided for each instance includes the total number of constraints, the number of 

nonlinear constraints (NL constraints), the number of integer variables, and the time needed to reach an 

acceptable (relative) value of the GAP  between the upper and lower bounds for the optimal costs. 

The GAP  is defined as  

100
curr LB

GAP

LB

J J

J

−
 =    (6.28) 

where currJ  is the value of the objective function for the current best feasible solution found, and LBJ  is the 

current lower bound determined by the software tool. 

Table 6.6 Instances comparison 

Inst. N M Constr. NL Constr. Int. Var. Time [s] GAP  [%] 

1 3 12 123 47 54 0.1 2.13 

2 3 13 131 50 58 2 2.15 

3 3 14 139 53 62 3 2.40 

4 3 15 147 56 66 3 2.37 

5 4 12 130 50 68 8 2.30 

6 4 13 138 53 73 16 2.21 

7 4 14 146 56 78 36 0.62 



8 4 15 154 59 83 36 2.10 

9 5 16 169 65 106 84 2.22 

It appears that, in general, the higher the dimension of the instance (that is, the values N and M), the longer 

the time necessary to find a satisfactory solution. Note that, for any of the considered case instances, the solver 

was able to attain a satisfactory solution within a short time interval. By the way, for the first three instances, 

an optimal solution was attained in less than 2 minutes.  

  



Chapter 7 

Conclusions and Future Developments 

The progressive shift from traditional vehicles to EVs is considered as one of the key measures to achieve 

the objective of a significant reduction in the emission of pollutants, especially in urban areas. In this thesis, 

attention has been focused on applying control and optimization methods and approaches to energy systems 

in which EVs are integrated, with specific reference to planning and scheduling decision problems. An 

interdisciplinary approach is considered because the optimal management of EVs and charging stations (CSs) 

is a decision problem across different disciplines: transportation and logistics, scheduling, and smart grids. In 

smart grids, energy production and storage systems are usually scheduled by an EMS to minimize costs, power 

losses, and CO2 emissions while satisfying energy demands. When CSs are connected to a smart grid, EVs 

served by CSs represent an additional load to the power system to be satisfied and an additional storage system 

in the case V2G technology is enabled. However, the load generated by EVs is deferrable. In this case, it can 

be thought as a process in which there are machines (CSs) that serve customers/products (EVs) based on release 

time, due date, deadline, energy request, like it happens in manufacturing systems. In this thesis, two kinds of 

approaches have been used to deal with the optimal scheduling of EVs. Firstly, attention is focused on the 

formalization of a discrete-time optimization problem in which fossil fuel production plants, storage systems, 

and renewables are considered to satisfy the grid's electrical load. The discrete-time formalization can use 

forecasting for renewables and loads without data elaboration. On the other side, a huge number of decision 

variables are present, making the optimization problem hard to solve through commercial optimization tools. 

Secondly, the same decision problems have been faced through a discrete-event formalization. 

Summing up the results obtained with the two approaches it is possible to compare them. In particular, 

Scenario I (Section 5.4.1) utilize the same data of the discrete time case study (Section 4.5). The two results 

have a difference in the overall cost but also in the computational time. In the discrete time model the overall 

cost is 340.12€ and the run time is 33 s. In the discrete event model, the cost is 355.05€ and the run time is less 

then 2 s. This huge difference necessarily linked to the number of variables in the two problems. In fact, the 

number of variables in the discrete time approach depends on the length the discretization interval, in the 

discrete event model, as highlighted, it depends on the number of EVs. The main drawback of this approach 

is certainly to be searched in the loss of precision for the solution. It cannot be stated a-priori that the solution 

will be worse in terms of cost (even if it happens in this instance), but it is straightforward to say that, by 

definition, considering the average values of the power flows over “longer” time intervals, the actual power 

profile will not be perfectly represented. Even in the case of the optimization approach described in Chapter 

5, the continuous power profiles are obtained only by introducing some assumptions.  

It must be denoted that the proposed approach has some limitations and could be improved. The main limit 

could be found in using a polynomial approximation which cannot always fit the forecasted power's real values, 

especially if the order is low, but increasing the order would lead to a high computational burden. Another 

limitation is the absence of the V2G operation mode, which, in this model, would lead to a too complex 



formulation with too many binary variables. Certainly, a further improvement to this approach could be the 

use of a combination of the two models (i.e., discrete events and discrete time models) in order to take 

advantage of their main feature, trying to reduce the number of variables with the discrete event model and 

then obtaining a detailed solution with the discrete time model. When dealing with EVs, it is necessary to 

consider other issues that influence the scheduling, i.e., the optimal location of charging stations, and the 

assignment of users to CSs. For this reason, Chapter 6 is relevant to a planning problem with charging stations 

placement and line assignment. 

In particular, a novel optimization problem has been introduced to define the service infrastructure for 

charging a fleet of EBs in a public transportation system. The infrastructure (location of the charging stations, 

the number of sockets, and maximum power for each station and each socket) is determined jointly with the 

assignment of lines to charging stations and bus fleet sizing (for each line). The formalization of the problem 

is based on economic cost minimization while guaranteeing a certain quality of service (a minimum service 

frequency specified for each line). The objective function is defined assuming that the overall system operates 

periodically and is intended to provide the specifications for the framework’s design over which a detailed 

operational scheduling procedure can then be developed. Another novelty of the paper is the detailed modeling 

of the nonlinear charging characteristic of the EB’s battery. The proposed problem has been solved by applying 

a mathematical programming software tool. The results obtained refer to a series of case studies that correspond 

to a real instance, with some possible variations about it. These results show that in this way, it is possible to 

obtain, within a reasonable computing time, an optimal solution, or at least a suboptimal solution whose 

distance from the optimal one is strictly upper bounded. A possible future research direction is developing a 

multiobjective optimization approach, in which economic cost and quality of service are considered as different 

objective functions to be minimized. Finally, a further research direction is to analyze the possibility of 

developing a detailed scheduling procedure for the bus recharging process jointly with the service scheduling 

of the buses (i.e., the timetabling of the various trips during the day). 

Of course, other topics should be mentioned that are worthy of investigation in the planning and management 

of EVs. In fact, they not only influence the management of power and energy systems but also the one of 

sustainable transportation and mobility systems. This is the reason why it is mandatory to couple different 

networks and integrate different disciplines such as traffic systems, autonomous vehicles, electrical systems, 

transportation networks and logistics. Some approaches have been studied during the Ph.D. activity some are 

currently under investigation. 

  



Appendix 

Optimization problems 

An optimization problem is characterized by three main components: decision variables, objective function, 

and constraints. Decision variables are those entities that represent the decisions of a specific decision problem 

(for example power produced by some production plant, the number and the size of charging stations in a 

territory, the path of a vehicle, etc.).  The objective function represents the target (or the key performance 

indicators) of the decision problem to be minimized or maximized (like for example costs, revenues, emissions, 

temperature and state of charge levels); it should be a function of the decision variables and it is generally an 

algebraic equation. Constraints represent restrictions such as the size of production plants, emission levels 

from regulation, etc. An optimization problem is generally expressed by:  

 ( )min
x

f x  (XXIX) 

s.t. 

 ( ) 0h x =  (XXX) 

 ( ) 0g x   (XXXI) 

where nx  is the decision variable vector, ( ) : nf x →  is the objective function to be minimized, 

( ) : Ennh x →  are the functions for the equality constraints and ( ) : Inng x →  for the inequality constraints. 

It is important to note that: 

• A feasible solution is any nx  that respects constraints (XXX)-(XXXI). 

• If a feasible solution minimizes (XXIX), it is an optimal solution, which then provides the objective 

function optimal value. 

• Minimizing ( )f x  is equivalent to maximizing ( )f x− . 

Example: Linear optimization problem 

A LP problem is a mathematical programming problem in which functions f, g  and h  are all linear 

functions (or affine functions) of the vector x  of the decision variables. An affine function is a linear 

function plus a constant. Any LP problem can be put in the standard form 



 0max
T

x c x=  (XXXII) 

s.t. 

 Ax b=  (XXXIII) 

 0x   (XXXIV) 

where 

 dim

n

T n

m

x R

c R

b R

A m n







= 

 

besides, it is supposed that m<n and that rank [A] =m. 

Note that T
c , ,A b  are the known parameters of the optimization problem. 

 

Remark 1.1. 

The justification for the above claim of the generality of the standard form is relatively easy. Any linear 

inequality constraint may be put into an equality form by introducing additional non-negative auxiliary 

variables. For example: 
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Besides, if a variable is unrestricted in sign, it can be represented via two variables restricted in sign 
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Finally, it should be noted that any minimization problem can be put in the form of a maximization problem 

and vice-versa. 

 1 2 1 2min (3 5 ) max ( 3 5 )x x x x−  − +  (XXXVII) 

Regarding the standard form of an LP problem, 

• A vector x  satisfying the matrix equality Ax b=  is said to be a solution; 

• The solution x  is said feasible if it also satisfies the non-negativity constraint 0x  ; 

• A feasible solution *x  is optimal if no other feasible solution 'x  exists such that ' *
T T

c x c x  (that is 

if no better feasible solution exists). 

Modeling a dynamic system 

A dynamic system is characterized by input ( ( )tu ) and output ( ( )ty ) vectors within an initial time 0t  and a 

final time ft  and related by equations ( )=y g u  [120]. That is, 
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p m pg u t u t g u t u t = =  y g u  (XXXIX) 

where ( )g  represents the vector of functions 1( ),..., ( )mg g  . 

The state of a system at time 0t  is the information required at 0t . Generally, a vector denoted by x(t), and the 

components 1( ),.....,x ( )nx t t  are called state variables. The set of equations required to specify the state x(t) for 

all 0t t  given 0( )x t  and the function ( )tu , 0t t , are called state equations. The following representation based 

on differential equations for the system state is used: 

 ( ) ( ( ), ( ), )t t t t=x f x u  (XL) 

while for the state-space representation the form is 
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A system is linear when it takes the following form: 
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where A, B, C, D represent model parameters. 

The system can be also expressed by a discrete-time formalization. That is, 

 
(k 1) (k) (k) (k) (k)
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x x u
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 (XLIII) 

where k represents the time counter. 

It is important to note that in a discrete-time formalization, time intervals are equal in length and that control 

variables are assumed to be constant over the length of time. The state equations can be inserted as constraints 

in a general optimization problem in which the objective function depends on the state and control variables. 

Finally, a system can also be represented by a discrete event approach. In this case, the state and control 

variables change when an event occurs. Figure 1 reports this particular case that should be modeled 

appropriately; this book details the application to EVs' scheduling. 

 

 

Fig. I Discrete event case  
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