
Research Article
Unsupervised Detection and Clustering of Malicious TLS Flows

Gibran Gomez ,1 Platon Kotzias,2 Matteo Dell’Amico ,3 Leyla Bilge,2

and Juan Caballero 4

1IMDEA Software Institute, Universidad Politécnica de Madrid, Madrid, Spain
2Norton Research Group, Paris, France
3University of Genoa, Genoa, Italy
4IMDEA Software Institute, Madrid, Spain

Correspondence should be addressed to Gibran Gomez; gibran.gomez@imdea.org

Received 25 October 2021; Revised 15 December 2022; Accepted 21 December 2022; Published 12 January 2023

Academic Editor: Vincenzo Conti

Copyright © 2023GibranGomez et al.Tis is an open access article distributed under the Creative CommonsAttribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Malware abuses TLS to encrypt its malicious trafc, preventing examination by content signatures and deep packet inspection.
Network detection of malicious TLS fows is important, but it is a challenging problem. Prior works have proposed supervised
machine learning detectors using TLS features. However, by trying to represent all malicious trafc, supervised binary detectors
produce models that are too loose, thus introducing errors. Furthermore, they do not distinguish fows generated by diferent
malware. On the other hand, supervised multiclass detectors produce tighter models and can classify fows by themalware family but
require family labels, which are not available for many samples. To address these limitations, this work proposes a novel unsupervised
approach to detect and cluster malicious TLS fows. Our approach takes input network traces from sandboxes. It clusters similar TLS
fows using 90 features that capture properties of the TLS client, TLS server, certifcate, and encrypted payload and uses the clusters to
build an unsupervised detector that can assign a malicious fow to the cluster it belongs to, or determine if it is benign. We evaluate
our approach using 972K traces from a commercial sandbox and 35MTLS fows from a research network. Our clustering shows very
high precision and recall with an F1 score of 0.993. We compare our unsupervised detector with two state-of-the-art approaches,
showing that it outperforms both. Te false detection rate of our detector is 0.032% measured over four months of trafc.

1. Introduction

Transport layer security (TLS) is the most popular crypto-
graphic protocol, widely used to provide confdentiality,
integrity, and authentication to applications such as Web
browsing, email, and instant messaging [1, 2]. Its security
properties and wide availability make TLS also appealing to
malware, which can abuse it to hide its malicious trafc
among benign trafc of a myriad of applications while
preventing examination of its application payload. In Feb-
ruary 2020, 23% of malware was using TLS [3].

Network detection of malicious TLS fows is important,
but it is a challenging problem. It allows us to protect whole
networks by monitoring their trafc, regardless of whether
endpoint security has been deployed. An important property
of scalability and privacy is that network detection should
not require decrypting the content; i.e., it should avoid man-

in-the-middle (MITM) interception [4]. Another important
property is to cluster detected fows with other similar
malicious fows, providing valuable threat intelligence to the
analysts that investigate detection.

Anderson and McGrew proposed supervised machine
learning (ML) detectors for malicious TLS fows [5–7]. A
limitation of binary-supervised detectors (e.g., [7]) is that
they try to distinguish any malicious TLS fow, regardless of
the malware family producing it.Tis is problematic because
diferent families may exhibit signifcant diferences in TLS
usage (e.g., TLS versions, cipher suites, extensions, and
certifcates). To cover all those diferences, the generated
model tends to become too loose, thus introducing errors. In
addition, a binary detector does not provide contextual
information about similar malicious fows. In follow-up
work, they have also proposed combining TLS features with
HTTP and DNS features to improve the binary detection

Hindawi
Security and Communication Networks
Volume 2023, Article ID 3676692, 17 pages
https://doi.org/10.1155/2023/3676692

mailto:gibran.gomez@imdea.org
https://orcid.org/0000-0002-1510-5599
https://orcid.org/0000-0003-3152-4993
https://orcid.org/0000-0003-2962-1348
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2023/3676692


model [5]. However, some families may only use TLS (e.g.,
HTTPS, but no HTTP) and may connect using IP addresses
instead of domain names. Furthermore, HTTP and DNS
features may contain sensitive user information, thus low-
ering user privacy. In their original work, Anderson et al.
also evaluated a multiclass-supervised classifer, where each
class corresponds to a diferent malware family [7]. Tis
approach better models the TLS trafc of individual families
and classifes detected fows. However, it requires clean
family labels to train classifers. A common labeling method
is a vote on the families present in the AV detection labels of
a sample [8]; unfortunately, this approach is inefective for
many samples. As a concrete example, Anderson et al. [7]
could only label this way 27% of 20.5K samples using TLS;
no classifer could be built for the families of the 73% un-
labeled samples, and thus, their malicious trafc could not be
detected. Recent works have proposed anomaly based in-
trusion detection systems using neural network autoen-
coders [9, 10]. Tese works do not specifcally target TLS
fows but can be applied to them as they do not require
access to unencrypted payload. Tese type of models are
built on benign trafc, so they do not require labeled
malicious trafc during training. But they sufer false pos-
itives when the benign trafc changes greatly.

In this paper, we present a novel unsupervised approach
to detect and cluster malicious TLS fows. Our approach
respects user privacy as it only requires access to encrypted
TLS fows and not to their unencrypted payload or any other
unencrypted trafc. Our approach takes input traces of
network trafc generated by executing suspicious samples in
a sandbox. From each TLS fow in traces, it extracts 90
features that capture characteristics of the TLS client, TLS
server, server’s certifcate, and encrypted payload. After
fltering benign TLS trafc, the remaining vectors are
clustered so that each cluster contains similar trafc be-
longing to a (potentially unknown) malware family. Since
malware families may use diferent types of trafc (e.g., C &
C and updates from the download server), multiple clusters
can be output for a family. Te use of clustering removes the
requirement for family labels as it allows detecting any
malicious trafc similar to training fows, even if training
fows could not be annotated with a known family name, i.e.,
fows from the 73% samples that Anderson et al. [7] had to
remove from their training. Te clusters are input to the
unsupervised detector that can be deployed at the boundary
of a network to identify malicious TLS fows. Te detector
measures the distance of a given fow to all clusters and
outputs the closest cluster. If no cluster is close, the fow is
determined to be benign. If family labels are available for the
identifed cluster, the analyst also obtains the family of the
detected fow.When family labels are not available, detection
is not afected: the fow is associated with the random
identifer of its cluster but still provides contextual infor-
mation about samples generating similar fows.

To evaluate our approach, we use 972K network traces
provided by a commercial sandbox vendor and 35M TLS
fows collected at the boundary of a research network over
sevenmonths.We identify, for the frst time, how the sandbox
can signifcantly impact the collected TLS trafc if it runs old

OS versions (e.g., Windows 7 and Windows XP). Tose
operating systems use TLS 1.0 by default instead of currently
dominating TLS 1.2 and 1.3 versions. Tus, training a clas-
sifer withmalicious trafc from a single sandbox using an old
OS could incorrectly capture that TLS 1.0 trafc is malicious
and TLS 1.2 and 1.3 are benign. Tis is an important fnding
because popular sandboxes (e.g., VirusTotal [11]) run decade-
old OS versions, and a common belief is that the lack of newer
OS defenses makes it easier for malware to run and manifest
its behaviors. Our results highlight the importance of using a
variety of OS versions in malware sandboxes. Furthermore,
this issue could have impacted previous work that identifed
signifcant diferences between malware and benign program
TLS client characteristics (e.g., malware using older cipher
suites and fewer extensions) [5, 7], as those same authors have
recently concluded that TLS client features are not enough by
themselves [1], in contrast with their earlier claims.

Our clustering achieves an F1 score of 0.993. We observe
that 31% of the produced clusters only contain samples for
which the state-of-the-art AVclass labeling tool [8] is not
able to obtain family names: supervised multiclass ap-
proaches would not work for those samples. We also observe
that our clustering is able to group TLS 1.3 fows from
multiple samples of the same family, even when no server
name indication (SNI) header is present. TLS 1.3 is a
challenging case, not evaluated in prior works, as certifcates
are encrypted and client and server features are greatly
reduced.

We compare our unsupervised detector with the two
state-of-the-art approaches. Our comparison with Joy [12],
the state-of-the-art supervised binary detector by Anderson
et al. [7], shows that when applied to the same dataset, our
approach achieves an F1 score of 0.91 compared to 0.82 for
Joy. We also compare our approach with Kitsune [10], the
state-of-the-art autoencoder-based anomaly detector. Our
approach achieves an F1 score of 0.99 compared to 0.59 for
Kitsune. We also evaluate our detector over long windows of
time to estimate its false detection ratio (FDR). Over one week
of trafc from the research network, our approach achieves an
FDR of 0.031%. Over four months, the FDR remains almost
the same at 0.032%, highlighting the stability of the detection
model.

Tis paper provides the following contributions:

(i) We present a novel unsupervised approach to detect
and cluster malicious TLS fows. Compared to bi-
nary-supervised detectors, our clustering approach
models separately TLS characteristics from diferent
families. Tis results in tighter models that improve
detection and can provide contextual information
about the cluster to which a detected fow belongs
to. Compared to multiclass classifers, our approach
can detect samples for which family labels are not
available.

(ii) We observe that training malicious TLS detectors
on traces from a single sandbox that uses old OS
versions can signifcantly bias the detector. Tis
highlights the importance of using a variety of OS
versions in malware sandboxes.

2 Security and Communication Networks



(iii) We evaluate our approach using 972K network
traces from a commercial sandbox and 35M TLS
fows from a research network. Our unsupervised
detector achieves an F1 score of 0.91, compared to
0.82 for the state-of-the-art supervised detector, and
an FDR of 0.032% over four months of trafc.

Te remainder of this paper is organized as follows:
Section 2 motivates our research problem. Section 3 details
our novel unsupervised approach to detect and cluster
malicious TLS fows. Section 4 describes the datasets used.
Section 5 evaluates our approach and compares it with state-
of-the-art approaches. Section 6 presents prior related work.
Section 7 discusses limitations and avenues for improve-
ment. Finally, Section 8 concludes. For the reader’s beneft,
Table 1 details the acronyms used in this work.

2. Motivation

Our goal is to detect malicious TLS fows (TLS sessions)
between an infected host in a protected network, e.g., an
enterprise or a university network, and a remote malicious
server. A prerequisite is that, to respect user privacy, only
TLS fows are accessible from the protected network. Tis
implies that the application payload of the TLS fows should
not be accessed, i.e., no MITM and that unencrypted trafc
should not be needed for detection. Tus, detection features
should exclusively come from TLS fows.

Our intuition is that it is possible to capture TLS char-
acteristics of a specifc type of malware family trafc (e.g., C&
C and updates), but it is very hard to capture TLS charac-
teristics that distinguish any malware using TLS from any
benign application using TLS. For example, certifcates and
domains in SNI headers are clearly family specifc. Similarly,
encrypted payload features such as packet sizes are specifc to
protocols (e.g., C & C and update) used by each family [13].

Tus, rather than building a supervised binary classifer,
we propose an unsupervised detector that clusters similar
malicious TLS fows and then detects new TLS fows by
measuring the distance of the clusters. A beneft of our
clustering approach is that the model can assign detected
fows to the cluster that led to detection. Some clusters will be
labeled with a recognizable family name such as Upatre, Zbot,
or Bublik. For others, the family may be unknown, but the
cluster still provides important contextual information in the
form of samples that generate similar TLS fows. In contrast
with multiclass-supervised classifers (e.g., [7]), family labels
are not required for input samples so that detection can still
work for a large fraction of samples that may miss them.

2.1. Ethical Considerations. Passive data collection per-
formed at the research network was approved and per-
formed according to the institutional policies. To protect
user privacy, it covers only the collection of encrypted TLS
fows and excludes personally identifable information such
as client IP addresses. Access to the data is limited to em-
ployees of the institution. Tis research made no attempt to

decrypt TLS fows. Our goal is to enable the detection of
malicious TLS trafc while maintaining user privacy.

3. Approach

Our approach takes input network traces produced by
running suspicious executables in a sandbox. It outputs an
unsupervised detector that can be deployed on a network to
detect malicious TLS fows. Te input network traces are
annotated with the hash of the sample whose execution
produced it. Our approach comprises four steps, as illus-
trated in Figure 1. Section 3.1 describes feature extraction
that produces a feature vector for each TLS fow in the input
network traces. Section 3.2 presents fltering that removes
feature vectors corresponding to benign trafc. Section 3.3
details clustering, which groups similar feature vectors.
Finally, Section 3.4 describes the unsupervised detector,
which gives the feature vector of a previously unseen TLS
fow and classifes it as malicious (with its corresponding
cluster) or benign.

Table 1: Acronyms used in the paper.

Acronym Full name
AE Autoencoder
ALPN Application layer protocol negotation TLS extension
API Application programming interface
APT28 Fancy Bear Russian cyber espionage group
C&C Command-and-control
CA Certifcation authority
CDN Content delivery network
CT Certifcate transparency
DHCP Dynamic host Confguration protocol
DN Distinguished name
DNS Domain name system
e2LD Efective second-level domain
FDR False detection ratio
FN False negative
FP False positive

HDBSCAN Hierarchical density-based spatial clustering of
applications with noise

HTTP Hypertext transfer protocol
HTTPS Hypertext transfer protocol secure
IP Internet protocol
Mcs Minimum cluster size
MITM Man-in-the-middle
ML Machine learning
OS Operating system
PUP Potentially unwanted programs
RMSE Root mean square error
RRP Request-response pair
SB Sandbox
SAN Subject alternative name TLS extension
SNI Server name indication TLS extension
SSL Secure socket layer
TF-IDF Term frequency-inverse document frequency
TCP Transmission control protocol
TLS Transport layer security protocol
TP True positive
URI Uniform resource identifer
VT Virus Total

Security and Communication Networks 3



3.1. Feature Extraction. TLS fngerprints are applied to the
frst few payload bytes of each TCP connection to identify
TLS fows [14], regardless of the ports used for commu-
nication. For the identifed TLS fows, the TCP connection
is reassembled, the full TCP payload is extracted, and then,
the early part of the TCP payload corresponding to the TLS
handshake is separated from the application data using the
value of the content-type feld of TLS records. TLS fows
that have no application data in either direction are
removed.

We extract 90 features from the remaining TLS fows.
Of these, 67 features are new, while the other 23 features
have been used in prior works. Te features can be grouped
into four categories. Client, server, and certifcate features
are extracted from the TLS handshake, while encrypted
payload features are instead extracted from the encrypted
application data. Features are either numerical or cate-
gorical. To build feature vectors, numerical features are
normalized using their z-score, i.e., by subtracting the mean
and dividing by the standard deviation. Categorical features
are frst applied to one-hot encoding, and the result is
multiplied by the term frequency-inverse document fre-
quency (TF-IDF) of values.

3.1.1. Client Features. Tese 11 features, summarized in
Table 2, are extracted from the client hello message. Tey
capture the functionality of the TLS client software. Pro-
grams either use the default confguration of a cryptographic
library or OS and API or confgure them with their pref-
erences. Client features identify programs whose TLS
functionality is confgured similarly. Te features corre-
spond to the highest supported TLS and record versions, the
list of supported TLS versions (extension added in TLS 1.3),
the list of supported ciphers, compression methods, elliptic
curves, and point formats, the list of extensions included in
the message, the domain name in the SNI extension, and the
list of supported application protocols in the application
layer protocol negotiation (ALPN) extension (e.g., HTTP/
0.9, SPDY/1). Te fake resumption feature is explained later
in the resumed sessions paragraph.

3.1.2. Server Features. Te 9 server features in Table 3
correspond to the destination port and features extracted
from the server hello message. Tese features capture the
TLS functionality of the server software, i.e., the parameters
that the server selects for the TLS session after intersecting
the client TLS support with its own TLS support. Server
features identify servers confgured similarly. Te server

hello features are the selected TLS version, record versions,
cipher, and compressionmethod, the list of extensions in the
message, the selected application protocol in the ALPN
extension, and the lifetime in the session ticket extension.
Te last feature captures the signature in the signed cer-
tifcate timestamp extension that a server may use to
transmit signed proofs of the server’s certifcate presence in
the certifcate transparency (CT) logs [16].

3.1.3. Certifcate Features. Tese 24 features, summarized in
Table 4, are extracted from the certifcate chain sent by the
server. Tese features capture the number of certifcates in
the chain and felds of the leaf certifcate. Te focus is on the
leaf certifcate because that certifcate is specifc to the
service, while other certifcates in the chain belonging to the
certifcation authorities (CAs) are used and thus may be
common to many unrelated services. Nine leaf certifcate
features correspond to certifcate parameters, namely, the
version, validity period, number of subject alternative names
(SANs) and extensions included, validation status on the day
we frst process a fow, whether the certifcate is self-signed,
signature algorithm, public key length, and public key hash.
Another seven features correspond to felds of the subject-
distinguished name (DN), and the remaining seven corre-
spond to the same felds in the issuer DN. In the rare case
where client certifcates are used, 22 additional analogous
features are extracted from the client’s certifcate chain.

3.1.4. Encrypted Payload Features. Another 24 features,
summarized in Table 5, are extracted from the encrypted
application data transferred after the TLS handshake has
been completed. Tese features capture the application
protocol used for communication. Te intuition is that the

Network
Traces

Feature
Extraction

Vectors Vectors
Filtering Clustering

Clusters
Detection

Alerts

TLS
Flows

Figure 1: Approach architecture.

Table 2: Client features. (R)� reduced. (C)� changed. (E)� could
be encrypted.

Feature Type Prior work TLS 1.2 TLS 1.3
c_version Cat [7] ✓ ✓ (C)
c_record_version Cat 7 ✓ ✓
c_supported_versions Cat 7 7 ✓ (C)
c_ciphers Cat [7] ✓ ✓ (R)
c_comp_methods Cat 7 ✓ 7

c_curves Cat [1] ✓ ✓ (R, E)
c_point_formats Cat [1] ✓ ✓ (R, E)
c_extensions Cat [7] ✓ ✓ (R, E)
c_server_name Cat [15] ✓ ✓ (E)
c_alpn_list Cat 7 ✓ ✓ (E)
c_fake_resumption Cat 7 ✓ ✓ (C)

4 Security and Communication Networks



protocol changes infrequently because protocol updates
require both client and server software updates and need to
be thoroughly debugged to maintain compatibility. In
particular, prior work has shown that the command and
control (C & C) protocol used by malware changes much
slower than its communication endpoints (i.e., domains, IP
addresses, and ports) [17]. Similarly, we expect the protocol
to also change less frequently than TLS confguration
parameters.

Trafc analysis approaches often leverage the number,
direction (i.e., client-to-server or server-to-client), and sizes
of packets as features to identify encrypted content (e.g.,
[18, 19]). However, packets do not always accurately capture
the underlying protocol because application messages can be
fragmented into multiple packets by the transport and IP
protocols. To address this issue, we defne a sequence as all
consecutive packets sent in one direction until another

packet is sent in the opposite direction.Te concatenation of
the payload of all packets in a sequence is a good approx-
imation of an application message [13]. Te use of variable-
length sequences avoids the need to select a threshold.

We call two consecutive sequences in the opposite di-
rection a request-response pair (RRP). Te number of RRPs
to consider is a hyperparameter of payload features. Te
intuition to select this parameter is that the initial part of
communication is more commonly related to the protocol,
while later parts may be more related to the transferred
content (e.g., fles sent). In this work, we consider the frst
three RRPs, thus we analyze a total of six sequences from
each fow. In our sandbox traces, we observe that 95% of TLS
fows have a single RRP, 3% have two, and 2% have at least
three RRPs.

For each sequence, two features are extracted: the size of
the concatenated payload (e.g., msg_size_c_0) and the
number of packets in the sequence (e.g., msg_pkts_c_0).
Tese sequence features correspond to half of the 24 payload
features. Te other payload features correspond to the total
byte size of the encrypted payload (and its split in sent and
received bytes), the total number of packets (and its split in
sent and received packets), the size of the larger sequence in
each direction, the maximum number of packets in a se-
quence in each direction, the ratio of packets sent over
packets received, and the ratio of bytes sent over bytes
received.

In conclusion, payload features identify TLS fows with
similar content, despite polymorphism of the domain and IP
address.We have also experimented with timing features but
found them too sensitive to the network setup (e.g., server
location and congestion), and thus, we do not use them.

3.1.5. Resumed Sessions. TLS resumption allows us to
quickly re-establish a prior TLS session using a shorter
handshake [20]. Te server encapsulates the session state
into a ticket sent to the client. Later, the client can resume the
previous session by sending the corresponding ticket to the
server. Te shorter handshake does not include client or
server certifcates. To avoid leaving certifcate features empty
(which may make resumed sessions look alike), feature
extraction tracks session tickets sent from servers. When a
TLS session is resumed, it uses the ticket sent by the client to
identify the original TLS session (containing the same ticket
in the opposite direction) and extracts the missing certifcate
features from the original session. If the original session
cannot be identifed, the fake resumption client feature is set
to indicate that it may not be a real resumed session. Fake
resumptions are used to avoid confusing middleboxes that
do not support TLS 1.3 [21]. We also observe them by using
Ultrasurf, an Internet censorship circumvention tool, which
establishes TLS 1.2 fows without certifcates.

3.1.6. TLS 1.3. Most features presented so far are available
up to TLS 1.2. However, TLS 1.3 changes the protocol to
reduce the information available in the TLS handshake. In
particular, some felds become encrypted, and other felds
have fewer values to choose from. Tese changes are

Table 3: Server features.

Feature Type Prior work TLS 1.2 TLS 1.3
s_dst_port Cat [7] ✓ ✓
s_version Cat 7 ✓ ✓ (C)
s_record_version Cat 7 ✓ ✓
s_cipher Cat [7] ✓ ✓ (R)
s_comp_method Cat 7 ✓ 7

s_extensions Cat [7] ✓ ✓ (R, E)
s_alpn_list Cat [1] ✓ ✓ (E)
s_session_ticket_lifetime Cat [1] ✓ ✓
s_ct_signature Cat 7 ✓ ✓ (E)

Table 4: Certifcate features.

Feature Type Prior
work

TLS
1.2 TLS 1.3

(c|s)_num_certs Cat [7] ✓ 7

(c|s)_leaf_cert_version Cat 7 ✓ 7

(c|s)_leaf_cert_validity Cat [7] ✓ 7

(c|s)_leaf_cert_num_SAN Cat [7] ✓ 7

(c|s)_leaf_cert_ext_num Cat 7 ✓ 7

s_leaf_cert_validation_status Cat 7 ✓ 7

s_leaf_cert_self_signed Cat [7] ✓ 7

(c|s)_leaf_cert_sign_alg Cat [7] ✓ 7

(c|s)_leaf_cert_pubkey_hash Cat 7 ✓ 7

(c|s)_leaf_cert_pubkey_size Cat [7] ✓ 7

(c|s)_leaf_cert_subj_cn Cat 7 ✓ 7

(c|s)_leaf_cert_subj_o Cat 7 ✓ 7

(c|s)_leaf_cert_subj_ou Cat 7 ✓ 7

(c|s)_leaf_cert_subj_c Cat 7 ✓ 7

(c|s)_leaf_cert_subj_st Cat 7 ✓ 7

(c|s)_leaf_cert_subj_l Cat 7 ✓ 7

(c|s)_leaf_cert_subj_email Cat 7 ✓ 7

(c|s)_leaf_cert_iss_cn Cat 7 ✓ 7

(c|s)_leaf_cert_iss_o Cat 7 ✓ 7

(c|s)_leaf_cert_iss_ou Cat 7 ✓ 7

(c|s)_leaf_cert_iss_c Cat 7 ✓ 7

(c|s)_leaf_cert_iss_st Cat 7 ✓ 7

(c|s)_leaf_cert_iss_l Cat 7 ✓ 7

(c|s)_leaf_cert_iss_email Cat 7 ✓ 7

Security and Communication Networks 5



captured in the TLS 1.3 columns in Tables 2–5. In particular,
client features such as the list of ciphers, elliptic curves, and
point formats provide less information in TLS 1.3, as many
values have been removed for increased protection, e.g.,
against downgrade attacks. However, as long as clients still
support TLS 1.2, we expect the removal of those values to
happen slowly over time. Furthermore, certifcates are
encrypted so that their features cannot be extracted directly
from the network trace. On the other hand, payload features
are not afected. Despite these changes, our approach is able
to produce accurate TLS 1.3 clusters.

3.2. Filtering. Sandbox traces may include benign trafc
from diferent sources. One source is background trafc
generated by the OS and other benign programs installed in
the virtual machine. Another source is benign samples ex-
ecuted in the sandbox. Yet another source is produced by
malicious samples when connecting to benign services,for
instance, to test Internet connectivity. Some of that benign
trafc may use TLS. To identify benign trafc in the network
traces, we use the Tranco list of the top 1M popular domains
[22, 23]. Removing benign TLS fows is important to avoid
generating clusters of benign trafc for scalability. We also
flter vanilla Tor trafc used by some malware samples,
which we identify using a previously proposed fngerprint
[24]. Note that for better scalability, fows without appli-
cation data in either direction were already removed prior to
feature extraction. Of course, any fltering can be incom-
plete; e.g., some unpopular benign domains could remain.
An advantage of an unsupervised model is that any
remaining benign trafc would produce its own cluster.
Once that benign trafc is identifed, the cluster can be

removed, without requiring retraining of the whole model,
which would be needed by supervised approaches.

3.3. Clustering. Te goal of the clustering is to group similar
feature vectors that correspond to the same type of malicious
TLS trafc. Each cluster comprises feature vectors generated
by the same or diferent samples. Feature vectors from the
same sample may end up in diferent clusters if the sample
produces diferent types of communication such as C & C
communication or communication with an updated server.
When a cluster contains TLS fows from diferent samples,
those samples should belong to the same malware family.
However, samples from the same family could end up in
diferent clusters, e.g., when a subset of samples of the family
exhibits the same type of trafc and a diferent subset of
family samples exhibits a diferent type of trafc.

We use a hierarchical density-based clustering algorithm
based on HDBSCAN [25]. It does not require the number of
clusters to be specifed, recognizes clusters of arbitrary shape
and variable density, scales to large datasets, and allows
working with any kind of data by defning arbitrary distance
functions. It distinguishes between clusters and noise, i.e.,
scattered data points that should not be considered to be part
of any cluster. It has three hyperparameters: the number of
elements that should be close to a central one to defne a
dense zone (mpts), the minimum cluster size (mcs), and a
parameter (m) that tunes the density of linkage in the data
structure it uses for neighbor search. Our evaluation
searches for the best values for these parameters. Te dis-
tance function used divides the features into two sets: nu-
merical and categorical sets. First, it calculates the Euclidean
distance of the numerical features and multiplies it by the
fraction of numerical features over all features. Ten, it
computes the cosine distance between the categorical fea-
tures, multiplying it by the fraction of categorical features.
Te fnal distance is the sum of these two values.

For each produced cluster, the domains in the SNI
header and the leaf certifcates of the fows in the cluster are
collected so that they can be added to blacklists. In addition,
our approach tries to assign a human-interpretable label to
each cluster by applying the AVclass [8] labeling tool to the
samples that produced the fows in the cluster. We detail
labeling in Section 4.4. Te cluster label corresponds to the
family that has a majority in the cluster followed by a sufx
to diferentiate multiple clusters from the same family. For
31% of the clusters, AVclass cannot obtain a family for any
sample, but in contrast to multiclass-supervised classifers,
this does not afect our unsupervised detector, afecting only
the availability of human-readable family names to identify
clusters.

3.4. Detection. Te unsupervised detector leverages the
produced clustering model to decide whether a previously
unseen fow belongs to a known cluster. Detection consists
in searching for the closest node to a given fow if any.
Otherwise, the fow is considered an outlier (i.e., benign).
For this, we evaluate two diferent methods. Te variable
threshold method determines the density of a cluster as the

Table 5: Payload features.

Feature Type Prior work TLS 1.2 TLS 1.3
enc_data_size Num 7 ✓ ✓
enc_sent_size Num 7 ✓ ✓
enc_recv_size Num 7 ✓ ✓
enc_num_pkts Num 7 ✓ ✓
enc_sent_pkts Num 7 ✓ ✓
enc_recv_pkts Num 7 ✓ ✓
c_max_seq Num 7 ✓ ✓
c_max_length Num 7 ✓ ✓
s_max_seq Num 7 ✓ ✓
s_max_length Num 7 ✓ ✓
sent_recv_pkts_ratio Num 7 ✓ ✓
sent_recv_size_ratio Num 7 ✓ ✓
msg_pkts_c_0 Num 7 ✓ ✓
msg_size_c_0 Num [13] ✓ ✓
msg_pkts_s_0 Num 7 ✓ ✓
msg_size_s_0 Num [13] ✓ ✓
msg_pkts_c_1 Num 7 ✓ ✓
msg_size_c_1 Num [13] ✓ ✓
msg_pkts_s_1 Num 7 ✓ ✓
msg_size_s_1 Num [13] ✓ ✓
msg_pkts_c_2 Num 7 ✓ ✓
msg_size_c_2 Num [13] ✓ ✓
msg_pkts_s_2 Num 7 ✓ ✓
msg_size_s_2 Num [13] ✓ ✓

6 Security and Communication Networks



largest distance of a node in that cluster from its closest
neighbor; if the distance of the vector to a node in a cluster is
below this threshold, the vector is considered to be belonging
to that cluster. Te fxed threshold method instead defnes a
fxed threshold for all clusters so that the unseen element
should be close enough to a cluster’s node to be part of it.
Regardless of the method, if the given fow is assigned to a
cluster, then it is labeled as malicious, and the cluster
identifer is considered output. If no cluster is close enough,
the fow is labeled as benign. Te detection threshold is the
main parameter that controls false positives (FPs) and false
negatives (FNs). If the detection threshold is set very tight,
then false positives are minimized, at the expense of in-
creasing false negatives. When it is relaxed, false positives
increase, while false negatives reduce. We evaluate this efect
in Section 5.2.

4. Datasets

To perform clustering and build detectors, we use 972K
sandbox network traces provided to us by a security vendor,
summarized in Table 6. To evaluate the produced detector,
we use seven months of TLS trafc collected at the boundary
of a research network, summarized in Table 7.

4.1. SandboxNetwork Traces. We use two datasets (SB-small
and SB-medium) of network traces obtained by a security
vendor from the execution of suspicious samples in their
sandbox. Each sample was run for one minute, and sleeps
introduced by the sample were skipped. Te network trace
contains all the trafc produced by the sample. Each sample
has a single network trace. All traces contain TLS fows
because this was the selection criteria used by the security
vendor to share executions with us.

Te union of the SB-small and SB-medium datasets
produces the SB-all dataset. SB-all contains before fltering
12.9M fows on 527 destination ports, with the top three
being 443/TCP (93.6%), 9001/TCP (2.67%), and 80/TCP
(1.87%). Of 12.9M TLS fows, 24.5% have a payload and 8.2%
(1M) remain after fltering and are used in clustering. We
explain the reasons for this signifcant drop in Section 4.3.
Tose 1M TLS fows are almost exclusively for 443/TCP
(99.8%) and originated by 28% of the 972K samples. Of all
samples, 9% exclusively communicate through TLS (ex-
cluding DNS and DHCP), while 91% use HTTP in addition
to TLS. Tus, HTTP trafc could not be used for detecting
9% of the samples, even if user privacy was not a concern.
We also observe three times more efective second-level
domains (e2LDs) contacted through TLS than HTTP. 6% of
e2LDs are contacted both via HTTP and HTTPS, likely due
to HTTP redirections towards HTTP URIs.

4.2. Research Network Trafc. To evaluate false positives
(FPs), we use logs of TLS fows collected at the boundary of a
research network. Since no infections were detected in this
network during the monitoring period, we assume that
trafc is benign. For privacy reasons, the logs consist ex-
clusively of TLS fows. Te trafc is split into fve datasets,

summarized in Table 7. Te frst three comprise over seven
months of trafc originated by 1,216 source IP addresses that
produce 34M TLS fows. For the comparison with Joy [12],
we collected two additional short captures, where we run Joy
in parallel with our TLS log collection.

4.3. TLS Versions. Tere exist two signifcant diferences
between SB-all sandbox trafc and benign trafc from the
research network. First, in SB-all, only 24% of the TLS fows
exchanged any application data.Tis is in stark contrast with
96% of the research network fows having application data.
Second, 93% of the sandbox fows after fltering use TLS 1.0,
5.6% use TLS 1.2, and less than 1% use TLS 1.3. Tis TLS 1.0
dominance is in stark contrast with the trafc from the
research network where 80–86% of the fows after fltering
use TLS 1.2, 12%–18% use TLS 1.3, and less than 1% use TLS
1.0. Tese diferences cannot be due to the diferent dataset
time frames as SB-medium and Benign01 partially overlap in
the second half of 2019.

We believe both diferences are rooted in the sandbox
using almost exclusively Windows 7 virtual machines, which
we have verifed by applying the p0f passive fngerprinting
tool to the network traces [26]. Windows 7 system libraries by
default use TLS 1.0. TLS 1.1 and 1.2 are supported but have to
be manually enabled by the user [27]. We believe that the two
diferences are caused by the majority of the malware using
default Windows TLS functionality rather than a crypto-
graphic library statically linked in the executable. If malware
was using a statically linked cryptographic library, then, in
2017–2018, TLS 1.2 would be used by default. To use TLS 1.0,
malware developers would have to confgure the used
cryptographic library to specifcally use TLS 1.0, which seems
unlikely as this happens for samples frommany families. 6.5%
of fows using TLS 1.2 and 1.3 likely correspond to malware
using a statically linked TLS library or invoking the default
browser in the sandbox to open a webpage.

Te low fraction of TLS fows with application data is
also likely due to the use of the default TLS functionality in
Windows 7. Malware tries to connect to servers using TLS
1.0, but many servers no longer support TLS 1.0, or the
ofered cipher suites, and reject it. Note that the PCI Council
has suggested that organizations migrate from TLS 1.0 to
TLS 1.1 or higher before June 30, 2018 [28]. Tis conclusion
is supported by 37% of TLS fows having a protocol_version
alert, i.e., no TLS version can be agreed, and another 16%
having a handshake_failure alert, i.e., no cipher suite can be
agreed.

Tis analysis highlights the impact that sandbox con-
fguration can have on the collected data. Confguring the
sandbox with old software may be benefcial to observe some
behaviors like exploitation, but it can negatively impact
other aspects such as TLS behavior. Running the sample on
multiple OSes is arguably the best alternative, but it impacts
scalability. Note that we do not control the sandbox and thus
cannot confgure it with newer OSes. Tis is a common
scenario where data collection and analysis are performed by
diferent teams.Temain impact of the sandbox in our work
is that fows with no application data are fltered, and

Security and Communication Networks 7



eventually, some network traces may be removed because
they do not contain any fows with application data. Tanks
to the large size of our dataset, even after fltering, we are still
left with 1M TLS fows from 272Kmalicious samples. We do
not think other selection biases are introduced as the TLS
version has little infuence on the clustering results
according to the feature analysis process.

4.3.1. TLS 1.3. Since its release on August 2018, TLS 1.3 has
seen fast adoption [2, 29]. Holtz et al. measured that by April
2019, it was used in 4.6% of TLS fows [29]. In our research
network, one year later, we observed 17.4% TLS 1.3 fows,
nearly a fourfold increase. In the sandbox dataset, after
fltering, modest 0.9% of fows from 6.8K samples use TLS
1.3. Tis shows that a minority of malware authors try to
keep their TLS trafc as secure as possible, avoiding the
default TLS versions ofered by the OS and using instead a
statically linked cryptographic library they can customize.
Most TLS 1.3 fows belong to three malware families: Sofacy,
an alias for the Fancy Bear (APT28) Russian cyber espionage
group, Lockyc, an imitator of the Locky ransomware, and
Razy, which steals cryptocurrency wallets [30]. Te main
impact of TLS 1.3 is that certifcates are not observable.
Additionally, the SNI can be transmitted encrypted by using
new extensions. We also expected a reduced number of
cipher suites, but due to backward compatibility, we observe
14–78 cipher suites being ofered, much higher than fve
standard TLS 1.3 cipher suites. Despite the reduced feature
set, our evaluation shows that our approach successfully
handles TLS 1.3.

4.4. Family Labeling. We query the hashes of all 972K
sandbox samples to VirusTotal (VT) to collect their AV
labels. Among those, 64% (623K) were known to VT. We
feed the VTreports to the AVclass malware labeling tool [8].
AVclass outputs the most likely family name for each sample
and also classifes it as malware or PUP based on the
presence of PUP-related keywords in the AV labels (e.g.,
adware and unwanted). Overall, AVclass labels 59% (574K)
of the samples. For the remaining samples, no family was
identifed because their labels were generic. Te 272K
samples in the fltered SB-all dataset are grouped into 738
families, 545 malware and 193 PUPs. For the interested
reader, Table 8 shows the top 20 families.

To establish the malware family responsible for a cluster,
we apply a majority vote to the AVclass labels of the samples
in the cluster. However, for 35% of clusters, AVclass does not
assign a family to any of the samples in the cluster (i.e., they
only have generic labels), and thus, the cluster cannot be
labeled. Note that, in contrast to multiclass-supervised
classifers, our unsupervised detector does not use family
labels and thus can still detect fows for the 41% of samples
and 35% of clusters that AVclass cannot label. In detection,
even when the cluster to which the detected fow belongs
does not have an associated family name, it still provides
important contextual information to analysts by capturing
other malicious samples that generate similar trafc.

4.5.GroundTruth. To evaluate the clustering results, we use
a manually labeled subset of fows from SB-all, summarized
in Table 9.Te AVclass results were used to randomly select

Table 6: Summary of network traces collected from a commercial sandbox.

Dataset Start End Samples
TLS destinations TLS fows TLS version

SNI IP Ports All Payload
(%)

Filtered
(%)

Resumed
(%)

1.0
(%)

1.2
(%)

1.3
(%) Other (%)

SB-small 2017-
11-01

2018-
01-30 342.1K 49.8K 17.9K 268 1.9M 70.1 8.8 19.7 87.5 12.3 0 0.2

SB-
medium

2019-
05-30

2019-
10-30 630.5K 65.8K 22.4K 339 11.0M 16.6 8.1 15.0 95.4 2.9 1.7 0.0

SB-all 2017-
11-01

2019-
10-30 972.6K 113.5K 37.6K 527 12.9M 24.5 8.2 15.7 93.5 5.6 0.9 0.0

Table 7: Summary of collected research network trafc.

Dataset Start End SRC
TLS destinations TLS fows TLS version

SNI IP Ports All Payload
(%)

Filtered
(%)

Resumed
(%)

1.0
(%)

1.2
(%)

1.3
(%) Other (%)

Benign01 2019-
10-08

2019-
11-24 1.0K 108.6K 85.5K 824 9.6M 96.0 8.9 37.3 0.9 86.8 12.2 0.1

Benign02 2019-
12-10

2020-
01-31 1.0K 127.2K 100.3K 1.1K 13.2M 96.2 9.8 42.5 0.8 80.7 18.4 0.1

Benign03 2020-
02-01

2020-
04-30 1.0K 120.8K 98.4K 2.9K 11.6M 96.0 7.9 43.4 0.9 81.7 17.4 0.0

Comp.train 2020-
10-23

2020-
10-25 845 6,257 8,409 37 879.9k 66.5 27.9 34.9 0.7 65.5 33.7 0.1

Comp.test 2020-
10-28

2020-
10-28 496 7,277 9,603 1.0K 396.2k 74.9 18.7 36.9 0.3 69.0 30.3 0.4

8 Security and Communication Networks



samples from four of the largest families (ClipBanker,
Upatre, Shiz, and Bublik), a couple of small families (Ekstak
andMiancha), and a variety of samples that AVclass cannot
classify. Note that the AVclass family is not used as ground
truth by itself as it is not available for all samples, may be
incorrect for some samples, and does not separate diferent
types of trafc from the same sample. Still, family labels
help ensure that a variety of malware is included. Ten,
benign trafc was fltered, and features were extracted (e.g.,
certifcates, domains in SNI headers, and payload se-
quences). In addition, additional information was obtained
that is not available to our detector such as VT reports that
contain fle properties and behavioral information, other
features in the network traces not used by our approach
(e.g., non-TLS trafc and destination IP addresses), and the
AVclass family. By examining static, dynamic, and shared
indicators in the reports and network trafc, 29 clusters
were identifed.

5. Evaluation

Tis section frst presents the clustering results in Section 5.1
and then the detection results in Section 5.2.

5.1. Clustering Results. We leverage the ground truth to
assess the clustering accuracy along three dimensions: fea-
tures, clustering algorithm parameters, and z-score nor-
malization for numerical features. To evaluate clustering
accuracy, we use precision, recall, and F1 score, which are
common metrics for evaluating malware clustering results
[31]. Tese metrics do not require or use cluster labels. Tey
measure structural similarity between obtained clustering
and ground truth clustering.

Table 10 summarizes the results obtained for 9 clustering
confgurations. First, we evaluate how diferent sets of
features afect the results, using default parameters for
clustering and z-score normalization. We evaluate 7 sets of
features. FD1 corresponds to using all features and acts as a
baseline. Te other feature sets correspond to an ablation
study where we remove some features and measure how
much the accuracy metrics are reduced with respect to the
FD1 baseline. To evaluate the impact of each feature cate-
gory, we build four feature sets (FD2–FD5), each excluding
the features in one feature category (e.g., excluding client
features in FD2). To evaluate the impact of payload features,
we exclude features from the other three categories (client,
server, and certifcate) in FD6. To evaluate the impact of our
novel features, we exclude them from FD7, leaving only
those already present in prior works. Tis search shows that
server and payload features provide most information
(largest drop when excluded) and that client features also
provide some information. However, certifcate features are
not useful (excluding themmay help achieve the best results)
because they make clustering split true clusters into sub-
clusters due to the prevalence of certifcate polymorphism
and certifcates from free CAs. Te only useful information
in free certifcates is the domain name, which often overlaps
the SNI feature. In addition, some CDNs like CloudFlare are
abused by multiple families, and the similarity of their
certifcates does not capture a real relationship. Based on
these results, when exploring other dimensions, we exclude
the certifcate features. Te results from FD7 show that the
new features proposed in this work increase the clustering
accuracy, raising the F1 score to 0.993, compared to 0.973
when using only the features proposed by prior works. Next,
we evaluate the z-score normalization of the numerical
features by observing that normalization improves results.
Finally, we perform another search to optimize clustering
hyperparameters. Te table does not show every parameter
value confguration evaluated. It only shows the results with
the best parameter confguration, which turns out to be the
default parameters. Te best clustering is FD9, which does
not use certifcate features, applies z-score normalization for
numerical features, and uses hyperparameters mpts� 2,
mcs� 2, and m� 10. It achieves a precision of 0.996, a recall
of 0.990, and an F1 score of 0.993.

5.1.1. SB-All Clusters. Table 11 shows the clustering results
of the 1M fows in SB-all using the best clustering (FD9). It
produces 18,569 clusters, of which 49% contain multiple
fows and the rest are singletons. 36% of clusters contain
fows from multiple samples, 12% contain more than one

Table 8: Top 20 families by samples after fltering.

Family Type SNI IP TLS fows Samples
ClipBanker Malware 7 10 319,185 88,680
Upatre Malware 251 347 311,687 64,860
Shiz Malware 12 18 41,578 19,959
Zbot Malware 120 116 46,437 5,502
Pcchist Malware 1 1 4,713 4,653
InstallMonster PUP 61 75 4,537 4,163
Sofacy Malware 1 1 3,381 3,381
Xetapp PUP 2 2 3,908 2,828
OxyPumper PUP 7 502 3,051 2,431
Bublik Malware 36 33 30,741 2,240
Vkontaktedj PUP 2 12 2,060 1,599
Khalesi PUP 8 7 1,787 1,591
Playtech PUP 8 17 2,912 1,497
Multiplug PUP 2 2 9,223 1,055
Adposhel PUP 2 28 958 958
Razy Malware 88 120 10,579 945
Lockyc Malware 2 3 724 709
NoobyProtect Malware 12 22 1,133 632
Download Assistant PUP 50 63 574 573
Delf Malware 76 114 1,127 542

Table 9: Manually generated ground truth.

Family Total fows Samples Clusters
ClipBanker 10,183 9,718 3
Shiz 10,105 9,250 4
Upatre 20,352 8,738 3
Bublik 140 57 5
— 185 170 12
Ekstak 20 20 1
Miancha 9 9 1
Total 40,994 27,962 29

Security and Communication Networks 9



server leaf certifcate, and 3% contain more than one SNI.
Tese results show that clustering is able to group multiple
samples that belong to the same family in the same cluster
despite domain and certifcate polymorphism that malware
authors may apply to avoid blacklists. We also observe that
31% (5,847) of clusters (2,076 nonsingleton clusters) only
contain samples without an AVclass family label. Samples in
those families could not be detected using supervised
multiclass classifers since no labels existed for training their
models.

We manually analyze clusters and report some obser-
vations and example clusters. Te largest cluster has 335,026
fows from the ClipBanker family. Tere are 1,118 clusters
without domain information; i.e., all fows lack an SNI
header. One such cluster has 8 fows, each from a diferent
sample. Te fows connect to three servers (i.e., destination
IP addresses) that use two certifcates, one for ∗.zohoas-
sist.com and the other for ∗.zoho.com. Tere are 8 content
sequences, all with RRPs of similar sizes. AVclass fails to
provide a family label for all eight samples. Tis is an ex-
ample of clustering being able to group multiple samples
despite the absence of domain information and malware
using multiple certifcates. It is also an example of a cluster
where AVclass fails to label samples and supervised mul-
ticlass classifers do not work.

A total of 50 clusters (33 nonsingletons) have TLS 1.3
fows, which lack certifcates and may also lack an SNI
header, making them challenging to detect and label. Of the
33 nonsingleton clusters, 30 contain only TLS 1.3 fows and
three contain multiple TLS versions. Further examination
shows that these 33 clusters likely belong to two families.
According to AVclass, four TLS 1.3 clusters correspond to
the Sofacy family. Each sample of this family produces a
single TLS fow to domains huikin.host or w.huikin.host,
both hosted at IP address 18.197.147.148, but clustering
splits trafc into subclusters with diferent encrypted
payload sequences. Of the 3,418 samples in these clusters,
37 have no AVclass family but are still correctly clustered
with their family peers. For the other 29 nonsingleton TLS
1.3 clusters, we observe that all fows lack an SNI header but

go to the same destination IP address 3.123.117.231. Note
that the destination IP address is not a feature of our
clustering. Tis indicates that grouping is correct although
multiple clusters are obtained based on diferences in the
encrypted payload. In the future, we plan to evaluate the
destination IP address as a feature, which we originally
thought to be problematic due to IP reuse. Many samples in
these clusters have an AVclass family label, but those labels
correspond to 17 families, so it is not possible to identify the
correct family. Tis highlights how our clustering can
group samples not only with missing labels but also with
conficting ones, which would be problematic for super-
vised approaches.

We observe multiple families abusing free certifcates
such as Let’s Encrypt and Tencent Cloud’s TrustAsia cer-
tifcates. One such cluster consists of 12 fows, each from a
diferent sample. It contains three domains:
atendimentostore-al.com, atendimentostore-ac.com, and
buricamiudos-al.com. Te similarity between the domain
names indicates that the cluster is correct. Each domain
resolves to a diferent server and has its own Let’s Encrypt
certifcate. All samples have generic detection labels, so
AVclass does not output a family for any of them. Te
payload consists of four content sequences, all of them with
two RRPs. Te frst RRP has a request of 160 bytes and a
response of 7088–7280 bytes. Te second has a request of
96–112 bytes and a response of 5.18MB–5.38MB, poten-
tially corresponding to a downloaded fle. Clustering is able
to group the 12 samples despite the use of diferent domains
and certifcates.

We also observe CloudFlare being abused by many
families. One such cluster consists of fve fows from three
samples. Each fow is for a diferent domain and goes to a
diferent CloudFlare server using diferent CloudFlare-
issued certifcates. Te similarity, in this case, comes from
the client and payload features. Overall, we observe that
clustering is able to split diferent families abusing Cloud-
Flare infrastructure into their own clusters.

5.2. Detection Results. Tis section evaluates our unsuper-
vised detector. First, we select the best confguration. Ten,
we measure the false detection rate (FDR) of the selected
confguration using benign trafc from the research net-
work. Finally, we evaluate false negatives (FNs).

Table 10: Clustering results of the ground truth. “Singl.” refers to singleton clusters (i.e., only one element).

Clustering Clusters Cluster size Accuracy
Time

ID Features Param. ZS All Singl. Min Max Med. Mean PStdev Prec. Recall F1
FD1 All Default ✓ 27 0 2 9,978 65 1,518.3 3,121.6 0.993 0.872 0.928 18.0
FD2 No client Default ✓ 25 0 2 9,990 65 1,639.8 3,257.3 0.992 0.877 0.931 16.9
FD3 No server Default ✓ 10 0 21 20,213 354 4,099.4 6,274.6 0.747 0.905 0.819 16.6
FD4 No cert Default ✓ 27 0 2 10,003 26 1,518.3 3,503.6 0.996 0.990 0.993 13.6
FD5 No payload Default ✓ 9 0 51 10,290 4,951 4,554.9 4,196.0 0.982 0.855 0.914 13.1
FD6 Payload Default ✓ 20 0 4 10,008 78 2,049.7 3,940.1 0.994 0.990 0.992 10.6
FD7 Prior Default ✓ 24 1 1 10,065 51 1,708.1 3,575.9 0.989 0.958 0.973 19.2
FD8 No cert Default 7 27 0 2 9,991 21 1,518.3 3,467.4 0.995 0.982 0.988 12.8
FD9 No cert Best ✓ 27 0 2 10,003 26 1,518.3 3,503.6 0.996 0.990 0.993 13.6

Table 11: SB-all clusters using the best clustering (FD9).

All Singl. Min Max Med. Mean PStdev Time (h)
18,569 9,548 1 335,026 1 57.2 2,644.2 4.3

10 Security and Communication Networks

https://www.atendimentostore-al.com/
https://www.atendimentostore-ac.com/
https://www.buricamiudos-al.com/


5.2.1. Unsupervised Detector Confguration. For selecting
the best unsupervised detector confguration, we examine
which threshold selection method produces a lower FDR
with the best clustering confguration (FD9) and whether
removing small clusters with few fows can signifcantly
improve the FDR. Table 12 shows the results of applying
each detector confguration to 95K fows from one day of
benign trafc. We frst evaluate the variable threshold se-
lection method. We compare results when keeping and
removing clusters with fewer than 50 fows. Removing them
reduces the FDR from 1.8% to 0.11% but at the cost of not
being able to detect trafc that matches those clusters. Ten,
we evaluate the fxed threshold selection method using
diferent threshold values. We start with threshold 0.2 be-
cause the vast majority of false alarms occur at that distance
or greater distances in the variable method. Ten, we halve
that threshold a couple of times to observe efects.Te results
show that the fxed threshold achieves the lowest FDR and
that smaller thresholds make detection stricter and thus
reduce FPs. In the limit, a threshold of zero would make the
detector fag only fows with identical feature vectors to
those in the cluster. Terefore, we select 0.05 as the best
threshold as it still detects small modifcations, as shown
later in the FN evaluation.

5.2.2. FDR. To determine the real FDR of the unsupervised
detector, we frst apply the selected confguration (0.05 fxed
threshold) to one week of trafc from the Benign02 dataset,
observing a total of 119 alarms, for an FDR of 0.031%. To
evaluate degradation over time, we then apply the detector
again to almost four months of benign trafc (111 days
corresponding to the union of the Benign02 and Benign03
datasets in Table 7), observing 708 alarms produced by 5
clusters, corresponding to a measured FDR of 0.032%. Tus,
the FDR remains stable even after several months.

5.2.3. False Negative Evaluation. We also perform an ex-
periment to validate that the chosen confguration of the
unsupervised detector is not too strict and still detects
variations of fows in clusters. For this experiment, we
apply clustering, using the same confguration as FD9, on
90% randomly sampled fows of each cluster in ground
truth, reserving the other 10% as testing data never seen by
the model. We build an unsupervised detector using the
previously selected confguration of a fxed 0.05 threshold.
We use the produced model to make predictions on the
10% unseen fows. In this scenario, true positives (TPs) are
fows assigned to a cluster by the closest neighbor that
shares the same manually assigned cluster in ground truth.
If a fow is not assigned to any cluster (no nearest
neighbor), it is an FN as we know it is malicious. When the
nearest neighbor of the fow is in a diferent ground truth
cluster than the evaluated fow, we consider it an FP since
the output cluster is wrong. We perform 10-fold cross-
validation, sampling diferent testing data each time. Five
runs have 100% TPs, and there are a total of 12 FNs on all
10 runs, for an FN rate of 0.029%. No FPs are observed.Tis
experiment confrms that the unsupervised detector is

capable of detecting previously unseen fows with low FNs
and that the selected clustering confguration is not too
strict.

5.3. Comparison with Prior Works. Tis section compares
our approach with the two state-of-the-art publicly available
detection tools: Joy [12], a binary-supervised classifer, and
Kitsune [10], an autoencoder (AE)-based anomaly detector.
Both tools can detect malicious trafc but do not classify
detected trafc into families. Tus, the comparison focuses
on the detection goal.

5.3.1. Joy. We compare our unsupervised detector with Joy
[12], publicly available implementation of the binary-su-
pervised detector by Blake and McGrew [5, 6]. We focus on
the comparison with malicious fow detection since the
implementation of the multiclass-supervised classifer by the
same authors [7] is not publicly available. One limitation of
Joy is that it considers all network fows in the input network
traces as malicious. However, as shown in Section 4, much
trafc in sandbox traces is benign. To understand the impact
of this choice by Joy, as well as to make a fair comparison
between Joy and our unsupervised detector, we build three
diferent Joy logistic regression models. Te joy-polluted
model applies Joy without any modifcations. Tus, all fows
in the sandbox network traces are considered malicious. Te
joy-unpolluted-exc model excludes the training benign fows
identifed by our fltering step. Te joy-unpolluted-inc
model labels the benign fows identifed by our fltering step
as negative. Tis last model explicitly tells Joy that the
sandbox traces indeed contain benign trafc. Finally, the
supervised detector corresponds to our unsupervised de-
tector using fltering and the best confguration identifed in
Section 5.2.

For training, we use 90% of the network traces from the
SB-small dataset as the positive class (minus benign fows for
models with fltering) and three days of trafc from the
research network as the negative class. For the research
network trafc, we run Joy in parallel with TLS log collection
since Joy requires network traces as input and cannot
process directly our TLS logs. For testing, we use the
remaining 10% traces of SB-small and an extra day of trafc
from the research network. Two small diferences in feature
extraction between Joy and our approach are that Joy is not
able to process a portion of SSLv2 fows and that it classifes
any fow, even those that do not complete the TLS hand-
shake. To make the comparison as fair as possible, we

Table 12: Comparison of unsupervised detector confgurations on
95K fows from one day of benign trafc.

Model Tres. sel. Tres. MCS FDR (%) Alarms
FD9 Var — — 1.8 1,698
FD9 Var — 50 0.11 109
FD9 Fixed 0.20 — 0.4 389
FD9 Fixed 0.10 — 0.08 73
FD9 Fixed 0.05 — 0.002 2

Security and Communication Networks 11



exclude both cases so that the comparison can be made for
the same fows.

Table 13 summarizes the comparison. Using Joy without
modifcations (joy-polluted) produces a very large number
of FPs and an overall low F1 score of 0.22.Tis indicates that
Joy is learning to diferentiate sandbox trafc (mostly TLS
1.0) from trafc from the research network (mostly TLS 1.2
and 1.3).Tis is confrmed by the diference between the joy-
unpolluted-exc and joy-unpolluted-inc models. When,
during training, Joy is told that benign trafc in the sandbox
is not necessarily malicious (joy-unpolluted-inc), the ac-
curacy greatly improves as many FPs are removed, pushing
the F1 score from 0.22 up to 0.82. However, the number of
FNs increase signifcantly because Joy is forced to produce
aless-strict model that now has to account for some non-
malicious sandbox trafc. In contrast, our unsupervised
approach captures diferent types of trafc from a family in
their own clusters, producing a tighter model. Our unsu-
pervised detector outperforms all Joy models, achieving an
F1 score of 0.91, compared to 0.82 for Joy’s best model.

5.3.2. Kitsune. We also compare our approach with Kitsune
[10], a state-of-the-art AE-based anomaly detector. Kitsune’s
approach does not require malicious trafc during training.
It builds an ensemble of neural network AEs from input
benign trafc and derives a detection threshold by exam-
ining the maximum root mean square error (RMSE) ob-
served in input benign trafc. Given test trafc, Kitsune
computes the RMSE value. If the value is larger than the
inferred threshold, then trafc is considered anomalous, and
an intrusion is fagged. Similar to Joy, Kitsune takes input
network traces in the PCAP format, and thus, we cannot use
our TLS logs from the research network for this evaluation.
Unlike Joy, we could not run Kitsune in parallel with our
TLS log collection, since our collection had been dis-
continued by the time we performed this evaluation. To
evaluate both tools on the same inputs, we leverage the
sandbox traces. We frst flter out all non-TLS trafc from
the traces by selecting the packets to/from port TCP/443 and
then separate benign trafc from malicious trafc using our
fltering (Section 3.2).

First, we tried to produce the Kitsune model using all the
benign trafc in the SB-small dataset, but after one week of
running, the model had not fnished, and we stopped it.
Kitsune was designed to run on low-resource network de-
vices, and its design minimizes the amount of memory used.
However, it runs on a single thread, making runtime the
bottleneck. Tus, its model training does not scale to large
amounts of trafc. Because of this, we use a small set of
ground truth traces to train and test both tools. More

concretely, we use 4,125 ground truth traces for training
each model. Ten, we test both tools on the same trafc that
was not part of training of either of the two approaches. In
particular, we use the benign trafc along with the malicious
trafc of 5,156 traces to build the testing dataset. We use the
Kitsune confguration suggested by its authors [10]: the
detection threshold is the maximum RMSE value seen
during the training phase, and the maximum number of
features allowed per AE is 10.

Another key diference is that Kitsune operates at the
packet level, while our approach operates at the fow level. To
compare the results of both approaches, we frst create a
mapping from each packet to the fow to which it belongs.
When Kitsune fags a packet as an intrusion, we use the
mapping to identify the fow to which the packet belongs and
mark the whole fow asmalicious. Flows where no packet has
been fagged as an intrusion are considered benign. To build
the packet-to-fow mapping, we produce a fow identifer for
each packet using a set of six values: hash of the trace where
the packet appears, source IP, source port, destination IP,
destination port, and protocol. To assign the same identifer
to both directions of the fow, we frst sort the six values
lexicographically and then hash them to produce the fow
identifer. After applying Kitsune’s feature extractor to the
ground truth traces, we add two additional felds to the
Kitsune vectors: the fow identifer and the SNI feld for the
fow. Te SNI is used by fltering to determine if a fow is
benign or malicious. We also modify the feature extraction
of our approach to include the fow identifer.

Table 14 shows the results of both models. Kitsune
achieved a precision of 0.54, a recall of 0.65, and an F1 of
0.59. For the same dataset, our approach achieves a precision
of 0.99, a recall of 0.99, and an F1 score of 0.99. Te low
precision of Kitsune is due to a large number of FPs (13,137).
False positives are a common problem with anomaly de-
tectors since any signifcant deviation from profled benign
trafc is fagged as an intrusion, while benign testing trafc
may contain natural changes that are not related to mali-
cious behavior. Kitsune also introduces 8,323 FNs, likely due
to malicious trafc with similar packet sizes and interarrival
times to benign trafc, which cannot be easily distinguished
using the benign trafc model. Our approach can ameliorate
that problem by using three additional categories of TLS-
specifc features (clients, servers, and certifcates).

6. Related Work

Table 15 summarizes the most related work. It includes three
works that specifcally explore the detection and classifca-
tion of TLS fows [5–7] and two general anomaly-based

Table 13: Comparison of Joy models with our approach.

Model TP FP TN FN Prec. Recall F1
Joy-polluted 19,950 142,703 284,836 11 0.12 0.99 0.22
Joy-unpolluted-exc 19,951 142,163 285,376 10 0.12 0.99 0.22
Joy-unpolluted-inc 15,515 2,154 425,385 4,446 0.88 0.77 0.82
Unsupervised 18,359 2,241 425,294 1,601 0.89 0.92 0.91

12 Security and Communication Networks



intrusion detection systems that do not specifcally target
TLS fows but can be applied to them as they do not require
access to unencrypted payload data [9, 10]. Te bottom row
shows the approach presented in this paper. Te table
characterizes each work according to its goal, approach, and
features used. Te goal can be detecting malicious fows, as
well as classifying those malicious fows by originating
family. Te approach shows whether the work uses super-
vised ML models, unsupervised clustering, and anomaly
detection based on autoencoders. It also illustrates approach
granularity, i.e., whether it works at the fow (F) or packet (P)
level. Te features used can be TLS-specifc (clients, servers,
and certifcates), specifc to other protocols such as DNS and
HTTP, and examine the payload and interarrival times of
packets in a fow in a protocol-agnostic manner. Next, we
compare these 5 works with our approach.

Anderson et al. [7] frst proposed a binary (logistic re-
gression)-supervised detector using features from TLS fows.
In addition, they trained a logistic regression multiclass
classifer for 18 malware families but failed to generate a
classifer for 73% of their input samples, for which they could
not obtain a family label. We compare our unsupervised
detector with the public implementation of their binary-
supervised classifer. Teir implementation assumes that all
TLS fows in the input network traces are malicious, leading
to a very low F1 score. After fxing that issue, the F1 score
raises to 0.82, compared to 0.91, for our unsupervised de-
tector on the same data. Compared to their multiclass
classifer, our unsupervised detector does not require family
labels and detects fows from samples without a family while
still assigning a family to detected fows if available.

In follow-up work [5],the authors add to their TLS
detector model features extracted from DNS responses and
HTTP fows. In contrast, our approach operates solely on
TLS fows and does not require plain-text protocols, in-
creasing user privacy. Furthermore, our unsupervised ap-
proach can assign detected fows to their family clusters and
handle samples that do not use HTTP or connect to their C
& C servers using IP addresses.

Blake and McGrew [6] also evaluated six supervised
learning classifers for detecting malicious TLS fows despite
inaccurate ground truth and nonstationarity of network
data. In their experiments, the random forest performed
best, but the quality of its results decreased signifcantly over
time. In comparison, the FDR of our unsupervised detector
does not degrade over a four-month period.

Mirsky et al. [10] presented Kitsune, an anomaly de-
tection approach that takes benign trafc as input and uses
an ensemble of autoencoders to detect anomalies that in-
dicate intrusions. Using an anomaly-based approach
removes the need for a malicious training dataset but
prevents it from addressing the classifcation goal. Kitsune
uses packet sizes and interarrival times as features so that it

can be applied to any protocol including TLS fows. It is
designed to be efcient so that it can run on network devices
that have limited resources (e.g., Raspberry PI). We compare
our approach with the publicly available implementation of
Kitsune, showing that our approach signifcantly improves
the accuracy.

Bovenzi et al. [9] presented H2ID, an intrusion detection
system that addresses both the detection and classifcation
goals. Similar to Kitsune, it frst uses an autoencoder ap-
proach to detect anomalies as intrusions and uses payload
size and interarrival timing as features so that it can be
applied to diferent protocols, including TLS fows. How-
ever, it adds a second phase where it applies a supervised ML
model to classify the detected anomalies into known attacks
or unknown if they do not match the model. In contrast, our
approach does not require a labeled training dataset and can
cluster similar malicious fows even when their family is
unknown.

6.1. TLS Fingerprints. A large body of work has built TLS
fngerprints to identify the applications that initiate TLS
fows. Fingerprints have been used to analyze several aspects
of the TLS ecosystem, including the impact of HTTPS in-
terception by middleboxes and antivirus products [32], the
evolution of TLS clients over time [1, 2], and the TLS
implementations of popular censorship circumvention tools
[33]. Prior works also built TLS fngerprints for detecting
malware and PUP families [34, 35]. However, a recent work
has shown that malware TLS fngerprints generate high FPs
in real networks [1]. All these approaches build TLS fn-
gerprints solely using features extracted from the client hello
message such as TLS versions, supported cipher suites,
extensions, and elliptic curves point formats. Ede et al. [36]
proposed FlowPrint, a semisupervised approach for fn-
gerprinting mobile apps from their TLS trafc by also using
destination features such as the server certifcate, IP address,
and port. In comparison, our clustering also uses client and
certifcate features but enhances detection by further in-
cluding server and encrypted payload features.

6.2. Malware Clustering. Tere has been extensive work
conducted on malware clustering techniques, using a variety
of features such as system calls, system changes, and network
trafc [13, 31, 37–42]. Most similar to our approach are
clustering approaches based on network trafc, which may
build detection signatures [39–41] or unsupervised detectors
[13] using produced clusters. Some of these works propose
generic payload features that capture message sizes [13, 41],
but none of these works uses TLS-specifc features. In future
work, we would like to combine our TLS features with other
network and behavioral features to build a malware family
classifer for samples executed in a sandbox.

Table 14: Comparison with Kitsune for ground truth TLS trafc.

Model TP FP TN FN Prec. Recall F1
Kitsune (fow level) 15,681 13,137 3,527 8,323 0.54 0.65 0.59
Unsupervised 30,297 1 22,317 94 0.99 0.99 0.99

Security and Communication Networks 13



Ta
bl

e
15
:R

el
at
ed

w
or
k
on

de
te
ct
io
n
an
d
cl
as
sif

ca
tio

n
of

m
al
ic
io
us

TL
S
fo

w
s.

W
or
k

Ye
ar

G
oa
l

A
pp

ro
ac
h

Fe
at
ur
es

D
et
ec
tio

n
C
la
ss
if
ca
tio

n
Su

pe
rv
ise

d
U
ns
up

er
vi
se
d

A
no

m
al
y

de
te
ct
io
n

G
ra
nu

la
ri
ty

TL
S
cl
ie
nt

TL
S
se
rv
er

TL
S
ce
rt
if
ca
te

Pa
yl
oa
d
siz

e
In
te
ra
rr
iv
al

D
N
S

H
TT

P

A
PM

[7
]

20
16

✓
✓

✓
7

7
F

✓
✓

✓
✓

✓
7

7

A
M
16

[5
]

20
16

✓
7

✓
7

7
F

✓
✓

✓
✓

✓
✓
✓

A
M
17

[6
]

20
17

✓
7

✓
7

7
F

✓
7

7
✓

✓
7

7

K
its
un

e
[1
0]

20
18

✓
7

7
7

✓
P

7
7

7
✓

✓
7

7

H
2I
D

[9
]

20
20

✓
✓

✓
7

✓
F

7
7

7
✓

✓
7

7

T
is
w
or
k

20
22

✓
✓

7
✓

7
F

✓
✓

✓
✓

7
7

7

14 Security and Communication Networks



 . Discussion

Tis section discusses limitations and avenues for
improvement.

7.1. Potential Biases. We identify two potential sources of
bias in our methodology. First, we discard almost 64% of the
sandbox TLS fows in our malware dataset because they try
to use TLS 1.0, which was already deprecated by many
servers at the time of execution. Tis happens because most
malware uses Windows TLS functionality, and by default,
Windows 7, the sandbox OS version, uses TLS 1.0. Of 9.3M
discarded connections, 23% would have been anyway re-
moved later by fltering. Second, we flter out benign do-
mains, which may result in excluding somemalware families
from our study. For example, click-fraud malware generates
revenue by falsifying clicks on pay-per-click campaigns and
typically contacts numerous benign destinations. Other
malware families may abuse benign content, hosting services
such as code repositories (e.g., Github and Bitbucket),
document editors (e.g., Google Docs and Pastebin), cloud
storage services (e.g., Dropbox and Google Drive), or even
social media (e.g., Twitter). Despite excluding some malware
families, our dataset still encompasses a large part of the
malware ecosystem, containing 738 diferent families (see
Section 4.4). A third bias could be introduced by our ground
truth not being representative of the whole SB-all dataset.
We try to ameliorate this by including multiple families,
limiting the number of samples of each family, and including
samples without a known family.

7.2. Detection through Other Protocols. Usage of TLS by
malware keeps increasing, having more than doubled from
10% in 2016 [7] up to 23% in 2020 [3]. However, malwaremay
still use unencrypted trafc or mix unencrypted and
encrypted protocols, as illustrated by 91% of samples using
plain HTTP in addition to TLS. Prior work suggested using
unencrypted protocols such as HTTP and DNS to assist in the
detection of TLS malware [5]. However, we already observe
9% of the samples using TLS but not other unencrypted trafc
beyond DNS; we expect this ratio to keep increasing over
time. Moreover, samples not using (or encrypting) a TLS SNI
header (the one case where DNS helps) could also connect to
their C & C using IP addresses. Furthermore, purely TLS-
based detection improves user privacy, and technologies such
as DNS over HTTPS could further hamper DNS utility.While
detection via other protocols is still a possibility for a sig-
nifcant fraction of samples, which is not the case for all
samples, and the situation is likely to get worse.

8. Conclusion

Detecting malicious TLS trafc is important, but it is a
challenging problem. Binary-supervised detectors are lim-
ited and try to distinguish anymalicious TLS fow, regardless
of the malware family producing it. Tis produces models
that are too loose, introducing errors. In addition, they do
not provide contextual information about detected fows.

Multiclass-supervised classifers produce tighter models for
specifc malware families and can classify detected fows.
However, they require family labels to train classifers, which
are not available for a large fraction of samples.

We have proposed a novel unsupervised approach for
detecting and clustering malicious TLS fows. It frst clusters
similar malicious TLS fows without requiring family labels.
Ten, it builds an unsupervised detector that measures dis-
tance of the clusters to determine if a given fow is malicious
(belongs to a cluster) or benign (no cluster is close enough).
We have evaluated our approach using 972K traces from a
commercial sandbox and 35M TLS fows from a research
network. Our unsupervised detector achieves an F1 score of
0.91, compared to 0.82 for the state-of-the-art supervised
detector, and an FDR of 0.032% over four months of trafc.

In future work, we plan to evaluate additional features
such as the destination IP address and timing-related fea-
tures. For example, the IP address that we originally thought
to be problematic due to IP reuse happens to be useful in
some cases according to our evaluation. Timing-related
features have been used by prior works (e.g., [7, 9, 10]), but
our examination found them too sensitive to the specifc
network setup, so we believe there is a need for a systematic
evaluation of their usefulness. Furthermore, we would like to
explore how to generalize our approach to handle other
types of network trafc beyond TLS.

Data Availability

Tis work uses two data types: MALWARE TRACES are
network traces from likely malicious samples executed in a
sandbox and BENIGN TRACES are network traces from a
research network containing trafc which is considered be-
nign. MALWARE TRACES data used to support the fndings
of this study have not been made available because they come
from a commercial sandbox and are considered proprietary
data for the commercial service. BENIGN TRACES data used
to support the fndings of this study have not been made
available because they contain sensitive user data that cannot
be made publicly available by the research institution.

Disclosure

Tis study is also available as an Arxiv preprint [43].

Conflicts of Interest

Te authors declare that they have no conficts of interest.

Acknowledgments

Tis research was funded by the Comunidad de Madrid
S2018/TCS-4339 (BLOQUES-CM) and by the Spanish
Government MCIN/AEI/10.13039/501100011033/ERDF
through the SCUM Project (RTI2018-102043-B-I00), the
PRODIGY Project (TED2021-132464B-I00), and an FPI
grant (PRE2019-088472). Tese projects are cofunded by the
European Union European Social Fund, HORIZON
EUROPE European Innovation Ecosystems and NextGen-
eration funds.

Security and Communication Networks 15



References

[1] B. Anderson and D. McGrew, “TLS beyond the browser:
combining end host and network data to understand appli-
cation behavior,” in Proceedings of the Internet Measurement
Conference, Amsterdam, Netherlands, October 2019.

[2] P. Kotzias, A. Razaghpanah, J. Amann, K. G. Paterson,
N. Vallina-Rodriguez, and J. Caballero, “Coming of age: a
Longitudinal Study of TLS Deployment, Longitudinal Study
of TLS Deployment,” in Proceedings of the Internet Mea-
surement Conference 2018, Boston, MA, USA, October 2018.

[3] L. Nagy, “Nearly a Quarter of Malware Now Communicates
Using TLS,” 2020, https://news.sophos.com/en-us/2020/02/
18/nearly-a-quarterof-malware-now-communicates-using-
tls/.

[4] F. Callegati, W. Cerroni, and M. Ramilli, “Man-in-the-Middle
attack to the HTTPS protocol,” IEEE Security and Privacy
Magazine, vol. 7, no. 1, pp. 78–81, 2009.

[5] A. Blake and D. McGrew, “Identifying encrypted malware
trafc with contextual fow data,” in Proceedings of the 2016
ACMWorkshop on Artifcial Intelligence and Security, Vienna,
Austria, October 2016.

[6] A. Blake and D. McGrew, “Machine learning for encrypted
malware trafc classifcation: accounting for noisy labels and
non-stationarity,” in Proceedings of the 23rd ACM SIGKDD
International Conference on Knowledge Discovery and Data
Mining, Halifax, NS, Canada, August 2017.

[7] B. Anderson, S. Paul, and D. McGrew, “Deciphering mal-
ware’s use of TLS (without decryption),” Journal of Computer
Virology and Hacking Techniques, vol. 14, no. 3, pp. 195–211,
2018.

[8] M. Sebastian, R. Rivera, P. Kotzias, and J. Caballero,
“AVClass: a tool for massive malware labeling,” in Interna-
tional Symposium Research in Attacks, Intrusions, and De-
fenses, Springer, Berlin, Germany, 2016.

[9] G. Bovenzi, G. Aceto, D. Ciuonzo, V. Persico, and A. Pescapé,
“A hierarchical hybrid intrusion detection approach in IoT
scenarios,” in Proceedings of the GLOBECOM 2020 - 2020
IEEE Global Communications Conference, Taipei, Taiwan,
December 2020.

[10] Y. Mirsky, D. Tomer, Y. Elovici, and A. Shabtai, “Kitsune: an
ensemble of autoencoders for online network intrusion de-
tection,” in Proceedings of the Network and Distributed System
Security Symposium, San Diego, CA, USA, 2018.

[11] F. Diaz, “Revamping In-House Dynamic Analysis with
VirusTotal Jujubox Sandbox,” 2019, https://blog.virustotal.
com/2019/10/in-house-dynamic-analysis-virustotal-jujubox.
html.

[12] D.McGrew, B. Anderson, P. Perricone, and B. Hudson, “Joy: a
package for capturing and analyzing network fow data and
intrafow data, for network research, forensics, and security
monitoring,” 2020, https://github.com/cisco/joy.

[13] C. J. Dietrich, C. Rossow, and N. Pohlmann, “CoCoSpot:
clustering and recognizing botnet command and control
channels using trafc analysis,” Computer Networks, vol. 57,
no. 2, pp. 475–486, 2013.

[14] H. Dreger, A. Feldmann, M. Mai, V. Paxson, and R. Sommer,
“Dynamic application-layer protocol analysis for network
intrusion detection,” in 15th USENIX security symposium,
pp. 257–272, USENIX Association, Berkeley, CA, United,
2006.

[15] P. Prasse, L. Machlica, T. Pevný, J. Havelka, and T. Schefer,
“Malware detection by analysing network trafc with neural

networks,” in Proceedings of the 2017 IEEE Security and
Privacy Workshops, San Jose, CA, USA, May 2017.

[16] E. K. B. Laurie and A. Langley, “RFC 6962 - Certifcate
Transparency,” 2013, https://tools.ietf.org/html/rfc6962.html.

[17] J. Caballero, H. Yin, Z. Liang, and D. Song, “Polyglot: au-
tomatic extraction of protocol message format using dynamic
binary analysis,” in Proceedings of the 14th ACM conference on
Computer and communications security, Alexandria, Virginia,
USA, October 2007.

[18] S. Chen, R. Wang, X. F. Wang, and K. Zhang, “Side-Channel
leaks in Web applications: a reality today, a challenge to-
morrow,” in Proceedings of the 2010 IEEE Symposium on
Security and Privacy, Oakland, CA, USA, May 2010.

[19] Q. Sun, D. R. Simon, Y. M. Wang, W. Russell,
V. N. Padmanabhan, and L. Qiu, “Statistical identifcation of
encrypted Web browsing trafc,” in Proceedings of the 2002
IEEE Symposium on Security and Privacy, Berkeley, CA, USA,
May 2002.

[20] S. Joseph, H. Zhou, P. Eronen, and H. Tschofenig, “Transport
Layer Security (TLS) Session Resumption without Server-Side
State,” 2008, https://tools.ietf.org/html/rfc5077.

[21] A. Ghedini, “You Get TLS 1.3! You Get TLS 1.3! Everyone
Gets TLS 1.3!,” 2018, https://blog.cloudfare.com/you-get-tls-
1-3-you-get-tls-1-3-everyone-gets-tls-1-3/.

[22] V. L. Pochat, T. V. Goethem, S. Tajalizadehkhoob,
M. Korczyński, and W. Joosen, “Tranco: a research-oriented
top sites ranking hardened against manipulation,” in Pro-
ceedings of the Network and Distributed System Security
Symposium, San Diego, CA, USA, 2019.

[23] Tranco: a research-oriented top sites ranking hardened
against manipulation, Retrieved 20/05/2019 from https://
tranco-list.eu/list/GKYK, 2019.

[24] S. Matic, C. Troncoso, and J. Caballero, “Dissecting tor
bridges: a security evaluation of their private and public in-
frastructures,” in Network and Distributed System Security
Symposium, Te Internet Society, Reston, Virginia, United
States, 2017.

[25] R. J. G. B. Campello, D. Moulavi, and J. Sander, “Density-
based clustering based on hierarchical density estimates,” in
Pacifc-asia Conference on Knowledge Discovery and Data
Mining, Springer, Berlin, Germany, 2013.

[26] M. Zalewski, “p0f v3: passive fngerprinter,” 2020, https://
lcamtuf.coredump.cx/p0f3/README.

[27] A. Marshall, “Security Protocol Support by OS Version,” 2020,
https://docs.microsoft.com/es-es/security/engineering/solving-
tls1-problem.

[28] L. K. Gray, “Are you ready for 30 June 2018? Saying goodbye to
SSL/early TLS,” 2017, https://blog.pcisecuritystandards.org/are-
you-ready-for-30-june-2018-sayin-goodbye-to-ssl-early-tls.

[29] R. Holz, J. Amann, A. Razaghpanah, and N. Vallina-Rodri-
guez, “Te Era of TLS 1.3: Measuring Deployment and Use
with Active and PassiveMethods,” 2019, https://arxiv.org/abs/
1907.12762.

[30] T. Seals, “Razy Malware Attacks Browser Extensions to Steal
Cryptocurrency,” 2019, https://threatpost.com/razy-browser-
extensions-theft/141181/.

[31] U. Bayer, P. M. Comparetti, C. Hlauschek, C. Kruegel, and
E. Kirda, “Scalable, behavior-based malware clustering,” in
Proceedings of the Network and Distributed System Security
Symposium, San Diego, CA, USA, 2009.

[32] Z. Durumeric, Z. Ma, S. Drew et al., “Te security impact of
HTTPS interception,” in Network and Distributed System
Security Symposium, San Diego, CA, USA, 2017.

16 Security and Communication Networks

https://news.sophos.com/en-us/2020/02/18/nearly-a-quarterof-malware-now-communicates-using-tls/
https://news.sophos.com/en-us/2020/02/18/nearly-a-quarterof-malware-now-communicates-using-tls/
https://news.sophos.com/en-us/2020/02/18/nearly-a-quarterof-malware-now-communicates-using-tls/
https://blog.virustotal.com/2019/10/in-house-dynamic-analysis-virustotal-jujubox.html
https://blog.virustotal.com/2019/10/in-house-dynamic-analysis-virustotal-jujubox.html
https://blog.virustotal.com/2019/10/in-house-dynamic-analysis-virustotal-jujubox.html
https://github.com/cisco/joy
https://tools.ietf.org/html/rfc6962.html
https://tools.ietf.org/html/rfc5077
https://blog.cloudflare.com/you-get-tls-1-3-you-get-tls-1-3-everyone-gets-tls-1-3/
https://blog.cloudflare.com/you-get-tls-1-3-you-get-tls-1-3-everyone-gets-tls-1-3/
https://tranco-list.eu/list/GKYK
https://tranco-list.eu/list/GKYK
https://lcamtuf.coredump.cx/p0f3/README
https://lcamtuf.coredump.cx/p0f3/README
https://docs.microsoft.com/es-es/security/engineering/solving-tls1-problem
https://docs.microsoft.com/es-es/security/engineering/solving-tls1-problem
https://blog.pcisecuritystandards.org/are-you-ready-for-30-june-2018-sayin-goodbye-to-ssl-early-tls
https://blog.pcisecuritystandards.org/are-you-ready-for-30-june-2018-sayin-goodbye-to-ssl-early-tls
https://arxiv.org/abs/1907.12762
https://arxiv.org/abs/1907.12762
https://threatpost.com/razy-browser-extensions-theft/141181/
https://threatpost.com/razy-browser-extensions-theft/141181/


[33] S. Frolov and E. Wustrow, “Te use of TLS in censorship
circumvention,” in Network and Distributed System Security
Symposium, San Diego, CA, USA, 2019.

[34] B. Lee, “TLS fngerprinting,” 2019, http://github.com/
LeeBrotherston/tls-fngerprinting.

[35] Salesforce, “JA3-A Method for profling SSL/TLS clients,”
2018, https://github.com/salesforce/ja3/tree/master/lists.

[36] T. Ede, R. Bortolameotti, A. Continella et al., “FlowPrint:
semi-supervised mobile-app fngerprinting on encrypted
network trafc,” Network and Distributed System Security
Symposium, vol. 27, 2020.

[37] M. Bailey, J. Oberheide, J. Andersen, Z. M. Mao, F. Jahanian,
and J. Nazario, “Automated classifcation and analysis of
Internet malware,” in International Symposium on Research in
Attacks, Intrusions and Defenses, Springer, Berlin, Germany,
2007.

[38] A. Oprea, L. Zhou, W. Robertson, and A. S. Buyukkayhan,
“Lens on the endpoint: hunting for malicious software
through endpoint data analysis,” in International Symposium
on Research in Attacks, Intrusions, and Defenses, Springer,
Berlin, Germany, 2017.

[39] G. Gu, R. Perdisci, J. Zhang, and W. Lee, “BotMiner: clus-
tering analysis of network trafc for protocol and structure
independent botnet detection,” in Proceedings of the 17th
USENIX Security Symposium, San Jose, CA, USA, 2008.

[40] R. Perdisci, W. Lee, and N. Feamster, “Behavioral clustering of
HTTP-based malware and signature generation using mali-
cious network traces,” Networked Systems Design and
Implementation, Springer, Berlin, Germany, 2010.

[41] M. Zubair Rafque and J. Caballero, “FIRMA: malware
clustering and network signature generation with mixed
network behaviors,” in International Symposium on Research
in Attacks, Intrusions and Defenses, Springer, Berlin, Ger-
many, 2013.

[42] K. Rieck, T. Holz, C. Willems, P. Düssel, and P. Laskov,
“Learning and classifcation of malware behavior,” in Pro-
ceedings of the Conference on Detection of Intrusions and
Malware and Vulnerability Assesment, Berlin, Germany, 2008.

[43] G. Gomez, P. Kotzias, M. Dell’Amico, L. Bilge, and
J. Caballero, “Unsupervised Detection and Clustering of
Malicious TLS Flows,” 2021, https://arxiv.org/abs/2109.03878.

Security and Communication Networks 17

http://github.com/LeeBrotherston/tls-fingerprinting
http://github.com/LeeBrotherston/tls-fingerprinting
https://github.com/salesforce/ja3/tree/master/lists
https://arxiv.org/abs/2109.03878



