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Abstract: This paper presents a new heuristic algorithm tailored to solve large instances of an NP-
hard variant of the shortest path problem, denoted the cost-balanced path problem, recently proposed
in the literature. The problem consists in finding the origin–destination path in a direct graph, having
both negative and positive weights associated with the arcs, such that the total sum of the weights
of the selected arcs is as close to zero as possible. At least to the authors’ knowledge, there are
no solution algorithms for facing this problem. The proposed algorithm integrates a constructive
procedure and an improvement procedure, and it is validated thanks to the implementation of an
iterated neighborhood search procedure. The reported numerical experimentation shows that the
proposed algorithm is computationally very efficient. In particular, the proposed algorithm is most
suitable in the case of large instances where it is possible to prove the existence of a perfectly balanced
path and thus the optimality of the solution by finding a good percentage of optimal solutions in
negligible computational time.

Keywords: shortest path problem; NP hard combinatorial optimization problem; cost balanced
optimization problem; constructive heuristic; neighborhood search procedure

1. Introduction

In many optimization problems arising in the decision science area, given a finite set
E of elements having a vector cost c associated with them, the objective function is to find
a feasible subset F ⊆ E, such that the difference in value between the most costly and
the least costly selected elements is minimized. Such problems are denoted as balanced
optimization problems (BOPs). One of the first approaches to solve a BOP is presented
in [1], where the authors consider the set E as an n × n assignment matrix, the cost ce
as the value contained in a generic cell e of the assignment matrix, and the subset F the
selected cells of the defined assignment, thus obtaining the balanced assignment problem.
Successively, Ref. [2] introduced the minimum deviation problem, which minimizes the
difference between the maximum and average weights in a solution. In the same paper, the
authors proposed a general solution scheme also suitable for BOPs. Since then, numerous
real-world applications have been defined and solved as BOPs, always with the goal of
minimizing the deviation between the highest and lowest cost, or making the performance
indices of interest as equal as possible. In the latter case, the most proposed applications
in the literature as BOPs include, though are not limited to, production line operations in
manufacturing systems (e.g., see [3–6] among others) and supply chain management [7,8].
Other BOPs were proposed in the class of flow and routing problems on networks, where
the goal is to design either a single path or a subset of paths in which the arcs or nodes
belonging to the solution have a homogeneous value of their relative weights, such as
travel time, length, etc. (see [9–11], among others).

This paper deals with a variant of the Shortest Path Problem (SPP) that fits into the
class of BOPs. This problem, recently introduced in the literature [12], is denoted Cost
Balanced Path Problem (CBPP).
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The CBPP is defined on a directed weighted graph G(N, A), where N is the set of
nodes and A is the set of directed arcs. For each arc (i, j) ∈ A there is a weight cij ∈ R; the
weights represent either the increment (in case of positive weight) or the decrement (in case
of negative weight) of the cost to balance along the path. The problem is to select in graph
G a path p from an origin node o to a destination node d that minimizes the absolute value
of the sum of the weights of path p. More formally, the objective function of the CBPP is
given by:

MIN |c(p)| = | ∑
(i,j)∈p

cij| (1)

In [12] the authors demonstrate that the CBPP, as many variants of the SPP [13],
is NP-hard in its general form. Moreover, they demonstrate that, in the following two
particular cases, the CBPP can be solved in polynomial time:

• When all costs are non-negative or non-positive (i.e., cij ≥ 0 or cij ≤ 0, ∀(i, j) ∈ A).
In this case, the problem is equivalent to the SPP;

• When the cost of the arc is a function of the elevation difference of the two nodes
associated with the arc.

The reader may observe that the objective function (1) imposes minimization of an
always positive value. For this reason, zero is a lower bound for the CBPP. This implies
that any solution with zero objective function value, coincident with the lower bound,
will always be optimal. The CBPP can be used for modelling various real problems that
require the decision-maker to choose a path in a graph from an origin node to a destination
one balancing some elements. Among others, the problems of route design for automated
guided vehicles, the vehicles’ loading in pick-up and delivery, and storage and retrieval
problems in warehouses and yards deserve attention. Another interesting application of
the CBPP concerns electric vehicles with limited battery levels, considering, for example,
that maintaining a lithium battery at a charge value of about 80% helps to extend its life.
In this case, given a graph, the positive or negative values associated with arcs represent,
respectively, energy consumption or recharging obtained on downhill roads or through
charging stations. Identifying a path in this graph so that the car arrives at its destination
with a similar level of charge as at the start would extend the average life of a battery.

In [12], the authors proposed a mixed-integer linear programming model for solving
the CBPP and tested it by using different sets of random instances. Experimental tests
on the model showed that the computation time of instances that do not have zero as the
optimal solution is significantly higher. For these more complex instances, it is, therefore,
necessary to develop heuristic algorithms. Unfortunately, at least to the authors’ knowledge,
no solution approaches for the CBPP have been proposed in the literature. Instead, heuristic
algorithms have been presented for some problems closely related to the CBPP.

One of the most relevant and similar problem to the CBPP is the cost-balanced Trav-
elling Salesman Problem (TSP) introduced in [14], in which the main objective is to find
a Hamiltonian cycle in a graph with total travel cost as close to zero as possible. In [15],
the authors propose a variable neighborhood search algorithm, which is a local search
with multiple neighborhood structures, to solve the cost-balanced TSP. The balanced
TSP is widely described in [16], where an equitable distribution of resources is the main
objective. The authors cited many balanced combinatorial optimization problems studied
in the literature, and proposed four different heuristics, derived by the double-threshold
algorithm and the bottleneck one, to solve the balanced TSP. To solve the same problem,
in [17] an adaptive iterated local search is proposed with a perturbation and a random
restart that can help in escaping local optimum. In [18], a multiple balanced TSP is analyzed
to model and optimize the problems with multiple objectives (salesmen). The goal is to
find m Hamiltonian cycles in a graph G by minimizing the difference between the highest
edge cost and the smallest edge cost in the tours.

Another problem on graphs closely related to the CBPP is the search for the balanced
trees [19], defined as the most appropriate structures (precisely the balanced tree structures)
for managing networks with the aim of balancing two or more objectives. In [20], the
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authors face the problem of finding two paths in a tree with positive and negative weights.
They presented two polynomial algorithms with the goal of minimizing, respectively, the
sum of the minimum weighted distances from every node of the tree to the two paths, and
the sum of the weighted minimum distances from every node of the tree to the two paths.

To cover the above-mentioned lack of efficient solution methods for the CBPP, the
main aim of this paper is to propose a heuristic algorithm able to solve large instances of
the problem. Since it is not possible to make comparisons with other heuristics proposed
in the literature for the CBPP, to validate the computational results, an iterative heuristic
algorithm is presented. Thus, in the present paper, two heuristic approaches are described,
tested, and compared. The first is a two-step heuristic algorithm that implements a construc-
tive heuristic algorithm in the first step (CHa) followed by an improvement phase (IPa).
The constructive step is a modified version of the well-known Dijkstra algorithm to solve
SPP [21], made necessary to deal with both positive and negative costs and the need to
minimize the absolute value of the cost of the path. The second step of the algorithm IPa,
starting from the feasible solution provided by CHa, tries to improve it using the informa-
tion stored by IPa. In particular, starting from the destination node, algorithm IPa goes
forward to evaluate new nodes that do not belong to the best-found path in CHa. A similar
approach operating forward from the destination node is adopted in the definition of urban
multimodal networks [22]. Note that the Dijkstra algorithm has often been combined
in solution approaches for solving some variants of the SPP, as, for example, in [23–25].
The second heuristic algorithm is an iterative neighborhood search procedure [26] based on
an initial randomly generated solution, improved thanks to IPa previously cited. Among
the hundred generated starting solutions, the best one obtained is given for comparison
with the previous method.

The computation efficiency of proposed algorithms is tested with randomly generated
instances of different sizes, densities, and arc weights. Since no other tests obtained with
previously proposed heuristics to solve CBPP are available as validation of the proposed
algorithms, we have compared them.

The remaining of this paper is organized as follows. Section 2 presents the proposed
algorithms for the CBPP, while Section 3 reports the computational experiments. Section 4
gives some conclusions and perspectives.

2. The Heuristic Algorithms

In the following, the two proposed heuristic algorithms are described.

2.1. The Two-Step Algorithm: Constructive and Improvement (CH− IPa)

As already said, the first proposed algorithm to solve the problem under investigation
consists of two steps. The first step CHa is a constructive approach based on the Dijkstra
algorithm [21]. This algorithm has in input a graph G(N, A), an origin node o and a
destination node d, and returns for each node of G the minimum cost for reaching it from
node o. The second step IPa is an improvement algorithm that, starting from the feasible
solution obtained by CHa, tries to improve it by using as input the solution provided by
CHa related to the shortest path tree from the origin node to each node of the graph. Let us
describe CH− IPa in more detail.

2.1.1. CHa: Constructive Heuristic

CHa is designed to identify an acyclic path from an origin o node to a destination
node d in which the sum of the arcs of the path is as close to zero as possible. This heuristic
algorithm follows the scheme of the algorithm for determining the shortest path proposed
by Dijkstra [21].

CHa is described in pseudocode in Algorithm 1. Looking at Algorithm 1, the reader
can note that one of the differences with respect to Dijkstra’s algorithm is due to the
extraction criteria of a node, as reported in line 9. In fact, we extract the lowest cost
element in absolute value from Q, where Q denotes the set of nodes not yet analyzed.
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In particular, the extraction of destination node d from Q (see again line 9 of Algorithm 1),
is performed only if d is the only node with a non-infinite cost. This allows the procedure
to update the predecessor of node d as many times as possible in order to try to improve
the current solution.

Algorithm 1 CHa (G(N, A), o, d).

1: Q← ∅
2: for each node n ∈ N do
3: cost[n]← ∞
4: prev[n]← NULL
5: Q← Q ∪ {n}
6: end for
7: cost[o]← 0
8: while Q 6= ∅ do
9: u← node in Q with minimum |cost[u]| . (extract d from Q only if

@ n′ ∈ Q/{d} : cost[n′] < ∞)
10: Q← Q \ {u}
11: for each neighbor n of u do
12: if n ∈ Q then
13: d← cost[u] + cun
14: if |d| < |cost[n]| then
15: cost[n]← d
16: prev[n]← u
17: end if
18: end if
19: end for
20: end while
21: return cost, prev

In our algorithm, we examine the set Q of nodes as reported in line 12 of Algorithm 1,
only if it is still present in Q to avoid processing the same node several times. This is
implicitly done in Dijkstra’s algorithm because if a node has already been extracted from
Q, it is not possible to reach it later with a lower cost.

Finally, as reported in line 14 of Algorithm 1, in the cost path evaluation from the
origin node o, we compare the costs of reaching a node using the absolute value associated
with the corresponding arc and select the minimum one.

Just to give an example of CHa, suppose to have to solve the CBPP from node 1 to
node 6 of the graph reported in Figure 1. In the same figure are depicted two iterations of
the algorithm. The first node selected from Q is node 2, with cost c2 = 4. The next selection
is for node 3, with cost c3 = | − 5| = 5 (that is less than the cost for reaching node 4, i.e.,
c4 = c2 + c2,4 = |6| = 6). With two more iterations, reported in Figure 2, node 6 is selected
from Q, and a feasible solution is found. The cost for reaching node 6 is 9, and the selected
path is nodes 1-2-4-6. Looking at the graph, it is possible to find a better solution, that is, the
path consisting of nodes 1-3-4-6 with a cost of 3. We try to improve the obtained solution
(nodes 1-2-4-6) by using the improvement algorithm described in the next section.

Using a priority queue proposed in [27], the complexity of Dijkstra’s algorithm is equal
to O(|A|+ |N|log|N|). Considering that the number of nodes extracted from Q does not
change in our implementation, using a Fibonacci heap to represent Q, the computational
complexity of CHa remains unchanged.
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Figure 1. A simple example of two iterations of CHa.

Figure 2. The last iterations of CHa.

The last part of the constructive algorithm consists of the identification of a path and
its cost evaluation. These procedures are described in Algorithms 2 and 3, respectively.
In more detail, the Algorithm 2, here denoted as Path, is used to create a set P containing
the nodes along the path that connects node o to node d within the tree previously created
by CHa. The Algorithm 3 CostPath is used to compute the sum of the costs of the arcs
along the path that connects node o to node d within this tree. Considering that, in the
worst case, both Algorithms 2 and 3 must visit all the nodes of the graph G(N, A), their
computational complexity is O(|N|).

Algorithm 2 Path (o, d, prev).

1: n← d
2: P← {n}
3: repeat
4: n← prev[n]
5: P← P ∪ {n}
6: until n 6= o
7: return P
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Algorithm 3 CostPath (o, d, prev).

1: n← d
2: cost← 0
3: repeat
4: n′ ← prev[n]
5: cost← cost + cn′n
6: n← n′

7: until n 6= o
8: return cost

2.1.2. IPa: Improvement Phase

The improvement Algorithm 4, here denoted IPa, is described below. The algorithm
has been designed to improve the solution obtained by the constructive heuristic CHa, by
exploiting the tree stored in prev. In particular, this algorithm inversely visits the path from o
to d produced by CHa. Starting at node d (line 1), it enters a loop (line 3) that ends only when
node o is reached. For each node n in the path, it tries to identify a new parent n′ (line 6) which
allows it to improve the objective function (line 7). To avoid the creation of sub-cycles, it is
tested that the new parent n′ is not a descendant of the current node n (line 8).

Algorithm 4 IPa (G(N, A), o, d, cost, prev).

1: n← d
2: currCost← cost[d]
3: while n 6= o do
4: np← prev[n]
5: for each arc (n′, n) ∈ A do
6: ds← cost[n′] + cn′n + CostPath(n, d, prev)
7: if |ds| < |currCost| then
8: if Path(n, d, prev) ∩ Path(o, n′, prev) = ∅ then
9: np← n′

10: end if
11: end if
12: end for
13: prev[n]← np
14: n← np
15: end while
16: return prev, currCost

Analyzing the computational complexity of this algorithm, we have a complexity
of O(|N|) in line 3, having to iterate over a maximum of |N| nodes, and for the loop of
line 5 forces the algorithm to visit a maximum of (|N| − 1) arcs, reaching a complexity of
O(|N|2). Finally, considering the complexity of the functions Path and CostPath we reach
a computational complexity equal to O(|N|3).

Just to give an idea of the IPa, in Figure 3 the starting solution and the first improve-
ment iteration are reported.

In particular, starting from node 6, the algorithm searches for a node connected to 6,
reached during the execution of CHa and not belonging to the current solution. The first
(and unique) candidate is node 5. Before accepting node 5 and modifying the solution, the
algorithm checks if passing through node 5 to reach node 6 from node 1 is cheaper than the
current solution. This is not the case, thus node 5 is not selected. Moreover, going forward
from node 6 to node 4, there is a candidate node 3. Connecting node 3 to 4 is convenient:
the new path from the origin node 1 to node 3, plus the cost of the new arc connecting
node 3 to node 4, and the cost from node 4 to the destination node 6 permits to improve the
objective function that passes from |9| to |3|. This selection is accepted and the search
continues going forward from node 3 to the origin. There are no more possibilities to
improve the solution, thus the algorithm stops.
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Figure 3. An example of IPa.

2.2. The Iterated Neighborhood Search Procedure

The second heuristic algorithm to solve the CBPP is an iterative neighborhood search
procedure. A feasible solution is randomly generated and then it is improved. In the
improvement phase, we use the improvement algorithm defined in Section 2.1.2. The ob-
tained solution is stored and the process is iterated many times starting from a new random
generated feasible solution. The iterated neighborhood search Algorithm 5, called RP,
describes in detail the generation of the starting feasible solution. It identifies a random
path between the origin node o and the destination node d, and creates a random spanning
tree rooted in the origin node. The whole iterated process is described in Algorithm 6,
called RPR. Note that it = 100 different starting solutions are generated. At the end, the
best improved solution is returned and used for the comparison with the previous method.
Algorithm 7 describes the RandomTree function used within the RP and RPR function code
to generate a randomized rooted tree.

Algorithm 5 RP (G(N, A), o, d,it).

1: P← ∅
2: cost← ∞
3: for it iterations do
4: cost, prev← RandomTree(G, o, d)
5: if |CostPath(o, d, prev)| < |cost| then
6: cost← CostPath(o, d, prev)
7: P← Path(o, d, prev)
8: end if
9: end for

10: return P

Algorithm 6 RPR (G(N, A), o, d,it).

1: P← ∅
2: cost← ∞
3: for it iterations do
4: cost, prev← RandomTree(G, o, d)
5: currCost, prev← IP(G, o, d, cost, prev)
6: if |CostPath(o, d, prev)| < |cost| then
7: cost← CostPath(o, d, prev)
8: P← Path(o, d, prev)
9: end if

10: end for
11: return P
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Algorithm 7 RandomTree (G(N, A), o, d).

1: Q← ∅
2: for each node n ∈ N do
3: cost[n]← ∞
4: prev[n]← NULL
5: Q← Q ∪ {n}
6: end for
7: cost[o]← 0
8: while Q 6= ∅ do
9: u← random node in Q

10: Q← Q \ {u}
11: for each neighbor n of u do
12: if cost[n] = ∞ then
13: d← cost[u] + cun
14: cost[n]← d
15: prev[n]← u
16: end if
17: end for
18: end while
19: return cost, prev

3. Computational Experiments

In this section, we report the computational experimentation performed to validate
the proposed algorithms. The computational tests were performed on a MacBook Pro
(Apple Inc., Cupertino, CA, USA), with a 2.9 GHz Intel i9 (Intel Inc., Santa Clara, CA,
USA) processor and 32 GB of RAM. In all tests, we used as input the two sets of instances
reported in [12] and some new large random instances also generated, as described in [12].

The first set of instances, named Grid, is characterized by complete square grids, where
each node is connected to its four neighbors. The second set of instances, named Rand, is
characterized by randomly generated connected graphs with the average degree ranging
from 2 to 20. All instances used in this section can be found at the link [28]. In the following,
we will refer to these instances as Grid[Rand]− n1− n2, where n1 represents the number
of nodes and n2 represents the percentage of arcs incident on each vertex. The third set of
instances is an extension of the Rand instances generated with the same criteria but with a
number of nodes equal to 500, 1000, 2000, and 5000.

The costs associated with the arcs of each instance were generated following 3 different
schemes, based on a homogeneous distribution of randomly generated costs with different
ranges, respectively, [−10, 10], [−100, 100] and [−1K, 1K].

Each row in the following tables reports the average of the results of five instances.
In the following different experimental campaigns are reported.

3.1. First Experimental Campaign: Small Instances

Small instances have been optimally solved by the mathematical model presented
in [12], thus we are able to compare the results obtained by the proposed CH− IPa algorithm
with the optimal solutions. Thanks to the following results, it is possible to understand the
behaviour of the proposed algorithm, in particular the effectiveness of IPa, and to compare
Grid and Rand instances.

Table 1 shows the number of optimal solutions obtained, respectively, using CHa
and CH− IPa. Looking at Table 1, we can observe that IPa always improves the solutions
obtained by CHa. This improvement is more evident for instances with costs [−10, 10],
while the number of optimal solutions remains almost the same for [−1K, 1K] instances.
The two sets of instances (Grid and Rand) have the same behavior.

All instances can be solved in less than one millisecond.
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Table 1. Number of optimal solutions identified—instances with random costs.

Instance
CHa CH− IPa

[−10, 10] [−100, 100] [−1K, 1K] [−10, 10] [−100, 100] [−1K, 1K]

Grid_100_10 2 0 0 2 1 0
Grid_225_15 0 0 0 3 1 0
Grid_400_20 1 0 0 5 0 0

# OPT 3 0 0 10 2 0

Rand_100_02 0 0 0 1 0 0
Rand_100_03 0 1 1 3 1 1
Rand_100_04 1 1 0 4 1 0
Rand_100_05 2 0 0 3 1 0
Rand_100_10 3 1 0 5 3 0
Rand_100_20 5 0 0 5 2 0

# OPT 11 3 1 21 8 1

Rand_200_02 2 0 0 3 1 0
Rand_200_03 2 0 0 4 1 0
Rand_200_04 0 0 0 5 0 0
Rand_200_05 2 0 0 4 0 0
Rand_200_10 4 2 0 5 3 0
Rand_200_20 5 1 0 5 2 1

# OPT 15 3 0 26 7 1

Actually, in Table 2 are reported the absolute objective function values obtained at
the end of CHa and CH− IPa for instances with randomly generated costs in [−10, 10],
[−100, 100] and [−1K, 1K]. Note that, the optimal value for all instances is zero (as shown
in [12]). From Table 2, it is evident that it is always possible to improve the objective function
values using IPa after CHa. In particular, for the largest instances (i.e., last row of each
group), both Grid and Rand, with costs in [−10, 10], IPa is able to provide optimal solutions.
On average, for grid instances, the improvements are 92.3%, 92.2% and 87.8%, respectively,
for instances with costs [−10, 10], [−100, 100], and [−1K, 1K]. The improvements are
about 70% for instances of type Rand_100, and about 82% for Rand_100. In all cases, the
improvement is lower when costs are in [−1K, 1K].

Table 2. Absolute objective function values obtained—instances with random costs.

Instance
CHa CH− IPa

[−10, 10] [−100, 100] [−1K, 1K] [−10, 10] [−100, 100] [−1K, 1K]

Grid_100_10 3.6 20.8 393.8 0.6 3.4 58.0
Grid_225_15 4.2 57.2 506.0 0.4 4.4 53.2
Grid_400_20 4.0 57.0 448.6 0.0 2.8 53.2

AVG 3.9 45.0 449.5 0.3 3.5 54.8

Rand_100_02 5.0 54.0 782.2 1.4 15.2 249.0
Rand_100_03 4.0 40.8 253.6 2.0 5.6 62.6
Rand_100_04 3.4 21.2 225.2 0.2 4.4 49.0
Rand_100_05 0.8 12.0 239.6 0.6 4.0 64.4
Rand_100_10 0.4 4.2 40.4 0.0 0.8 37.4
Rand_100_20 0.0 5.2 41.2 0.0 1.2 12.8

AVG 2.3 22.9 263.7 0.7 5.2 79.2

Rand_200_02 2.0 30.2 314.4 0.6 6.6 41.6
Rand_200_03 0.8 18.2 237.0 0.2 9.4 123.2
Rand_200_04 2.2 17.0 128.2 0.0 2.2 10.4
Rand_200_05 1.4 15.0 73.2 0.2 1.0 4.6
Rand_200_10 0.2 3.0 31.0 0.0 1.2 12.6
Rand_200_20 0.0 0.8 24.8 0.0 0.6 3.8

AVG 1.1 14.0 134.8 0.2 3.5 32.7
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Finally, by comparing the results shown in Table 2 with the optimal values, that is for
all these instances equal to zero, we can note that the optimality gap is larger for instances
with costs in [−1K, 1K].

In further computational experimentation, we solved instances whose optimal value
of the objective function is not zero. In particular, the costs associated with the arcs of the
corresponding graph are obtained as follows: a random cost is associated with each node
in the range [0,10,000]. Then, the cost of an arc is obtained by a 1% random perturbation of
the displacement of the costs. We will refer to this cost structure as P–EL.

For this type of instance, we noted that the proposed algorithm did not provide good
solutions, even if it performs very quickly. The best case corresponds to the Rand _100 _03
set of instances, for which the optimal value is 6005, while the solutions obtained at the end
of CHa and CH− IPa, respectively, are 6557 and 5431, thus corresponding to an optimality
gap of 7%. Unfortunately, in the worst case, we have a set of instances (Rand_200_20) with
the average optimal function value equal to 74, while our algorithm is not able to go down
2605. Note that, also in these cases, the computational time is negligible.

The above computational results suggest that the proposed algorithm can produce
effective solutions in case of very large instances and when the cost of the arcs is generated
uniformly. Instead, it appears that the algorithm cannot be used for instances with cost-
structure P–EL. It also seems that as the size of the instances increases, the quality of the
solution produced improves, as does the number of optimal solutions identified.

3.2. Second Experimental Campaign: Large Instances

This experimental campaign is based on the third set of generated instances, a set of
random, larger-sized instances, for which it is not possible to obtain the optimal solution
by the mathematical model used to solve small instances.

These tests permit a better investigation of the behavior of the proposed CH− IPa
algorithm. The obtained results are compared with those of the iterated neighborhood
search procedure. In these new sets of instances, the number of nodes ranges from 500
to 5000. For completeness, the following tables report also the results related to small
instances. Note that tests have been executed with costs generated uniformly ([−10, 10],
[−100, 100] and [1K, 1K]) and with cost structure P–EL.

Table 3 shows the behavior of CH− IPa as the size of the instances increases. The num-
ber of solutions with objective function values equal to zero is shown. Although we do not
know the optimal solution for the generated large instances, obviously we can certify the
optimality of the heuristic solution in case a solution with an objective function value equal
to zero is identified. We can see that, as the size of the instance increases, the number of
zero-solutions improves. The table shows that the proposed algorithm is able to identify
92% of optimal solutions for the solved instances (i.e., 167 on 180) in case of uniform cost
distribution in [−10, 10]. In all instances with a number of nodes greater than or equal
to 500, we can obtain the optimal solution. Moreover, with the increase in |N| also for
the distribution of costs P–EL we are able to identify numerous optimal solutions, with
|N| = 5000 we identify at least 25 optimal solutions (i.e., 83%).

Table 3. Number of optimal solutions identified by CHa and CH− IPa—large instances.

|N|
CHa CH− IPa

[−10, 10] [−100, 100] [−1K, 1K] P–EL [−10, 10] [−100, 100] [−1K, 1K] P–EL

100 11 3 1 0 21 8 1 0
200 15 3 0 0 26 7 1 1
500 24 5 0 0 30 18 3 3
1000 25 14 2 0 30 28 13 6
2000 30 17 2 0 30 30 20 13
5000 30 25 5 0 30 30 27 25

#OPT 137 67 10 0 167 121 65 48
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Table 4 shows the average value of the objective function for the same scenario as
Table 3. The data contained in this table are used in Figure 4 to highlight how the solution
produced improves as the size increases.

Table 4. Absolute objective function values—CHa and CH− IPa—large instances.

|N|
CHa CH− IPa

[−10, 10] [−100, 100] [−1K, 1K] P–EL [−10, 10] [−100, 100] [−1K, 1K] P–EL

100 2.3 22.9 263.7 3165.4 0.7 5.2 79.2 3057.5
200 1.1 14.0 134.8 3800.4 0.2 3.5 32.7 3583.8
500 0.6 5.8 45.6 3086.2 0.0 0.4 6.1 2462.2
1000 0.2 2.1 18.1 3782.4 0.0 0.1 1.1 2776.3
2000 0.0 0.8 14.0 3129.2 0.0 0.0 0.5 1374.0
5000 0.0 0.3 3.2 3461.1 0.0 0.0 0.1 272.3

AVG 0.7 7.7 79.9 3404.1 0.1 1.5 20.0 2254.4

Figure 4. Objective function values obtained by CH− IPa compared to the size of the instances.

Table 5 reports the CPU time in milliseconds. The computational time required to
produce a solution using the CH− IPa is less than half a second even for instances with
5000 nodes. These computational times suggest that the average number of iterations
of the algorithm is significantly less than the number of iterations associated with the
computational complexity of the worst case O(|N|3). Table 6 shows the average number of
iterations performed by IPa. The IOM column is useful to understand how many iterations,
on average, are performed for every million theoretical iterations associated with the worst
case O(|N|3). Figure 5 shows the relationship between the number of iterations and the
number of nodes in the graph. For the set of instances used, the trend as |N| increases
appears linear.
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Figure 5. Relationship between the number of IPa iterations and |N|.

Table 5. CPU time (milliseconds) of the proposed CH− IPa

Instance
CH− IPa

[−10, 10] [−100, 100] [−1K, 1K] P–EL

Rand_100_02 0 0 0 0
Rand_100_03 0 0 0 0
Rand_100_04 0 0 0 0
Rand_100_05 0 0 0 0
Rand_100_10 0 0 0 0
Rand_100_20 0 0 0 0
Rand_200_02 0 0 0 0
Rand_200_03 0 0 0 0
Rand_200_04 0 0 1 0
Rand_200_05 0 0 0 0
Rand_200_10 0 0 1 1
Rand_200_20 0 0 0 1
Rand_500_02 1 0 1 0
Rand_500_03 1 0 0 1
Rand_500_04 0 1 1 1
Rand_500_05 0 1 1 1
Rand_500_10 1 2 1 1
Rand_500_20 3 3 3 3

Rand_1000_02 2 2 2 2
Rand_1000_03 2 3 3 2
Rand_1000_04 2 3 3 3
Rand_1000_05 4 4 4 4
Rand_1000_10 7 8 7 8
Rand_1000_20 11 11 11 12
Rand_2000_02 8 9 9 9
Rand_2000_03 10 12 12 11
Rand_2000_04 12 15 14 14
Rand_2000_05 13 15 15 14
Rand_2000_10 25 27 27 25
Rand_2000_20 48 51 53 55
Rand_5000_02 42 50 52 53
Rand_5000_03 57 67 71 65
Rand_5000_04 73 85 90 83
Rand_5000_05 88 103 112 101
Rand_5000_10 217 204 202 201
Rand_5000_20 366 350 371 328

AVG 27.6 28.5 29.6 27.7
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Table 6. Average and theoretical IPa (worst case) iterations, and CPU time.

|N| Iterations IOM Time (ms)

100 128 128 0
200 392 49 0
500 1966 16 1

1000 4640 5 7
2000 11,303 1 27
5000 26,305 0 143

In the following tables, the results obtained by CH− IPa are compared with those
obtained by using the iterated neighborhood search procedure described in Section 2.2.
In each Table, both the best among the first random paths (RP) and the best path after the
improvement phase (RPR) are reported.

Tables 7 and 8 show, respectively, the number of optimal solutions and the computa-
tional times in milliseconds, identified by CH− IPa, RP and RPR.

It can be seen from these tables that CH− IPa produces the maximum number of
optimal solutions in about 1

50 of the computational time required by the RP and RPR
iterative techniques.

In particular, CH− IPa is able to find more 30% optimal solutions than RPR for costs
[−100, 100] and P–EL, and about 180% for cost [−1K, 1K].

These results also show that IPa applied to the RP significantly increases the number of
optimal solutions identified by the RP, passing from 181 to 319 optimal solutions identified;
the greatest effect is on instances with cost P–EL and [−1K, 1K].

Table 7. Comparison of the number of optimal solutions identified.

|N| [−10, 10] [−100, 100] [−1K, 1K] P–EL

C
H
−

IP
a

100 21 8 1 0
200 26 7 1 1
500 30 18 3 3

1000 30 28 13 6
2000 30 30 20 13
5000 30 30 27 25

#OPT 167 121 65 48

R
P

100 25 8 1 0
200 23 5 2 0
500 22 5 0 0

1000 21 7 0 0
2000 22 7 0 0
5000 26 5 2 0

#OPT 139 37 5 0

R
PR

100 25 11 1 0
200 27 11 3 1
500 27 12 5 3

1000 29 16 2 5
2000 28 22 3 10
5000 30 21 9 18

#OPT 166 93 23 37
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Table 8. Comparison of the CPU time (milliseconds).

|N| [−10, 10] [−100, 100] [−1K, 1K] P–EL

C
H
−

IP
a

100 0 0 0 0
200 0 0 0 0
500 1 1 1 1

1000 5 5 5 5
2000 19 22 22 21
5000 140 143 150 138

AVG 28 28 30 28

R
P

100 1 1 1 1
200 2 3 3 3
500 13 24 26 25

1000 113 164 195 206
2000 776 1183 1294 1288
5000 2263 7192 7359 7359

AVG 528 1428 1480 1480

R
PR

100 1 1 1 1
200 3 3 3 3
500 25 26 26 25

1000 210 192 195 208
2000 1315 1224 1300 1289
5000 8025 7369 7373 7361

AVG 1596 1469 1483 1480

4. Conclusions and Outline Future Works

In this paper, we addressed the Cost-Balanced Path Problem, which fits into the class
of the balanced combinatorial optimization problems. A two-step heuristic algorithm is
proposed for solving this variant of the classical Shortest Path Problem. An iterative heuris-
tic has been developed to compare the produced solutions. To the authors’ knowledge, this
is the first research work related to heuristic algorithms to solve the CBPP. This two-step
heuristic algorithm (CH− IPa) is able to find feasible solutions in a negligible computational
time and is particularly suitable for large-sized graphs. In fact, it is worth noting that by
executing the constructive and the improvement heuristic algorithms consecutively, we can
always find a larger number of optimal solutions in a very short CPU time. In particular,
comparing the CH− IPa solutions with those obtained by the iterative algorithm, which
is a simple and fast heuristic method. Since the CBPP can be applied in many real-life
problems for which only large size instances are required, such as vehicle battery level,
altitude change, and cargo problems among others, as future work the authors will work
on the development of a metaheuristic to be able to improve the goodness of the solutions
for many types of instances of the CBPP.
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Abbreviations
The following abbreviations are used in this manuscript:

SPP Shortest Path Problem
CBPP Cost-Balanced Path Problem
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CHa Constructive Heuristic algorithm
IPa Improvement Phase algorithm
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