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Introduction

In last decades what is commonly called learning from data has become more and more
important in science. The huge amount of information we have available nowadays, combined
with the enormous growth in power and capacity of modern computers, has completely
modified many fields in science: from bioinformatics to medicine, from finance to astronomy
and many others. The use of machine learning is increasingly common and the applications
are entering in people’s everyday life: for fraud detection systems that can identify patterns
of fraudulent behavior in financial transactions, for recommender systems that can suggest
products, services, or content based on a user’s preferences and behavior, for natural
language processing systems that can process and understand human language, allowing for
applications such as chatbots and language translation.

This has created opportunities but also challenges. The need for processing huge quan-
tities of data has made, inevitably, statistical and computational problems to dramatically
grow both in terms of size and complexity. In this thesis our focus will be on developing
large scale models and algorithms towards efficient, and hence sustainable machine learning.
In particular, the goal will be to study both the statistical and the computational aspects
of these algorithms.

The thesis will be divided in two parts. In the first part we will investigate how pro-
jections, and in particular random projections (sketches), can allow learning with optimal
prediction properties and minimal memory footprint. In this context, projections are a
useful mathematical and algorithmic tool to reduce data size (volume and input/output
dimensionality). Finding projections with minimal size is the key to efficiently solve many
problems in machine learning since only compressed data need be processed. With this scope
in mind, our contribution will consist in developing a theory for sketched algorithms working
with loss functions as general as possible, extending the known results limited to square
loss and smooth losses (logistic) [Rudi et al., 2015, Bach, 2013, Marteau-Ferey et al., 2019]
(see Chapters 4-5-6). This will be done in the context of classification with surrogate losses,
i.e. convex proxy of the 0-1 loss, and we will investigate the main properties of learning
when considering convex, possibly non differentiable, loss functions. Our focus will be
on the Empirical Risk Minimization algorithm and we will exploit random projections
techniques, in particular Nyström method, to make it efficient and able to deal with large
scale datasets. Statistical guarantees will be given for this simplified model and we will
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show that, in some regimes, decreasing the computational cost will come together with
no drop in accuracy, allowing no tradeoff between the two. Fast rates for the convergence
of the excess risk will be proven. In particular, if compared with previous results for
quadratic and logistic loss, our proof follows a different path. For square loss, all relevant
quantities (i.e. loss function, excess risk) are quadratic, while the regularized estimator
has an explicit expression, allowing for an explicit analysis based on linear algebra and
matrix concentration [Tropp, 2012]. Similarly, the study for logistic loss can be reduced to
the quadratic case through a local quadratic approximation based on the self-concordance
property. Instead here convex Lipschitz but non-smooth losses such as the hinge loss do
not allow for such a quadratic approximation and we need to combine empirical process
theory [Boucheron et al., 2013] with results for random projections. Nevertheless, known
results for smooth loss functions will be recovered in a common regime. We will also
show how to pass from the obtained statistical bounds for surrogate losses to excess risk
bounds for the classification risk, i.e. the risk associated with the non convex 0-1 loss. Fi-
nally, these theoretical results will be tested with some numerical experiments over real data.

In the second part of the thesis we will focus on the plug-in approach when considering
generalized performance metrics for classification tasks. In particular, we will study the
so called linear fractional performance measures, that includes as particular cases many
well known metrics such as accuracy, F-score, Jaccard and AM-measure among others
[Koyejo et al., 2014]. The reason is that, in different applications we may want to penalise
more some types of ”mistakes” with respect to others (penalise more false negative with
respect to false positive for example). Our original work will consist in showing that, with
this kind of error measures, the optimal classifier is nothing else than a plug-in rule, i.e. a
step function depending on the regression function and on an optimal threshold. Given
the optimal shape of the classifier, we will assume to have an estimator for the unknown
regression function and we will give an algorithm to estimate the unknown threshold. In
fact, differently from the usual way of estimating the threshold via grid search, for which
no statistical guarantees have been proven, we will derive our estimated threshold through
efficiently solving a simple fixed point equation only depending on the inputs distribution
and not on the labels. Using only an unlabelled dataset to derive the threshold is a key
advantage in practice in all the many cases where the number of labelled example is limited.
We will give post-processing bounds for our estimator, i.e. excess risk bounds depending
on the norm difference between the true regression function and the given estimator of it.
These post-processing bounds will be derived both without assumptions on the probability
distribution of the data and, a refined version of them, under a margin assumption.

As regards the first part the structure is the following.
In Chapter 1 we will give an introduction to Statistical Learning Theory and present the
mathematical framework and the statistical model that will be used in the following sections.
We will define the main quantities in this setting, such as loss functions, Bayes predictor,
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excess risk etc. We will introduce the notion of consistency of an estimator. We will
recall the reader the well-known Empirical Risk Minimization (ERM) algorithm and its
regularized version, needed to avoid the overfitting phenomenon. To nicely introduce the
reader to excess risk bounds, we will show a simple way of splitting the error and we will
mention the well known bias-variance tradeoff phenomenon. We will suggest some ways
of controlling the various pieces appearing in the bound after the splitting and particular
emphasis will be given on how to control the statistical estimation error. At this scope,
Rademacher averages will be presented, together with some of their properties that we will
need later on.

In Chapter 2 we will introduce kernel methods and define the notion of Reproducing
Kernel Hilbert Spaces (RKHS). We will state a fundamental theorem in our analysis: the
representer theorem and we will show how it deeply connects to our problem.

In Chapter 3 we explain what is learning on random subspaces. We will start introducing
the main ideas in the simplified setting of linear kernel and square loss. We will briefly
discuss some well-known approaches from the deterministic and expensive Principal Com-
ponent Analysis (PCA), to cheaper random methods such as Sketching, Random Features
and finally, the Nyström method that we will exploit in our results. We will conclude
this section with a small summary of the main result contained in [Rudi et al., 2015], that,
limited to square loss, will be the starting point for our work and extensions.

In Chapter 4 we present our original work. In Section 4.1 we will explain our setting and
the basic assumptions in our framework. In Section 4.2 we will discuss ERM in this setting,
considering also the computational aspect to motivate the need of random projections in
the following sections. We will provide via a simple proof some new excess risk bounds
for sub-gaussian random variables, equivalent to the known ones in the bounded case. In
Section 4.3 we exploit Nyström method to obtain cheaper estimators. We analyse their
computational complexity and provide bounds for the associated excess risk under some
assumption on the eigenvalues decay of the covariance operator. In Section 4.4 we will finally
present our main results: fast rates of convergence for the excess risk of these projected
predictors. Under an additional assumption of a Bernstein condition on the loss function,
we will show that fast rates up to (1/n) can be achieved and that they match the state-of-art
bounds in [Steinwart and Christmann, 2008], but with possibly high computational savings.
We will compare these results with the known ones for Random Feature, showing some
advantages in our refined analysis. We conclude the section specifying our results for
differentiable loss (square loss and logistic in particular), recovering, in the common regime,
the results presented in [Rudi et al., 2015].

In Chapter 5 we study how it is possible to relate our theory for convex surrogate losses
to non-convex 0-1 loss and its classical misclassification risk. In particular, we will show
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how to easily pass from our just derived risk bounds for surrogate losses to corresponding
upper bounds controlling the 0-1 risk. While doing so, we will also introduce a margin
condition (or low noise condition), that consists in assuming that the regression function is
unlikely to be very close to 1/2. We finally compare the derived 0-1 risk bounds obtained
starting from hinge loss or square loss.

In Chapter 6 we present some numerical experiments to show the computational benefit
of our approach with random projections when dealing also with real data. We will focus
on binary classification with SVMs. Our sketched estimator will be shown to match the
performance of standard SVMs while using only a fraction of the available training set,
leading to notable savings both in time and memory.

For the second part the organization is the following.
In Chapter 7 we will present the plug-in approach and its development in recent years. We
will present the setting of our classification problem and we will introduce the generalized
performance metrics that will be employed in the rest of the chapter. Given a linear
fractional performance measure, we will derive the corresponding optimal thresholding,
with the optimal threshold that will satisfy a fixed point equation. We will show that this
optimal thresholding function is indeed optimal among all possible classifiers.

In Chapter 8 we will propose our estimator, given the shape of the derived optimal
classifier. We will show a post-processing bound when no assumption is made on the
probability distribution of the data. Next, we will introduce a margin assumption and we
will give a refined version of the previous bound.



Part I

Empirical Risk Minimization with
Surrogate Losses
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0.1 Main Notation

For the reader’s convenience we collect the main notation we will use in this thesis. We
denote with the “hat”, e.g. ·̂, random quantities depending on the data. Given a linear
operator A we denote by A> its adjoint (transpose for matrices). For any n ∈ N, we denote
by 〈·, ·〉n , ‖·‖n the inner product and norm in Rn. Given two quantities a, b (depending
on some parameters), the notation a . b, or a = O(b) means that there exists a constant
C such that a 6 Cb. We denote by PX the marginal distribution of X and by P (·|x) is
the conditional distribution of Y given X = x. The conditional probability is well-defined
since X is separable and Y is a Polish space [Steinwart and Christmann, 2008]. Table 0.1
summarizes the main notations.

Table 1: Definition of the main quantities used

Definition

L(w)
∫
X×Y `(y, 〈w, x〉)dP (x, y)

Lλ(w) L(w) + λ‖w‖2

L̂(w) n−1
∑n

i=1 `(yi, 〈w, xi〉)
L̂λ(w) L̂(w) + λ‖w‖2
w∗ arg minw∈X L(w)
wλ arg minw∈X Lλ(w)

ŵλ arg minw∈X L̂λ(w)
βλ,B arg minβ∈B Lλ(β)

β̂λ,B arg minβ∈B L̂λ(β)

f∗(x) arg mina∈R

∫
Y `(y, a)dP (y|x)

Bm Bm = span{x̃1, . . . , x̃m}
PB projection operator onto B
Pm projection operator onto Bm
R (·) population Rademacher Complexity

R̂ (·) empirical Rademacher Complexity
en (dyadic) entropy numbers en = ε2n−1
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Chapter 1

Statistical Learning Theory

In this section we give an introduction about Statistical Learning Theory. We will present
some of the main challenges when designing a learning algorithm, together with the principal
assumptions we based our statistical model on. We will briefly recall some of the technical
tools we will need in the next chapters in order to develop a sound mathematical theory and
solid statistical guarantees on our results. The rest of the chapter is based on the follow-
ing references: [Bousquet et al., 2003, Bach, 2021, Shalev-Shwartz and Ben-David, 2014,
Boucheron et al., 2005, Boucheron et al., 2013]

The goal of statistical learning theory is to build a mathematical framework and provide
theoretical guarantees in the context of statistical inference. Among all, this involves
building models and making predictions. The problem is studied in a statistical setting,
which means there are assumptions of statistical nature about the underlying phenomena
and in particular about how the data are generated.
Inspired by the classical scientific method, we aim to study the process of inductive inference
that we can roughly summarize as the following process:

1. we observe a particular phenomenon,

2. we construct a mathematical model of it as accurate as possible,

3. we use this model to make predictions in the future given some new observations.

This is no different from the approach to every other natural science. The peculiarity of
Machine Learning, and the main reason of its success, lies on the fact that this process is
completely automated and the goal of Learning Theory is actually to give a mathematical
formalization of it.

In the following we will focus into classical supervised learning where the data consists of
instance-label pairs. The product of our learning algorithm is a function mapping instances
to labels, with the objective of making as few as possible mistakes when predicting the

15
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labels of new unseen instances.
The naive intuition of building this function simply fitting exactly the training data is often
not working. In fact, in presence of noise, this approach can lead to poor generalization
performance on new data. This phenomenon is known as overfitting and avoiding it is one of
the key points to keep in mind when designing our learning procedure. Intuitively, what we
expect from our algorithm is to find regularities in the observed phenomenon, i.e. patterns
and structures in the data, to extract knowledge from them and to exploit it when predicting
unseen inputs. Instead, what we really want to avoid is learning by memorization that,
despite perfect performances on the training set, would likely be unuseful when labelling
new instances. We will talk in details about this in the following.

1.1 Statistical Learning Theory Framework

In classical supervised learning the data, or training set, is a set of n examples represented
as pairs

(x1, y1) , . . . , (xn, yn)

with xi the input and yi the output (or label in classification). We will assume that the
inputs belong to an input space X , often chosen as a subset of Rd, while, similarly, Y will
be the output space. The dimension d of the input space is referred to as the number of
features of the problem. As regards some well-known choices for the output space, Y ⊆ R is
commonly called regression, Y = {−1, 1} is classification and Y = {1, 2, . . . ,K} is multiclass
(or multi-category) classification. We indicate Z = X × Y the data space.

The goal of the learner is to understand how x’s and y’s are linked together. Mathemat-
ically, this means that, given a so called training set (x1, y1, . . . , xn, yn), we want to find a
function f that controls the input-output relation, i.e.

f̂ : X → Y

such that, given a new input xnew not present in our training set, then

f̂(xnew) ∼ ynew.

The prediction rule f̂ is usually called hypothesis or, precisely, predictor.
In the following, all the quantities that depend on the training set, as f̂ , will be referred as
empirical quantities and, for sake of clarity, will be denoted with an ”hat”.
To conclude, the map taking the training data as input and returning a predictor f̂

(x1, y1, . . . , xn, yn) 7−→ f̂(x1,y1),...,(xn,yn) = f̂

is called a learning algorithm. A learning algorithm is good as far as its provided solution is
able to predict or classify well new, previously unseen data. In this case, the algorithm is
said to generalize well.
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1.1.1 The Statistical Model

The statistical model comes from the fact that learning is studied from a random sample
and it should take into account possible uncertainties coming from the task and the data.
For this reason, consider (X,Y ) as a pair of random variables taking values in X and Y and
denote with P their joint distribution. Training set (x1, y1, . . . , xn, yn) is simply considered
as a random realization of random variables (X1, Y1), . . . , (Xn, Yn), i.e. n i.i.d. copies of
(X,Y ), with joint distribution P .

To measure performance we define the so called loss function ` : Y × R→ [0,∞). The
purpose of introducing such a function is to quantitatively evaluate our algorithm, penalizing
mistakes and inaccuracy in its predictions. In fact, `(y, f(x)) is a point-wise measure of the
error we incur in when we predict f(x) in place of y. Some classical examples are:

(a) hinge loss:
`(y, a) = |1− ya|+ = max{0, 1− ya} (1.1)

(b) logistic loss:
`(y, a) = log(1 + e−ya) (1.2)

(c) square loss:
`(y, a) = (y − a)2 . (1.3)

The choice of the loss is deeply related with the problem at hand: hinge and logistic losses
are chosen in classification tasks, when the goal is to separate inputs into two (or multiple)
different classes; on the contrary, the natural application for square loss is in regression
problems, where the goal is to predict a real number given an input (but can be easily
adapted to classification).
As already mentioned above, we are interested in the error we expect to make when
predicting Y given X. For this purpose, given a loss function, we define the expected risk
(or expected error) as

L(f) := E(X,Y )∼P [`(Y, f(X))]. (1.4)

With the above choice of error measure, the best input-output relation is the minimizer of
the expected risk L(f) over the possible functions f : X → Y. This minimizer is usually
referred to as the target, or Bayes, function f∗, i.e.

L(f∗) = min
f :X→Y

L(f). (1.5)

Clearly, the target function cannot be computed since the probability distribution P is
unknown. Note also that in general L(f∗) is not zero and, in case of complex problems
with high uncertainty, it can be big. For this reason, what we are really interested in is
the relative performance of our algorithm compared with the one of f∗. Consequently, we
define the excess risk of an estimator f as the difference between its expected risk with the
best possible one given by the target function:

E(f) := L(f)− L(f∗). (1.6)
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1.1.2 Measures of performance and consistency

Our goal is monitor the performance of our algorithm f̂ via controlling its excess risk.
Given its dependence though the data, f̂ is a random quantity and, then, L(f̂) will be a
(positive) random variable as well. Hence we cannot expect the excess risk to be small for
all possible training sets. Anyway, we can require for example our estimator to perform
well in expectation, meaning that the expected error

E
[
L(f̂)− L (f∗)

]
is small, with the expectation taken over all possible training sets

(x1, y1, . . . , xn, yn) ∈ (X × Y)n.

One other classical option leads to probably approximately correct (PAC) learning, where we
look for estimators with low excess risk in probability. This simply means that we require f̂
to perform well on ”almost” all the possible training sets, mathematically

P
[
L(f̂)− L (f∗) 6 ε

]
> 1− η

where ε > 0 is a given bound on the error and 0 < 1− η < 1 is the confidence level.

An important property we want to enforce on our algorithm is that, in the limit of our
training set being infinite, we are able to recover the Bayes solution f∗ both in probability
and expectation.

Definition 1 (Consistency). A learning algorithm f̂ is called consistent in probability if

lim
n→+∞

P
[
L(f̂)− L (f∗) > ε

]
= 0 ∀ε > 0.

Similarly, f̂ is called consistent in expectation if

lim
n→+∞

E
[
L(f̂)− L (f∗)

]
= 0.

Applying Markov inequality we can directly show that consistency in expectation implies
consistency in probability:

P
[
L(f̂)− L (f∗) > ε

]
6

E
[
L(f̂)− L (f∗)

]
ε

.

The converse does not hold in general.
An algorithm is called universally consistent if the above conditions hold for all possible

probability distributions P .
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Nevertheless, the convergence speed will depend on P . In particular, over all possible
distributions, this rate can be arbitrary slow and there is no hope of having a uniform rate
in general. This result is well-known and formulated in different versions in the so called no
free lunch theorems. We report here the one contained in [Devroye et al., 1996].

Theorem 1 (No free lunch - sequence of errors). Consider a binary classification problem
with the 0-1 loss, with X infinite. Let P denote the set of all probability distributions on
X × {0, 1}. There exists p ∈ P, such that, for any decreasing sequence an tending to zero
and such that a1 6 1/16, for any learning algorithm f̂ = f̂(Dn(p)), with Dn(p) the training
data drawn from p, for all n > 1, then:

E
[
Lp(f̂)

]
− L∗p > an.

This means that no method can be universal and achieve a good convergence rate on all
problems. However, such negative results consider classes of problems which are arbitrarily
large.

1.1.3 Empirical Risk Minimization

We introduce here one of the most famous and successful algorithms to solve our the learning
problem. This will be the a key ingredient for the rest of the thesis.
As mentioned above, the problem of learning is to solve

min
f :X→Y

L(f)

with f a measurable function and for a fixed yet unknown distribution P . Still, we can
address P trough the training set Dn = (x1, y1), . . . , (xn, yn) ∼ Pn, i.e. a collection of n
samples identically and independently distributed (i.i.d.) with respect to P . Nevertheless,
finding an exact solution is in general not possible since only finite data are given. In fact,
the expected risk is defined through an expectation that might be hard or impossible to
compute, as well as the minimization over the space of all measurable functions can be
unfeasible. Then, it can be reasonable to substitute the expected risk with the empirical
risk L̂ defined as

L̂(f) :=
1

n

n∑
i=1

`(yi, f(xi))

and to look for a solution over a restricted set, i.e. the so called hypothesis space H.
Then, Empirical Risk Minimization (ERM) is nothing else than the minimization problem

min
f∈H

L̂(f), with f̂ = arg min
f∈H

L̂(f)
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1.2 Overfitting and Regularization

Despite ERM algorithm seems very reasonable, without being careful, it can also fail
miserably. To explain this, we recur to a simple example: imagine we want to solve a
classification problem with a sample as depicted in the following:

We assume that the underlying probability distribution P is such that instances are
distributed uniformly inside the grey square, while the label is 1 if the instance is within
the blue square (with area that is half of the grey square’s one) and 0 otherwise. Now, let’s
pick as our predictor

f̂(x) =

{
yi if ∃i ∈ [n] s.t. xi = x

0 otherwise.

It’s clear that, by construction, no matter what the sample is,

L̂(f̂) = 0,

i.e. we are fitting the data, and therefore this is a possible choice for our ERM algorithm
since no other predictor can have a smaller empirical error. It is intuitive to realise that,
despite the perfect performance on the training set, f̂ will be terrible when generalizing to
new examples. In fact, it’s easy to see that the true error of a classifier predicting 1 only on
a finite number of instances is, given this simple model, exactly 1/2, i.e. no better than
coin flip:

L(f̂) = 1/2.

This phenomenon, where our performance is perfect on the training set yet very poor on
new data, is called overfitting. Clearly, this comes from the fact that the algorithm is
focusing too much on the specific piece of data we have at hand, perfectly fitting the given
examples, without learning the actual rule to separate the two classes (in this case we are
actually only memorizing the training set).

A classical way to avoid this problem is to introduce a bias towards simple solutions.
Typically, one can choose a large hypothesis space H and define on H a regularizer, for
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example a norm ‖f‖. Then the goal is to minimize a slightly different problem, the
regularized empirical risk

L̂λ(f) :=
1

n

n∑
i=1

`(yi, f(xi)) + λ‖f‖2.

The free parameter λ is called the regularization parameter and it allows to choose the right
tradeoff between fit and complexity. The common way to tune λ is using a cross-validation
strategy on an extra set of data.

Given the above definitions, in next section we show a standard way of controlling the
excess risk of such estimators.

1.3 Error-splitting and bias-variance tradeoff

We start this section with some classical definitions. Let’s analyse the excess risk L(f)−L(f∗)
of some function f ∈ H. We add and subtract the risk of a best-in-class hypothesis fH, i.e.
a hypothesis in H with minimal error

fH = arg min
f∈H

L(f),

obtaining

L(f)− L(f∗) = L(f)− L(fH)︸ ︷︷ ︸
estimation

+L(fH)− L(f∗)︸ ︷︷ ︸
approximation

.

The above splitting is the simplest one and we will refine it later. The first difference
in right hand side is usually called estimation error and it measures the quality of the
hypothesis f with respect to the best hypothesis in the class. Similarly, the second difference
is commonly referred to as the approximation error and it gives instead a measure of how
well the Bayes risk can be approximated using H; it’s deterministic and depends on the
underlying distribution P and the class H. It’s worth noticing that the choice of H is in
fact crucial. Increasing H would clearly lead to an improvement in the approximation error
since this will lead to a better approximation of f∗. On the contrary, the estimation error
would be increased. This is known as the bias-variance tradeoff, showing the need of a
compromise between the two sources of error.

In the following we analyse a further refined splitting of the excess risk. We take f̂ as
our chosen hypothesis, i.e. the output of the ERM algorithm. We add and subtract L̂(f̂)
and L̂(fH), i.e. the empirical risk of f̂ and fH, to the excess risk of f̂

L(f̂)− L(f∗) = L(f̂)− L̂(f̂) + L̂(f̂)− L̂(fH) + L̂(fH)− L(fH) + L(fH)− L(f∗)

6 L(f̂)− L̂(f̂) + L̂(fH)− L(fH) + L(fH)− L(f∗)
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where the inequality comes from the fact that L̂(f̂) − L̂(fH) 6 0 since f̂ is exactly the
empirical risk minimizer. Now we can study how to bound the following three different
terms:

• L(fH)− L(f∗) is only the approximation error we already discussed

• L̂(fH) − L(fH) is difference between the expectation and the empirical average of
` ◦ fH. By the law of large numbers, we immediately obtain that

P

[
lim
n→∞

1

n

n∑
i=1

` (Yi, fH(Xi))− E[` (Yi, fH(Xi))] = 0

]
= 1.

So, as expected, with enough samples, the empirical risk of a function is a good
approximation to its true risk. For a quantitative version of the above law of large
numbers, Hoeffding’s inequality can be used when the variables are bounded. More
refined bounds can be obtained using additional informations, Bernstein’s inequality
for example allows to use the variance to get a finer non-asymptotic result. Any of
these concentration inequalities will give a bound in O(1/

√
n).

• L(f̂)− L̂(f̂) is the more problematic term: both the empirical average L̂ and f̂ depend
statistically on the data. This dependence does not allow us to directly follow the
approach at the previous point. The standard way of dealing with this problem is by
controlling uniformly this term over all f ∈ H:

L(f̂)− L̂(f̂) 6 sup
f∈H
|L(f)− L̂(f)|. (1.7)

However, when controlling the maximal deviations over many functions f , there is al-
ways a small chance that one of these deviations get large. One very powerful tool that
allows to sharply bound this term is Rademacher complexities [Boucheron et al., 2005]
or Gaussian complexities [Bartlett and Mendelson, 2002]. We will focus on Rademacher
complexity in the following.

Since in Eq. (1.7) we want an uniform bound on the difference of expected and empirical
risk over a set of function, we need a method to compute some measure of ”complexity”
of this hypothesis space. For simplicity let’s introduce Z ∈ Z, F the space of measurable
function from Z to R and D = {z1, . . . , zn} the data (we will recover problem (1.7) defining
Z = (X,Y ) ∈ Z, and F = {(X,Y ) 7→ `(X,h(X)), h ∈ H}).
Definition 2 (Rademacher Complexity). We define the Rademacher complexity of the
class of functions F from Z to R :

R̂(F) = E

(
sup
f∈F

1

n

n∑
i=1

εif (zi)

)
, (1.8)

where ε ∈ Rn is a vector of independent Rademacher random variables, i.e. random variables
taking values −1 or 1 with equal probabilities, that are also independent of D.
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Note that is a deterministic quantity that only depends on n and F . In words, the
Rademacher complexity is nothing else than the expected value of the maximal dot-product
between values of a function f at the observations zi and random labels. This means that
the idea is somehow to measure the complexities of the space F through its ability of fitting
random noise.

Theorem 2. Given (X,Y ) ∼ P as a pair of random variables taking values in X and Y,
training data (x1, y1), . . . , (xn, yn) as realizations of i.i.d. random variables (X1, Y1) . . . , (Xn, Yn) ∼
P , i.e. n i.i.d. copies of (X,Y ), a loss function ` : Y ×R→ [0,∞) G-Lipschitz in its second
argument, then

E

[
sup
f∈H

∣∣∣L(f)− L̂(f)
∣∣∣] 6 2GR̂(H).

Moreover, suppose H is a class of bounded functions from X to [0, 1] then, with probability
at least 1− δ,

sup
f∈H

∣∣∣L(f)− L̂(f)
∣∣∣ 6 2R̂(H) +

√
2 log 1

δ

n
.

The proof of this theorem exploits the well known symmetrization argument.

Proposition 1 (Symmetrization). Given the Rademacher complexity of F defined in Eq.
(1.8), we have:

E

[
sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

f (zi)− E[f(z)]

∣∣∣∣∣
]
6 2R̂(F).

Proof. Let D′ = {z′1, . . . , z′n} be an independent copy of the data D = {z1, . . . , zn} (often
known as ghost samples). Let (εi)i∈{1,...,n} be i.i.d. Rademacher random variables, which

are also independent of D and D′. Using that for all i in {1, . . . , n},E [f (z′i) | D] = E[f(z)],
we have:

E

[
sup
f∈F

(
E[f(z)]− 1

n

n∑
i=1

f (zi)

)]
= E

[
sup
f∈F

(
1

n

n∑
i=1

E
[
f
(
z′i
)
| D
]
− 1

n

n∑
i=1

f (zi)

)]

= E

[
sup
f∈F

(
1

n

n∑
i=1

E
[
f
(
z′i
)
− f (zi) | D

])]

by definition of the independent copy D′. Then

E

[
sup
f∈F

(
E[f(z)]− 1

n

n∑
i=1

f (zi)

)]
6 E

[
E

(
sup
f∈F

(
1

n

n∑
i=1

[
f
(
z′i
)
− f (zi)

])
| D

)]
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using that the supremum of the expectation is less than expectation of the supremum.
Thus, by the towering law of expectation, we get

E

[
sup
f∈F

(
E[f(z)]− 1

n

n∑
i=1

f (zi)

)]
6 E

[
sup
f∈F

(
1

n

n∑
i=1

[
f
(
z′i
)
− f (zi)

])]
.

We can now use the symmetry of the laws of εi and f (z′i)− f (zi), to get:

E

[
sup
f∈F

(
E[f(z)]− 1

n

n∑
i=1

f (zi)

)]

6E

[
sup
f∈F

(
1

n

n∑
i=1

εi
(
f
(
z′i
)
− f (zi)

))]

6E

[
sup
f∈F

(
1

n

n∑
i=1

εi (f (zi))

)]
+ E

[
sup
f∈F

(
1

n

n∑
i=1

εi (−f (zi))

)]

=2E

[
sup
f∈F

(
1

n

n∑
i=1

εif (zi)

)]
= 2R̂(F).

The reasoning is essentially identical for E
[
supf∈F

(
1
n

∑n
i=1 f (zi)− E[f(z)]

)]
6 2R̂(F).

We will also need this other known result that we report here with a simple proof taken
from [Meir and Zhang, 2003].

Proposition 2 (Contraction principle - Lipschitz-continuous functions). Given any func-
tions b, ai : Θ → R (no assumption) and ϕi : R → R any 1-Lipschitz-functions, for
i = 1, . . . , n, we have, for ε ∈ Rn a vector of independent Rademacher random variables:

Eε

[
sup
θ∈Θ

{
b(θ) +

n∑
i=1

εiϕi (ai(θ))

}]
6 Eε

[
sup
θ∈Θ

{
b(θ) +

n∑
i=1

εiai(θ)

}]
.

Proof. We consider a proof by induction on n. The case n = 0 is trivial, and we show how

to go from n > 0 to n+ 1. We thus consider Eε1,...,εn+1

[
supθ∈Θ

{
b(θ) +

∑n+1
i=1 εiϕi (ai(θ))

}]
and compute the expectation with respect to εn+1 explicitly, by considering the two potential
values with probability 1/2 :
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Eε1,...,εn+1

[
sup
θ∈Θ

{
b(θ) +

n+1∑
i=1

εiϕi (ai(θ))

}]

=
1

2
Eε1,...,εn

[
sup
θ∈Θ

{
b(θ) +

n∑
i=1

εiϕi (ai(θ)) + ϕn+1 (an+1(θ))

}]

+
1

2
Eε1,...,εn

[
sup
θ∈Θ

{
b(θ) +

n∑
i=1

εiϕi (ai(θ))− ϕn+1 (an+1(θ))

}]

= Eε1,...,εn

[
sup
θ,θ′∈Θ

{
b(θ) + b (θ′)

2
+

n∑
i=1

εi
ϕi (ai(θ)) + ϕi (ai (θ′))

2
+
ϕn+1 (an+1(θ))− ϕn+1 (an+1 (θ′))

2

}]
,

(1.9)

by assembling the terms. By taking the supremum over (θ, θ′) and (θ′, θ), we get

(1.9) 6Eε1,...,εn

[
sup
θ,θ′∈Θ

{
b(θ) + b (θ′)

2
+

n∑
i=1

εi
ϕi (ai(θ)) + ϕi (ai (θ′))

2
+
|ϕn+1 (an+1(θ))− ϕn+1 (an+1 (θ′))|

2

}]

6Eε1,...,εn

[
sup
θ,θ′∈Θ

{
b(θ) + b (θ′)

2
+

n∑
i=1

εi
ϕi (ai(θ)) + ϕi (ai (θ′))

2
+
|an+1(θ)− an+1 (θ′)|

2

}]
,

using Lipschitz-continuity. Exploiting again the fact that εn+1 is a Rademacher random
variable that takes values ±1 with equal probability, we can write

Eε1,...,εnEεn+1

[
sup
θ∈Θ

{
b(θ) + εn+1an+1(θ) +

n∑
i=1

εiϕi (ai(θ))

}]

6Eε1,...,εn,εn+1

[
sup
θ∈Θ

{
b(θ) + εn+1an+1(θ) +

n∑
i=1

εiai(θ)

}]

by the induction hypothesis, which leads to the desired result.

An analogous result is valid also with absolute values [Ledoux and Talagrand, 1991].

Proposition 3 (Contraction principle - absolute values). Given any functions ai : Θ→ R
(no assumption) and ϕi : R → R any 1-Lipschitz-functions such that ϕi(0) = 0, for
i = 1, . . . , n, we have, for ε ∈ Rn a vector of independent Rademacher random variables:

Eε

[
sup
θ∈Θ

∣∣∣∣∣
n∑
i=1

εiϕi (ai(θ))

∣∣∣∣∣
]
6 2Eε

[
sup
θ∈Θ

∣∣∣∣∣
n∑
i=1

εiai(θ)

∣∣∣∣∣
]
.
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Finally, to prove the second part of Theorem 2 and pass from a bound in expectation
to a high probability control over the uniform deviations in Eq. (1.7), we will make use
of a famous exponential concentration inequality, i.e. McDiarmid’s inequality. Given n
independent random variables, this inequality is useful when we want to concentrate other
quantities than their average. What we need is the function of these random variables to
have bounded variation.

Proposition 4 (McDiarmid’s inequality). Let Z1, . . . , Zn be independent random variables
(in any measurable space Z), and f : Zn → R a function of ”bounded variation”, that is,
such that for all i, and all z1, . . . , zn, z

′
i ∈ Z, we have∣∣f (z1, . . . , zi−1, zi, zi+1, . . . , zn)− f

(
z1, . . . , zi−1, z

′
i, zi+1, . . . , zn

)∣∣ 6 c.

Then the random variable W = f(Z1, . . . , Zn) satisfies

P (|W − EW | > t) 6 2 exp
(
−2t2/

(
nc2
))
,

or equivalently, for any δ ∈ (0, 1), with probability at least 1− δ,

|W − EW | 6
√
nc2

2
log

1

δ
.

The bounded differences assumption simply means that if the i-th variable of function f
varies while keeping all the others fixed, the value of the function cannot change by more
than c.

We can finally give the proof of the above theorem.

Proof of Theorem 2. The first part of the theorem is simply the application of the sym-
metrization argument and contraction principle to the class F = {` ◦ f : f ∈ H}, with
loss function ` : R × R → [0,+∞) G-Lipschitz in its second argument, i.e. a 7→ `(y, a) is
G-Lipschitz.
Then

Eε

(
sup
f∈H

1

n

n∑
i=1

εi` (yi, f (xi)) | D

)
6 G · Eε

(
sup
f∈H

1

n

n∑
i=1

εif (xi) | D

)
which leads to

R̂(F) 6 G · R̂(H).

As regards the second part of the theorem, if we define

W := sup
f∈H

∣∣∣L(f)− L̂(f)
∣∣∣ ,

then, with H a class of bounded functions from X to [0, 1], W satisfies the bounded
differences assumption with c = 2/n and we get immediately the result.



Chapter 2

Kernel Methods and Reproducing
Kernel Hilbert Spaces

In this chapter we introduce the so called kernel methods. These methods are widely used
in machine learning and they are a powerful tool to extend linear models to non-linear
ones. The basic idea is that a kernel function implicitly define an inner product in a high-
dimensional space, given some technical conditions of symmetry and positive-definiteness.
For this reason, suppose we are solving a classification problem: when the inner product
in the input space is replaced with positive definite kernels we immediately extend our
algorithms to a linear separation in a high-dimensional space, or, equivalently, to a non-linear
separation in the initial input space.
We will proceed staring from the definition of a kernel and of a reproducing kernel Hilbert
space. Afterwards, we will connect this mathematical definition with the more intuitive
idea of embedding the data into a high dimensional feature space. We will recall the
well-known representer theorem and it’s application to regularized ERM in supervised
learning. We will finally introduce the so called kernel trick, i.e. for many algorithms the
solution can be carried out just on the basis of the values of the kernel function over pairs
of domain points, without ever explicitly expressing the embedding given by the feature map.
This chapter is based on the following references [Mohri et al., 2018, Shalev-Shwartz and Ben-David, 2014,
Bach, 2021]

2.1 Kernels and RKHS

We start with the mathematical definition of a kernel.

Definition 3. Given a set X , we call semi-positive definite kernel a map K : X × X → R
such that

K (x, x′) = K (x′, x) x, x′ ∈ X∑n
i,j=1 cicjK (xi, xj) > 0 x1, . . . , xn ∈ X , c1, . . . , cn ∈ R.

27
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In this thesis, what we especially care about is how it is possible to univocally define a
Hilbert space of functions associated with a kernel K. We recall here this known result.

Theorem 3 (Kolmogorov-Moore theorem). Take a semi-positive definite kernel K : X ×
X → R, then there exists a unique space H with the following properties:

(a) the elements of H are functions f : X → R

(b) H is a vector space with respect to the usual pointwise operations of sum and product
by scalar

(c) H is a Hilbert space with scalar product 〈·, ·〉H and norm ‖ · ‖H

(d) for all x ∈ X there is Kx ∈ H such that

f(x) = 〈f,Kx〉H , f ∈ H (reproducing property)

such that

K
(
x, x′

)
= 〈Kx,Kx′〉H x, x′ ∈ X . (2.1)

Conversely, take a space H satisfying (a)-(d) and define K by means of (2.1), then K is a
semi-positive definite kernel.

A space with the above described properties it’s called Reproducing Kernel Hilbert Space
(RKHS) on X with reproducing kernel K

K : X × X → R K
(
x, x′

)
= 〈Kx,Kx′〉H .

The reproducing property is fundamental since, exploiting it, we can evaluate functions
through scalar products in H.

2.1.1 Feature maps

It is possible to equivalently define an RKHS through a so called feature map. Let’s call W
a Hilbert space with scalar product 〈·, ·〉W , we define a map

Φ : X → W x 7→ Φ(x),

that will be our feature map. For all w ∈ W we define also

fw : X → R fw(x) = 〈w,Φ(x)〉W

satisfying the following property

W = span{Φ(x) | x ∈ X},
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which is equivalent to assume that the map w → fw is injective. If the above property is
not satisfied it is always possible to replace W with span{Φ(x) | x ∈ X}. Denote

H = {fw | w ∈ WΦ} .

It can be shown that H is a RKHS with respect to the scalar product

〈fw, fw′〉H =
〈
w,w′

〉
W .

More than that, H is the unique reproducing kernel Hilbert space with reproducing kernel

K
(
x, x′

)
=
〈
Φ(x),Φ

(
x′
)〉
W .

The reproducing property, combined with the idea of feature maps, justify why in Chapter
4 we will solve the ERM problem hin the simplified case of linear functions in infinite
dimensional spaces, i.e. f(x) = 〈w, x〉 with w ∈ H and H being a reproducing kernel
Hilbert space. In fact, as just seen, to study this model is exactly equivalent to work with
kernels and learn non-linear functions in the input space, since for every f ∈ H we can write
f(x) = 〈w,Φ(x)〉 for some w ∈ H and a feature map Φ, recovering the infinite dimensional
linear case.

Example 1 (Gaussian kernel). Following the notation we used above let W = `2 be the
Hilbert space of square-summable sequences with the scalar product

〈(a`)` , (bn)`〉`2 =

+∞∑
`=0

a`b`.

Define the feature map

Φ : R→ `2, Φ(x)` = e−
x2

2
x`√
`!

= ϕ`(x), ` ∈ N,

which is well-defined since

+∞∑
`=0

ϕ`(x)2 = e−x
2

+∞∑
`=0

x2`

`!
= e−x

2
ex

2
= 1.

Hence, according to the theory above

H =

{
f : R→ R | f(x) =

+∞∑
`=1

a`ϕ`(x),
+∞∑
`=1

a2
` < +∞

}
is a reproducing kernel Hilbert space with kernel

K
(
x, x′

)
= e−

x2

2
−x
′2
2

+∞∑
`=0

(xx′)`

`!
= e−

x2

2
−x
′2
2

+xx′ = exp

(
−(x− x′)2

2

)
,
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which is the Gaussian kernel with σ =
√

2. It’s easy to check also injectivity:

+∞∑
`=1

a`e
−x

2

2
x`√
`!

= 0, ∀x ∈ R ⇒ a` = 0, ∀` ∈ N

2.2 Representer Theorem

Infinite dimensional models introduced above seem unpratical at first sight since ML
algorithms cannot be run in infinite dimensions. We present here some results in kernel
theory that will help overcoming this issue.
Our starting point will be the optimization problem coming from machine learning with
linear models, with data (xi, yi) ∈ X × Y, i = 1, . . . , n :

min
w∈H

1

n

n∑
i=1

` (yi, 〈ϕ (xi) , w〉) +
λ

2
‖w‖2. (2.2)

It’s important to notice that the objective function in Eq. (2.2) accesses the input
observations x1, . . . , xn ∈ X , only through dot-products 〈w,ϕ (xi)〉 , i = 1, . . . , n, and that
we penalize using the Hilbert norm ‖w‖. The following theorem is crucial and it will be
exploited several times in the following of this thesis.

Theorem 4 (Representer theorem [Kimeldorf and Wahba, 1971, Schölkopf et al., 2001]).
Let ϕ : X → H. Let (x1, . . . , xn) ∈ X n, and assume that the functional Ψ : Rn+1 → R is
strictly increasing with respect to the last variable.
Then the infimum of Ψ

(
〈w,ϕ (x1)〉 , · · · , 〈w,ϕ (xn)〉 , ‖w‖2

)
can be obtained by restricting

to a vector w of the form

w =

n∑
i=1

αiϕ (xi) ,

with α ∈ Rn.

Proof. Proof Let w ∈ H, and HD = {
∑n

i=1 αiϕ (xi) , α ∈ Rn} ⊂ H, the linear span of the
feature vectors. Let wD ∈ HD and w⊥ ∈ H⊥D be such that w = wD + w⊥, using the Hilber-
tian structure of H. Then ∀i ∈ {1, . . . , n}, 〈w,ϕ (xi)〉 = 〈wD, ϕ (xi)〉 + 〈w⊥, ϕ (xi)〉 with
〈w⊥, ϕ (xi)〉 = 0 From Pythagorean theorem, we get: ‖w‖2 = ‖wD‖2 + ‖w⊥‖2. Therefore
we have:

Ψ
(
〈w,ϕ (x1)〉 , . . . , 〈w,ϕ (xn)〉 , ‖w‖2

)
= Ψ

(
〈wD, ϕ (x1)〉 , . . . , 〈wD, ϕ (xn)〉 , ‖wD‖2 + ‖w⊥‖2

)
> Ψ

(
〈wD, ϕ (x1)〉 , . . . , 〈wD, ϕ (xn)〉 , ‖wD‖2

)
Thus

inf
w∈H

Ψ
(
〈w,ϕ (x1)〉 , · · · , 〈w,ϕ (xn)〉 , ‖w‖2

)
= inf

w∈HD
Ψ
(
〈w,ϕ (x1)〉 , . . . , 〈w,ϕ (xn)〉 , ‖w‖2

)
,
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obtaining the stated result.

What is fundamental to notice is that the problem of finding the solution of Eq. (2.2)
in the infinite-dimensional space H is now equivalent to find a vector α ∈ Rn, given
w =

∑n
i=1 αiϕ (xi).

Corollary 1 (Representer theorem for supervised learning). For λ > 0,

inf
w∈H

1

n

∑
` (yi, 〈w,ϕ (xi)〉)+

λ

2
‖w‖2 = inf

α∈Rn

1

n

∑
` (yi, 〈w,ϕ (xi)〉)+

λ

2
‖w‖2 s.t. w =

n∑
i=1

αiϕ (xi) .

No assumption on the loss function ` is needed.

Thanks to the above Corollary, we can rewrite the learning problem with kernels notation.
We will need the kernel function k which is the dot product between feature vectors:

k
(
x, x′

)
=
〈
ϕ(x), ϕ

(
x′
)〉
.

We have:

∀j ∈ {1, . . . , n}, 〈w,ϕ (xj)〉 =

n∑
i=1

αik (xi, xj) = (Kα)j

where K ∈ Rn×n is the kernel matrix, such that Kij = 〈ϕ (xi) , ϕ (xj)〉 = k (xi, xj), and

‖w‖2 =
n∑
i=1

n∑
j=1

αiαj 〈ϕ (xi) , ϕ (xj)〉 =
n∑
i=1

n∑
j=1

αiαjKij = α>Kα

We can then write:

inf
w∈H

1

n

n∑
i=1

` (yi, 〈w,ϕ (xi)〉) +
λ

2
‖w‖2 = inf

α∈Rn

1

n

n∑
i=1

` (yi, (Kα)i) +
λ

2
α>Kα.

For a test point x ∈ X, we have f(x) =
∑n

i=1 αik (x, xi).
Thus, the input observations are contained in the kernel matrix and the kernel function,
regardless of the dimension of H. Remarkably, we never need to explicitly compute the
feature vector ϕ(x), that would be often unfeasible. This is commonly called the kernel
trick, which is one of the keys of kernels’ success. Note again that with this new formulation
we replaced H by Rn; this is clearly interesting computationally when the dimension of H
is very large.
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Chapter 3

Learning on Random Subspaces

As mentioned above, the goal in supervised learning is to learn from examples a function
able to predict well on new data. Often this prediction function can be highly non-linear
and non-parametric learning methods must be taken into account. The just described
kernel methods are among the most popular non-parametric learning tools in machine
learning and this is thanks to their excellent theoretical properties, widely studied in
literature. Anyway, despite sound statistical guarantees, kernel methods have limited
applications in large scale learning because of time and memory requirements, typically at
least quadratic in the number of data points. Overcoming these scaling issues has motivated
a lot of work in the direction of efficiency and computational savings. Then, a variety
of practical approaches, with the goal of improving time complexity, have been studied.
These include gradient methods, as well accelerated, stochastic and preconditioned ex-
tensions [Caponnetto and Yao, 2010, Avron et al., 2017, Gonen et al., 2016]. At the same,
random projections approaches have been developed to reduce also memory requirements.
Popular methods of this kind include Nyström subsampling [Williams and Seeger, 2001,
Smola and Schölkopf, 2000], random features [Rahimi and Recht, 2007], and their numer-
ous variations.
From a theoretical point of view, the main challenge is to characterize the statistical and
computational tradeoffs derived by these approximation tools. In particular, this means
to understand if, or under which conditions, computational gains come at the expense of
statistical accuracy.

In this chapter we will briefly present some examples of random projections techniques
when solving

min
f∈H

1

n

n∑
i=1

` (yi, f (xi)) + λ‖f‖2H, (3.1)

for ` being convex with respect to its second variable and H a RKHS. For simplicity we
study the special case of the square loss (ridge regression), where we have an closed-form
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solution, and linear kernel k(x, x′) = x>x′ (feature map ϕ is the identity), corresponding to
learn linear functions fw(x) = w>x and with K = X̂X̂>, where X̂ ∈ Rn×d is the matrix of
the data. Then, the problem takes the form

min
α∈Rn

1

n
‖y −Kα‖22 + λα>Kα

and setting the gradient to 0 we obtain(
K2 + nλK

)
α = Ky,

with a solution

α = (K + nλI)−1y.

The main issue with this approach is that computing α requires O(n3) complexity in time
and O(n2) in memory. What we need is some techniques to reduce the dimensionality of
the problem.
At this scope, define S ∈ Rd×m, with m� n, d, and

X̂m︸︷︷︸
n×m

= X̂︸︷︷︸
n×d

S︸︷︷︸
d×m

.

This is nothing else than a transformation of the d-dimensional inputs to a lower dimen-
sionality m

x ∈ Rd → x̃ = (s>j x)mj=1 ∈ Rm, (3.2)

with s1, . . . , sm columns of S.
We can reformulate problem (3.1) as

min
c∈Rm

1

n

∥∥∥c>X̂m − Ŷ
∥∥∥2

+ λ‖c‖2

where the complexity is reduced from d to m. Clearly the reader may wonder which kind
of statistical guarantees this new formulation has. In particular, how much have we lost in
terms of accuracy of our estimator when transforming the inputs through the embedding in
(3.2)? This question will the main topic of next chapters. Another key ingredient is how
to choose the embedding of the input point: we present in the following some of the most
common choices.

3.1 PCA

The most straightforward choice for approximating K and reducing the O(n3) time com-
plexity when inverting it is using its Singular Value Decomposition (SVD). This approach
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consists in selecting only the m principal components of K given by its SVD and discarding
the remaining ones. Calculating the SVD of K = X̂X̂> (again we work with the linear
kernel for simplicity) we have

K = X̂X̂> = UΣ2U>.

Then

X̂ = UΣV T ⇒ V = X̂>UΣ−1

and matrix S ∈ Rd×m, in the above notation, can be taken as

S = Vm = X̂>UmΣ−1
m

where we called Um ∈ Rn×m the matrix of the first m columns of U (the order is given by
the magnitude of the corresponding eigenvalues) and Σm ∈ Rm×m the matrix of the biggest
m eigenvalues.
With vj the j-th column of Vm, we can rewrite the embedding of any x as

(xm)j = x>vj =

n∑
i=1

x>xi︸ ︷︷ ︸
k(x,xi)

uij
σj
,

with (uj , σ
2
j )j the couples of eigenvectors and eigenvalues of K and x1, . . . , xn the data.

With X̂m ∈ Rn×m the matrix of the embedded data, we consider now the simplified problem

min
c∈Rm

1

n

∥∥∥X̂mc− Ŷ
∥∥∥2
,

the solution is

ĉm = X̂>m

(
X̂mX̂

>
m

)−1
Ŷ

with ĉm ∈ Rm. Our predictor becomes

f̂λ,m(x) := ĉ>mx.

This is usually called principal component regression in statistics. Still, computing the SVD
for K requires O(n3) in time and O(n2) in memory.

3.2 Random Projection

A possible solution to avoid the complexity of computing the SVD is to work with random
projections methods. We briefly present here some of the most popular approaches.
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Sketching Let take S as a random d×m matrix such that Sij ∼ N (0, 1) and the linear

embedding X̂m ∈ Rn×m as
X̂m = X̂S.

It’s important to note that if x̃ = S>x and x̃′ = S>x′, then

1

m
E[x̃>x̃′] =

1

m
E[x>SS>x′] = x>E[SS>]x′ =

1

m
x>

m∑
j=1

E[sjs
>
j ]x′ = x>x′.

This means that inner products and norms distances are preserved in expectation. Consider
again the regularized ERM problem

min
c∈Rm

1

n

∥∥∥X̂mc− Ŷ
∥∥∥2

+ λ‖c‖2.

The solution of the problem can be written as

ĉm =
(
X̂>mX̂m + λnI

)−1
X̂>mŶ ,

and our predictor becomes
f̂λ,m(x) = x>Sĉm.

Computing ĉm is time O
(
nm2 + ndm

)
and memory O(nm), that can lead to huge improve-

ments with respect to previous O(n3) and O(n2) when m is small.

Random Features The idea behind random feature is again to approximate K and deal
with a lower dimensional object. Consider kernels having the particular form

K(x, x′) =

∫
v
ϕ(x, v)ϕ

(
x′, v

)
dµ(v),

where dµ is a probability distribution on some space V and ϕ(x, v) ∈ R. We can then
approximate the expectation by an empirical average

K̃
(
x, x′

)
=

1

m

m∑
i=1

ϕ (x, vi)ϕ
(
x′, vi

)
,

where the vi’s are sampled i.i.d. from dµ. We can thus use an explicit feature representation

ϕ̂(x) =
(

1√
m
ϕ (x, vi)

)
i∈{1,...,m}

, and defining X̂>m := (ϕ̂(x1), . . . , ϕ̂(xn)) we have

f̂λ,m(x) := ϕ̂(x)>ĉm, with ĉm :=
(
X̂>mX̂m + λnI

)−1
X̂>mŶ ,

For this scheme to makes sense, the number m of random features has to be significantly
smaller than n, which is often sufficient in practice (see [Rudi and Rosasco, 2017]).
A simple example of this technique is given by Random Fourier features [Rahimi and Recht, 2007]
and Gaussian kernel.
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Example 2 (Random Fourier features). If we write the Gaussian kernel as K (x, x′) =

G (x− x′), with G(z) = e−
1

2σ2
‖z‖2 , for a σ > 0, then since the inverse Fourier transform of

G is a Gaussian, and using a basic symmetry argument, it is easy to show that

G
(
x− x′

)
=

1

Z

∫ ∫ 2π

0

√
2 cos

(
w>x+ b

)√
2 cos

(
w>x′ + b

)
e−

σ2

2
‖w‖2dwdb

where Z is a normalizing factor. Then, the Gaussian kernel has an approximation of the form
(5) with ϕ̂(x) = m−1/2

(√
2 cos

(
w>1 x+ b1

)
, . . . ,

√
2 cos

(
w>mx+ bm

))
, and w1, . . . , wm and

b1, . . . , bm sampled independently from 1
Z e
−σ2‖w‖2/2 and uniformly in [0, 2π], respectively.

Note that dimension reduction is performed independently of the input data, that is
the random feature functions ϕ (·, vi) are selected before the data are observed. This is
opposed to the column sampling scheme that we will study next which is a data-dependent
dimension reduction scheme.

Nyström Our last example of random projection is Nyström subsampling. As seen in
the previous chapter, applying the representer theorem, the solution f̂λ of Problem (3.1)
can be written as

f̂λ(x) =
n∑
i=1

α̂iK (xi, x) with α̂ = (Kn + λnI)−1 y

with Kn the n×n kernel matrix, i.e. Kij = K(xi, xj) ∀i, j ∈ [n]. Note that this means that
we can restrict the minimization in (3.1) to the smaller space,

Hn =

{
f ∈ H | f =

n∑
i=1

αiK (xi, ·) , α1, . . . , αn ∈ R

}
.

The simple idea of Nyström method is to further reduce this space minimizing the objective
of (3.1) over

Hm =

{
f | f =

m∑
i=1

ciK (x̃i, ·) , ci, . . . , cm ∈ R

}
where m 6 n and {x̃1, . . . , x̃m} is a random subset of the n input points in the training set.
The solution f̂λ,m of the corresponding minimization problem can now be written as,

f̂λ,m(x) =

m∑
i=1

ĉiK (x̃i, x) with ĉ =
(
K>nmKnm + λnKmm

)†
K>nmŶ , (3.3)

where A† denotes the Moore-Penrose pseudoinverse of a matrix A, and (Knm)ij = K (xi, x̃j),
(Kmm)kj = K (x̃k, x̃j) with i ∈ {1, . . . , n} and j, k ∈ [m].
This approach can be also seen as a way of approximating the kernel matrix K with

K ≈ KnmK
−1
mmKmn.
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Eq. (3.3) shows why this method is often referred to as column subsampling, where random
columns of the kernel matrix Kn are sampled to reduce the dimensionality of the problem
such that

f(x) =

n∑
i=1

k(x, xi)ci︸ ︷︷ ︸
ERM predictor

→ Kc = Ŷ ⇒ f(x) =

m∑
i=1

k(x, x̃i)ci︸ ︷︷ ︸
Nyström predictor

→ Knmc = Ŷ

which graphically can be seen in the following picture:

This approximation improves the complexity from O
(
n3
)

in time and O
(
n2
)

in space to
O
(
nm2 +m3

)
and O(nm), respectively.

In the next chapter we will focus on Nyström method and we will show our original
results when applying it to generic Lipschitz convex losses. Before that, we briefly summarize
here some known results about ERM with Nyström subsampling when the square loss is
considered.

3.3 Empirical Risk Minimization on Random Subspaces with
Square Loss

Before presenting our results for convex loss functions in the next chapter, we summarize
here the known results for square loss proved in [Rudi et al., 2015]. As shown before, such a
simplified estimator is cheaper to compute with respect to the original ERM solver and this
allows to deal with kernel methods and large scale dataset. The main question addressed by
this work is if this simplification leads to a drop in the predictive ability of the algorithm.
The success of the paper lies in the fact the answer is actually negative and, up a certain
point, there is no tradeoff between computational savings and accuracy.
We report here a simplified version of their main assumptions and results. The hypothesis
space is assumed to be an RKHS H with bounded kernel, P the joint distribution of X,Y
and PX the marginal probability distribution of X.
The first basic assumption is that the excess risk E admits at least a minimizer.
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Assumption 1. There exists an fH ∈ H such that

E (fH) = min
f∈H
E(f)

The second assumption is known as capacity condition.

Assumption 2 (Capacity condition). Defined dα := Tr((Σ+αI)−1Σ) the effective dimension
of H, assume

dα = O(α−p), 0 < p 6 1 (3.4)

where Σ is the covariance operator Σ : H → H, 〈f,Σg〉H =
∫
X f(x)g(x)dPX(x), ∀f, g ∈ H.

Condition (3.4) quantifies the capacity assumption and is related to covering/entropy
number conditions [Steinwart and Christmann, 2008]. Roughly speaking, the effective di-
mension dα controls the complexity of the hypothesis space H according to the marginal
measure PX [Caponnetto and De Vito, 2007]. In particular, Condition (3.4) is ensured if

the eigenvalues (σi)i of Σ satisfy a polynomial decaying condition σi ∼ i−
1
p (see Proposi-

tion 8 in Appendix F). Note that, when the kernel is bounded, the operator Σ is trace class
and then Condition (3.4) always holds for p = 1.

This following assumption is usually called source condition.

Assumption 3 (Source condition). There exists r > 0, 1 6 R <∞, such that∥∥Σ−rfH
∥∥
H < R. (3.5)

Intuitively, it quantifies the degree to which fH can be well approximated by functions in
the RKHS H and allows to control the bias/approximation error of a learning solution. For
s = 0, it is always satisfied. For larger s, we are assuming fH to belong to subspaces ofH that
are the images of the fractional compact operators Σs [Rudi et al., 2015, Engl et al., 1996].

Theorem 5 (Theorem 1 in [Rudi et al., 2015]). Given a bounded kernel, i.e. supx∈X k(x, x) =
κ2 < +∞, n large enough, and under the above capacity and source conditions with
v = min(r, 1/2), then, let δ > 0, with probability at least 1− δ:

L
(
f̂λ,m

)
− L (fH) . n

− 2v+1
2v+p+1

with f̂λ,m as in Eq. (3.3), λ ∼ n−
1

2v+p+1 and

m &
1

λ
log

1

δλ
.



40 CHAPTER 3. LEARNING ON RANDOM SUBSPACES

It can be shown that this rate is optimal in minimax sense [Caponnetto and De Vito, 2007,
Steinwart et al., 2009]. What is worth to notice is the admissible choices for the number
of Nyström centers m: take for example r = 0 (no source condition) and p = 1 (always
granted), then the optimal rate (under these assumptions)

L
(
f̂λ,m

)
− L (fH) .

√
1

n

can be reached with only
m ∼

√
n

neglecting log terms. Therefore, going back to the complexity analysis of Nyström algorithm
in the previous section, this approach leads to complexity O(nm2 +m3) = O(n2) in time and
O(nm) = O(n

√
n) in memory, in contrast with respectively O(n3) and O(n2) complexities

of the standard not projected ERM approach.

In the following chapter we will extend this kind of results to generic convex losses,
beyond square loss. The case of square loss and the result in Theorem 5 for a specific regime
will be recovered as a particular example.



Chapter 4

ERM on Random Subspaces with
General Convex Losses

In this chapter we will present our original work that can be found in [Della Vecchia et al., 2021],
together with some our extensions not published yet.

4.1 Setting

We start introducing the learning setting and the assumptions we consider. Let H be a
real separable Hilbert space with scalar product 〈·, ·〉 and Y a Polish space, i.e a separable
complete metrizable topological space. Let (X,Y ) be a pair of random variables taking
value in H and Y, respectively, and denote by P their joint distribution defined on the
Borel σ-algebra of H× Y.
Let ` : Y × R→ [0,∞] be a loss function and

L : H → [0,∞) L(w) =

∫
H×Y

`(y, 〈w, x〉)dP (x, y) = E[`(Y, 〈w,X〉)]

the corresponding expected risk already defined in Section 1.
As already described there, what we are interested in is to solve the problem

inf
w∈H

L(w), (4.1)

when the distribution P is only known through a training set (xi, yi)
n
i=1, which is a realization

of (X1, Y1), . . . , (Xn, Yn), i.e. n i.i.d. copies of (X,Y ). Since data are finite, we cannot
expect to solve the problem exactly. Given an empirical approximate solution ŵ, a natural
error measure is the the excess risk

L(ŵ)− inf
w∈H

L(w),

41
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which is a random variable through its dependence on ŵ, and hence on the data (xi, yi)
n
i=1.

We make the following assumptions on the data distributions and the loss.

Assumption 1. There exists C > 0 such that X is a C-sub-gaussian centered random
vector.

We recall that a random vector X taking value in a Hilbert space H is called C-sub-gaussian
if

‖〈X,u〉‖p 6 C
√
p‖〈X,u〉‖2 ∀u ∈ H, p > 2, (4.2)

where ‖〈X,u〉‖pp = E [‖〈X,u〉‖p] [Koltchinskii and Lounici, 2014]. Note that (4.2) implies
that for any vector u ∈ H, the projection 〈X,u〉 is a real sub-gaussian random variable
[Vershynin, 2010], but this latter condition is not sufficient since the sub-gaussian norm

‖ 〈X,u〉 ‖ψ2 = sup
p>2

‖〈X,u〉‖p√
p

(4.3)

should be bounded from above by the L2-norm ‖〈X,u〉‖2. In particular, we note that, in
general, bounded random vectors in H are not sub-gaussian.
Under the above conditions, E[‖X‖2] is finite, so that the (non-centered) covariance operator

Σ : X → H Σ = E[X ⊗X]

is a trace-class positive operator. We define the effective rank of Σ as

rΣ =
TrΣ

‖Σ‖
(4.4)

where Tr Σ = E[‖X‖2] is the trace of Σ. We recall the already mentioned definition of the
effective dimension [Zhang, 2005, Caponnetto and De Vito, 2007], for α > 0, as

dα = Tr((Σ + αI)−1Σ) =
∑
j

σj
σj + α

(4.5)

where (σj)j are the strictly positive eigenvalues of Σ, with eigenvalues counted with respect
to their multiplicity and ordered in a non-increasing way, and (uj) is the corresponding
family of eigenvectors. Note that dα is always finite since Σ is trace class.

The next assumption is on the loss function.

Assumption 2 (Lipschitz loss). The loss function ` : Y × R → [0,∞) is convex and
Lipschitz in its second argument, namely there exists G > 0 such that

|`(y, a)− `(y, a′)| ≤ G|a− a′| ∀y ∈ Y and a, a′ ∈ R. (4.6)

We also assume `0 = supy∈Y `(y, 0) < +∞ for all y ∈ Y.
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Under the above condition, the expected risk L(w) is finite, convex and Lipschitz.
We next provide some relevant examples. The classical linear regression problem corresponds
to the choice H = Rd and Y = R. Another example is provided by kernel methods
[Steinwart and Christmann, 2008].

Example 3. The input variable X takes value in an abstract measurable set X . We fix a
reproducing kernel Hilbert space on X with (measurable) reproducing kernel K : X ×X → R.
By mapping the inputs from X to H through the feature map

H 3 x 7→ K(·, x) = Kx ∈ H,

we can always identify X with KX , which is a random variable taking value in H.

We now provide some examples of loss functions satisfying the above assumption.

Example 4. The main examples are

(a) hinge loss:

`(y, a) = |1− ya|+ = max{0, 1− ya} Y = {−1, 1} (4.7)

which is convex, but non-differentiable with G = 1 and `0 = 1;

(b) logistic loss

`(y, a) = log(1 + e−ya) Y = {−1, 1} (4.8)

which is convex and differentiable with G = 1 and `0 = log 2;

(c) square loss

`(y, a) = (y − a)2 Y ⊆ [−M,M ], (4.9)

which is convex and differentiable with Gloc = 2M (locally Lipschitz with a ∈ [−M,M ])
and `0 = M2.

For classification, where Y = {−1, 1}, a natural loss function is given by the 0-1 loss

`0−1(y, a) := 1(−∞,0](y sign a),

which is not convex and cannot be directly studied using the theory we will present in
this chapter. A way of dealing with the 0-1 loss to obtain statistical bounds for it will be
described in Chapter 5.
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4.2 Empirical risk minimization

In Section 1.1.3 we presented a classical approach to derive approximate solutions based on
replacing the expected risk with the empirical risk L̂ : H → [0,∞) defined for all w ∈ H as

L̂(w) =
1

n

n∑
i=1

`(yi, 〈w, xi〉).

and then considering the (regularized) empirical risk minimization (ERM) based on the
solution of the problem,

min
w∈H

L̂λ(w), L̂λ(w) = L̂(w) + λ ‖w‖2 , (4.10)

where λ > 0 is a positive regularization parameter. Since L̂λ : H → R is continuous
and strongly convex, there exists a unique minimizer ŵλ and, by the representer theorem
[Wahba, 1990, Schölkopf et al., 2001] introduced in Section 2.2, there exists c = ĉλ ∈ Rn

such that
ŵλ = X̂>c ∈ span{x1, . . . , xn}, (4.11)

where X̂ : H → Rn denotes the input data matrix

(X̂w)i = 〈w, xi〉 i = 1, . . . , n, w ∈ H.

The explicit form of the coefficient vector c depends on the considered loss function. In
Section 4.2.1 we briefly recall some possible approaches to compute c, whereas in Section 4.2.2
we analyze the statistical properties of the above estimator.

Example 5 (Representer theorem for kernel machines). As seen in Chapter 2, in the context
of kernel methods (see also Example 3), the above discussion, and in particular (4.11),
can be easily adapted. Indeed, the parameter w corresponds to a function f ∈ H in the
RKHS, while the norm ‖ · ‖ is the RKHS norm ‖ · ‖H. Eq. (4.11) simply states that
there exist constants ci such that the solution of the regularized ERM can be written as
f̂λ(x) =

∑n
i=1K(x, xi)ci ∈ span{Kx1 , . . . ,Kxn}.

4.2.1 Computational aspects

Problem (4.10) can be solved in many ways and we provide below some basic considerations.
If H is finite dimensional, gradient methods can be used. For example, the subgradient
method [Boyd and Vandenberghe, 2004] applied to (4.10) gives, for some suitable w0 and
step-size sequence (ηt)t,

wt+1 = wt − ηt

(
1

n

n∑
i=1

yixigi(wt) + 2λwt

)
, (4.12)
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where for all (yi, xi)i=1,...,n, gi(w) ∈ ∂`(yi, 〈w, xi〉) is the subgradient of the map a 7→
`(yi, a) evaluated at a = 〈w, xi〉, see also [Rockafellar, 1970]. The corresponding per
iteration cost is O(nd) in time and memory. Clearly, other variants can be considered,
for example adding a momentum term [Nesterov, 2018], using stochastic gradients and
minibatching or considering other approaches for example based on coordinate descent
[Shalev-Shwartz and Zhang, 2013]. When H is infinite dimensional a different approach is
possible, provided 〈x, x′〉 can be computed for all x, x′ ∈ H. For example, it is easy to prove
by induction that the iteration in (4.12) satisfies wt = X̂>ct+1, with

ct+1 = ct − ηt

(
1

n

n∑
i=1

yieigi(X̂
>ct) + 2λct

)
, (4.13)

and where e1, . . . , en is the canonical basis in Rn. The cost of the above iteration is O(n2CK)

for computing gi(w) ∈ ∂`
(
yi,
〈
X̂>ct, xi

〉)
= ∂`

(
yi,
∑n

j=1 〈xj , xi〉 (ct)i
)

, where CK is the

cost of evaluating the inner product. Also in this case, a number of approaches can be
considered, see e.g. [Steinwart and Christmann, 2008, Chap.11] and references therein. We
illustrate the above ideas for the hinge loss.

Example 6 (Hinge loss & SVM). Considering problem (4.10) with the hinge loss corre-
sponds to support vector machines for classification. With this choice ∂`(yi, 〈w, xi〉) = 0
if yi 〈w, xi〉 > 1, ∂`(yi, 〈w, xi〉) = [−1, 0] if yi 〈w, xi〉 = 1 and ∂`(yi, 〈w, xi〉) = −1 if
yi 〈w, xi〉 < 1. In particular, in (4.13) we can take gi(w) = −1[yi〈w,xi〉≤1].

4.2.2 Statistical analysis

In this section, we summarize the main statistical properties of the regularized ERM under
the sub-gaussian hypothesis in Assumption 1. In the following Theorem 6 we provide a
finite sample bound on the excess risk of ŵλ without assuming the existence of w∗ (that
instead will be assumed in Theorem 7 via Assumption 3). Towards this end, we introduce
the approximation error,

A(λ) = inf
w∈H

[L(w) + λ‖w‖2]− inf
w∈H

L(w) . (4.14)

Note that, if w∗ exists, then A(λ) 6 λ ‖w∗‖2. More generally, the approximation error
decreases with λ and learning rates can be derived assuming a suitable decay.

Theorem 6. Under Assumptions 1 and 2, fix λ > 0 and 0 < δ < 1. Then, with probability
at least 1− δ,

L(ŵλ)− inf
w∈H

L(w) <2A(λ) +
D2G2C2‖Σ‖((√rΣ +K)2 + (

√
rΣ +

√
log(1/δ))2)

4λn
+

+
DGC(

√
rΣ +K)‖Σ‖

1
2 +D`0(K +

√
log(1/δ))√

n
. (4.15)
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where C and G are the constants defined respectively in (4.2) and (4.6), D is a numerical
constant and

K = Kλ,δ =
√

log(1 + log2(3 + `0/λ)) + log(1/δ) = O(
√

log log(3 + `0/λ) + log(1/δ)).

The theorem can be easily extended to non-centered sub-gaussian variables.
Notice that the same result is well known for bounded random variables, see for example
[Steinwart and Christmann, 2008, Shalev-Shwartz et al., 2010]. We are not aware of a ref-
erence for the sub-gaussian case. In Appendix A we provide a simple self-contained proof,
which holds true also for the bounded case [Della Vecchia et al., 2021]. It is based on the fact
that the excess risk bound for regularized ERM arises from a trade-off between an estimation
and an approximation term. Similar bounds in high-probability for ERM constrained to the
ball of radius R > ‖w∗‖ can be obtained through a uniform convergence argument over such
balls, see [Bartlett and Mendelson, 2002, Meir and Zhang, 2003, Kakade et al., 2009].
In order to apply this to regularized ERM, one could in principle use the fact that by
Assumption 2, ‖ŵλ‖ 6

√
`0/λ (see Appendix) [Steinwart and Christmann, 2008], but

this would yield a suboptimal dependence in λ. Finally, a similar rate, though only
in expectation, can be derived through a stability argument [Bousquet and Elisseeff, 2002,
Shalev-Shwartz et al., 2010].

The bound (A.3) shows that the learning rate depends on some a-priori assumption on the
distribution that allows to control the approximation error A(λ). The simplest assumption
is that the best in the model exists.

Assumption 3. There exists w∗ ∈ H such that L(w∗) = min
w∈H

L(w).

Under the above condition, we have the following result.

Theorem 7. Under Assumption 1, 2, and 3, take λ > 0 and 0 < δ < 1, then with probability
at least 1− δ:

L(ŵλ)− L(w∗) <λ‖w∗‖2 +
D2G2C2(

√
rΣ +K)2‖Σ‖

4λn
+
DGC(

√
rΣ +K)‖Σ‖

1
2 +√

n
+

+
D`0(K +

√
log(8/δ))√
n

+
DGC‖Σ‖

1
2 ‖w∗‖

(√
rΣ +

√
log(8/δ)

)
√
n

. (4.16)

Hence, let λ = λn � (DGC ‖Σ‖1/2 /‖w∗‖)
√

log(1/δ)/n with high probability:

L(ŵλn)− L(w∗) = O(‖w∗‖
√

log(1/δ)/n), (4.17)

up to a log log n term.
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As above, the proof is given in Appendix A. In a nutshell, what Thm. 7 shows is that,
with high probability,

L(ŵλ)− inf
w∈H

L(w) .
1

λn
+ λ ‖w∗‖2 ,

provided that the best in model w∗ ∈ X exists. With the choice λ �
√

1/n it holds that

L(ŵλ)− inf
w∈H

L(w) = O(
√

1/n), (4.18)

which provides a benchmark for the results in the next sections.

Remark 1. Note that for all w ∈ H with ‖w‖ 6 R,

A(λ) 6 L(w) + λ‖w‖2 − inf
H
L 6 L(w)− inf

H
L+ λR2

hence A(λ) 6 inf‖w‖6R L(w)− infH L+ λR2 and

L(ŵλ)− inf
w∈H

L(w) <2
(

inf
‖w‖6R

L(w)− inf
H
L
)

+ 2λR2 +
D2G2C2‖Σ‖((√rΣ +K)2 + (

√
rΣ +

√
log(8/δ))2)

4λn

+
DGC(

√
rΣ +K)‖Σ‖

1
2 +DK`0 +D`0

√
log(8/δ)√

n
,

Letting λ � 1/(R
√
n), this gives L(ŵλ) − infw∈H L(w) 6 2(inf‖w‖6R L(w) − infH L) +

O(R/
√
n) with high probability.

4.3 ERM on random subspaces

As explained in the Chapter 3, though the ERM estimator ŵλ achieves sharp rates, from a
computational point of view it can be very expensive for large datasets. To overcome this
issue, we apply here the same idea presented in Chapter 3 and we study a variant of ERM
based on considering a subspace B ⊂ H and the corresponding regularized ERM problem,

min
β∈B

L̂λ(β), (4.19)

with β̂λ the unique minimizer. As clear from (4.11), choosing B = Hn = span{x1, . . . , xn}
is not a restriction and yields the same solution as considering (4.10). From this observation
a natural choice is to consider for m ≤ n, recovering the Nyström approach introduced in
Section 3.2:

Bm = span{x̃1, . . . , x̃m} (4.20)

with {x̃1, . . . , x̃m} ⊂ {x1, . . . , xn} a subset of the input points, called the Nyström points.
We denote by Pm = PBm the corresponding projection and by β̂λ,m the unique minimizer

of L̂λ on Bm, i.e.
β̂λ,m = argmin

β∈Bm
L̂λ(β). (4.21)
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In the rest of the thesis all the results are valid when the Nyström points are selected using
approximate leverage scores (ALS) sampling. Recall that leverages scores are defined as
[Drineas et al., 2012]:

li(α) =
〈
xi, (X̂X̂

>x+ αIn)−1xi

〉
i = 1, . . . , n (4.22)

where α > 0. Since in practice the leverage scores li(α) are expensive to compute, approxima-
tions have been considered [Drineas et al., 2012, Cohen et al., 2015, Alaoui and Mahoney, 2015,
Rudi et al., 2018]. In particular, we consider approximations of the form described in the
following definition.

Definition 4 (Approximate leverage scores sampling (ALS)). Let (li(α))ni=1 be the leverage

scores (4.22). Given α0 > 0 and T > 1, we say that a family (l̂i(α))ni=1 is (T, α0)-approximate
leverage scores with confidence δ ∈ (0, 1) if

1

T
li(α) 6 l̂i(α) 6 T li(α), ∀i ∈ {1, . . . , n}, α > α0, (4.23)

with probability at least 1 − δ. Under this condition, the approximate leverage scores
(ALS) sampling selects the Nyström points {x̃1, . . . , x̃m} from the training set {x1, . . . , xn}
independently with replacement and with probability Qα(i) = l̂i(α)/

∑
j l̂j(α).

We now focus on the computational benefits of considering ERM on random subspaces and
we analyze the corresponding statistical properties in Section 4.3.2.

4.3.1 Computational aspects

The choice of Bm as in (4.20) allows to improve computations with respect to (4.11). Indeed,
β ∈ Bm if and only if ∃b ∈ Rm s.t. β = X̃>b, with X̃ : H → Rm the matrix with rows the
chosen Nyström points. Then, we can replace (4.19) problem with

min
b∈Rm

1

n

n∑
i=1

`
(
yi,
〈
X̃>b, xi

〉)
+ λ

〈
b, X̃X̃>b

〉
m
,

where 〈·, ·〉m is the scalar product in Rm. Further, since X̃X̃> ∈ Rm×m is symmetric and
positive semi-definite, we can derive a formulation close to that in (4.10), considering the
reparameterization a = (X̃X̃>)1/2b which leads to

min
a∈Rm

1

n

n∑
i=1

` (yi, 〈a, xi〉m) + λ ‖a‖2m , (4.24)

where for all i = 1, . . . , n, we defined the embedding xi 7→ xi = ((X̃X̃>)1/2)†X̃xi and with
‖ · ‖m we denoted the norm in Rm. Note that the computation of the embedding xi → xi
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only involves the inner product in H and can be computed in O(m3 + nm2CK) time. The
subgradient method for (4.24) has a cost O(nm) per iteration. In summary, we obtained
that the cost for the ERM on subspaces is O(nm2CK +nm ·#iter) and should be compared
with the cost of solving (4.13) which is O(n2CK + n2 ·#iter). The corresponding costs to
predict new points are O(mCK) and O(nCK), while the memory requirements are O(mn)
and O(n2), respectively. Clearly, memory requirements can be reduced recomputing things
on the fly. As clear from the above discussion, computational savings can be drastic, as long
as m < n, and the question arises of how this affect the corresponding statistical accuracy.
Next section is devoted to this question. We add one example.

Example 7 (Kernel methods and Nyström approximations). Again, following Example 3
and Example 5, our setting can be easily specialized to kernel methods, where β ∈ Bm =
span{x̃1, . . . , x̃m} is replaced by f̃(x) =

∑m
i=1K(x, x̃i)c̃i ∈ span{Kx̃1 , . . . ,Kx̃m}, while the

embedding xi 7→ xi = ((X̃X̃>)1/2)†X̃xi becomes xi 7→ xi = (K̃1/2)†(K(x̃1, xi), . . . ,K(x̃m, xi))
>,

with K̃i,j = K(x̃i, x̃j).

4.3.2 Statistical analysis

In this section we will show, under a suitable polynomial (or exponential) decay condition
on the spectrum of Σ (see (4.28)) that,

L(β̂λ,m)− L(w∗) .

√
log(1/δ)√

n
,

provided that the best in model w∗ ∈ H exists, see Assumption 3, and, up to log terms,

λ � 1√
n
, m & np,

where the exponent p controls how strong the polynomial decay condition is (see (4.28)).
Compared to the results for exact ERM (4.18), we get the same convergence rate up to a
log factor, but the computational complexity of the algorithm is dramatically reduced, for
example if p = 1/2 we only need m '

√
n Nyström points. A similar result is obtained for

exponential decay in which case we can take m ' log2 n Nyström points. We observe that
under the above decay conditions on the spectrum of Σ classical ERM algorithm achieves
fast rates. In Section 4.4, we will show that also randomized ERM can achieve fast rates,
but this will require a more refined analysis.

We now state the detailed results. We recall that the Nyström points are sampled according
to ALS, see Definition 4.
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Theorem 8. Under Assumption 1, 2 and 3, fix α, λ, δ > 0. Then, with probability at least
1− δ:

L(β̂λ,m)− L(w∗) .
log(1/δ)

λn
+
‖w∗‖

√
log(1/δ)√
n

+
√
α‖w∗‖+ λ‖w∗‖2 (4.25)

up to log(log(1/λ)) terms and provided that n & dα ∨ log(1/δ) and m & dα log(2n
δ ).

The proof of Theorem 8 with explicit constants is given in Appendix B, here we only add
some comments. Note that

dα =

∫ 〈
w, (Σ + αI)−1w

〉
dPX(w) 6

∫
‖w‖2

∥∥(Σ + αI)−1
∥∥ dPX(w) 6 α−1E[‖X‖2] . α−1,

(4.26)

using the fact that the second moment of a sub-gaussian variable is finite. Using the above
bound, we get that, up to log terms, with high probability

L(β̂λ,m)− L(w∗) .
log(1/δ)

λn
+
‖w∗‖

√
log(1/δ)√
n

+
√
α‖w∗‖+ λ‖w∗‖2,

provided that m & α−1. With the choice

λ � 1

‖w∗‖
√
n
, α � 1/n

we get that with high probability

L(β̂λn,m)− L(w∗) .
‖w∗‖

√
log(1/δ)√
n

(4.27)

up to log factors in n and with m & n.
Despite of the fact that the rate is optimal (up to the logarithmic term), the required
number of subsampled points is m & n, so that the procedure is not effective. However, the
following proposition shows that under a decay conditions on the spectrum of the covariance
operator Σ, the ALS method becomes computationally efficient. We assume one of the
following two conditions:

a) polinomial decay: there exists p ∈ (0, 1) such that

σj . j
− 1
p (4.28)

b) exponential decay: there exists β > 0 such that

σj . e−βj . (4.29)
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Under the above conditions, we have the following result.

Theorem 9. Under the assumptions of Theorem 8, fix δ > 0, then, with probability at least
1− δ:

L(β̂λ,m)− L(w∗) .
log(1/δ)

λn
+
‖w∗‖

√
log(1/δ)√
n

+
√
α‖w∗‖+ λ‖w∗‖2 (4.30)

and, with the choice

(a) for the polynomial decay (4.28)

λ �
‖w∗‖

√
log(1/δ)√
n

, α � log(1/δ)

n
, m & np,

(b) for the exponential decay (4.29)

λ �
‖w∗‖

√
log(1/δ)√
n

, α � log(1/δ)

n
, m & log2 n,

then, it holds that

L(β̂λn,m)− L(w∗) .
‖w∗‖

√
log(1/δ)√
n

(4.31)

The proof of the above result is given in Appendix B. Theorem 9 is already known for square
loss [Rudi et al., 2015] and for smooth loss functions [Marteau-Ferey et al., 2019] under the
assumption that the input X is bounded. However, note that our bound on the number of
Nyström points is, in the case of square loss, worse than the bound in [Rudi et al., 2015].
In Section 4.5, by specializing the analysis for smooth losses and exploiting the special
structure of the quadratic loss, we obtain the right estimate of Nyström points matching
the result in [Rudi et al., 2015].
Theorem 9 shows that for an arbitrary convex, possibly non-smooth, loss function, leverage
scores sampling can lead to better results depending on the spectral properties of the
covariance operator. Indeed, if there is a fast eigendecay, then using leverage scores and
a subspace of dimension m < n, one can achieve the same rates as exact ERM. For fast
eigendecay (p small), the subspace dimension can decrease dramatically. For example,
considering p = 1/2, then the choice m '

√
n is enough. These observations are consistent

with recent results for random features [Bach, 2017, Li et al., 2019, Sun et al., 2018], while
they seem new for ERM on random subspaces. Compared to random features, the proof
technique presents similarities but also differences due to the fact that in general random
features do not define subspaces. Finding a unifying analysis would be interesting, but it is
left for future work. Also, we note that uniform sampling can have the same properties
of leverage scores sampling, if dα � dα,∞, where dα,∞ := supw∈supp(PX)

〈
w, (Σ + αI)−1w

〉
,
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see [Rudi et al., 2015]. This happens under strong assumptions on the eigenvectors of the
covariance operator, but can also happen in kernel methods with kernels corresponding to
Sobolev spaces [Steinwart et al., 2009]. With these comments in mind, next, we focus on
random subspaces defined by leverage scores sampling and show that the assumption on
the eigendecay not only allows for smaller subspace dimensions, but can also lead to faster
learning rates.

Remark 2. Following [Rudi et al., 2015], other choices of B ⊆ H are possible. Indeed
for any q ∈ N and z1, . . . , zq ∈ H we could consider B = span{z1, . . . , zq} and derive a

formulation as in (4.24) replacing X̃ with the matrix Z with rows z1, . . . , zq. We leave this
discussion for future work. We simply state the following result where

µB =
∥∥∥Σ1/2(I − P)

∥∥∥ , (4.32)

and P is the projection onto B. Then, for a generic subset B ⊆ H we have the following
theorem.

Theorem 10. Choose B ⊆ H. Under Assumptions 1, 2, 3, fix λ > 0 and 0 < δ < 1, with
probability at least 1− δ:

L(β̂λ)− L(w∗) .
log(1/δ)

λn
+ λ ‖w∗‖2 +

√
µB ‖w∗‖ .

Compared to Theorem 7, the above result shows that there is an extra approximation error
term due to considering a subspace. The coefficient µB appears in the analysis also for other
loss functions, see e.g. [Rudi et al., 2015, Marteau-Ferey et al., 2019]. Roughly speaking,
it captures how well the subspace B is adapted to the problem.

4.4 Fast rates

In this section, we prove that the Nyström algorithm achieves fast rates under a Bernstein
condition on the loss function, see Assumption 7, which is quite standard in order to have fast
rates for regularized ERM [Steinwart and Christmann, 2008, Bartlett et al., 2005]. To state
the results, we recall some definitions and basic facts, see [Steinwart and Christmann, 2008,
Chapter 6].
Given a threshold parameter M > 0, for any a ∈ R, acl denotes the clipped value of a at
±M

acl = −M if a 6 −M, acl = a if a ∈ [−M ,M ], acl = M if a >M.

We say that the loss function ` can be clipped at M > 0 if for all y ∈ Y, a ∈ R,

`(y, acl) 6 `(y, a), (4.33)
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For convex loss functions, as considered in this thesis, the above definition is equivalent to
the fact that for all y ∈ Y, there exists ay ∈ [−M,M ] such that

`(y, ay) = min
a∈R

`(y, a),

see [Steinwart and Christmann, 2008, Lemma 2.23]. Furthermore, Aumann’s measurable
selection principle [Steinwart and Christmann, 2008, Lemma A.3.18] implies that there
exists a measurable map ϕ : Y → R such that

`(y, ϕ(y)) = min
a∈R

`(y, a), |ϕ(y)| 6M

and we can set

f∗(x) =

∫
Y
`(y, ϕ(x))dP (y|x), (4.34)

for PX -almost all x ∈ H. The function f∗ is the target function since

L(f∗) = inf
f
L(f),

where the infimum is taken over all the measurable functions f : H → R. It is easy to check
that hinge loss and square loss with bounded outputs can be clipped. Even if the logistic
loss can not be clipped, we will show in Section 4.5.2 how we can easily bypass this issue
with an ad hoc fix. We also introduce the following notation, for all w ∈ H, we set

wcl : H → R wcl(x) = 〈w, x〉cl .

In the following we assume the conditions below.

Assumption 4 (Clippability). There exists M > 0 such that the loss function can be
clipped at M .

Assumption 5 (Universality).

inf
w∈H

L(w) = L(f∗). (4.35)

Recalling that the target function f∗ is the minimizer of the expected error over all
possible functions f , condition (4.35) means that f∗ can be arbitrarily well approximated
by a linear function 〈w, x〉 for some w ∈ H. When considering the square loss, this
condition is equivalent to the fact that H is dense in L2(H, PX) and, in the context of kernel
methods, see Example 3 it is satisfied by universal kernels [Steinwart and Christmann, 2008].
Condition (4.35) may be relaxed at the cost of an additional approximation term, but the
analysis is just lengthier and it won’t be discussed in here. A sufficient stronger condition
is provided by assuming the target function to be linear (well specified model).
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Assumption 6 (Well specified model). There exists w∗ ∈ H such that

f∗(x) = 〈w∗, x〉

for PX-almost x ∈ H.

We further assume the following condition.

Assumption 7 (Bernstein condition). There exist constants B > 0, θ ∈ [0, 1] and V >
B2−θ, such that for all w ∈ H, the following inequalities hold almost surely:

`(Y, 〈w,X〉cl) 6 B, (4.36)

E
[{
`(Y, 〈w,X〉cl)− `(Y, f∗(X))

}2]
6 V (E[`(Y, 〈w,X〉cl)− `(Y, f∗(X))])θ (4.37)

E
[{
`(Y, 〈w,X〉)− `(Y, f∗(X))

}2]
6 V (E[`(Y, 〈w,X〉)− `(Y, f∗(X))])θ (4.38)

Condition (4.36) is called supremum bound [Steinwart and Christmann, 2008] and, thanks
to the clipping, it is satisfied by Lipschitz loss functions. Condition (4.37) is called vari-
ance bound [Steinwart and Christmann, 2008] and the optimal exponent corresponds to
the choice θ = 1. For the square loss with bounded output, the variance bound always
holds true with θ = 1, see [Steinwart and Christmann, 2008, Example 7.3] . For other
loss functions the above condition is hard to verify for all distributions. For classification,
the variance bound is implied by so called margin conditions (see Section 5 and Theo-
rem 8.24 in [Steinwart and Christmann, 2008]), and the parameter θ characterizes how
easy or hard the classification problem is [Steinwart and Christmann, 2008]. With respect
to [Steinwart and Christmann, 2008], condition (4.38) is a technical one that we need in
the proof.

To state our result, we will make use again of the approximation error A(λ) defined
in (4.14). The following theorem provides fast rates for Nyström algorithm, where we recall
the Nyström points are sampled according to ALS, see Definition 4.

Theorem 11. Under Assumptions 1, 2, 4, 7, let fix 0 < δ < 1, then, with probability at
least 1− 2δ:

(a) for the polynomial decay condition (4.28)

L(β̂clλ,m)− L(f∗) .
( 1

λpn

) 1
2−p−θ+θp

+

√
αA(λ)

λ
+
( log(3/δ)

n

) 1
2−θ

+
log(3/δ)

n

√
A(λ)

λ
+A(λ)

(4.39)

provided that

α & n−1/p, n & dα ∨ log(1/δ), m & dα log(
2n

δ
),
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(b) for the exponential decay condition (4.29)

L(β̂clλ,m)− L(f∗) .
log2(1/λ)

n
+

√
αA(λ)

λ
+
( log(3/δ)

n

) 1
2−θ

+
log(3/δ)

n

√
A(λ)

λ
+A(λ)

provided that

α & e−n, n & dα ∨ log(1/δ), m & dα log(
2n

δ
).

The proof of Theorem 11 is given in Appendix C. Notice that a faster decay condition on
the spectrum of Σ leads to improvements in both the excess risk bound and the parameters’
choices. As regards the learning rate, under exponential decay in (b), first term of (4.39)
improves to 1/n up to logarithmic factors. At the same time, the range of admissible α
gets larger while the control on the effective dimension gets tighter. Let us comment these
results more precisely in the following.

4.4.1 Polynomial decay of Σ

In this section we assume the polynomial decay (4.28) condition on the spectrum of Σ. By
omitting numerical constants, logarithmic and higher order terms, Theorem 11 (a) implies
that with high probability

L(β̂clλ,m)− L(f∗) .

(
1

λpn

) 1
2−p−θ+θp

+

√
αA(λ)

λ
+

log(3/δ)

n

√
A(λ)

λ
+A(λ).

To have an explicit rate, we further assume that there exists r ∈ (0, 1] such that

A(λ) . λr.

Under this condition, with the choice

λn � n−min{ 2
r+1

, 1
r(2−p−θ+θp)+p}

αn � n−min{2, r+1
r(2−p−θ+θp)+p}

m & n
min{2p, p(r+1)

r(2−p−θ+θp)+p} log n

then with high probability

L(β̂clλn,m)− L(f∗) . n
−min{ 2r

r+1
, r
r(2−p−θ+θp)+p}. (4.40)

The above bound further simplifies when the variance bound (4.37) holds true with the
optimal paratemer θ = 1 and the model is well specified as in (6) since we can set r = 1.
Under these conditions, we get that

L(β̂clλn,m)− L(w∗) . n
− 1

1+p (4.41)
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with the choice

λn � n−
1

1+p , αn � n−
2

1+p , m & n
2p
1+p log n, (4.42)

see Appendix C for the proof.
By comparing bound (4.41) with (4.31), the assumption on the spectrum also leads to an
improved estimation error bound and hence improved learning rates. In this sense, these are
the correct error estimates since the decay of the eigenvalues is used both for the subspace
approximation error and the estimation error. As it is clear from (4.41), for fast eigendecay,
the obtained rate goes from O(1/

√
n) to O(1/n). Taking again, p = 1/2 leads to a rate

O(1/n2/3) which is better than the one in (4.31). In this case, the subspace defined by
leverage scores needs to be chosen of dimension at least O(n2/3).

For arbitrary θ and r, bound (4.40) is harder to parse. For r → 0 the bound become vacu-
ous and there are not enough assumptions to derive a bound [Devroye et al., 2013]. Note
that large values of λ are prevented, indicating a saturation effect (see [Vito et al., 2005,
Mücke et al., 2019]). As discussed before, the bound improves when there is a fast eigende-
cay. Smaller values of θ and r leads to worse bounds than (4.41), which is the best rate in this

context. Since, given any acceptable choice of p, r and θ, the quantity min{2p, p(r+1)
r(2−p−θ+θp)+p}

takes values in (0, 1), the best rate, that differently from before can also be slower than√
1/n, can always be achieved choosing m < n (up to logarithmic terms).

4.4.2 Exponential decay of Σ

We can further improve the bounds above assuming an exponential decay (4.28) condition
on the spectrum of Σ. By omitting numerical constants, logarithmic and higher order terms,
from Theorem 11 (b) we have that with high probability

L(β̂clλ,m)− L(f∗) .
log2(1/λ)

n
+

√
αA(λ)

λ
+
( log(3/δ)

n

) 1
2−θ

+
log(3/δ)

n

√
A(λ)

λ
+A(λ).

Under an exponential decay condition, it is reasonable to modify the source condition
controlling the behaviour of the approximation error A(λ) from polynomial to logarithmic.
We therefore assume that

A(λ) . log−1(1/λ)

and, with the choice

λn � log n/n2, αn � 1/n2, m & log2 n, (4.43)

with high probability,

L(β̂clλn,m)− L(f∗) . 1/ log n.
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If the model is well-specified as in (6) and θ = 1, we get

L(β̂clλ,m)− L(w∗) .
log2(1/λ)

n
+ λ ‖w∗‖2 +

√
α ‖w∗‖

provided that n and m are large enough, and α & e−n. With the choice

λn � 1/n, αn � 1/n2, m & log2 n,

with high probability

L(β̂clλn,m)− L(w∗) . 1/n,

see Appendix C for the proof.

Remark 3. Whereas the results of Section 4.3.2 also hold true for bounded inputs X, to
have fast rates we are forced to assume the sub-gaussianity of X. Under this latter condition
in fact, Lemma 8 requires only that α & n−1/p for polynomial decay and α & e−n for
exponential decay. These ranges are compatible with the choices (4.42) and (4.43), which
provide the optimal convergence rates. Under the assumption that X is bounded, Lemma 8
is replaced by Lemma 7 in [Rudi et al., 2015], which requires instead that α & n−1 both for
polynomial and exponential decay, which is not compatible with (4.42) and (4.43).

4.4.3 Comparison with Random Features

We start comparing our results with the ones obtained using random features in [Sun et al., 2018].
Specifically, their Theorem 1 is based on similar assumptions as our result in Eq. (4.41), i.e.
the Bayes predictor belongs to the RKHS (realizable case), Massart’s low-noise condition
(implying our variance condition), and the spectrum of the covariance operator decays
polynomially: σi � i−1/p, 0 < p < 1. They obtain a rate of n−1/(2p+1) using n2p/(2p+1)

random features. We can obtain the same rate with the same number of Nyström points,
but our analysis also provides an improved rate of n−1/(p+1) using n2p/(p+1) Nyström points;
this improvement is due to our refined analysis, allowing to consider smaller values of α
in (4.42). We do not know whether this improvement comes from a better adaptivity of
Nyström sampling, or it’s a byproduct of our analysis. Regarding [Li et al., 2019], compari-
son with their fast rates is more difficult, as they assume that the Bayes predictor belongs
to the random space spanned by random features. We do not make this strong assumption,
and indeed controlling the approximation error of the random subspace is one of the key
challenges in our work.
Table 4.1 provides a comparison (up to logarithmic factors) among the various rates for the
hinge loss discussed above.

∗θ = 1
†Here m is number of random features
‡X bounded
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Table 4.1: Comparison among the different regimes using hinge loss.

Assumptions Eigen-decay Rate m

Theorem 7 1,2,3 / n−1/2 /

Eq. (4.31) 1,2,3 σj . j−
1
p n−1/2 np

Eq. (4.31) 1,2,3 σj . e−βj n−1/2 log2 n

Eq: (4.41) 1,2,6,7∗ σj . j−
1
p n−

1
1+p n

2p
1+p

Eq: (4.40) 1,2,7 σj . j−
1
p n−min{ 2r

r+1 ,
r

r(2−p−θ+θp)+p} nmin{2p, p(r+1)
r(2−p−θ+θp)+p}

RF† [Sun et al., 2018] ·‡,2,6,7∗ σj . j−
1
p n−

1
2p+1 n

2p
2p+1

4.5 Differentiable loss functions

In this section we specify the above results to differentiable losses and, in particular, to
quadratic and logistic losses. In both cases, we will provide for this setting equivalent
bounds of the ones presented in Theorem 11.

4.5.1 Square loss

Next, we specialized the analysis to square loss defined by (4.9) under the assumption that
Y ⊂ [−1, 1]. The interval [−1, 1] can be replaced by [−M,M ], but we take M = 1 since, in
the following section, we will consider binary classification. It is easy to see that

`(y, t) 6 4, y, t ∈ [−1, 1],

and ` can be clipped at 1. A well known variance bound for least squares loss gives that(
`(y, f cl(x))− ` (y, f∗(x))

)2
=
((
f cl(x) + f∗(x)− 2y

)(
f cl(x)− f∗(x)

))2
6 16

(
f cl(x)− f∗(x)

)2
,

so that variance bound (4.37) holds for V = 16 and θ = 1.
Finally, the least squares loss restricted to [−1, 1] is Lipschitz continuous, that is∣∣L(y, t)− L

(
y, t′

)∣∣ 6 4
∣∣t− t′∣∣

for all y ∈ [−1, 1] and t, t′ ∈ [−1, 1].
The following theorem specializes to the square loss the previous states, see Appendix D.0.1
for the proof. As usual the Nyström points are sampled according to ALS, see Definition 4.

Theorem 12. Under Assumption 1 and the polynomial decay condition (4.28), fix λ > 0,
α & n−1/p and 0 < δ < 1. then with probability at least 1− 2δ:

L(β̂clλ,m)− L(f∗) .
1

λpn
+
αA(λ)

λ
+

log(3/δ)

n

√
A(λ)

λ
+A(λ).
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Furthermore, if there exists r ∈ (0, 1] such that A(λ) . λr, then

λn � n−min{ 2
r+1

, 1
r+p
}
, αn � n−min{ 2

r+1
, 1
r+p
}
, m & n

min{ 2p
r+1

, p
r+p
}

log n

with high probability

L(β̂clλn,m)− L(f∗) . n
−min{ 2r

r+1
, r
r+p
}
.

Comparing the above bound and the one in (4.40) with θ = 1, we get the same conver-

gence rates, but the number m of Nyström points reduces from n
min{2p, p(r+1)

r+p
}

log n to

n
min{ 2p

r+1
, p
r+p
}

log n, matching the bound in [Rudi et al., 2015].
As already observed in Remark 3 we are able to prove the above results only under the
assumption that X is sub-gaussian. However, it is possible to show that in the well specified
case, see Assumption 6, corresponding to the choice r = 1, the above result holds true also
for bounded inputs X. This is due to the additional square we get in the projection term
thanks to the quadratic properties of the loss, namely

L(Pmw∗)− L(w∗) =
∥∥∥Σ1/2(I − Pm)w∗

∥∥∥2

so that condition α & n−1 in Lemma 7 in [Rudi et al., 2015] can still be fulfilled for our
choice of the parameter α. We state the result without reporting the proof, which is a
variant of the proof of Theorem 12 taking into account the above remark.

Corollary 2. Assume that X is bounded almost surely, under Assumption 6 and polynomial
decay of the spectrum (4.28), fix λ > 0, α & 1/n, and 0 < δ < 1. Then, with probability at
least 1− 2δ:

L(β̂clλ,m)− L(w∗) .
1

λpn
+ λ ‖w∗‖2 + α ‖w∗‖2

provided that n and m are large enough. Further, for ALS sampling with the choice

λ � n−
1

1+p , α � n−
1

1+p , m & n
p

1+p log n, (4.44)

with high probability,

L(β̂clλ,m)− L(w∗) . n
− 1

1+p . (4.45)

Remark 4 (Comparison with [Rudi et al., 2015]). The comparison makes sense only when
choosing s = 0 in the source condition ‖Σ−sw∗‖H < R in [Rudi et al., 2015]. The reason is
that while in [Rudi et al., 2015] they study the problem in the well specified case –improving
the result when w∗ belongs to subspaces of H that are the images of the fractional compact
operators Σs– here instead we go in the opposite direction studying the case where w∗ does
not exists and the approximation error must be introduced. The only intersection is for
s = 0 where it’s reasonable to compare their bound with our Theorem 2. As detailed in
Table 4.2 the two works return exactly the same rate and the same requirement for m.
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Table 4.2: Comparison among the different regimes with square loss

Assumptions Eigen-decay Rate m

Theorem 2 1,6 σj . j
− 1
p n

− 1
1+p n

p
1+p

[Rudi et al., 2015] X bounded, 6 σj . j
− 1
p n

− 1
1+p n

p
1+p

Theorem 12 1 σj . j
− 1
p n

−min{ 2r
r+1

, r
r+p
}

n
min{ 2p

r+1
, p
r+p
}

4.5.2 Logistic loss

As already mentioned, let’s start noticing that logistic loss defined by (4.8) cannot be
clipped according to (4.33) [Steinwart and Christmann, 2008]. Nevertheless, we can still
clip our loss `(y, a) at M = log n so that for all y ∈ Y, a ∈ R it’s easy to verify that

`(y, acl) 6 `(y, a) +
1

n
, (4.46)

where acl denotes the clipped value of a at ± log(n), that is

acl = − log(n) if a 6 − log(n),

acl = y if a ∈ [− log(n), log(n)],

acl = log(n) if a > log(n).

The key point here is that, even though the loss is not always reduced by clipping, i.e. ∃
y ∈ Y, a ∈ R s.t. `(y, acl) � `(y, a), it can only increase at most of 1/n. This is important
since it does not affect the resulting bounds on the excess risk. In particular, we recover the
same excess risk bounds of the square loss in Theorem 12 and Corollary 2 for the logistic
loss. The simple adaptation of proofs is given in Appendix D.0.2.



Chapter 5

From Surrogates to Classification
Error

In this chapter, we consider a classification task, so that Y = {±1} and the natural way
of measuring performances is by using the 0-1 loss, i.e. `0−1(y, a) := 1(−∞,0](y sign(a)).
Through out this section, we study how the previous bounds for surrogate losses relate to
the 0-1 classification risk. In the following, we will indicate with L0−1, Lhinge, Lsquare the
risks associated respectively with 0-1, hinge and square losses.
A key role will be played by the well-known low noise condition [Mammen and Tsybakov, 1999,
Tsybakov, 2004, Massart et al., 2006]. The following definition is taken from [Tsybakov, 2004]:

Definition 5. Distribution P has noise exponent 0 6 γ < 1 if it satisfies one of the
following conditions:

• Nγ: for some c > 0 and all measurable f : H → {±1},

Pr[f(X)(2η(X)− 1) < 0] 6 c
(
L0−1(f)− L∗0−1

)γ
; (5.1)

• M γ
1−γ

: for some c > 0 and all ε > 0,

Pr [0 < |2η(X)− 1| 6 ε] 6 cε
γ

1−γ ; (5.2)

where η(X) = Pr(Y = 1|X) and for γ = 1 we have that M∞ is equivalent to N1.

We will assume the following low-noise condition:

Assumption 8 (Low-noise condition). The distribution P has noise exponent γ ∈ [0, 1].

Using Lemma 14 in Appendix F, when dealing with the square loss, there is a standard way
of transforming its excess risk bound into the following bound on the classification risk:
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Lemma 1 (Square loss). Under Assumption 8, there is a c > 0 such that for any measurable
f : X → R we have:

L0−1(f)− L∗0−1 .
(
Lsquare(f)− L∗square

) 1
2−γ . (5.3)

It’s easy to see that an analogous bound can be obtained for logistic loss.

For the hinge loss, the bound given by Lemma 13 in Appendix F can not be improved
even under low noise in Assumption 8. Anyway, it is worth noticing that an assumption
of low noise is directly connected with the variance bound (4.37) through Theorem 8.24
in [Steinwart and Christmann, 2008] (see Lemma 15 in Appendix F). In particular, if we
assume a low noise condition with parameter γ, then the variance bound in Assumption 8
is always satisfied for the hinge loss with θ = γ.

5.0.1 From square and logistic losses to classification loss

Starting from Theorem 12, we can now derive an upper bound for the classification risk
using the results obtained for the surrogate square loss. We assume low-noise condition and
exploit Lemma 1 to obtain the following theorem, where Asquare(λ) is the approximation
error, see (4.14), with respect the square loss and the Nyström points are sampled, as
always, accordingly to ALS, see Definition 4.

Theorem 13. Under Assumptions 1 and 8 and the polynomial decay condition (4.28), fix
λ > 0, α & n−1/p and 0 < δ < 1, then with probability at least 1− 2δ:

L0−1(β̂clλ,m)− L0−1(f∗) .

(
1

λpn
+
αAsquare(λ)

λ
+

log(3/δ)

n

√
Asquare(λ)

λ
+Asquare(λ)

) 1
2−γ

.

Furthermore, if there exists r ∈ (0, 1] such that Asquare(λ) . λr and choosing

λ � n−min{ 2
r+1

, 1
r+p
}
, α � n−min{ 2

r+1
, 1
r+p
}
, m & n

min{ 2p
r+1

, p
r+p
}

log n,

then, with high probability

L0−1(β̂clλ,m)− L0−1(f∗) . n
−min{ 2r

(2−γ)(r+1)
, r
(2−γ)(r+p)}.

Once again analogous bounds hold for logistic loss, up to constant or negligible terms.

5.0.2 From hinge loss to classification loss

Starting from Theorem 11, we can derive another upper bound for the classification risk but
using as surrogate the hinge loss. Under the low noise assumption and exploiting Lemma
15 we obtain the following theorem, where Ahinge(λ) is the approximation error, see (4.14),
with respect to the hinge loss.
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Theorem 14. Under Assumptions 1, 8 and under polynomial decay condition (4.28), fix
λ > 0, α & n−1/p and 0 < δ < 1, then with probability at least 1− 2δ:

L0−1(β̂clλ,m)− L0−1(f∗) .

(
1

λpn

) 1
2−p−γ+γp

+

√
αAhinge(λ)

λ
+

log(3/δ)

n

√
Ahinge(λ)

λ
+Ahinge(λ).

Furthermore, if there exists r ∈ (0, 1] such that Ahinge(λ) . λr and choosing

λ � n−min{ 2
r+1

, 1
r(2−p−γ+γp)+p}, α � n−min{2, r+1

r(2−p−γ+γp)+p}, m & n
min{2p, p(r+1)

r(2−p−γ+γp)+p} log n,

then, with high probability

L0−1(β̂clλ,m)− L0−1(f∗) . n
−min{ 2r

r+1
, r
r(2−p−γ+γp)+p}.

Table 5.1: Comparison between the 0 − 1 classification risk upper bounds derived from
square, logistic and hinge loss under low noise condition

Assump Eigen-decay Rate m

Square Loss: Theorem 13 1,8 σj . j
− 1
p n

−min{ 2r
(2−γ)(r+1)

, r
(2−γ)(r+p)} n

min{ 2p
r+1

, p
r+p
}

Logistic Loss 1,8 σj . j
− 1
p n

−min{ 2r
(2−γ)(r+1)

, r
(2−γ)(r+p)} n

min{ 2p
r+1

, p
r+p
}

Hinge Loss: Theorem 14 1,8 σj . j
− 1
p n

−min{ 2r
r+1

, r
r(2−p−γ+γp)+p} n

min{2p, p(r+1)
r(2−p−γ+γp)+p}

Next, we will discuss the results obtained in Table 4.

5.0.3 Discussion of the results

We want now to compare the two upper bounds we obtained in Theorem 13 and Theorem
14. Since min{ 2r

(2−γ)(r+1) ,
r

(2−γ)(r+p)} 6 min{ 2r
r+1 ,

r
r(2−p−γ+γp)+p} for all the choices of p,

γ and r the bound for the classification error derived using the hinge loss can always
achieve a better rate than the one derived from the square loss. On the other hand, since
min{ 2p

r+1 ,
p
r+p} 6 min{2p, p(r+1)

r(2−p−γ+γp)+p}, the choice of the hinge loss results, according

to our upper bounds, to be more expensive in term of m (while achieving a better rate).
Therefore, we can try to compare the two rates while fixing the number of number of
Nyström points selected, or, viceversa, we can fix the rate and compare the number of
Nyström points needed to achieve it. The results here are less obvious and we do not have
a clear winner. What appears from the analysis is that the discriminant is the choice of the
low noise condition parameter γ and the r parameter, which controls the approximation
error decay.

Let’s imagine to fix a realizable convergence rate O
(
n−R

)
for the classification excess

risk. To achieve this rate we need ms = nR(2−γ)p/r for square loss and mh = nR(1+r)p/r for
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hinge loss. Since when γ + r < 1 then mh > ms, we have that, given a fixed rate for the 0-1
loss, using hinge is, according to our upper bounds, computationally cheaper than using
square loss (see Figure 5.1). This suggests that when the problem is hard, hinge loss seems
to be even less expensive than the square loss (and viceversa).

Similarly, imagine now to have some budget constraint on m so that we are maybe not
allowed to choose its optimal value: which loss will show a faster rate? Again the condition
on γ + r is the key, with the upper bound for hinge loss going to 0 faster as n increases
than the one for square loss, when γ + r < 1 (see Figure 5.2, where also the saturation
effect can be seen).

In summary, when studying the misclassification error using surrogates, the comparison
between our two upper bounds obtained from hinge and square loss does not suggest an
univocal better choice for all regimes. When the problem is hard, i.e. slow decay of the
approximation error (λ� 1) and/or strong noise (γ � 1), the upper bound for the hinge
loss behaves better than the one for the square loss; the opposite when the problem is easy.

Figure 5.1: Comparison between the number of Nyström points needed according to
our bounds for square and hinge loss to get a fixed common rate: the plots above show
µsquare − µhinge, where 0 6 µ 6 1 is the exponent controlling m, i.e. m � nµ. Light colors
represent then the regimes where hinge loss is cheaper than square loss.
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Figure 5.2: Comparison between the rate achieved by the bounds for square and hinge loss
varying m: the plots above have R in the y-axis, where 0 6 R 6 1 is the exponent of the
resulting rate, i.e. rate = n−R; in the x-axis we have µ, with m = nµ and 0 6 µ 6 1 (µ = 1
is equivalent to sample the entire dataset). Every row shows the different behaviours when
γ + r is respectively less, equal or greater than 1, with p fixed. Note also the saturation
effects for hinge and square once we achieve the optimal values for m, with hinge loss always
reaching a better rate at the end.
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Chapter 6

Experiments

As mentioned in the introduction, a main of motivation for our study is showing that the
computational savings can be achieved without incurring in any loss of accuracy. In this
section, we complement our theoretical results investigating numerically the statistical and
computational trade-offs in a relevant setting. More precisely, we report simple experiments
in the context of kernel methods, considering Nyström techniques. In particular, we choose
the hinge loss, hence SVM for classification. Keeping in mind Theorem 11 we expect we
can match the performances of kernel-SVM using a Nyström approximation with only
m � n centers. The exact number depends on assumptions, such as the eigen-decay of
the covariance operator, that might be hard to know in practice, so here we explore this
empirically.

Nyström-Pegasos. Classic SVM implementations with hinge loss are based on consid-
ering a dual formulation and a quadratic programming problem [Joachims, 1998]. This is
the case for example, for the LibSVM library [Chang and Lin, 2011] available on Scikit-
learn [Pedregosa et al., 2011]. We use this implementation for comparison, but find
it convenient to combine the Nyström method to a primal solver akin to (4.12) (see
[Li et al., 2016, Hsieh et al., 2014] for the dual formulation). More precisely, we use Pegasos
[Shalev-Shwartz et al., 2011] which is based on a simple and easy to use stochastic subgra-
dient iteration∗. We consider a procedure in two steps. First, we compute the embedding dis-
cussed in Section 4.3. With kernels it takes the form xi = (K†m)1/2(K(xi, x̃1), . . . ,K(xi, x̃m))T ,
where Km ∈ Rm×m with (Km)ij = K(x̃i, x̃j). Second, we use Pegasos on the embedded
data. As discussed in Section 4.3, the total cost is O(nm2CK + nm ·#iter) in time (here
iter = epoch, i.e. one epoch equals n steps of stochastic subgradient) and O(m2) in memory
(needed to compute the pseudo-inverse and embedding the data in batches of size m).

∗Python implementation from https://github.com/ejlb/pegasos
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Datasets & setup (see Appendix G). We consider five datasets† of size 104 − 106,
challenging for standard SVMs. We use a Gaussian kernel, tuning width and regularization
parameter as explained in appendix. We report classification error and for data sets with
no fixed test set, we set apart 20% of the data.

Procedure. Given the accuracy achieved by K-SVM algorithm, which is our target, we
increase the number of sampled Nyström points m < n as long as also Nyström-Pegasos
matches that result.

Results. We compare with linear (used only as baseline) and K-SVM see Table 6.1.
For all the datasets, the Nyström-Pegasos approach achieves comparable performances of
K-SVM with much better time requirements (except for the small-size Usps). Moreover,
note that K-SVM cannot be run on millions of points (SUSY), whereas Nyström-Pegasos
is still fast and provides much better results than linear SVM. Further comparisons with
state-of-art algorithms for SVM are left for a future work. Finally, in Figure 6.1 we illustrate
the interplay between λ and m for the Nyström-Pegasos considering SUSY data set. In
Appendix G we compare also with results obtained using the simpler uniform sampling of
the points.

Table 6.1: Architecture: single machine with AMD EPYC 7301 16-Core Processor and
256GB of RAM. For Nyström-Pegaos, ALS sampling has been used (see [Rudi et al., 2018])
and the results are presented as mean and standard deviation deriving from 5 independent
runs of the algorithm. The columns of the table report classification error, training time
and prediction time (in seconds).

LinSVM KSVM Nyström-Pegasos

Datasets c-err c-err t train t pred c-err t train t pred m

SUSY 28.1% - - - 20.0%± 0.2% 608± 2 134± 4 2500
Mnist bin 12.4% 2.2% 1601 87 2.2%± 0.1% 1342± 5 491± 32 15000
Usps 16.5% 3.1% 4.4 1.0 3.0%± 0.1% 19.8± 0.1 7.3± 0.3 2500
Webspam 8.8% 1.1% 6044 473 1.3%± 0.1% 2440± 5 376± 18 11500
a9a 16.5% 15.0% 114 31 15.1%± 0.2% 29.3± 0.2 1.5± 0.1 800
CIFAR 31.5% 19.1% 6339 213 19.2%± 0.1% 2408± 14 820± 47 20500

†Datasets available from LIBSVM website http://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/ and
from [Jose et al., 2013] http://manikvarma.org/code/LDKL/download.html#Jose13

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
http://manikvarma.org/code/LDKL/download.html#Jose13
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Figure 6.1: The graphs above are obtained from SUSY data set: on the top left we show
how c-err measure changes for different choices of λ parameter; in top right figure the focus
is on the stability of the algorithm varying λ; on the bottom the combined behavior is
presented with a heatmap.
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Part II

Plug-in Classifiers for Generalized
Performance Metrics
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Chapter 7

The Plug-in Approach

In the first part of the thesis we focused on one popular approach for classification based on
ERM and surrogate losses. In this second part, we study the so-called plug-in approach for
classification. The plug-in approach consists in transforming an estimator of the regression
function into a classifier. The way of proceeding is the following: first the optimal classifier
is derived at the population level, second all the unknown quantities are replaced with
their empirical estimators. We give a simple example of this procedure studying the
misclassification error. Let (X,Y ) be a random couple taking values in Rd × {0, 1} with
joint distribution P and denote with PX the marginal distribution of X. Let’s define
g∗ : Rd → {0, 1} the optimal classifier among all measurable functions such that

g∗ = arg min
g:R→{0,1}

P(Y 6= g(X)).

The shape of g∗ can be easily derived:

P(Y 6= g(X)) = E[1(Y 6= g(X))] = E[(1− 2Y )g(X) + Y ] =

= E[E[(1− 2Y )g(X)|X]] + E[Y ] = E[g(X)E[(1− 2Y )|X]] + E[Y ] =

= E[g(X)(1− 2η(X))] + E[Y ]

where η(X) = E[Y |X] is the regression function and we used some basic properties of
expectations and the fact that Y and g takes only values 0 and 1. It’s straightforward to
notice that, to minimize this quantity, we want our predictor to predict 1 when 1−2η(X) < 0
and 0 viceversa. We recover the classic Bayes predictor in misclassification

g∗(·) = 1{η(·) > 1/2},

i.e. a step function depending on the unknown regression function η and with threshold
1/2.
At this point we want to build our plug-in estimator ĝPI with the same structure of the
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optimal g∗ but replacing unknown quantities, i.e. quantities depending on the unknown
distribution of data, with their empirical estimators derived from some given samples:

ĝPI(·) = 1{η̂(·) > 1/2},

where indeed η̂ is some estimator of the regression function.

Historically, both ERM based methods and plug-in methods have been studied and
strong theoretical guarantees have been proven. Nevertheless, for a long time, ERM
approaches have been considered superior. In the context of binary classification, where
more theoretical advances have been developed, this belief was initially supported by the
results in [Yang, 1999]. In this work they showed that, under general assumptions, rates
of convergence faster than O(1/

√
n) cannot not be achieved by plug-in estimators. More

than that, this kind of classifiers suffer also the curse of dimensionality. In contrast, as
seen in the first part of the thesis, ERM methods, under slightly different hypothesis,
can achieve this O(1/

√
n) with the dimensionality playing no role. In addition, under

Tsybakov’s margin assumption [Tsybakov, 2004], also fast convergence rates up to O(1/n)
can be reached. These results raised some scepticism around plug-in rules in favour of
ERM-based ones. This idea was proved to be wrong in general around a decade after by
[Audibert and Tsybakov, 2007] and [Rigollet and Vert, 2009]. The main criticism to the
above reasoning is that the two approaches follow different sets of assumptions, with none
of them including the other. For this reason, naively comparing the two methods can be
misleading and far from legitimate.
In details, let’s consider plug-in rules, i.e. classifiers of the form

ĝPI(X) = 1
{
η̂(X) > θ̂

}
with η̂ an estimator of the regression function η and θ̂ ∈ R the threshold. For standard
binary classification with 0-1 loss (accuracy) the best choice for θ̂ is exactly 1/2, as shown
above. A typical well adapted assumption for this kind of classifiers can be made on the
smoothness of η. In fact, it is possible to show that closeness of η̂ to η implies closeness of
ĝPI to g∗.

Lemma 2 (Theorem 2.2 in [Devroye et al., 2013]). For the error probability of the plug-in
decision gPI defined above, we have

P{ĝPI(X) 6= Y } − P{g∗(X) 6= Y } 6 2

∫
Rd
|η(x)− η̂(x)|PX(dx) = 2E|η(X)− η̂(X)|.

Proof. If for some x ∈ Rd, ĝPI(x) = g∗(x), then clearly the difference between the conditional
error probabilities of ĝPI and f∗ is zero:

P{ĝPI(X) 6= Y | X = x} − P {g∗(X) 6= Y | X = x} = 0.
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Otherwise, if ĝPI(x) 6= g∗(x) the difference may be written as

P{ĝPI(X) 6= Y | X = x} − P {g∗(X) 6= Y | X = x}
= (2η(x)− 1)

(
1{g∗(x) = 1} − 1{ĝPI(x) = 1}

)
= |2η(x)− 1|1

{
ĝPI(x) 6= g∗(x)

}
.

Thus,

P{ĝPI(X) 6= Y } − P{g∗(X) 6= Y } =

∫
Rd

2|η(x)− 1/2|1
{
ĝPI(x) 6= g∗(x)

}
PX(dx)

6
∫

Rd
2|η(x)− η̂(x)|PX(dx)

Then, smoothness assumption on η, referred to as complexity assumption on the regres-
sion function (CAR) [Audibert and Tsybakov, 2007], implies that a good nonparametric
estimator (kernel, local polynomial, orthogonal series or other) η̂ converges with some rate
to the regression function η, as n → ∞. Typically, this approach leads to bounds of the
kind

L
(
ĝPI
)
− L(g∗) = O

(
n−β/(2β+d)

)
(7.1)

with β smoothness parameter. This rate is always slower than n−1/2 and it deteriorates
dramatically as the dimension d increases. Moreover, under general assumptions, this bound
can be proved to be optimal in minimax sense, see [Yang, 1999].
On the contrary, results exploiting ERM techniques are known to reach

L
(
ĝERM

)
− L(g∗) = O

(
n−1/2

)
rates under slightly different assumptions, with none of them including the others. This
makes hard to compare the two approaches fairly.
Nevertheless, the limitation about the slow rate for plug-in classifiers in Eq. (7.1) has
been overcome afterwards in [Audibert and Tsybakov, 2007] under Tsybakov’s margin
assumption [Tsybakov, 2004]. The authors proved that, in this framework, plug-in clas-
sifiers can also reach fast rates up to O(1/n) and even super-fast rates, revealing that
plug-in methods should not be considered inferior to ERM methods and, more impor-
tantly, that this new type of assumption on the regression function is a critical point
in the general analysis of classification procedures. This chapter is based on the fol-
lowing references: [Audibert and Tsybakov, 2007, Rigollet and Vert, 2009, Chzhen, 2019b,
Gaucher et al., 2022, Chzhen, 2020, Devroye et al., 2013, Koyejo et al., 2014]
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7.1 Settings and Main Notation

In this chapter we will still consider the setting of supervised learning. We already extensively
discussed it in Chapter 1 and we briefly recall it here. The statistical model comes from the
fact that the data are probabilistically generated, i.e. there exists a couple of input-label
random variables (X,Y ) taking values in Rd × {0, 1} with joint distribution P . We further
indicate with PX the marginal distribution of the feature vector X ∈ Rd and with PY |X
the conditional distribution of Y |X ∈ {0, 1}. Differently from before we introduce now two
different datasets: a labelled one DL

n = {(X1, Y1) , . . . , (Xn, Yn)} consisting of n i.i.d. copies
of (X,Y ) ∼ P and an unlabelled one DUN = {Xn+1, . . . , Xn+N} consisting of N independent
copies of X ∼ PX , with N > n. The first one will be used to estimate the regression
function η(X) := E[Y |X], that will be a fundamental element in our analysis. As regards
the second unlabelled one, it will be used to approximate the marginal distribution PX by
its empirical counterpart P̂X , with P̂X = 1

N

∑
X∈DU

N
δX . A good estimate of both these

quantities will be necessary when designing our predictor, as we will explain in the next
chapter. Finally, we call G the set of all possible classifiers, i.e. any measurable function
g : Rd → {0, 1}.

7.2 Generalized Performance Metrics

Given a classifier g, there exist many different measures on how g is expected to perform in
predicting Y given X. The most natural way to measure its risk is via its misclassification
error P(Y 6= g(X)). Nevertheless, in many applications, practitioners are more interested in
optimizing different kind of metrics, for example balancing differently precision and recall of
the constructed classifier. To give an example, it is well known that classification accuracy
is probably not the best metric when considering rare event classification problems such
as medical diagnosis, fraud detection, click rate prediction and text retrieval applications
[Gu et al., 2009, He and Garcia, 2009]. Instead, alternative metrics better tuned to imbal-
anced classification (such as the F-score) are more suitable. Similarly, cost-sensitive metrics
may be useful for addressing asymmetry in real-world costs associated with specific classes.
In this thesis we study an utility metric that is general enough to recover as particular cases
popular measures such as accuracy, F-score, Jaccard and AM-measure among others. In
particular, we consider a family of performance metrics given by ratios of linear combinations
of the four population quantities associated with the confusion matrix: true positive, true
negative, false positive and false negative. Therefore, we introduce the so-called linear
fractional performance measures. The performance of a classifier g ∈ G is measured by its
utility (note that it’s called utility in this case since we want to maximize it):

U(a,b)(g) :=
a0TP + a1TN + a2FP + a3FN

b0TP + b1TN + b2FP + b3FN
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Expression (c0, c1, c2) (d0, d1, d2)

Accuracy P(Y = g(X,S)) (1− P(Y = 1), 2,−1) (1, 0, 0)

Fb-score
(1+b2)P(Y=1,g(X,S)=1)

b2P(Y=1)+P(g(X,S)=1)

(
0, 1 + b2, 0

) (
b2P(Y = 1), 0, 1

)
Jaccard P(Y = 1, g(X,S) = 1) (0, 1, 0) (P(Y = 1), 0, 0)

AM-measure 1
2

∑
i={0,1} P(g(X,S) = i|Y = i)

(
1
2
, 1
2P(Y=1)

+ 1
2P(Y=0)

,− 1
2P(Y=0)

)
(1, 0, 0)

Recall P(g(X,S) = 1 | Y = 1) (0, 1, 0) (P(Y = 1),−1, 1)

Table 7.1: Choices of parameters c and d for some known performance metrics.

with a = (a0, a1, a2, a3) ∈ R4, b = (b0, b1, b2, b3) ∈ R4 and TP = P[Y = 1, g(X) = 1],
TN = P[Y = 0, g(X) = 0], FP = P[Y = 0, g(X) = 1], FN = P[Y = 1, g(X) = 0]. Given
the redundancy in these definitions, noticing for example that TP + FP + TN + FN = 1 or
TP + FN = P[Y = 1], with some algebraic manipulation we can rewrite equivalently the
utility function as

U(c,d)(g) = U(g) :=
c0 + c1P[Y = 1, g(X) = 1] + c2P[g(X) = 1]

d0 + d1P[Y = 1, g(X) = 1] + d2P[g(X) = 1]
(7.2)

with c = (c0, c1, c2) ∈ R3 and d = (d0, d1, d2) ∈ R3, with c, d not depending on g (but
possibly on PY ).
It can be easily shown the above mentioned performance measures (accuracy, F-score, AM,
Jaccard and others) corresponds to some particular choices of c and d (see Table 7.2). We
start our analysis deriving the optimal g∗ ∈ G that maximizes the utility function.

7.3 Optimality of thresholding functions

To derive the Bayes function, we need to maximize the utility function U(g) in Eq.(7.2)
with g ∈ G. First step we simplify the problem restricting the optimization to predictors of
the form gθ(·) = 1{η(·) > θ}: we call this parametric class Gθ = {gθ : gθ(·) = 1{η(·) > θ}}
and we want to find

gθ∗ ∈ arg max
Gθ

U(g).

Before proceeding we state here some conditions on coefficients c and d in Eq. (7.2) we
will need in the rest of the thesis.

Assumption 4. Coefficients c0, c1, c2, d0, d1, d2 in Eq. (7.2), with d2c1 6= c2d1 (see
Remark 5 below for the equality), must satisfy the following conditions:

1.
c1 > 0,

2.
d0 + min {min {d1, 0}+ d2, 0} > 0,
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3. 
d2c1 > c2d1
c0d2−d0c2
c2d1−d2c1 6 P(Y = 1)

d0c1 − c0d1 > (c0d2 − d0c2)+ .

Condition 1 will be needed in Lemma 4 and makes the maximization of U reasonable:
the more the classifier align with Y the better. Condition 2 ensures the denominator is
positive (and d0 > 0). Finally, condition 3 will ensure that the fixed point equation (7.3)
is satisfied for exactly one θ ∈ [0, 1]. It can be verified that all the measures presented in
Table 7.2 do indeed satisfy these conditions.

Remark 5. If d2c1 = c2d1 we can substitute condition 3) in Assumption 4 with
d2c1 = c2d1

c1d0 > d1c0
d0c2−c0d2
c0d1−d0c1 ∈ [0, 1]

We can proceed now with deriving the best step function considering its corresponding
utility. The following Lemma gives the optimal classifier in Gθ, i.e. the optimal θ∗ such that
gθ∗ maximizes U(g) in Gθ.

Lemma 3. Let’s consider the utility function given in (7.2) under conditions in Assumption
4. Consider only classifiers g belonging to the parameter class Gθ = {gθ : gθ(·) = 1{η(·) >
θ}} for θ ∈ [0, 1] and η(X) = P[Y = 1|X], then

E[(η(X)− θ∗)+] =
c0d1 − c1d0

c2d1 − c1d2
θ∗ +

c0d2 − c2d0

c2d1 − c1d2
(7.3)

where θ∗ is the optimal parameter such that gθ∗(X) = 1{η(X) > θ∗} maximizes (7.2) in Gθ.
If d2c1 = c2d1 we have a simple explicit expression for the threshold

θ∗ =
d0c2 − c0d2

c0d1 − d0c1
.

Proof of Lemma 3. The idea is to apply the first-order optimality condition to U(gθ) = U(θ).
We start noting that

P[Y = 1, g(X) = 1] = E[Y g(X)] =

∫
X
η(x)1{η(x) > θ}dPX(x)

=

∫ 1

θ
zdFZ(z) =

∫ FZ(1)

FZ(θ)
F−1
Z (u)du (7.4)
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where we took Z = η(X) and we used the fact that EX∼FX [X] = EU∼Unif[0,1][F
−1(U)].

Differentiating (7.4) wrt θ we obtain

d

dθ

(∫ Fη(X)(1)

Fη(X)(θ)
F−1
η(X)(u)du

)
= −F−1

η(X)(Fη(X)(θ))F
′
η(X)(θ) = −θfη(X)(θ)

with fη(X)(·) the density function.
Similarly, we have

P[g(X) = 1] = P[η(X) > θ] = 1− Fη(X)(θ)

and
d

dθ

(
1− Fη(X)(θ)

)
= −fη(X)(θ).

Then, applying the first order optimality condition to U(θ) we obtain the following equation

−fη(X)(c1θ + c2)(d0 + d1E[(η(X)− θ)+] + d1θ(1− Fη(X)(θ)) + d2(1− Fη(X)(θ)))+

+fη(X)(d1θ + d2)(c0 + c1E[(η(X)− θ)+] + c1θ(1− Fη(X)(θ)) + c2(1− Fη(X)(θ))) = 0

Rearranging and simplifying the various terms we get the desired condition on θ∗:

E[(η(X)− θ∗)+] =
c0d1 − c1d0

c2d1 − c1d2
θ∗ +

c0d2 − c2d0

c2d1 − c1d2
(7.5)

where we used E[Y g(X)] = E[η(X)1{η(X) > θ}] = E[(η(X)− θ)+] + θP[η(X) > θ].

The above Lemma 3 gives the form of the best step-classifier, with threshold θ∗ the
solution of the fixed point equation in (7.5). Anyway, we still don’t know if the performance
of this step-classifier is competitive against general classifiers.
Therefore, we want to show now that the step-classifier gθ∗(·) = 1{η(·) > θ∗} found above
is indeed the optimal choice even in G, i.e. among all possible classifiers.

Lemma 4. Let’s consider the utility function given in (7.2) under conditions in Assumption
4. Let g ∈ G be any classifier, then

U(gθ∗)−U(g) =
c1E[|η(X)− θ∗|1{gθ∗(X) 6= g(X)}]

d0 + d1E[η(X)1{g(X) = 1}] + d2P[g(X) = 1]
> 0.

This means that no classifier can have higher utility than our step-classifier. The proof
of this result can be found in Appendix H.
In summary, this section proves that, when considering linear fractional performance
measures for binary classification, the shape of the optimal Bayes classifier assumes the
simple shape of a step function depending on the regression function η and on a threshold
that, in the case d2c1 6= c2d1, can be derived by the fixed point equation (7.5) and depending
only on c, d, η and the distribution of X, i.e. PX , but not on PY . The case with d2c1 = c2d1

is even simpler and we have an explicit expression for the threshold θ∗ depending on
coefficients c and d.
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Chapter 8

Post-processing Bounds

In this section our goal is to give post-processing bounds of any plug-in estimator. The
idea, already introduced above, of post-processing bounds is that we have access to two
different dataset: a labelled one DL

n = {(X1, Y1) , . . . , (Xn, Yn)} consisting of n i.i.d. copies
of (X,Y ) ∼ P and an unlabelled one DUN = {Xn+1, . . . , Xn+N} consisting of N independent
copies of X ∼ PX , with N > n. For clarity, when an expectation will be taken with respect
to DU

N ∼ P
⊗N
X , we will indicate it with EDU

N
. We will keep the simple E symbol for generic

expectations.
Now, suppose to have any consistent estimator η̂ of the regression function η derived
using the labelled data DL

n . Exploiting η̂ and the unlabelled data DU
N we can compute

the estimator θ̂ of θ∗, for example applying a bisection algorithm (see Algorithm 1) to the
empirical version of (7.3), i.e.

R̂(θ) =
c0d1 − c1d0

c2d1 − c1d2
θ +

c0d2 − c2d0

c2d1 − c1d2
− ÊN (η̂(X)− θ)+, (8.1)

where ÊN is an expectation taken with respect to the empirical measure 1
N

∑n+N
i=n+1 δXi

evaluated on unlabelled data. Notice that to have one and only one solution θ̄ satisfying
R̂(θ̄) = 0 we need the additional assumption:

c0d2 − d0c2

c2d1 − d2c1
6 ÊN (η̂(X)) (8.2)

so that R̂(0) < 0, R̂(1) > 0 (i.e. empirical counterpart of condition 3. in Assumption 4).
Let’s define our estimator ĝ (depending on both datasets) as

ĝ(·) := 1{η̂(·) > θ̂}.

The goal of this section is to control the ”excess risk” of ĝ:

U(gθ∗)−U(ĝ) =
c1E[|η(X)− θ∗|1{gθ∗(X) 6= ĝ(X)}]

d0 + d1E[η(X)1{ĝ(X) = 1}] + d2P[ĝ(X) = 1]
.
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Algorithm 1 Threshold estimation

Input: unlabeled data DU
N ; estimator η̂; parameters c,d; # of iterations Kmax

Output: threshold estimator θ̂
1: procedure BISECTION ESTIMATOR

2: R̂(θ)← c0d1−c1d0
c2d1−c1d2 θ + c0d2−c2d0

c2d1−c1d2 − ÊN (η̂(X)− θ)+

3: θmin ← 0, θmax ← 1,K ← 1
4: while K 6 Kmax :

5: if R̂
(
θmin+θmax

2

)
= 0 then return θmin+θmax

2

6: if R̂
(
θmin+θmax

2

)
< 0 then θmin ← θmin+θmax

2 else θmax ← θmin+θmax
2

7: K ← K + 1
8: endwhile

9: return θ̂ = θmin+θmax
2

8.0.1 Assumption-free post-processing bound

We start presenting our first post-processing bound, where no assumptions are made on the
probability distribution P .

Proposition 5. Let’s consider the utility function given in (7.2) under conditions in
Assumption 4 and the additional assumption in Eq. (8.2). Let η̂ be any estimator of η such
that η̂(x) ∈ (0, 1] almost surely. Consider ĝ(·) = 1{η̂(·) > θ̂} where θ̂ is the output of the
bisection algorithm described in Algorithm 1 with some Kmax ∈ N, then it holds that

U(gθ∗)− EU(ĝ) 6 c1K0

(
E‖η − η̂‖1 +K1

(√
πP(Y = 1)

N
+

4

N
+ E‖η − η̂‖1

)
+ 2−Kmax

)

with K0 = 1/(d0 + min {d1 + d2, 0}P[Y = 1]) and K1 = c2d1−c1d2
c0d1−c1d0 .

The proof of the proposition can be found in Appendix H.
The interpretation of the bound in Propositions 5 is straightforward. We can distinguish the
different terms: E‖η− η̂‖1 is the estimation error of the regression function; the N−1/2 term
is the price we pay for not knowing the marginal distribution of the features; the 2−Kmax

term is the error coming from Algorithm 1 since we are not solving R̂(θ) = 0 exactly.

In the case of F-score measure (see Table 7.2 for the choices of c and d) the result is
coherent with [Chzhen, 2019a].

Remark 6 (F-score). For F-score measure we have c0 = 0, c1 = 1 + b2, c2 = 0, d0 =
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b2P(Y = 1), d1 = 0 and d2 = 1 so that we obtain

F(gθ∗)− EF(ĝ) 6
1 + b2

b2P(Y = 1)

(
E‖η − η̂‖1 +

1

b2P(Y = 1)

(√
πP(Y = 1)

N
+

4

N
+ E‖η − η̂‖1

)
+ 2−Kmax

)

6 (1 + b2)

(
1

b2P(Y = 1)
∨ 2

(
1

b2P(Y = 1)

)2

E‖η − η̂‖1+

+

(
1

b2P(Y = 1)

)2
(√

πP(Y = 1)

N
+

4

N

))
+

1 + b2

b2P(Y = 1)
2−Kmax

that is exactly the result in [Chzhen, 2019a].

8.0.2 Post-processing bound under margin assumption

In this section we want to improve the above result and obtain fast rates in case of favourable
assumptions on the probability distribution of the data. In particular, we will focus on a
well-known margin-like assumption.
We start with a lemma we will need in the following.

Lemma 5. On the set {X : ĝ(X) 6= gθ∗(X)} we have

|η(X)− θ∗| 6 2 max{|η(X)− η̂(X)|, |θ̂ − θ∗|}.

Proof. We analyse the 2 possible cases:

• θ̂ < θ∗, η(X) > θ∗, η̂(X) < θ̂ (analogous to the symmetric case θ̂ > θ∗, η(X) < θ∗,
η̂(X) > θ̂): then it’s easy to see that |η(X)− θ∗| 6 |η(X)− η̂(X)|

• θ̂ < θ∗, η(X) < θ∗, η̂(X) > θ̂ (analogous to the symmetric case θ̂ > θ∗, η(X) > θ∗,
η̂(X) < θ̂): we have |η(X)− θ∗| 6 |η(X)− η̂(X)|+ |θ̂ − θ∗|.

Putting all together we obtain the result.

We now want to introduce a slightly modified version of the low noise condition (already
presented in Definition 5) and adapted to our case of generalized metrics.

Assumption 5 (Margin Assumption / Low Noise Condition). Distribution P of the pair
(X,Y ) ∈ Rd × {0, 1} is said to satisfy the α-margin assumption if there exist constants
M > 0 and α > 0 such that

P (0 < |η(X)− θ∗| 6 t) 6Mtα ∀t > 0.
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Intuitively, the margin condition specifies the behavior of the regression function around
the decision threshold θ∗.

We can show now an improved version of Proposition 5 under the above margin
assumption, with generic p-norm controlling the difference between true and estimated
regression function.

Proposition 6. Let’s consider the utility function given in (7.2) under conditions in
Assumption 4 and the additional assumption in Eq. (8.2). Assume also the margin
assumption in 5. Let η̂ be any estimator of η such that η̂(x) ∈ (0, 1] almost surely. Consider
ĝ(·) = 1{η̂(·) > θ̂} where θ̂ is the output of the bisection algorithm with some Kmax ∈ N,
then it holds that:

U(gθ∗)−U(ĝ) 6C0(p, α,M,P, c,d)‖η − η̂‖
p(1+α)
p+α

p +
C1(α,M,P, c,d)√

N1+α
+
C2(α,M,P, c,d)

N1+α
+

C3(α,M,P, c,d)‖η − η̂‖1+α
1+α +

C4(α,M,P, c,d)

2(1+α)Kmax

where C0 = 2c1K0
p+α
p

( p
α

) α
p+α M

p−1
p+α , C1 = 25+5αc1K0MK1+α

1

√
P (Y = 1)(1 + α)Γ

(
1+α

2

)
,

C2 = 25+5αc1K0MK1+α
1 P (Y = 1)(1+α)Γ (1 + α), C3 = 21+3αc1K0M

1+α, C4 = c1K0M21+2α,
K0 = 1/(d0 + min {d1 + d2, 0}P [Y = 1]), K1 = (c2d1 − c1d2)/(c0d1 − c1d0).

The proof of the proposition can be found in Appendix H.
Note that this result matches the one in Proposition 5 for p = 1 and α = 0, i.e. when we
have no margin assumption. Nevertheless, when α > 0 we have the desired improvement in
the rate of convergence of the bound.
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Appendix A

Proof of Section 4.2

This section is devoted to the proof of Theorems 6 and 7. With slight abuse of notation we
set

`(w, z) = `(y, 〈w, x〉), z = (x, y) ∈ X × Y, w ∈ X .

With this notation L(w) =
∫
X×Y `(w, z)dP (z).

The following result is known, [Alquier et al., 2019, Lemma 8.1]. We provide an alter-
native proof tailored to the Hilbert setting.

Lemma 6. Under Assumptions 1 and 2, fix R > 0 and τ > 0, with probability at least
1− δ,

sup
‖w‖6R

∣∣L̂(w)− L(w)
∣∣ < D√

n

(
GRC‖Σ‖

1
2
(√
rΣ +

√
log(4/δ)

)
+ `0

√
log(4/δ)

)
, (A.1)

where D > 0 is an absolute numerical constant and rΣ = TrΣ/‖Σ‖ is the effective rank
of Σ. Furthermore, for each w ∈ X , L̂(w)− L(w) is a sub-gaussian centered real random
variable and

‖L̂(w)− L(w)‖ψ2 6
2√
n

(`0 + CG‖ 〈X,w〉 ‖2). (A.2)

Proof. In the proof D denotes an absolute numerical constant, whose value can change
from line to line. Fix w ∈ X and define the centered real random variable

Zw = `(Y, 〈X,w〉)− E[`(Y, 〈X,w〉)].

We claim that, for any pair w,w′ ∈ X

‖Zw − Zw′‖ψ2 6 2CG‖
〈
X,w − w′

〉
‖2, (A.3)
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where ‖Zw−Zw′‖ψ2 is defined by (4.28). Indeed, for all p > 1, recalling that ‖ξ‖p = E[|ξ|p]
1
p ,

then triangular inequality and continuity of expectation give

‖Zw − Zw′‖p 6 ‖`(Y, 〈X,w〉)− `(Y,
〈
X,w′

〉
)‖p + ‖`(Y, 〈X,w〉)− `(Y,

〈
X,w′

〉
)‖1

6 2‖`(Y, 〈X,w〉)− `(Y,
〈
X,w′

〉
)‖p

6 2G‖
〈
X,w − w′

〉
)‖p 6 2GC

√
p‖
〈
X,w − w′

〉
)‖2

where the last two inequalities are consequence of (4.6) and (4.2), respectively. Hence

sup
p>2

‖Zw − Zw′‖p√
p

6 2GC‖〈X,w − w′〉‖2,

so that (A.3) is clear. Furthermore, since

(
L̂(w)− L(w))− (L̂(w′)− L(w′)

)
=

1

n

n∑
i=1

((`(Yi, 〈Xi, w〉)− E[`(Yi, 〈Xi, w〉)])

− (`(Yi,
〈
Xi, w

′〉)− E[`(Yi,
〈
Xi, w

′〉)]))
is a sum of independent sub-gaussian random variables distributed as (Zw − Z ′w)/n, then
by rotational invariance theorem [Vershynin, 2010, Proposition 2.6.1]

‖(L̂(w)−L(w))−(L̂(w′)−L(w′))‖ψ2 6
D√
n
‖Zw−Zw′‖ψ2 6

D√
n
CG‖

〈
X,w − w′

〉
)‖2, (A.4)

where the last inequality is a consequence of (A.3) and D is an absolute constant. Consider
X as a metric space with respect to the metric

d(w,w′) = ‖
〈
X,w − w′

〉
‖2

where without loss of generality we assume that Σ is injective, then (A.4) states that the
centered random process

(
L̂(w)− L(w)

)
w∈X has sub-gaussian increments and the generic

chaining tail bound [Vershynin, 2010, Theorem 8.5.5] implies that, with probability at least
1− 2e−τ ,

sup
w,w′∈BR

∣∣(L̂(w)− L(w))− (L̂(w′)− L(w′))
∣∣ 6 D√

n
CG
(√
τ diam(BR) + γ2(BR)

)
, (A.5)

where BR = {w ∈ X : ‖w‖ 6 R}, diam(BR) and γ2(BR) are the diamater with respect to
the metric d and the Talagrand’s γ2 functional of BR, [Vershynin, 2010, Definition 8.5.1].

Let G be the Gaussian random vector in X with covariance Σ, which always exists
since Σ is a trace class operator. Talagrand’s majorizing measure theorem [Vershynin, 2010,
Theorem 8.6.1] implies that

γ2(BR) 6 DE[ sup
w∈BR

〈G,w〉] = E[ sup
w∈BR

| 〈G,w〉 |] = RE[‖G‖] 6 RE[‖G‖2]
1
2 = RTr(Σ)

1
2 ,
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where the first equality is due to the fact that BR is symmetric, the second inequality is a
consequence of Jansen inequality and the last equality by definition of G. Furthermore, the
definition of d gives that

diam(BR) 6 2R‖Σ‖
1
2 .

Plugin these last two bounds in (A.5), it holds that

sup
w,w′∈BR

∣∣(L̂(w)− L(w))− (L̂(w′)− L(w′))
∣∣ 6 D√

n
CGR

(√
τ‖Σ‖

1
2 + Tr(Σ)

1
2
)
. (A.6)

with high probability. Finally, observe that

|`(Y, 0)− E[`(Y, 0)])| 6 2 sup
y∈Y

`(y, 0) = 2`0,

by (4.6), and

L̂(0)− L(0) =
1

n

∑
i=1

(`(Yi, 0)− E[`(Yi, 0)])

so that Hoeffding’s inequality [Boucheron et al., 2013] implies that, with probability 1−2e−τ ,

|L̂(0)− L(0)| 6 2`0

√
2τ

n
. (A.7)

Finally, since

sup
w∈BR

|L̂(w)− L(w)| 6 sup
w∈BR

|L̂(w)− L(w)− (L̂(0)− L(0))|+ |L̂(0)− L(0)|

bounds (A.6) and (A.7) give (A.1) with 4 exp(−τ) = δ. Bound (A.4) with w′ = 0 im-
plies (A.2).

This result cannot be readily applied to ŵλ, since its norm ‖ŵλ‖ is itself random.
Observe that, by definition and by Assumption 2,

λ‖ŵλ‖2 6 L̂λ(ŵλ) 6 L̂λ(0) = L̂(0) 6 sup
y∈Y

`(y, 0) = `0,

so that ‖ŵλ‖ 6
√
`0/λ. One could in principle apply this bound on ŵλ, but this would

yield a suboptimal dependence on λ and thus a suboptimal rate.
The next step in the proof is to make the bound of Lemma 6 valid for all norms R, so

that it can be applied to the random quantity R = ‖ŵλ‖. This is done in Lemma 7 below
though a union bound.

Lemma 7. Under Assumptions 1 and 2, ∀w ∈ H, with probability 1− δ:

L(w)−L̂(w) 6
DGC‖Σ‖

1
2 (1 + ‖w‖)√rΣ√
n

+
D√
n

(
GC‖Σ‖

1
2 (1+‖w‖)+`0

)√
log(2 + log2(1 + ‖w‖)) + log(1/δ).
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Proof. Fix δ ∈ (0, 1). For p > 1, let Rp := 2p and δp = δ/(p(p+ 1)). By Lemma 6, one has
for every p > 1,

P

(
sup
‖w‖6Rp

[
L(w)− L̂(w)

]
>

D√
n

(
GRpC‖Σ‖

1
2
(√
rΣ +

√
log(1/δp)

)
+ `0

√
log(1/δp)

))
6 δp.

Collecting the terms containing δp and taking a union bound over p > 1 while using that∑
p>1 δp = δ and δp > δ2/(p+ 1)2, we get:

P

(
∃p > 1, sup

‖w‖6Rp

[
L(w)−L̂(w)

]
>

D√
n

(
GRpC‖Σ‖

1
2
(√
rΣ+

√
log

p+ 1

δ

)
+`0

√
log

p+ 1

δ

))
6 δ.

Now, for w ∈ H, let p = dlog2(1 + ‖w‖)e; then, 1 + ‖w‖ 6 Rp = 2p 6 2(1 + ‖w‖), so
‖w‖ 6 Rp. Hence, ∀w ∈ H, with probability 1− δ:

L(w)− L̂(w) 6
DGC‖Σ‖

1
2 (1 + ‖w‖)√rΣ√
n

+
D√
n

√
log

p+ 1

δ

(
GC‖Σ‖

1
2 (1 + ‖w‖) + `0

)
6
DGC‖Σ‖

1
2 (1 + ‖w‖)√rΣ√
n

+

+
D√
n

(
GC‖Σ‖

1
2 (1 + ‖w‖) + `0

)√
log(2 + log2(1 + ‖w‖)) + log(1/δ)

6 δ.

This is precisely the desired bound.

We are now able to prove the two theorems.

Proof of Theorem 6. Since the bound of Lemma 7 holds simultaneously for all w ∈ H, one
can apply it to ŵλ; using the inequality ‖ŵλ‖ 6

√
`0/λ 6 (1 + `0/λ)/2 to bound the log log

term, this gives with probability 1− δ,

L(ŵλ)− L̂(ŵλ) 6
DGC‖Σ‖

1
2 (1 + ‖ŵλ‖)

√
rΣ√

n
+

+
D√
n

(
GC‖Σ‖

1
2 (1 + ‖ŵλ‖) + `0

)√
log(1 + log2(3 + `0/λ)) + log(1/δ).

(A.8)

Now, let K = Kλ,δ =
√

log(1 + log2(3 + `0/λ)) + log(1/δ). Eq (A.8) writes

L(ŵλ)− L̂(ŵλ) 6
DGC‖Σ‖

1
2 (1 + ‖ŵλ‖)

√
rΣ√

n
+
DK√
n

(
GC‖Σ‖

1
2 (1 + ‖ŵλ‖) + `0

)
(A.9)
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Using that ab 6 λa2 + b2/(4λ) for a, b > 0, one can then write

L(ŵλ) 6 L̂(ŵλ) +
√
rΣ
DGC‖Σ‖

1
2 (1 + ‖ŵλ‖)√
n

+K
DGC‖Σ‖

1
2 (1 + ‖ŵλ‖)√
n

+
DK`0√

n

6 L̂(ŵλ) + (
√
rΣ +K)

DGC‖Σ‖
1
2 ‖ŵλ‖√
n

+ (
√
rΣ +K)

DGC‖Σ‖
1
2

√
n

+
DK`0√

n

6 L̂(ŵλ) + λ‖ŵλ‖2 +
D2G2C2(

√
rΣ +K)2‖Σ‖

4λn
+ (
√
rΣ +K)

DGC‖Σ‖
1
2

√
n

+
DK`0√

n

6 L̂(wλ) + λ‖wλ‖2 +
D2G2C2(

√
rΣ +K)2‖Σ‖

4λn
+ (
√
rΣ +K)

DGC‖Σ‖
1
2

√
n

+
DK`0√

n
(A.10)

where (A.10) holds by definition of ŵλ. Now, using again Lemma 6 for ‖wλ‖ we have that,
with probability 1− δ:

L̂(wλ)− L(wλ) <
D√
n

(
GC‖Σ‖

1
2 ‖wλ‖

(√
rΣ +

√
log(4/δ)

)
+ `0

√
log(4/δ)

)
.

Combining this inequality with (A.10) with a union bound, with probability 1− 2δ:

L(ŵλ) <L(wλ) + λ‖wλ‖2 +
D2G2C2(

√
rΣ +K)2‖Σ‖

4λn
+ (
√
rΣ +K)

DGC‖Σ‖
1
2

√
n

+
DK`0√

n
+

+
DGC‖Σ‖

1
2 ‖wλ‖

(√
rΣ +

√
log(4/δ)

)
√
n

+
D`0

√
log(4/δ)√
n

. (A.11)

Since again ab 6 λa2 + b2/(4λ), then

DGC‖Σ‖
1
2 ‖wλ‖

(√
rΣ +

√
log(1/δ)

)
√
n

6 λ‖wλ‖2 +
D2G2C2‖Σ‖

(√
rΣ +

√
log(4/δ)

)2
4λn

6 A(λ) +
D2G2C2‖Σ‖

(√
rΣ +

√
log(4/δ)

)2
4λn

so that (A.11) implies, with probability 1− 2δ:

L(ŵλ)− inf
w∈H

L(w) < 2A(λ) +
D2G2C2‖Σ‖((√rΣ +K)2 + (

√
rΣ +

√
log(4/δ))2)

4λn

+
DGC(

√
rΣ +K)‖Σ‖

1
2 +√

n

+D`0(K +
√

log(4/δ))

After replacing δ by δ/2, we get bound (4.15).
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Proof of Theorem 7. Assume that w∗ = arg minw∈H L(w) exists. Then, by definition of wλ,

L(wλ) + λ‖wλ‖2 6 L(w∗) + λ‖w∗‖2.

In addition, ‖wλ‖ 6 ‖w∗‖, since otherwise having ‖w∗‖ < ‖wλ‖ and L(w∗) 6 L(wλ)
would imply L(w∗) + λ‖w∗‖2 < L(wλ) + λ‖wλ‖2, contradicting the above inequality. Since
L(w∗) = infH L, it follows from (A.11) that, with probability 1− 2δ,

L(ŵλ) <L(w∗) + λ‖w∗‖2 +
D2G2C2(

√
rΣ +K)2‖Σ‖

4λn
+
DGC(

√
rΣ +K)‖Σ‖

1
2 +DK`0√

n
+

+
DGC‖Σ‖

1
2 ‖w∗‖

(√
rΣ +

√
log(4/δ)

)
√
n

+
D`0

√
log(4/δ)√
n

(A.12)

The bound (A.12) precisely corresponds to the desired bound (4.16) after replacing δ by

δ/2. In particular, tuning λ � (DGCK ‖Σ‖1/2 /‖w∗‖)
√

log(1/δ)/n yields

L(ŵλ)− L(w∗) .
{DGC ‖Σ‖1/2 ‖w∗‖}{log log n+

√
log(1/δ)}√

n
.

Omitting the log log n term, this bound essentially scales as Õ(DGC ‖Σ‖1/2 ‖w∗‖
√

log(1/δ)/n).



Appendix B

Proof of Section 4.3

In order to prove Theorem 8, we need to previously extend Lemma 7 in [Rudi et al., 2015]
to sub-gaussian random variables.

Lemma 8. Fix δ > 0 and a (T, α0)-approximate leverage scores (l̂i(α))ni=1 with confidence
δ > 0. Given α > α0, let {x̃1, . . . , x̃m} be the Nyström points selected according to
Definition 4 and set Bm = span{x̃1, . . . , x̃m}. Under Assumption 1, with probability at least
1− δ: ∥∥∥(I − PBm)Σ1/2

∥∥∥2
6
∥∥∥(I − PBm)(Σ + α I)1/2

∥∥∥2
6 3α, (B.1)

provided that

n & dα ∨ log(5/δ) (B.2)

m & dα log(
10n

δ
). (B.3)

Furthermore, if the spectrum of Σ satisfies the decay conditions (4.28) (polynomial decay)
or (4.29) (exponential decay), it is enough to assume that

n & log(5/δ) α & n−1/p m & α−p log(
10n

δ
) polynomial decay (B.4)

n & log(5/δ) α & e−n m & log(1/α) log(
10n

δ
) exponential decay (B.5)

Proof. Exploiting sub-gaussianity anyway the various terms are bounded differently. In
particular, to bound β1 we refer to Theorem 9 in [Koltchinskii and Lounici, 2014], obtaining
with probability at least 1− δ

β1(α) . max

{√
dα
n
,

√
log(1/δ)

n

}
. (B.6)
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As regards β3 term we apply Proposition 7 below to get with probability greater than 1−3δ

β3(α) 6
2 log 2n

δ

3m
+

√
32T 2dα log 2n

δ

m

for n > 2C2 log(1/δ).
Finally, taking a union bound we have with probability at least 1− 5δ

β(α) .max


√
dα
n
,

√
log(1

δ )

n

+

+

1 + max


√
dα
n
,

√
log(1

δ )

n


2 log 2n

δ

3m
+

√
32T 2dα log 2n

δ

m

 . 1

when n & dα ∨ log(1/δ) and m & dα log 2n
δ . See [Rudi et al., 2015] to conclude the proof

of the first claim. Assume now (4.28) or (4.29) . The second claim is consequence of
Proposition 8 or Proposition 9.

We can proceed now with the proof of Theorem 8:

Proof of Theorem 8. We recall the notation.

Bm = span{x̃1, . . . , x̃m}, β̂λ = arg min
w∈Bm

L̂(w), w∗ = arg min
w∈X

L(w)

and Pm = PBm the orthogonal projector operator onto Bm.
In order to bound the excess risk of β̂λ, we decompose the error as follows:

L(β̂λ)− L(w∗) 6
∣∣∣L(β̂λ)− L̂(β̂λ)− λ‖β̂λ‖2H

∣∣∣+
∣∣∣L̂(β̂λ) + λ‖β̂λ‖2H − L̂(Pmw∗)− λ‖Pmw∗‖2H

∣∣∣+
+
∣∣∣L̂(Pmw∗)− L(Pmw∗)

∣∣∣+ |L(Pmw∗)− L(w∗)|+ λ‖Pmw∗‖2H (B.7)

To bound the first term
∣∣∣L(β̂λ)− L̂(β̂λ)− λ‖β̂λ‖2H

∣∣∣ we apply Lemma 7 for β̂λ and we get

L(β̂λ)− L̂(β̂λ) 6
DGC(

√
rΣ +K)‖Σ‖

1
2 (1 + ‖β̂λ‖)√

n
+
DK`0√

n

with K = Kλ,δ =
√

log(1 + log2(3 + `0/λ)) + log(1/δ) as in (A.9).
Now since xy 6 λx2 + y2/(4λ), we can write

DGC(
√
rΣ +K)‖β̂λ‖‖Σ‖

1
2

√
n

6 λ‖β̂λ‖2 +
D2G2C2(

√
rΣ +K)2‖Σ‖
λn

(B.8)
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hence,

∣∣∣L(β̂λ)− L̂(β̂λ)− λ‖β̂λ‖2
∣∣∣ 6 D2G2C2(

√
rΣ +K)2‖Σ‖
λn

+
DGC(

√
rΣ +K)‖Σ‖

1
2

√
n

+
DK`0√

n
,

(B.9)

Term
∣∣∣L̂(β̂λ) + λ‖β̂λ‖2H − L̂(Pmw∗)− λ‖Pmw∗‖2H

∣∣∣ is less or equal than 0.

As regards term
∣∣∣L̂(Pmw∗)− L(Pmw∗)

∣∣∣, since Pm is a projection ‖Pmw∗‖ 6 ‖w∗‖, so

that with probability at least 1− δ:

∣∣∣L̂(Pmw∗)− L(Pmw∗)
∣∣∣ 6 sup

‖w‖6‖w∗‖

(∣∣∣L̂(w)− L(w)
∣∣∣)

<
D√
n

(
GC‖w∗‖‖Σ‖

1
2
(√
rΣ +

√
log(4/δ)

)
+ `0

√
log(4/δ)

)
.

(B.10)

where in the sup in the left hand side is taken over all possible Nyström points and the
second inequality is the content of Lemma 6 where the role of L and L̂ is interchanged.

Finally, term |L(Pmw∗)− L(w∗)| can be rewritten as

|L(Pmw∗)− L(w∗)| 6 G

∫
| 〈w,Pmw∗〉 − 〈w,w∗〉 |dPX(w)

6 G

(∫
| 〈w, (I − Pm)w∗〉 |2dPX(w)

) 1
2

= G 〈Σ(I − Pm)w∗, (I − Pm)w∗〉
1
2 (B.11)

= G‖Σ1/2(I − Pm)w∗‖H
6 G‖Σ1/2(I − Pm)‖‖w∗‖H
= G‖(I − Pm)Σ1/2‖‖w∗‖H 6 G

√
3α‖w∗‖, (B.12)

where the last bound is a consequence of Lemma 8 and it holds true with probability at
least 1− δ.

Putting the pieces together we finally get the result in Theorem 8 by replacing δ with
δ/3.

Proof of Theorem. 9. Under polynomial decay assumption (4.28), the claim is a consequence
of Theorem 8 with Proposition 8 with β = 1/p so that

m & dα log n, dα . α−p, m � np(log n)1−p (B.13)
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Under exponential decay assumption (4.29), the claim is a consequence of Theorem 8 with
Proposition 9 so that

m & dα log n, dα . log(1/α), m � log2 n (B.14)

Proof of Theorem 10. The proof is given by decomposing the excess risk as in (B.7) where
Pm is replaced by PB, (B.9) bounds term A, (B.10) bounds term B and (B.11) and 4.32
bound term C.
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Proofs of Section 4.4

The following proposition provides a bound on the empirical effective dimension dα(Σ̂) =
Tr(Σ̂−1

α Σ̂) in terms of the correspondent population quantity dα = Tr((Σα + α I)−1Σ).

Proposition 7. Let X,X1, . . . , Xn be iid C-sub-gaussian random variables in H. For any
δ > 0 and n > 2C2 log(1/δ), then the following hold with probability 1− δ

dα(Σ̂) 6 16dα (C.1)

Proof. Let Vα be the space spanned by eigenvectors of Σ with corresponding eigenvalues
αj > α, and call Dα its dimension. Notice that Dα 6 2dα since dα = Tr((Σα + α I)−1Σ) =∑ αi

αi+α
, where in the sum we have Dα terms greater or equal than 1/2.

Let X = X1 +X2, where X1 is the orthogonal projection of X on the space Vα, we have

Σ̂ = Σ̂1 + Σ̂2 +
1

n

n∑
i=1

(X1,iX
>
2,i +X2,iX

>
1,i) 4 2(Σ̂1 + Σ̂2) (C.2)

Now, since the function g : t 7→ t
t+α is sub-additive (meaning that g(t+ t′) 6 g(t) + g(t′)),

denoting dα(Σ) = Tr g(Σ) = Tr((Σα + α I)−1Σ),

dα(Σ̂) 6 2(dα(Σ̂1) + dα(Σ̂2)) (C.3)

and, since (Σ̂1 + α)−1Σ̂1 4 IVα ,

Tr((Σ̂α + α I)−1Σ̂) 6 2Dα +
2Tr(Σ̂2)

α
= 4dα +

2Tr(Σ̂2)

α
(C.4)

Now,

Tr(Σ̂2) =
1

n

n∑
i=1

‖X2,i‖2
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It thus suffices establish concentration for averages of the random variable ‖X2‖2.
Since X is sub-gaussian then ‖X2‖2 is sub-exponential. In fact, since X is C-sub-gaussian
then

‖〈v,X〉‖ψ2 6 C‖〈v,X〉‖L2 ∀v ∈ H (C.5)

and given that 〈v,PX〉 = 〈Pv,X〉 with P an orthogonal projection, then also X2 is C-
sub-gaussian. Now take ei the orthonormal basis of V composed by the eigenvectors of
Σ2 = E[X2X

T
2 ], then∥∥‖X2‖2

∥∥
ψ1

=
∥∥∥∑

i

〈X2, ei〉2
∥∥∥
ψ1

6
∑
i

∥∥〈X2, ei〉2
∥∥
ψ1

(C.6)

=
∑
i

‖〈X2, ei〉‖2ψ2
6 C2 ‖〈X2, ei〉‖2L2

(C.7)

= C2
∑
i

αi = C2Tr [Σ2] = C2E
[
‖X2‖2

]
(C.8)

so ‖X2‖2 is C2E
[
‖X2‖2

]
-sub-exponential. Note that E‖X2‖2 = E[Tr(X2X

>
2 )] = Tr(Σ2) 6

2αdα(Σ), in fact

dα =
∞∑
i=1

αi
αi + α

>
∑
i:αi<α

αi
αi + α

>
∑
i:αi<α

αi
2α

=
Tr(Σ2)

2α
(C.9)

Hence, we can apply then Bernstein inequality for sub-exponential scalar variables (see
Theorem 2.10 in [Boucheron et al., 2013]), with parameters ν and c given by

nE
[
‖X2‖4

]
6 4nC2α2d2

α(Σ)︸ ︷︷ ︸
ν

(C.10)

c = Cαdα (C.11)

where we used the bound on the moments of a sub-exponential variable (see [Vershynin, 2010]).
With high probability (C.4) becomes

dα(Σ̂) 6 8dα +
4Cdα

√
2 log(1/δ)√
n

+
2Cdα log(1/δ)

n
6 16dα (C.12)

for n > 2C2 log(1/δ).

From [Adamczak, 2008] Theorem 4 we write a concentration inequality we will use in
the following, corresponding to the simplified Talagrand’s inequality in Theorem 7.5 of
[Steinwart and Christmann, 2008] but for sub-exponential random variables:
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Theorem 15 (Theorem 4 in [Adamczak, 2008]). Let X,X1, . . . , Xn be i.i.d. random
variables with values in a measurable space (S,B) and let F be a countable class of measurable
functions f : S → R. Assume that Ef (X) = 0 and

∥∥supf |f (X)|
∥∥
ψ1
<∞ for every f ∈ F .

Let

Z = sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

f (Xi)

∣∣∣∣∣
and define

σ2 = sup
f∈F

Ef (X)2 .

Then, for all τ > 0 and η > 0, we have

P

(
Z > (1 + η)EZ +

K1

∥∥supf∈F |f (X)|
∥∥
ψ1

(2 + τ)

n
+

√
3(1 + τ)σ2

n

)
6 e−τ (C.13)

where K1 = K1(δ, η).

Similarly to [Steinwart and Christmann, 2008], we define the quantity

gw,r :=
hw − Ehw

λ ‖w‖2 + Ehw + r
, w ∈ H, r > 0 (C.14)

(notice that in [Steinwart and Christmann, 2008] they define −gw,r).
Our plan is to apply Theorem 15 to gŵ0,r, with ŵ0 ∈ Bm ⊆ H and ‖ŵ0‖ 6 ‖w∗‖.

Corollary 3. Under the hypothesis of Theorem 15, for all τ > 0 we have

sup
w∈H,‖w‖6‖w∗‖

Êhw − Ehw
λ ‖w‖2 + Ehw + r

<2ED∼Pn sup
w∈H,‖w‖6‖w∗‖

Êhw − Ehw
λ ‖w‖2 + Ehw + r

+

√
3V (1 + τ)

nr2−θ + 2GK1 ‖w∗‖
(C
√

2TrΣ + E ‖X‖)(2 + τ)

nr
(C.15)

Proof. In Theorem 15, we take

Z = sup
w∈H,‖w‖6R

∣∣∣∣∣ 1n
n∑
i=1

gw,r (Xi)

∣∣∣∣∣ . (C.16)

We have also that, using the second inequality of Lemma 7.1 in [Steinwart and Christmann, 2008]
and taking θ > 0, q := 2

2−θ , q′ := 2
θ , a := r, and b := Ehw 6= 0:

Eg2
w,r 6

Eh2
w(

λ ‖w‖2 + Ehw + r
)2 6

(2− θ)2−θθθEh2
w

4r2−θ (Ehw)θ
6 V rθ−2 = σ2
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Moreover,∥∥∥∥∥ sup
w∈H,‖w‖6‖w∗‖

|gw,r (X)|

∥∥∥∥∥
ψ1

=

∥∥∥∥∥ sup
w∈H,‖w‖6‖w∗‖

∣∣∣∣ hw (X)− Ehw
λ ‖w‖2 + Ehw + r

∣∣∣∣
∥∥∥∥∥
ψ1

6
1

r

∥∥∥∥∥ sup
w∈H,‖w‖6‖w∗‖

|hw − Ehw (X)|

∥∥∥∥∥
ψ1

=
1

r

∥∥∥∥∥ sup
w∈H,‖w‖6‖w∗‖

|`(〈w,X〉 , Y )− `(〈w∗, X〉 , Y )− E[`(〈w,X〉 , Y )− `(〈w∗, X〉 , Y )]|

∥∥∥∥∥
ψ1

6
1

r

∥∥∥∥∥ sup
w∈H,‖w‖6‖w∗‖

|`(〈w,X〉 , Y )− `(〈w∗, X〉 , Y )|+ sup
w∈H,‖w‖6‖w∗‖

|E[`(〈w,X〉 , Y )− `(〈w∗, X〉 , Y )]|

∥∥∥∥∥
ψ1

6
1

r

∥∥∥∥∥G sup
w∈H,‖w‖6‖w∗‖

|〈w − w∗, X〉|+G sup
w∈H,‖w‖6‖w∗‖

E |〈w − w∗, X〉|

∥∥∥∥∥
ψ1

6
1

r

∥∥∥2G ‖w∗‖ ‖X‖+ 2G ‖w∗‖E ‖X‖
∥∥∥
ψ1

=
2G ‖w∗‖

r

∥∥∥ ‖X‖+ E ‖X‖
∥∥∥
ψ1

6
2G ‖w∗‖

r

∥∥∥ ‖X‖+ E ‖X‖
∥∥∥
ψ2

6
2G ‖w∗‖ (C

√
2TrΣ + E ‖X‖)
r

where last inequality derives from the fact that ‖X‖ is sub-gaussian since, given an or-
thonormal basis ei,

∥∥ ‖X‖ ∥∥2

ψ2
6
∥∥ ‖X‖2 ∥∥

ψ1
=
∥∥∥∑

i

〈X, ei〉2
∥∥∥
ψ1

6
∑
i

∥∥∥〈X, ei〉2∥∥∥
ψ1

6 2
∑
i

‖〈X, ei〉‖2ψ2
6 2C2 ‖〈X, ei〉‖2L2

= 2C2 Tr [Σ]

Applying Theorem 15 with η = 1 we get the result.

We now adapt Theorem 7.23 in [Steinwart and Christmann, 2008] to our setting:

Theorem 16. Under assumptions 1, 2, 4 and 3, the covariance matrix satisfies the polyno-
mial decay condition (4.28), and the Bernstein conditions (4.36)–(4.37) hold true. Fix a
closed subspace F̂ of H and set

wF̂ ,λ = argmin
w∈F̂

(
L̂(w) + λ‖w‖2

)
λ > 0. (C.17)
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Choose ŵ0 ∈ F̂ , fix δ > 0, then with probability at least 1− δ

λ‖ŵF ,λ‖2+L(ŵclF ,λ)− L(f∗) 6 7
(
λ ‖ŵ0‖2 + L(ŵ0)− L(f∗)

)
+K3

(
a2p

λpn

) 1
2−p−ϑ+ϑp

+

+ 2

(
72V log(3/δ)

n

) 1
2−ϑ

+ 16GK1 ‖w∗‖
(C
√

2TrΣ + E ‖X‖)(2 + log(3/δ))

n
(C.18)

where the constant a only depends on (4.28) and K3 > 1 only depends on p,M,B, ϑ, and
V .

Proof. The proof mimics the one of Theorem 7.23 [Steinwart and Christmann, 2008], with
some major differences.
We start recalling that Theorem 15 in [Steinwart et al., 2009] shows that that the decay
condition (4.28) is equivalent to condition (7.48) of Theorem 7.23, which is given in terms of
entropy numbers ej , see Lemma 12. Note that the constant a is defined by the bound (7.48).
Using this remark, the above assumptions let us upper bound the empirical Rademacher
complexity ofHr in term of a function ϕn(r) defined as in [Steinwart and Christmann, 2008]
(see pag. 267). Thus, the result comes from the application of Steinwart’s Theorem 7.20,
with the key difference that our X is not bounded but sub-gaussian and that ŵ0 here is not
deterministic but depends on the data.
As a consequence, in order to control the quantity Êhŵ0

− Ehŵ0
we cannot simply apply a

Bernstein’s inequality for sub-gaussian but we need to use the more refined Corollary 3. In
particular, we mimic the reasoning to derive [Steinwart and Christmann, 2008, Eq. (7.44)],
but where Talagrand’s inequality for bounded random variables is replaced by our Theorem
15 for sub-exponential ones and in the specific case of Corollary 3.
We split the error as in [Steinwart and Christmann, 2008, Eq. (7.39)],

λ ‖ŵλ‖2 + Ehŵclλ 6 (λ ‖ŵ0‖2 + Ehŵ0
) + (Êhŵ0

− Ehŵ0
) + (Ehŵclλ − Êhŵclλ ) (C.19)

and we start with controlling the term Êhŵ0
− Ehŵ0

.
Exploiting the definition of gw,r in (C.14), we know that for all the w ∈ H with ‖w‖ 6 ‖w∗‖
and r > 0 we can apply Corollary 3. In particular, since ŵ0 ∈ Bm ⊆ H, the bound in the
Corollary is valid also for ŵ0, i.e

Êhŵ0
− Ehŵ0

λ ‖ŵ0‖2 + Ehŵ0
+ r

<2ED∼Pn
Êhŵ0

− Ehŵ0

λ ‖ŵ0‖2 + Ehŵ0
+ r

+

√
3V (1 + τ)

nr2−θ + 2GK1 ‖w∗‖
(C
√

2TrΣ + E ‖X‖)(2 + τ)

nr
. (C.20)
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Using symmetrization (see Prop. 7.10 in [Steinwart and Christmann, 2008]) we have

ED∼Pn sup
w∈Bm,r,‖w‖6‖w∗‖

∣∣∣Êhw − Ehw
∣∣∣ 6 ED∼Pn sup

w∈Hr,‖w‖6‖w∗‖

∣∣∣Êhw − Ehw
∣∣∣

6 2ED∼PnR̂ad(Hr, n) 6 2ϕn(r). (C.21)

Peeling by Steinwart’s Theorem 7.7 together with Hr = {w ∈ H : λ ‖w‖2 + Ehw 6 r} hence
gives

ED∼Pn sup
w∈Bm,‖w‖6‖w∗‖

∣∣∣Êgw,r∣∣∣ 6 ED∼Pn sup
w∈H,‖w‖6‖w∗‖

∣∣∣Êgw,r∣∣∣ 6 8ϕn(r)

r
(C.22)

Putting all together we get w.h.p.

Êhŵ0
− Ehŵ0

< (λ ‖ŵ0‖2 + Ehŵ0
)

(
10ϕn(r)

r
+

√
3V (1 + τ)

nr2−θ + 2GK1 ‖w∗‖
(C
√

2TrΣ + E ‖X‖)(2 + τ)

nr

)

+ 10ϕn(r) +

√
3V (1 + τ)rθ

n
+ 2GK1 ‖w∗‖

(C
√

2TrΣ + E ‖X‖)(2 + τ)

n
(C.23)

As regards the term Ehwclλ − Êhwclλ we proceed as in [Steinwart and Christmann, 2008]. We

finally obtain, for ŵ0 ∈ Bm with ‖ŵ0‖ 6 ‖w∗‖ and with r > r∗Bm > r∗H, w.h.p.

λ ‖ŵλ‖2 + Ehŵclλ <
(
λ ‖ŵ0‖2 + Ehŵ0

)
+

+ (λ ‖ŵ0‖2 + Ehŵ0
)

(
10ϕn(r)

r
+

√
3V (1 + τ)

nr2−θ + 2GK1 ‖w∗‖
(C
√

2TrΣ + E ‖X‖)(2 + τ)

nr

)
+

+ 10ϕn(r) +

√
3V (1 + τ)rθ

n
+ 2GK1 ‖w∗‖

(C
√

2TrΣ + E ‖X‖)(2 + τ)

n
+

+
(
λ ‖ŵλ‖2 + Ehŵclλ

)(10ϕn(r)

r
+

√
2V τ

nr2−θ +
28Bτ

3nr

)

+ 10ϕn(r) +

√
2V τrθ

n
+

28Bτ

3n
(C.24)

which replaces (7.44) in [Steinwart and Christmann, 2008].
Observe now that r > 30ϕn(r) implies 10ϕn(r)r−1 6 1/3 and 10ϕn(r) 6 r/3. Moreover,

r >
(

72V (1+τ)
n

)1/(2−θ)
yields

(
2V τ

nr2−θ

)1/2

6
1

6
and

(
2V τrθ

n

)1/2

6
r

6
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and (
3V (1 + τ)

nr2−θ

)1/2

6
1

4
and

(
2V (1 + τ)rθ

n

)1/2

6
r

4

In addition n > 72(1 + τ), V > B2−θ, and r >
(

72V (1+τ)
n

)1/(2−θ)
imply

28Bτ

3nr
=

7

54
· 72τ

n
· B
r

6
7

54
·
(

72τ

n

) 1
2−θ
· V

1
2−θ

r
6

7

54

and 28Bτ
3n 6 7r

54 . Finally r > 8GK1 ‖w∗‖ (C
√

2TrΣ+E‖X‖)(2+τ)
n gives

2GK1 ‖w∗‖
(C
√

2TrΣ + E ‖X‖)(2 + τ)

nr
6

1

4
and 2GK1 ‖w∗‖

(C
√

2TrΣ + E ‖X‖)(2 + τ)

n
6
r

4

We finally obtain

λ ‖ŵλ‖2 + Ehŵclλ <
11

6

(
λ ‖ŵ0‖2 + Ehŵ0

)
+

79

54
r + ε+

17

27

(
λ ‖ŵλ‖2 + Ehŵclλ

)
6 5

(
λ ‖ŵ0‖2 + Ehŵ0

)
+ 2r (C.25)

with

r > max

{
30ϕn(r),

(
72V τ

n

) 1
2−ϑ

, 8GK1 ‖w∗‖
(C
√

2TrΣ + E ‖X‖)(2 + τ)

n
, r∗H

}

Remark 7. Notice that the same reasoning can be applied in Section 4.4 in the more
general framework where w∗ does not exist. In that case w∗ will be replaced by wλ :=

arg minw∈H L(w) + λ‖w‖2, with ‖wλ‖ 6
√
A(λ)
λ .

We are now ready to prove our main result:

Proof of Theorem 11, polynomial decay. Applying Theorem 16 in the general case of Re-
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mark 7, with the choice F̂ = Bm and ŵ0 = PBmwλ, we rewrite (C.18) as:

λ‖β̂λ,m‖2+L(β̂clλ,m)− L(f∗) 6 7(λ‖PBmwλ‖2 + L(PBmwλ)− L(f∗)) +K3

( a2p

λpn

) 1
2−p−θ+θp

+

+ 2
(72V log(3/δ)

n

) 1
2−θ

+ 16GK1 ‖wλ‖
(C
√

2TrΣ + E ‖X‖)(2 + log(3/δ))

n

= 7(λ‖PBmwλ‖2 + L(PBmwλ)− L(wλ) + L(wλ)− L(f∗)) +K3

( a2p

λpn

) 1
2−p−θ+θp

+

+ 2
(72V log(3/δ)

n

) 1
2−θ

+ 16GK1
(C
√

2TrΣ + E ‖X‖)(2 + log(3/δ))

n

√
A(λ)

λ

6 7(L(PBmwλ)− L(wλ) + λ‖wλ‖2 + L(wλ)− L(f∗)) +K3

( a2p

λpn

) 1
2−p−θ+θp

+

+ 2
(72V log(3/δ)

n

) 1
2−θ

+ 16GK1
(C
√

2TrΣ + E ‖X‖)(2 + log(3/δ))

n

√
A(λ)

λ

= 7A(λ) + 7(L(PBmwλ)− L(wλ)) +K3

( a2p

λpn

) 1
2−p−θ+θp

+ 2
(72V log(3/δ)

n

) 1
2−θ

+

+ 16GK1
(C
√

2TrΣ + E ‖X‖)(2 + log(3/δ))

n

√
A(λ)

λ
(C.26)

where we used the fact that ‖wλ‖ 6
√
A(λ)/λ.

We can deal with the term L(PBmwλ)− L(wλ) as in (B.11) (but where we use Lemma 8
instead of Lemma 7 in [Rudi et al., 2015] to exploit sub-gaussianity), so that for α & n−1/p

with probability greater than 1− δ

L(PBmwλ)− L(wλ) 6 K2G
√
α ‖wλ‖ 6 K2G

√
α

√
A(λ)

λ
(C.27)

for some universal constant K2 > 0. We finally obtain with probability greater than 1− 2δ:

λ‖β̂λ,m‖2H + L(β̂clλ,m)− L(f∗) 6 7A(λ) + 7K2G

√
αA(λ)

λ
+K3

( a2p

λpn

) 1
2−p−θ+θp

+ 2
(72V log(3/δ)

n

) 1
2−θ

+

+ 16GK1
(C
√

2TrΣ + E ‖X‖)(2 + log(3/δ))

n

√
A(λ)

λ
(C.28)

which proves the first claim.

The following corollary provides the optimal rates.

Corollary 4. Fix δ > 0. Under the Theorem 11 and the source condition

A(λ) 6 A0λ
r
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for some r ∈ (0, 1], set

λ � n−min{ 2
r+1

, 1
r(2−p−θ+θp)+p} (C.29)

α � n−min{2, r+1
r(2−p−θ+θp)+p} (C.30)

m & n
min{2p, p(r+1)

r(2−p−θ+θp)+p} (C.31)

with probability at least 1− 2δ:

λ‖β̂λ,m‖2 + L(β̂clλ,m)− L(f∗) . n
−min{ 2r

r+1
, r
r(2−p−θ+θp)+p} (C.32)

Proof. Lemma 8 with Proposition 8 gives

m & dα log(n/δ), dα . α−p α � log1/p(n/δ)

m1/p
(C.33)

Lemma A.1.7 in [Steinwart and Christmann, 2008] with r = 2, 1/γ = (2 − p − θ + θp),
α = p, β = r shows that the choice of λ, α and m given by (C.29)–(C.31) provides the
optimal rate.

Notice that α � n
−min{2, r+1

r(2−p−θ+θp)+p} is compatible with condition α & dα � n−1/p in
Lemma 8.

When we are in the well specified case (see Section 4.4.1), i.e. w∗ exists, we have the
following results.

Corollary 5. Fix λ > 0, α & n−1/p and 0 < δ < 1. Under Assumptions 1, 2, 6, 7 (with
θ = 1) and polynomial decay condition (4.28), then, with probability at least 1− 2δ:

L(β̂clλ,m)− L(w∗) .
1

λpn
+ λ ‖w∗‖2 +

√
α ‖w∗‖ (C.34)

provided that n and m are large enough.

Proof. The proof mimics the proof of Theorem 11 (a) where in (C.18) we choose ŵ0 = PBmw∗
Hence (C.18) with θ = 1 reads

λ‖β̂λ,m‖2 + L(β̂clλ,m)− L(w∗) 6 7(λ‖PBmw∗‖2 + L(PBmw∗)− L(w∗)) +K3
a2p

λpn
+ 144V

log(3/δ)

n
+

+ 16GK1 ‖w∗‖
(C
√

2TrΣ + E ‖X‖)(2 + log(3/δ))

n

6 7λ‖w∗‖2 + 7(L(PBmw∗)− L(w∗)) +K3
a2p

λpn
+ 144V

log(3/δ)

n
+

+ 16GK1 ‖w∗‖
(C
√

2TrΣ + E ‖X‖)(2 + log(3/δ))

n
(C.35)
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We can deal wit h the term L(PBmw∗) − L(w∗) as in (B.11), so that for α & n−1/p with
probability greater than 1− δ

L(PBmw∗)− L(w∗) 6 K2G
√
α ‖w∗‖

for some K2 > 0. Hence, with probability at least 1− 2δ:

λ‖β̂λ,m‖2 + L(β̂clλ,m)− L(w∗) 6 7λ‖w∗‖2 + 7K2G
√
α‖w∗‖+K3

a2p

λpn
+ 144V

log(3/δ)

n
+

16GK1 ‖w∗‖
(C
√

2TrΣ + E ‖X‖)(2 + log(3/δ))

n
(C.36)

which proves the claim.

And, similarly to Corollary 4, we obtain the optimal rate presented in Eq. 4.41.

Corollary 6. Fix δ > 0. Under the assumptions of Theorem 11 (a), when the variance
bound (4.37) holds true with the optimal paratemer θ = 1 and the model is well specified,
i.e. r = 1, set

λ � n−
1

1+p (C.37)

α � n−
2

1+p (C.38)

m & n
2p
1+p log n (C.39)

then, for ALS sampling, with probability at least 1− 2δ:

λ‖β̂λ,m‖2H + L(β̂clλ,m)− L(w∗) . ‖w∗‖
( 1

n

) 1
1+p

. (C.40)

Notice that α � n−
2

1+p is compatible with condition α & dα � n−1/p in Lemma 8.

C.0.1 Excess risk under exponential decay

As regards exponential decay, given the discussion in Appendix E, we have a different
bound on the empirical Rademacher complexity of Hr. In particular, we obtain ϕn(r) :=

C1

√
V
n log2

(
1
λ

)√
r+C2

log2
2(1/λ)
n and we modify Theorem 16 in the case of exponential decay

using the following Lemma:

Lemma 9. When

r = C3
log2

2(1/λ)

n
+

(
72V τ

n

) 1
2−ϑ

+ 8GK1 ‖w∗‖
(C
√

2TrΣ + E ‖X‖)(2 + τ)

n

we have

r > max

{
30ϕn(r),

(
72V τ

n

) 1
2−ϑ

, 8GK1 ‖w∗‖
(C
√

2TrΣ + E ‖X‖)(2 + τ)

n

}
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We can finally prove the second part of Theorem 11 under exponential decay:

Proof of Theorem 11, exponential decay. We follow exactly the proof of Theorem 16 for
polynomial decay presented above in the previous subsection, but using the estimate in
Lemma 9 for r:

L(β̂clλ,m)− L(f∗) .
log2(1/λ)

n
+

√
αA(λ)

λ
+
( log(3/δ)

n

) 1
2−θ

+
log(3/δ)

n

√
A(λ)

λ
+A(λ).
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Appendix D

Proofs of Section 4.5

D.0.1 Square loss

We report in this section the proofs of Theorem 12.

As mentioned above, in the case where w∗ does not exists, the assumption of sub-gaussianity
is necessary to get fast rates:

Proof of Theorem 12. The proof follows the one of Theorem 11 in Appendix C with some
differences coming from the fact that we are working now with the square loss. Since
Theorem 16 works also with locally Lipschitz loss functions we have:

λ‖β̂λ,m‖2 + L(β̂clλ,m)−L(f∗) 6 7(λ‖PBmwλ‖2 + L(PBmwλ)− L(f∗)) +K3
a2p

λpn
+ 2

72V log(3/δ)

n
+

+ 16GK1 ‖wλ‖
(C
√

2TrΣ + E ‖X‖)(2 + log(3/δ))

n

= 7(Lλ(PBmwλ)− Lλ(wλ) + Lλ(wλ)− L(f∗)) +K3
a2p

λpn
+

+ 2
72V log(3/δ)

n
+ 16GK1

(C
√

2TrΣ + E ‖X‖)(2 + log(3/δ))

n

√
A(λ)

λ

= 7A(λ) + 7(Lλ(PBmwλ)− Lλ(wλ)) +K3
a2p

λpn
+ 2

72V log(3/δ)

n
+

+ 16GK1
(C
√

2TrΣ + E ‖X‖)(2 + log(3/δ))

n

√
A(λ)

λ
(D.1)

Using the fact that Lλ is quadratic and expanding around the the minimum wλ we have

Lλ(Pmwλ)− Lλ(wλ) = ‖(Σ + α)1/2(I − Pm)wλ‖2 (D.2)

113
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Using Lemma 8 we get the result

λ‖β̂λ,m‖2 + L(β̂clλ,m)−L(f∗) 6 7A(λ) + 7‖(Σ + α)1/2(I − Pm)wλ‖2 +K3
a2p

λpn
+ 2

72V log(3/δ)

n
+

+ 16GK1
(C
√

2TrΣ + E ‖X‖)(2 + log(3/δ))

n

√
A(λ)

λ

. 7A(λ) + 7α
A(λ)

λ
+K3

a2p

λpn
+ 2

72V log(3/δ)

n
+

+ 16GK1
(C
√

2TrΣ + E ‖X‖)(2 + log(3/δ))

n

√
A(λ)

λ
(D.3)

Furthermore, if there exists r ∈ (0, 1] such that A(λ) . λr, then with the choice for ALS
sampling

λ � n−min{ 2
r+1

, 1
r+p
}

α � n−min{ 2
r+1

, 1
r+p
}

m & n
min{ 2p

r+1
, p
r+p
}

log n

with high probability

L(β̂clλ,m)− L(f∗) . n
−min{ 2r

r+1
, r
r+p
}
.

D.0.2 Logistic Loss

Since logistic loss is not clippable, we prove how the modification of the definition of the
clipping in (4.46) and the similar treatment of the projection term, up to constants, between
square and logistic losses asymptotically lead to the same excess risk bounds. We start
adjusting the proof of Theorem 16.
As explained in subSection 4.5.2, let’s note that we have hf (X)−hclf (X) + 1

n > 0. Therefore
we can simply rewrite the splitting of the error (C.19) as

λ ‖ŵλ‖2 + Ehŵclλ 6 (λ ‖ŵ0‖2 + Ehŵ0
) + (Êhŵ0

− Ehŵ0
) + (Ehŵclλ − Êhŵclλ ) +

1

n
. (D.4)

Clearly last term 1/n does not spoil the rate and we can proceed as for square loss:
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λ‖β̂λ,m‖2+L(β̂clλ,m)− L(f∗) 6 7(λ‖PBmwλ‖2 + L(PBmwλ)− L(f∗)) +K3
a2p

λpn
+

+
144V log(3/δ)

n
+ 16GK1 ‖wλ‖

(C
√

2TrΣ + E ‖X‖)(2 + log(3/δ))

n
+

1

n

= 7(Lλ(PBmwλ)− Lλ(wλ) + Lλ(wλ)− L(f∗)) +K3
a2p

λpn
+

144V log(3/δ)

n
+

+ 16GK1
(C
√

2TrΣ + E ‖X‖)(2 + log(3/δ))

n

√
A(λ)

λ
+

1

n

= 7A(λ) + 7(Lλ(PBmwλ)− Lλ(wλ)) +K3
a2p

λpn
+

144V log(3/δ)

n
+

+ 16GK1
(C
√

2TrΣ + E ‖X‖)(2 + log(3/δ))

n

√
A(λ)

λ
+

1

n
(D.5)

To deal with the projection term Lλ(PBmwλ)− Lλ(wλ) we do a Taylor expansion

Lλ(PBmwλ)− Lλ(wλ) =
1

2
〈(HL)(w′)(PBmwλ − wλ), (PBmwλ − wλ)〉 (D.6)

where w′ = wλ + t(PBmwλ − wλ) with t ∈ [0, 1] and using the fact that ∇Lλ(wλ) = 0. We
can find the expression of the Hessian H of L in w ∈ H exploiting its definition

〈(HL)(w)v, v〉 =
d2

dt2
L(w + tv)|t=0 =

d

dt
E
[
`′(〈w + tv,X〉, Y )〈v,X〉

]
|t=0

= E
[
`′′(〈w + tv,X〉, Y )(〈v,X〉)2

]
|t=0 6ME

[
〈v,X〉2

]
(D.7)

where M = supτ∈R,y∈Y `
′′(τ, y) and v ∈ H. For the logistic loss we have

`′′(τ, y) = σ(yτ)(1− σ(yτ)) 6
1

4
, ∀τ ∈ R, y ∈ Y

where σ(·) is the sigmoid which is upper bounded by 1. So combining this result with (D.7)
and considering Lλ(·) = L(·) + λ ‖·‖2 we get

(HLλ)(w) 6 Σλ.

Finally we can rewrite (D.6) as

Lλ(PBmwλ)− Lλ(wλ) 6
1

2

∥∥∥Σ
1/2
λ (PBmwλ − wλ)

∥∥∥2
(D.8)

and proceed exactly as in the case of the square loss (see appendix D.0.1).
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Appendix E

Entropy Numbers and Exponential
Decay

We analyse here the main steps needed to obtain the results for exponential decay in
Theorem 8 and Theorem 11.

E.0.1 Entropy numbers in Hilbert spaces

Let H and K be real Hilbert spaces. For all n ∈ N, n > 1

sup
16k<∞

(
n−1/k

(
Πk
`=1a`(T )

)1/k
)

6 εn(T ) 6 14 sup
16k<∞

(
n−1/k

(
Πk
`=1a`(T )

)1/k
)

(E.1)

where εn(T ) are the entropy numbers, see (3.4.15) of [Carl and Stephani, 1990].
Let X be a random variable on a probability space (Ω,F ,P) taking value in a real Hilbert
space H such that E

[
|〈X, v〉|2

]
is finite for all v ∈ H. Define

T : H → L2(Ω,P) T (v)(ω) = 〈X(ω), v〉

so that Σ = T ∗T is (non-centered) covariance matrix. We assume that Σ is a trace-class
operator and the corresponding eigenvalues have an exponential decay

Σ =

+∞∑
n=1

λn(Σ)vn ⊗ vn λn(Σ) ' 2−2an

where (vn)n is a base of H. Since Σ is trace-class, S is compact, so that by (E.1)

en(T ) ' sup
16k<∞

2−(n−1)/k
(

Πk
`=1an(T )

)1/k

117
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with en(T ) = ε2n−1(T ) the (dyadic) entropy numbers and where by [Carl and Stephani, 1990]

an(T ) = an(|T |) = λn(|T |) = λn(Σ)1/2 ' 2−an.

We have

2−(n−1)/k
(

Πk
`=12−a`

)1/k
= 2

−
(
n−1
k

+
a(k+1)

2

)
.

Observe that the minimum on (0,+∞) of the function

f(x) =

(
n− 1

x
+
ax

2

)
is f(

√
2(n− 1)/a) =

√
2a(n− 1), then

en(T ) ' 2−
√
an.

E.0.2 Entropy numbers of Fr
Given the above calculation we want to upper bound the entropy number of Fr, we recall
here some definitions:

Hr :=
{
f ∈ H : Υ(f) + L(f cl)− L(f∗) 6 r

}
r > r∗

Fr :=
{
` ◦ f cl − ` ◦ f∗ : f ∈ Hr

}
r > r∗

Using the above discussion we obtain

ei(Fr) 6 Gei(Hr) 6 G

√
r

λ
ei(BH) = G

√
r

λ
2−c
√
i

E.0.3 Bound the Rademacher Complexity of Fr
Now we are ready to upper bound the empirical Rademacher Complexity R̂ of Fr:

Lemma 10.

R̂ (Fr) 6
√

log 16

n
log

(
1

λ

)
(3ρ+ 2c3

√
r) (E.2)

where ρ = supf∈Fr ‖f‖L2(D) and ‖f‖L2(D) :=
(

1
m

∑
i f

2 (xi)
)1/2

.

Proof. Using Theorem 7.13 in [Steinwart and Christmann, 2008], we have

R̂ (Fr) 6
√

log 16

n

( ∞∑
i=1

2i/2e2i
(
Fr ∪ {0}, ‖ · ‖L2(D)

)
+ sup
f∈Fr

‖f‖L2(D)

)
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It is easy to see that ei (Fr ∪ {0}) 6 ei−1 (Fr) and e0 (Fr) 6 supf∈Fr ‖f‖L2(D). Since ei (Fr)
is a decreasing sequence with respect to i, together with the lemma above, we know that

ei (Fr) 6 min

{
sup
f∈Fr

‖f‖L2(D),

√
2r

λ
2−c
√
i

}

Even though the second one decays exponentially, it may be much greater than the first
term when 2r/λ is huge for small i s. To achieve the balance between these two bounds, we
use the first one for first T terms in the sum and the second one for the tail. So

R̂ (Fr) 6
√

log 16

n

(
sup
f∈Fr

‖f‖L2(D)

T−1∑
i=0

2i/2 +

√
2r

λ

∞∑
i=T

2i/22−c
√

2i−1

)

The first sum is
√

2
T−1√
2−1

. When T is large enough, the second sum is upper bounded by the

integral ∫ ∞
T

2x/22−c
√

2i−1 dx 6
∫ ∞
T

2x/22−c2
√

2i dx 6
2−c2

√
2T+1

c2 log2(2)
(E.3)

6 c32−c2
√

2T (E.4)

To make the form simpler, we bound
√

2
T−1√
2−1

by 3 · 2T/2, and denote suph∈Fr ‖h‖L2(D) by ρ.

Taking T to be

log2

(
c2

4 log2
2

(
1

λ

))
,

with c4 such that c2c4 > 1/2, we get the upper bound of the form

R̂ (Fr) 6
√

log 16

n

(
3ρ log

(
1

λ

)
+ c3

√
2r

λ
λc2c4

)
6

√
log 16

n
log

(
1

λ

)
(3ρ+ 2c3

√
r)

Now we can directly compute the upper bound for the population Rademacher Complexity
R (Fr) by taking expectation over D ∼ Pm:

Lemma 11.

R (Fr) 6 C1

√
V

n
log2

(
1

λ

)√
r + C2

log2
2(1/λ)

n
(E.5)

where C1 and C2 are two absolute constants.
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Proof.

R (Fr) = E[R̂ (Fr)] 6
√

(log 16)

n
log2

(
1

λ

)(
3E sup

f∈Fr
‖f‖L2(D) + 2c3

√
r

)
(E.6)

By Jensen’s inequality and Corollary A.8.5 in [Steinwart and Christmann, 2008], we have

E sup
f∈Fr

‖f‖L2(D) 6

(
E sup
f∈Fr

‖f‖2L2(D)

)1/2

6

(
E sup
f∈Fr

1

m

m∑
i=1

f2 (xi, yi)

)1/2

6
(
σ2 + 8R (Fr)

)1/2
where σ2 := Ef2. When σ2 > R (Fr) , we have

R (Fr) 6
√

log 16

n
log2

(
1

λ

)
(9σ + 2c3

√
r) (E.7)

6

√
log 16

n
log2

(
1

λ

)
(9
√
V rθ + 2c3

√
r) (E.8)

6 c5

√
V

n
log2

(
1

λ

)√
r (E.9)

The second inequality is because Ef2 6 V (Ef)θ and Ef 6 r for f ∈ Fr. When σ2 6 R (Fr) ,
we have

R (Fr) 6
√

log 16

n
log2

(
1

λ

)(
9
√
R (Fr) + 2c3

√
r
)

6 (9 + 2c3)c3

√
log 16

n
log2

(
1

λ

)√
r + (9 + 2c3)2 (log 16) log2

2(1/λ)

n

The last inequality can be obtained by dividing the formula into two cases, either R (Fr) < r
or R (Fr) > r and then take the sum of the upper bounds of two cases. Combining all these
inequalities, we finally obtain an upper bound

R (Fr) 6 C1

√
V

n
log2

(
1

λ

)√
r + C2

log2
2(1/λ)

n

where C1 and C2 are two absolute constants.
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Known results

For sake of completeness we recall the following known results, we freely use in the thesis.
The following two results provide a tight bound on the effecticbe dimension under the

assumption of a polynomial decay or an exponential decay of the eigenvalues σj of Σ from
[Caponnetto and De Vito, 2007]. We report the proofs for sake of completeness.

Proposition 8 (Proposition 3 in [Caponnetto and De Vito, 2007]).
If for some γ ∈ R+ and 1 < β < +∞

σi 6 γi−β

then

dα 6 γ
β

β − 1
α−1/β (F.1)

Proof. Since the function σ/(σ + α) is increasing in σ and using the spectral theorem
Σ = UDU∗ combined with the fact that Tr(UDU∗) = Tr(U(U∗D)) = TrD

dα = Tr(Σ(Σ + αI)−1) =

∞∑
i=1

σi
σi + α

6
∞∑
i=1

γ

γ + iβα
(F.2)

The function γ/(γ + xβα) is positive and decreasing, so

dα 6
∫ ∞

0

γ

γ + xβα
dx

= α−1/β

∫ ∞
0

γ

γ + τβ
dτ

6 γ
β

β − 1
α−1/β (F.3)

since
∫∞

0 (γ + τβ)−1 6 β/(β − 1).
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Proposition 9 (Exponential eigenvalues decay).
If for some γ, β ∈ R+σi 6 γe−βi then

dα 6
log(1 + γ/α)

β
(F.4)

Proof.

dα =
∞∑
i=1

σi
σi + α

=
∞∑
i=1

1

1 + α/σi
6
∞∑
i=1

1

1 + α′eβi
6
∫ +∞

0

1

1 + α′eβx
dx (F.5)

where α′ = α/γ. Using the change of variables t = eβx we get

(F.5) =
1

β

∫ +∞

1

1

1 + α′t

1

t
dt =

1

β

∫ +∞

1

[1

t
− α′

1 + α′t

]
dt =

1

β

[
log t− log(1 + α′t)

]+∞

1

=
1

β

[
log
( t

1 + α′t

)]+∞

1
=

1

β

[
log(1/α′) + log(1 + α′)

]
(F.6)

So we finally obtain

dα 6
1

β

[
log(γ/α) + log(1 + α/γ)

]
=

log(1 + γ/α)

β
(F.7)

The following result provides a bound on the entropy number and it is the content of
Theorem 15 in [Steinwart et al., 2009]. We recall that, given a bounded operator A between
two Hilbert spaces H1 and H2, we denote by ej(A) the (dyadic) entropy numbers of A

and by P̂H = 1
n

∑n
i=1 δxi the empirical (marginal) measure associated with the input data

xi, . . . , xn. Regard the data matrix X̂ as the inclusion operator id : H → L2(P̂ )

(idw)(xi) = 〈w, xi〉 i = 1, . . . , n

Lemma 12. Let p ∈ (0, 1). Then

E
P̂

[ej(id : H → L2(P̂ ))] ∼ j−
1
2p (F.8)

if and only if

σj ∼ j−
1
p (F.9)

As regard results in Section 5, from [Bartlett et al., 2006] we report the following lemma:

Lemma 13. For any nonnegative loss function φ, any measurable f : H → R, and any
probability distribution on H× {±1}

ψ
(
L0−1(f)− L∗0−1

)
6 Lφ(f)− L∗φ.

In particular, for square, hinge and logistic losses we can write
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• square loss: L0−1(f)− L∗0−1 6
√
Lsquare(f)− L∗square,

• hinge loss: L0−1(f)− L∗0−1 6 Lhinge(f)− L∗hinge,

• logistic loss: L0−1(f)− L∗0−1 6 2
√
Llogistic(f)− L∗logistic.

Under the assumption of low noise we can improve the above bounds in Lemma 13:

Lemma 14 (Theorem 3 in [Bartlett et al., 2006]). Suppose that P has noise exponent
0 6 γ 6 1, and that φ is classification-calibrated (which is the case for square, hinge and
logistic losses). Then there is a c > 0 such that for any f : X → R

c
(
L0−1(f)− L∗0−1

)γ
ψ

((
L0−1(f)− L∗0−1

)1−γ
2c

)
6 Lφ(f)− L∗φ

where ψ(x) = x2 when φ is the square loss, ψ(x) = x when φ is the hinge loss and ψ(x) > x
2

when φ is the logistic loss.

We copy also this results from [Steinwart and Christmann, 2008], linking the variance bound
in Assumption 7 with low noise condition in Assumption 8 for hinge loss:

Lemma 15. [Theorem 8.24 [Steinwart and Christmann, 2008]] (Variance bound for the
hinge loss). Let P be a distribution on X × Y that has noise exponent γ ∈ [0, 1]. Moreover,
let f∗ : X → [−1, 1] be a fixed Bayes decision function for the hinge loss `. Then, for all
measurable f : X → R, we have

E
(
` ◦ f cl − ` ◦ f∗

)2
6 6c

(
E
(
` ◦ f cl − ` ◦ f∗

))γ
where c is the constant appearing in (5.1).
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Appendix G

Experiments: datasets and tuning

Here we report further information on the used data sets and the set up used for parameter
tuning.
For Nyström SVM with Pegaos we tuned the kernel parameter σ and λ regularizer with a
simple grid search (σ ∈ [0.1, 20], λ ∈ [10−8, 10−1], initially with a coarse grid and then more
refined around the best candidates). An analogous procedure has been used for K-SVM with
its parameters C and γ. The details of the considered data sets and the chosen parameters
for our algorithm in Table 6.1 and G.1 are the following:
SUSY (Table 6.1 and G.1, n = 5× 106, d = 18): we used a Gaussian kernel with σ = 4,
λ = 3× 10−6 and mALS = 2500, muniform = 2500.
Mnist binary (Table 6.1 and G.1, n = 7 × 104, d = 784): we used a Gaussian kernel
with σ = 10, λ = 3× 10−6 and mALS = 15000, muniform = 20000.
Usps (Table 6.1 and G.1, n = 9298, d = 256): we used a Gaussian kernel with σ = 10,
λ = 5× 10−6 and mALS = 2500, muniform = 4000.
Webspam (Table 6.1 and G.1, n = 3.5× 105, d = 254): we used a Gaussian kernel with
σ = 0.25, λ = 8× 10−7 and mALS = 11500, muniform = 20000.
a9a (Table 6.1 and G.1, n = 48842, d = 123): we used a Gaussian kernel with σ = 10,
λ = 1× 10−5 and mALS = 800, muniform = 1500.
CIFAR (Table 6.1 and G.1, n = 6 × 104, d = 400): we used a Gaussian kernel with
σ = 10, λ = 2× 10−6 and mALS = 20500, muniform = 20000.
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Table G.1: Comparison between ALS and uniform sampling. To achieve similar accuracy,
uniform sampling usually requires larger m than ALS sampling. Therefore, even if it does
not need leverage scores computations, Nyström-Pegasos with uniform sampling can be
more expensive both in terms of memory and time (in seconds).

Nyström-Pegasos (ALS) Nyström-Pegasos (Uniform)

Datasets c-err t train t pred c-err t train t pred

SUSY 20.0%± 0.2% 608± 2 134± 4 20.1%± 0.2% 592± 2 129± 1
Mnist bin 2.2%± 0.1% 1342± 5 491± 32 2.3%± 0.1% 1814± 8 954± 21
Usps 3.0%± 0.1% 19.8± 0.1 7.3± 0.3 3.0%± 0.2% 66.1± 0.1 48± 8
Webspam 1.3%± 0.1% 2440± 5 376± 18 1.3%± 0.1% 4198± 40 1455± 180
a9a 15.1%± 0.2% 29.3± 0.2 1.5± 0.1 15.1%± 0.2% 30.9± 0.2 3.2± 0.1
CIFAR 19.2%± 0.1% 2408± 14 820± 47 19.0%± 0.1% 2168± 19 709± 13



127



128 APPENDIX H. PLUG-IN CLASSIFIERS: MAIN PROOFS

Appendix H

Plug-in Classifiers: Main Proofs

H.1 Proofs of Section 7

Proof of Lemma 4. Let’s call D(gθ∗) := d0 + d1E[η(X)1{η(x) > θ∗}] + d2P[η(x) > θ∗] and
D(g) := d0 + d1E[η(X)1{g(X) = 1}] + d2P[g(X) = 1], we have

U(c,d)(gθ∗)−U(c,d)(g) =

=
c0 + c1E[η(X)1{η(x) > θ∗}] + c2P[η(x) > θ∗]

D(gθ∗)
− c0 + c1E[η(X)1{g(X) = 1}] + c2P[g(X) = 1]

D(g)

=
c1E[(η(X)− θ∗)(1{η(x) > θ∗} − 1{g(X) = 1})] + (c1θ

∗ + c2)(P[η(x) > θ∗]− P[g(X) = 1])

D(gθ∗)
+

+
(c0 + c1E[η(X)1{g(X) = 1}] + c2P[g(X) = 1])(d0 + d1E[η(X)1{g(X) = 1}] + d2P[g(X) = 1])

D(g)D(gθ∗)

− (c0 + c1E[η(X)1{g(X) = 1}] + c2P[g(X) = 1])(d0 + d1E[η(X)1{η(x) > θ∗}] + d2P[η(x) > θ∗])

D(g)D(gθ∗)

=
c1E[(η(X)− θ∗)(1{η(x) > θ∗} − 1{g(X) = 1})] + (c1θ

∗ + c2)(P[η(X) > θ∗]− P[g(X) = 1])

D(gθ∗)
+

+
(c0 + c1E[η(X)1{g(X) = 1}] + c2P[g(X) = 1])(d1E[η(X)(1{g(X) = 1} − 1{η(X) > θ∗})]+

D(g)D(gθ∗)

d2(P[g(X) = 1]− P[η(X) > θ∗]))

=
c1E[(η(X)− θ∗)(1{η(X) > θ∗} − 1{g(X) = 1})] + (c1θ

∗ + c2)(P[η(X) > θ∗]− P[g(X) = 1])

D(gθ∗)
+

+ U(c,d)(g)
d1E[η(X)(1{g(X) = 1} − 1{η(X) > θ∗})] + d2(P[g(X) = 1]− P[η(X) > θ∗])

D(gθ∗)

=
c1E[|η(X)− θ∗|1{gθ∗(X) 6= g(X)}]

D(gθ∗)
+ U(c,d)(g)

d1E[η(X)(1{g(X) = 1} − 1{η(X) > θ∗})]
D(gθ∗)

+

+ (c1θ
∗ + c2 − d2U(c,d)(g))

P[η(X) > θ∗]− P[g(X) = 1]

D(gθ∗)

=
c1E[|η(X)− θ∗|1{gθ∗(X) 6= g(X)}]

D(gθ∗)
+

+ d1(U(c,d)(gθ∗)−U(c,d)(g))
E[η(X)1{η(X) > θ∗} − 1{g(X) = 1}]

D(gθ∗)
+

+ d2(U(c,d)(gθ∗)−U(c,d)(g))
P[η(x) > θ∗]− P[g(X) = 1]

D(gθ∗)
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where we added and subtracted c0+c1E[η(X)1{g(X)=1}]+c2P[g(X)=1]
D(gθ∗ ) and we used the fact

that U(c,d) (gθ∗) = c2+θ∗c1
d2+θ∗d1

(see Lemma 16). Solving for U(c,d) we get

U(c,d)(gθ∗)−U(c,d)(g) =
c1E[|η(X)− θ∗|1{gθ∗(X) 6= g(X)}]

d0 + d1E[η(X)1{g(X) = 1}] + d2P[g(X) = 1]

that is non-negative under Assumption 4.

Lemma 16 (Lemma 4.1 in [Gaucher et al., 2022]). The utility function given in (7.2) and
evaluated for gθ∗ takes the form

U (gθ∗) =
c2 + θ∗c1

d2 + θ∗d1
.

Proof. Using the optimality condition (7.3) for θ∗ we have

E[η(X)1{η(X) > θ∗}] = E[(η(X)−θ∗)+]+θ∗P[η(X) > θ∗] =
c0d1 − c1d0

c2d1 − c1d2
θ∗+

c0d2 − c2d0

c2d1 − c1d2
+θ∗P[η(X) > θ∗].

Then, we can rewrite U(c,d)(gθ∗) as

U(c,d)(gθ∗) =
c0(c2d1 − d2c1) + c1(θ∗(c0d1 − d0c1) + (c0d2 − d0c2)) + (c2 + θ∗c1)(c2d1 − d2c1)P[η(X) > θ∗]

d0(c2d1 − d2c1) + d1(θ∗(c0d1 − d0c1) + (c0d2 − d0c2)) + (d2 + θ∗d1)(c2d1 − d2c1)P[η(X) > θ∗]

Simplifying some terms and factorizing the numerator and the denominator by (c2 + θ∗c1)
and (d2 + θ∗d1) respectively, we obtain

U(c,d) (gθ∗) =
c2 + θ∗c1

d2 + θ∗d1
· (c0d1 − d0c1) + (c2d1 − d2c1)P[η(X) > θ∗]

(c0d1 − d0c1) + (c2d1 − d2c1)P[η(X) > θ∗]
=
c2 + θ∗c1

d2 + θ∗d1
.

H.2 Proofs of Section 8

Proof of Proposition 5. We already know we can write the ”excess risk” as

U(gθ∗)−U(ĝ) =
c1E[|η(X)− θ∗|1{gθ∗(X) 6= ĝ(X)}]

d0 + d1E[η(X)1{ĝ(X) = 1}] + d2P[ĝ(X) = 1]
.

We can rewrite the numerator as:

E[|η(X)−θ∗|1{gθ∗(X) 6= ĝ(X)}] =

= E[(η(X)− θ∗)1{η(X) > θ∗, η̂(X) < θ̂}] + E[(θ∗ − η(X))1{η(X) < θ∗, η̂(X) > θ̂}]

6 E[(η(X)− θ∗ − η̂(X) + θ̂)1{η(X) > θ∗, η̂(X) < θ̂}]+

+ E[(θ∗ − η(X)− θ̂ + η̂(X))1{η(X) < θ∗, η̂(X) > θ̂}]

6 ‖η − η̂‖1 + |θ∗ − θ̂|.
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Then we obtain

U(gθ∗)−U(ĝ) 6 c1
‖η − η̂‖1 + |θ∗ − θ̂|

d0 + d1E[η(X)1{ĝ(X) = 1}] + d2P[ĝ(X) = 1]
.

We start by controlling |θ∗ − θ̂|. Define θ̄ such that

R̂(θ̄) = 0, with R̂(θ) =
c0d1 − c1d0

c2d1 − c1d2
θ +

c0d2 − c2d0

c2d1 − c1d2
− ÊN (η̂(X)− θ)+ (H.1)

with θ̂ an estimator of θ̄ (for instance the output of a bisection algorithm applied to
R̂(θ)) and ÊN is an expectation taken with respect to the empirical measure 1

N

∑n+N
i=n+1 δXi

evaluated on unlabelled data.
We can decompose

EDUN |θ
∗ − θ̂| 6 EDUN |θ̄ − θ̂|+ EDUN |θ̄ − θ

∗|

The first term is simply an optimization error related with the chosen algorithm to solve
R̂(θ) = 0. Notice that R̂(θ) is continuous on [0, 1] and R̂(0) < 0, R̂(1) > 0 thanks to the
assumption in Eq. (8.2), then classical analysis of the bisection algorithm implies that
|θ̄ − θ̂| 6 2−Kmax almost surely.
To bound |θ̄ − θ∗| we mimic the proof of Proposition 3 in [Chzhen, 2019a].

|θ̄ − θ∗| = c2d1 − c1d2

c0d1 − c1d0

∣∣∣∣∫ 1

θ∗
(1− Fη(t))dt−

∫ 1

θ̄
(1− F̂η̂(t))dt

∣∣∣∣ (H.2)

Consider θ∗ > θ̄:∣∣∣∣∫ 1

θ∗
(1− Fη(t))dt−

∫ 1

θ̄
(1− F̂η̂(t))dt

∣∣∣∣ 6 ∣∣∣∣∫ 1

θ∗
(1− Fη(t))dt−

∫ 1

θ∗
(1− F̂η̂(t))dt

∣∣∣∣
6

∣∣∣∣∫ 1

θ∗
(F̂η̂(t)− Fη(t))dt

∣∣∣∣ 6 ∫ 1

θ∗

∣∣∣F̂η̂(t)− Fη(t)∣∣∣ dt 6 ∫ 1

0

∣∣∣F̂η̂(t)− Fη(t)∣∣∣ dt 6 ‖Fη̂ − Fη‖1
Consider θ∗ 6 θ̄:∣∣∣∣∫ 1

θ∗
(1− Fη(t))dt−

∫ 1

θ̄
(1− F̂η̂(t))dt

∣∣∣∣ 6 ∣∣∣∣∫ 1

θ̄
(1− Fη(t))dt−

∫ 1

θ̄
(1− F̂η̂(t))dt

∣∣∣∣
6

∣∣∣∣∫ 1

θ̄
(F̂η̂(t)− Fη(t))dt

∣∣∣∣ 6 ∫ 1

θ̄

∣∣∣F̂η̂(t)− Fη(t)∣∣∣ dt 6 ∫ 1

0

∣∣∣F̂η̂(t)− Fη(t)∣∣∣ dt 6 ‖F̂η̂ − Fη‖1
So we have

|θ̄ − θ∗| = c2d1 − c1d2

c0d1 − c1d0

∣∣∣∣∫ 1

θ∗
(1− Fη(t))dt−

∫ 1

θ̄
(1− F̂η̂(t))dt

∣∣∣∣ 6 c2d1 − c1d2

c0d1 − c1d0
‖F̂η̂ − Fη‖1
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Now we can introduce also F̂η that is the empirical cumulative distribution of η(X) based
on DUN . Using the triangular inequality again we get

‖F̂η̂ − Fη‖1 6 ‖Fη − F̂η‖1 + ‖F̂η̂ − F̂η‖1

Following the reasoning in [Chzhen, 2019a], we can concentrate the first term using Bern-
stein’s inequality. Let p(t) = P (η(X) > t), we have:

EDUN

∣∣∣P (η(X) > t)− P̂N (η(X) > t)
∣∣∣ =

∫ ∞
0

PDUN

(∣∣∣P (η(X) > t)− P̂N (η(X) > t)
∣∣∣ > x

)
dx

6 2

∫ ∞
0

exp

(
− Nx2

2
(
p(t) + 1

3x
)) dx

with P̂N the empirical measure 1
N

∑n+N
i=n+1 δXi evaluated on the unlabelled data.

Furthermore, we can write for the inner integral

∫ ∞
0

exp

(
− Nx2

2
(
p(t) + 1

3x
)) dx =

(∫ 3p(t)

0
+

∫ ∞
3p(t)

)
exp

(
− Nx2

2
(
p(t) + 1

3x
)) dx

6
∫ 3p(t)

0
exp

(
−N

2x2

4p(t)

)
dx+

∫ ∞
3p(t)

exp

(
−Nx

4

)
dx

6

√
πp(t)

N
+

4

N
.

Therefore, using Fubini’s theorem, we obtain

EDUN

∥∥∥Fη − F̂η∥∥∥
1

=

∫ 1

0
EDUN

∣∣∣P (η(X) > t)− P̂N (η(X) > t)
∣∣∣ dt 6√ π

N

∫ 1

0

√
P (η(X) > t)dt+

4

N
.

Applying Cauchy-Schwarz inequality to the first term on the r.h.s. of the above inequality
we derive the following bound

EDUN

∥∥∥Fη − F̂η∥∥∥
1
6

√
πP(Y = 1)

N
+

4

N
.

It remains to bound
∥∥∥F̂η̂ − F̂η∥∥∥

1
. Let Zi = η (Xi) and Ẑi = η̂ (Xi) for all i = n+ 1, . . . , N ,

then for the second term on the r.h.s. of Eq. (10) we can write

∥∥∥F̂η̂ − F̂η∥∥∥
1

=
1

N

∫ 1

0

∣∣∣∣∣
n+N∑
i=n+1

(
I {Zi 6 t} − I

{
Ẑi 6 t

})∣∣∣∣∣ dt
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This expression corresponds to the Wasserstein-1 distance between empirical measures of

{Zn+1, . . . , Zn+N} and
{
Ẑn+1, . . . , Ẑn+N

}
. Hence, using its alternative definition we get

∥∥∥F̂η̂ − F̂η∥∥∥
1

= inf
ω∈SN

1

N

n+N∑
i=n+1

∣∣∣Zi − Ẑω(i)

∣∣∣ 6 1

N

n+N∑
i=n+1

|η (Xi)− η̂ (Xi)|

where the infimum is taken over all permutations SN of {n+ 1, . . . , n+N}. Finally, since
conditionally on the labelled data DL

n the random variables |η (Xi)− η̂ (Xi)| with i = n+

1, . . . , n+N are i.i.d., then EDUN

∥∥∥F̂η̂ − F̂η∥∥∥
1
6 EDUN ‖η − η̂‖1. Hence,

EDUN ‖F̂η̂ − Fη‖1 6

√
πP(Y = 1)

N
+

4

N
+ ‖η − η̂‖1.

Putting all together

EDUN |θ
∗ − θ̂| 6 c2d1 − c1d2

c0d1 − c1d0

(√
πP(Y = 1)

N
+

4

N
+ ‖η − η̂‖1

)
+ 2−Kmax

As regards the denominator, conditions in 4 assure that d0 > 0. For all the most known
measures that can be represented by (7.2) we have also d2 > 0. Then we get

d0 + d1P[Y = 1, ĝ(X) = 1] + d2P[ĝ(X) = 1] > d0 + (d1 + d2)P[Y = 1, ĝ(X) = 1]

> d0 + min {d1 + d2, 0}P[Y = 1].

So, with K0(P, d0, d1) = 1/(d0 + min {d1 + d2, 0}P[Y = 1]), we obtain the final bound

U(gθ∗)− EDUNU(ĝ) = c1

‖η − η̂‖1 + EDUN |θ
∗ − θ̂|

d0 + d1P[Y = 1, ĝ(X) = 1] + d2P[ĝ(X) = 1]

6 c1K0

(
‖η − η̂‖1 +

c2d1 − c1d2

c0d1 − c1d0

(√
πP(Y = 1)

N
+

4

N
+ ‖η − η̂‖1

)
+ 2−Kmax

)

Finally, taking the expectation EDLn over the labelled dataset we obtain the results.
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Proof of Lemma 6.

U(gθ∗)−U(ĝ)

c1K0
6 E[|η(X)− θ∗|1{gθ∗(X) 6= ĝ(X)}]

6 E[|η(X)− θ∗|1{|η(X)− θ∗| 6 2|η(X)− η̂(X)|}]+

+ E[|η(X)− θ∗|1{|η(X)− θ∗| 6 2|θ̂ − θ∗|}]
6 E[|η(X)− θ∗|1{|η(X)− θ∗| 6 2|η(X)− η̂(X)|}1{|η(X)− θ∗| 6 t}]+

+ E[|η(X)− θ∗|1{|η(X)− θ∗| 6 2|η(X)− η̂(X)|}1{|η(X)− θ∗| > t}]+

+ 2E[|θ̂ − θ∗|1{|η(X)− θ∗| 6 2|θ̂ − θ∗|}]
6 2E[|η(X)− η̂(X)|1{|η(X)− θ∗| 6 t}]+

+ 2E[|η(X)− η̂(X)| |η(X)− η̂(X)|p−1

tp−1
1{|η(X)− θ∗| > t}]+

+ 2|θ̂ − θ∗|P(|η(X)− θ∗| 6 2|θ̂ − θ∗|)

6 2‖η − η̂‖p P (|η(X)− θ∗| 6 t)
1− 1

p + 2
‖η − η̂‖pp
tp−1

+ 21+αM |θ̂ − θ∗|1+α

6 2M
1− 1

p ‖η − η̂‖ptα(1− 1
p

)
+ 2
‖η − η̂‖pp
tp−1

+ 21+αM |θ̂ − θ∗|1+α

Optimizing for t we get (from [Audibert and Tsybakov, 2007], to check...)

U(gθ∗)−U(ĝ)

c1K0
6 2

p+ α

p

( p
α

) α
p+α

M
p−1
p+α ‖η − η̂‖

p(1+α)
p+α

p + 21+αM |θ̂ − θ∗|1+α

To control the last term notice that

|θ̂ − θ∗|1+α 6 2α(|θ̂ − θ̄|1+α + |θ̄ − θ∗|1+α)

As regards the first term, by using the bisection algorithm, we know |θ̂− θ̄| 6 2−Kmax almost
surely, where Kmax is the number of iterations. Then we simply have:

|θ̂ − θ̄|1+α 6 2−(1+α)Kmax a.s.

Let’s focus now on the second term and, similarly to the proof of Proposition 5, we have:

1

B1+α
|θ̄ − θ∗|1+α 6 ‖F̂η̂ − Fη‖1+α

1 6 2α
(
‖Fη − F̂η‖1+α

1 + ‖F̂η̂ − F̂η‖1+α
1

)
. (H.3)

For the first term we use:

EDUN ‖Fη − F̂η‖
1+α
1 = EDUN

(∫ 1

0
|P (η(X) > t)− P̂N (η(X) > t)|dt

)1+α

6
∫ 1

0
EDUN |P (η(X) > t)− P̂N (η(X) > t)|1+αdt.
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and, with p(t) = P (η(X) > t), we get:

EDUN |P (η(X) > t)− P̂N (η(X) > t)|1+α

=

∫ +∞

0
PDUN

(
|P (η(X) > t)− P̂N (η(X) > t)|1+α > x

)
dx

=

∫ +∞

0
PDUN

(
|P (η(X) > t)− P̂N (η(X) > t)| > x

1
1+α

)
dx

=

∫ +∞

0
PDUN

(
|P (η(X) > t)− P̂N (η(X) > t)| > u

)
(1 + α)uαdu

6 2(1 + α)

∫ +∞

0
exp

(
− Nu2

2(p(t) + 1
3u)

)
uαdu

= 2(1 + α)

(∫ 3p(t)

0
uα exp

(
−Nu

2

4p(t)

)
du+

∫ +∞

3p(t)
uα exp

(
−Nu

4

)
du

)

6 (1 + α)

((
4p(t)

N

) 1+α
2

Γ

(
1 + α

2

)
+ 2

(
4p(t)

N

)1+α

Γ (1 + α)

)

Finally

EDUN ‖Fη − F̂η‖
1+α
1 6 (1 + α)

∫ 1

0

(
4p(t)

N

) 1+α
2

Γ

(
1 + α

2

)
+ 2

(
4p(t)

N

)1+α

Γ (1 + α) dt

6 4α+2(1 + α)

(√
P (Y = 1)

N
1+α
2

Γ

(
1 + α

2

)
+
P (Y = 1)

N1+α
Γ (1 + α)

)

For the second term in Eq. (H.3), similarly to the proof of Proposition 5, we have:

∥∥∥F̂η̂ − F̂η∥∥∥1+α

1
=

(
inf
ω∈SN

1

N

n+N∑
i=n+1

∣∣∣Zi − Ẑω(i)

∣∣∣)1+α

6

(∑n+N
i=n+1 |η (Xi)− η̂ (Xi)|

N

)1+α

6

∑n+N
i=n+1 |η (Xi)− η̂ (Xi)|1+α

N
.

Taking the expectation both sides we obtain:

EDUN

∥∥∥F̂η̂ − F̂η∥∥∥1+α

1
6 ‖η − η̂‖1+α

1+α .
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Putting things together we recover the final bound:

U(gθ∗)−U(ĝ)

c1K0
62

p+ α

p

( p
α

) α
p+α

M
p−1
p+α ‖η − η̂‖

p(1+α)
p+α

p + 21+3αMK1+α
1 ‖η − η̂‖1+α

1+α

+ 25+5αMK1+α
1 (1 + α)

(√
P (Y = 1)

N
1+α
2

Γ

(
1 + α

2

)
+
P (Y = 1)

N1+α
Γ (1 + α)

)
+M21+2α2−(1+α)Kmax .
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