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a b s t r a c t

High-Risk neuroblastoma (NB) survival rate is still <50%, despite treatments being more and more
aggressive. The biggest hurdle liable to cancer therapy failure is the drug resistance by tumor cells that
is likely due to the intra-tumor heterogeneity (ITH). To investigate the link between ITH and therapy
resistance in NB, we performed a single cell RNA sequencing (scRNAseq) of etoposide and cisplatin resis-
tant NB and their parental cells. Our analysis showed a clear separation of resistant and parental cells for
both conditions by identifying 8 distinct tumor clusters in etoposide-resistant/parental and 7 in cisplatin-
resistant/parental cells. We discovered that drug resistance can affect NB cell identities; highlighting the
bi-directional ability of adrenergic-to-mesenchymal transition of NB cells. The biological processes driv-
ing the identified resistant cell subpopulations revealed genes such as (BARD1, BRCA1, PARP1, HISTH1 axis,
members of RPL family), suggesting a potential drug resistance due to the acquisition of DNA repair
mechanisms and to the modification of the drug targets. Deconvolution analysis of bulk RNAseq data
from 498 tumors with cell subpopulation signatures showed that the transcriptional heterogeneity of
our cellular models reflected the ITH of NB tumors and allowed the identification of clusters associated
with worse/better survival.
Our study demonstrates the distinct cell populations characterized by genes involved in different bio-

logical processes can have a role in NB drug treatment failure. These findings evidence the importance of
ITH in NB drug resistance studies and the chance that scRNA-seq analysis offers in the identification of
genes and pathways liable for drug resistance.

� 2022 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Neuroblastoma (NB) is a clinically heterogeneous pediatric
tumor of the sympathetic nervous system that accounts for 15%
of total cancer-related childhood [1]. In the last years, the identifi-
cation of diverse genomic markers has contributed to the risk strat-
ification and improvement of survival rate of NB patients [2].
Indeed, several recurrent segmental chromosomal alterations have
been demonstrated to discriminate between low-risk and high-risk
patients [2–4]. Additionally, genome-wide association studies,
high-throughput sequencing and microarray gene expression-
based studies have identified multiple genetic changes that charac-
terize NB both hereditable and somatically acquired [5–8] and that
are promising prognostic predictors and therapeutic targets.
Genetic alterations occurring in non-coding DNA such as TERT rear-
rangements [9] and point mutations in regulatory elements of
transcription factor binding sites [10,11] also contribute to NB
development. Moreover, we recently showed that common genetic
variants of PARP1 gene have potential to predict the failure of ther-
apy for high-risk NB patients [12]. Despite these advances in
genomic research, treatment of NB is still unsuccessful in half of
the patients diagnosed with the high-risk form. The standard
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therapeutic regimen includes 4 consecutive steps: induction
chemotherapy (IC), local control, consolidation, and maintenance
therapy; but there is no doubt that IC is the core of all therapeutic
strategies for NBs. The Society of Pediatric Oncology Europe Neu-
roblastoma Group (SIOPEN) utilizes the COJEC regimen, a combina-
tion of vincristine, carboplatin, etoposide, cyclophosphamide, and
cisplatin, for the cure of high-risk patients [13]. Unfortunately,
the rate of patients that experience chemoresistance or relapse is
still high and alternative therapeutic options in clinical practice
are limited; therefore, there is an urgent need for developing addi-
tional treatment strategies.

Ongoing therapies treat cancer as a homogenous disease.
However, it is now well known that tumors are not, genetically
and phenotypically, a simple monolithic structure of cells, but
they are more complex systems composed of different cellular
entities. Indeed, within the same tumor, cells can adapt in
response to the different selective environmental pressures with
complex genetic and post-translational modifications, giving rise
to the phenomenon of intra-tumor heterogeneity (ITH) [14,15].
ITH currently represents a major obstacle to overcoming the
problem of therapeutic resistance for the majority of human
tumors [16].

During the last years, the understanding and characterization
of ITH were made possible thanks to the analyses of gene
expression and epigenomes’ profiles that can vary among malig-
nant cells in the same tumor [17]. In NB, the analyses of tran-
scriptional and epigenetic profiles of cell lines have
demonstrated that the ITH has mainly denoted by adrenergic
(ADN) and undifferentiated mesenchymal (MES) identities
[18,19]. Recently, the introduction of single-cell sequencing
(sc-seq) technologies has given researchers a new set of tools
to interrogate ITH and to understand the tumor origin and com-
position. Two relevant studies [20,21], by performing a scRNA-
seq analysis of normal developing human adrenal glands and
a series of NB cases, have unraveled the NB founder cell. Both
studies agree that NB cells match different stages along normal
neuroblast differentiation trajectories and that neuroblastomas
containing late, mature neuroblasts, have better prognoses than
neuroblastomas with early neuroblasts. Another interesting
work has applied scRNA-seq to demonstrate that cultured cell
lines recapitulate the heterogeneity observed among malignant
cells in tumors, suggesting thus their use for cancer research
[22].

Several recent studies have highlighted the impact of monocel-
lular transcriptomics to understand the molecular mechanisms
underlying ITH that promote cancer chemoresistance [23]. In triple
negative breast cancer, it has been shown that transcriptional pro-
files were acquired by reprogramming in response to chemother-
apy [14], and in cell mantle lymphoma (MCL) cell markers have
been identified, including a set of genes associated with immune
escape and drug resistance [24]. In addition, an increase in ITH
has been also found in small cell lung tumors resistant to cytotoxic
agents via scRNA-seq approach, suggesting that resistance to treat-
ment is characterized by the appearance of coexistent subsets of
cells with concurrent heterogeneous gene expression [15]. These
studies suggest that the characterization of tumor heterogeneity
through scRNA-seq is crucial to understanding the molecular
mechanisms underlying the drug resistance.

So far, none has employed this advanced technology to study
the link between ITH and therapy resistance in NB. The challenge
is to unravel which are the molecular pathways and genes that
drive a single cell to give rise to a chemoresistant clone and act
accordingly on high-risk NB therapeutic failure. Here, we perform
scRNA-seq analyses of two high-risk NB cell lines resistant to cis-
platin and etoposide, respectively, in order to provide novel
insights into drug resistance in NB.
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2. Material and methods

2.1. Cell culture

TheMYCN-amplified human stage-IV HTLA-230 NB cell line was
obtained from (Gaslini Institute, Genoa, Italy). HTLA-230 etoposide
resistant (ER) was selected by treating HTLA-230 cells, by incubat-
ing the cells with gradually increasing concentrations of etoposide
(Calbiochem, Merck KGaA, Darmstadt, Germany) up to 1.25 lM
(dose comparable to that clinically used) for 6 months. Cells were
grown in RPMI 1640 supplemented with 10% heat-inactivated fetal
bovine serum (Sigma-Aldrich), 2 mM L-glutamine, penicillin
(100U/ml) and streptomycin (100 lg/ml) (Invitrogen), 1% sodium
pyruvate (Sigma-Aldrich), and 1% of aminoacid solution (Sigma-
Aldrich) at 37 �C, under 5% CO2 in a humidified atmosphere.
HTLA-230 ER were grown in the same conditions of HTLA-230 with
1.25 lM Etoposide. The MYCN-amplified, human stage IV, 7q21
gain, UKF-NB-4 NB cell line, was established from the Goethe
University in Frankfurt amMain, Germany. The UKF-NB-4 cisplatin
resistant (CDDP) cell line was established from parental UKF-NB-4
cells by incubating t with gradually increasing concentrations of
CDDP. The cells were grown at 37 �C and 5% CO2 in Iscove’s mod-
ified Dulbecco’s medium (IMDM) with 10% bovine serum. UKF-NB-
4 CDDP cells were grown in the same conditions of UKF-NB-4 with
CDDP (100 ng/mL).
2.2. Single-cell RNA sequencing (scRNAseq)

Single-cell mRNA sequencing was performed according to stan-
dard 10x Genomics 30 v3.1 Single Cell Gene Expression dual index
chemistry guidelines. NB cell lines at 75% confluence in P-100 plate
were collected and counted to determine their viability. We
assessed at least 90–95% of viability before cryopreserving, in a
freezing medium 90% FBS+ 10% DMSO. We aliquoted 2,000,000
cells in 1 mL freezing media into cryovials, we put them in CoolCell
(at room temperature) and then into a �80 �C freezer. The CoolCell
ensures that the temperature decreases steadily by 1 �C/minute.
After approximately 24 h, we removed the cryovials from the Cool-
Cell and we transferred them into liquid nitrogen till the process-
ing. Samples were thawed according to 10x genomics guidelines.
Cells were washed, filtered, and counted. Cells were loaded in a
concentration of 700–1200 cells/ll on a 10x Genomics chip, and
the chip was run on a Chromium controller to initiate GEM forma-
tion. Library preparation was performed, following standard 10x
Genomics guidelines to generate Gene Expression (GEX) libraries.
The resulting DNA libraries were paired-end sequenced on an Illu-
mina Novaseq S4 with an Illumina 2 � 150 bp kit, to obtain an
average of 100 K reads per cell for the GEX library.
2.3. Processing of scRNA-seq data

FASTQ files were generated from BCL files with mkfastq from
Cell Ranger v6 [25] (10� Genomics). Cell barcode filtering, align-
ment of reads and UMI counting were performed using Cell Ranger
v6.0 (10� Genomics). UMI counts were imported into R with the
Seurat package for quality control (QC) and analysis [26]. Cells
were removed from the analysis if <2000 distinct genes, 20,000
counts or >30% of reads mapping to mitochondrial genes were
detected. We further filtered out cells with >20% of reads mapping
to the largest gene. A total of 4140 cells for UKF-NB-4 and UKF-NB-
4 CDDP and 3618 cells for HTLA-230 and HTLA-230 ER passed the
QC filters and were brought forward. We scored each cell based on
the expression of G2/M and S phase markers using the Seurat
CellCycleScoring function [27]. Data were normalized, scaled and
log-transformed using the Seurat SCTransform function [28] and,
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to remove confounding sources of variation, percent of mitochon-
drial genes, read counts and cell cycle scores were regressed out
during the normalization step. Data were clustered using the near-
est neighbour algorithm and the FindClusters function with a res-
olution of 0.5. Uniform Manifold Approximation and Projection
(UMAP) and t-distributed stochastic neighbor embedding (tSNE)
dimensionality reduction were carried out with default methods
implemented in Seurat and cells were colored according to the
gene signatures on a dimensional reduction plot with the Fea-
turePlot function. Gene markers (differentially expressed genes)
were determined by comparing each cluster with all the remaining
clusters using a wilcoxon rank sum test. Gene markers for every
cluster compared to all remaining cells in UKF-NB-4 and HTLA-
230 parental and UKF-NB-4 CDDP and HTLA-230 ER resistant cells
are reported in Table S1. Only genes detected in a minimum frac-
tion (25%) of cells in either of the two conditions were tested and
those with a positive fold change and false discovery rate (FDR)
adjusted P < 0.01 were reported.

2.4. Gene set enrichment analysis

Enrichment analysis of adrenergic (ADN) and undifferentiated
mesenchymal (MES) signatures was performed with Fisher tests
comparing the gene markers of each cluster (as defined above)
with a list of genes from literature [18,19]. This list of genes is
the result of the merge of AND and MES genes from above cited
Boeva and van Groningen works. The full list is reported in
Table S2 representing the two cell lineages that typify NB tumors,
using the whole set of gene markers as background (Fig. 2A, C).
Preferential enrichment of ADN and MES signatures was tested
within each cluster with logistic regression implemented in the
logistf package and enrichment ratios represented in terms of log
of absolute values (Fig. 2B, D). Balloon plots and heatmaps were
produced with the ggplot package. [29] The lists of gene markers
for every cluster (Table S1) these genes were used to query Gene
Ontology databases. The functional enrichment analysis tool Web-
Gestalt (WEBbased GEne SeT AnaLysis Toolkit) was used to detect
significant enrichments for Gene Ontology filtered for non-
redundant biological pathways and affinity propagation. The
enrichment analysis was performed with hypergeometric test
using FDR � 0.01 and 10 as a minimum number of genes for a cat-
egory. Then, to attenuate the redundancy of biological terms
obtained in each subcellular cluster, we use REVIGO web tool
[https://revigo.irb.hr/] Data generated during this analysis are
included in Tables S4 and S5. The map of the GO processes was
generated by GOView implemented in WebGestalt including the
GO processes obtained by our enrichment analysis with
FDR < 1 � 10�5.

2.5. Deconvolution of bulk RNA-seq datasets and correlation analyses
with clinical data

CIBERSORTx [30] was used to deconvolute bulk RNA-seq data-
sets with scRNA-seq-derived cell clusters. Bulk RNAseq data for
498 NB cases with available clinical data was downloaded from
GEO (GSE62564). Top marker genes per single-cell cluster were
selected using an adjusted P < 0.05 and a log2 fold change >0.8
as identified by Seurat. A reference matrix with the average expres-
sion of these top markers per cell cluster (511 genes for UKF-NB-4
CDDP and UKF-NB-4 and 219 genes for HTLA-230 ER and HTLA-
230) was calculated using R base functions. This reference matrix
was then used to deconvolute bulk RNA-seq data with
CIBERSORTx.

Relative cluster abundances inferred from bulk RNAseq data
were correlated with NB clinical data. The enrichment of MYCN
amplification (amplified vs not amplified), age at diagnosis
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(�18 months or <18 months), INSS stage (4 vs 1/2/3/4s) and risk
groups (high-risk vs low/intermediate risk) was tested among clus-
ters with Wilcoxon test. False discovery rate (FDR) adjustment was
used to account for type I errors and significance threshold was set
to FDR = 0.05. Boxplots and heatmaps were produced with ggplot
and pheatmap R packages [29] respectively. Deconvolved cluster
abundances were also tested in relation to overall survival data
in order to identify cluster signatures associated with worse/better
outcomes. Samples were split in two groups (high expression vs
low expression) according to the median of CIBERSORTx absolute
values and Kaplan-Meier curves were compared with log-rank test
implemented in the ggsurv package https://rdocumentation.
org/packages/survminer/versions/0.4.9.

2.6. Cell viability assay

NB cell lines UFK-NB-4 and UFK-NB-4 CDDP and HTLA-230 and
HTLA230 ER were seeded as six replicates into 96-well plates at a
density of 104 cells per well. Cell viability was determined after
24 h, 48 h and 72 h of treatment, by using the 3-(4,5
dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT)
assay, according to the manufacture protocol (Promega, Milan,
Italy). Plates were analyzed with EnVision multimode plate reader
(Perkinelmer). The experiments have been repeated twice.

2.7. Colony formation assay in soft agar

NB cell lines UFK-NB-4 and UFK-NB-4 CDDP and HTLA-230 and
HTLA230 ER cell lines were plated (2 � 105 cells) in 0.35% agar on a
bottom layer of 1% agar in 35-mm dishes of 6-well plates (Corning,
New York, NY, USA). The plates were incubated at 37 �C for 2 weeks
and stained with 0.01% Crystal violet. Colonies with 20 cells or
more were counted. The means and standard deviations were cal-
culated from three independent experiments.

2.8. Real-time (RT)-PCR

The expression levels of genes were analyzed using real-time,
quantitative PCR. Total RNA extraction using TRIzol LS Reagent
(Invitrogen) and cDNA retrotranscription using the SensiFAST
cDNA Synthesis KiT (Bioline) were performed according to the
manufacturer protocol. The cDNA samples were diluted to 20 ng/
ll. Gene-specific primers were designed by using PRIMEREXPRESS
software (Applied Biosystems); a detailed list of primers is pro-
vided in Table S6. RT-PCR was performed using SYBR Green PCR
Master Mix (AppliedBiosystems). All real-time PCR reactions were
performed using the 7900HT Fast Real-Time PCR System (Applied
Biosystems). The experiments were carried out in triplicate for
each data point. The housekeeping gene b -actin was used as the
internal control. Relative gene expression was calculated using
the 2�DCT method, where the DCT was calculated using the differ-
ences in the mean CT between the selected gene and the internal
control (b -Actin). The mean fold change of 2�(average DDCT) was
determined using the mean difference in the DCT between the
gene of interest and the relative internal control.
3. Results

3.1. Cisplatin and etoposide treatment induces cell subpopulations
formation characterized by distinct transcriptome profiles

We performed a single cell RNA-seq (scRNA-seq) of two pairs of
NB cell lines: i) UKF-NB-4 parental and UKF-NB-4 cisplatin resis-
tant (UKF-NB-4 CDDP) cell lines and ii) HTLA-230 parental and
HTLA-230 etoposide resistant (HTLA-230 ER) cell lines. Cisplatin
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and etoposide drugs are included in COJEC treatment of NB
patients [13]. We assessed the induction of Cisplatin and Etoposide
chemoresistance in UFK-NB-4 and HTLA-230 cell lines with viabil-
ity and clonogenic assays (Fig. S1a–d), and gene expression of
noted drugs target genes [31–36] (Fig. S1e-f). Drug resistance sig-
nificantly increases the growth ability of NB cell lines and, more-
over, we observed an increase of the number of cell colonies
upon drug induction compared with parental cells. After data fil-
tering and normalization, we obtained transcription profiles of
1514 UKF-NB-4 CDDP vs 2646 UKF-NB-4 cells and of 1674 HTLA-
230 ER vs 1160 HTLA-230 cells. These cells exhibited distinct tran-
scriptomic profiles, as shown in t-distributed stochastic neighbour
embedding (tSNE) (Fig. 1A,B), and uniform manifold approxima-
tion and projection (UMAP) analyses (Fig. S2a,b). In both cell lines,
drug resistant cells clustered apart from untreated cells (Fig. 1A,B),
indicating that the drug treatment (with cisplatin or etoposide)
significantly affects the transcriptomes of these cell lines.

We then explored the heterogeneity of single-cell transcrip-
tome profiles through high dimensional clustering and identified
three clusters in UKF-NB-4, four clusters in UKF-NB-4 CDDP
(Fig. 1C and Fig. S2c), four clusters in HTLA-230 and four clusters
in HTLA-230ER (Fig. 1D and Fig. S2d). Gene markers for every clus-
ter compared to all remaining cells in UKF-NB-4 and HTLA-230
parental and UKF-NB-4 CDDP and HTLA-230 ER resistant cells are
reported in Table S1. These results provide evidence that NB cell
lines are transcriptionally heterogeneous and that drug resistance
can induce the development of cell subpopulations, thus empha-
sizing the phenomenon of ITH. A validation of the gene signature
of each cluster was performed by RT-PCR (Fig. S3a–d).
Fig. 1. Drug treatment induces cell subpopulations formation with distinct transcriptome
(B) tSNE plot of HTLA-230 in blue and HTLA-230 ER NB cells in pink. (C) tSNE plot of clus
ER cells (each color represents a single clusters of cells). (For interpretation of the refere
article.)
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To further strengthens the ITH between the two drug resistant
NB cells, we analyzed the transcriptome at single cell level of the
UFK-NB4-CDDP and HTLA-230 ER cells and their parental cells
simultaneously. Cisplatin and etoposide resistant NB cell lines
exhibited distinct transcriptomic profiles, clustering apart from
each other, as shown in t-SNE and UMAP analyses in Fig. S4a-b.
Moreover, this analysis identified two distinct clusters in UFK-
NB-4 CDDP and three distinct clusters in HTLA-230 ER, and two
and three distinct clusters in their parental cell lines respectively
(Fig. S4c-d).

3.2. Chemoresistance affects NB cell identity

Two types of phenotypically divergent cells committed adren-
ergic (ADN) cells and undifferentiated mesenchymal (MES) cells
are dominant in NB cell lines and tumors [37,38]. Thus, to under-
stand whether NB cell identity could be involved in chemoresis-
tance, we assessed the enrichment of known ADN and MES
signatures [37,38] in the cell clusters (CL) obtained by the
scRNA-seq analysis.

In the UKF-NB-4 CDDP vs UKF-NB-4 cells, the parental CL0, CL5
and CL6 clusters are significantly enriched in MES and ADN genes
(Fig. 2A and y Table S2) but MES signature resulted preferentially
represented when compared against ADN signature (Fig. 2B and
Table S3). In contrast, all cisplatin resistant clusters are strongly
enriched in ADN genes (Fig. 2A and B Table S2 and Table S3); thus,
the cisplatin seems to induce higher expression of ADN genes.

In the parental HTLA-230 cells, we found all clusters (CL0, CL1,
CL3 and CL7) enriched in ADN genes (Fig. 2C and Table S2) with a
profiles (A) tSNE plot of UKF-NB-4 cells in blue and UKF-NB-4CDDP NB cells in pink.
ter identification of UKF-NB-4 and UKF-NB-4 DDP cells (D) HTLA-230 and HTLA-230
nces to color in this figure legend, the reader is referred to the web version of this
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significant overrepresentation in CL3 and CL7 when compared to
MES signature (Fig. 2D and Table S3). While in the HTLA-230-ER
cells, we found all clusters equally enriched in MES and ADN genes
(Fig. 2C, D and Table 2S and Table S3), these results may highlight a
plasticity potential of etoposide resistant cells, so their ability to
switch from MES or AND identity or vice versa.

3.3. ITH highlights the development of drug potential resistance

We have demonstrated that there is a substantial difference of
subcellular clusters at the transcriptomic level between resistant
and parental cell lines. To infer biological features relevant to each
cluster, we used the markers of each cluster as defined by Seurat
(FDR < 0.01 and logFC > 0, see Methods) to carry out over-
representation analysis against the gene ontology (GO) database
of biological processes. The results were then clustered for affinity
propagation (see Methods). In the Fig. 2E,F are plotted the two
heatmaps summarizing the results of the top 10 significant biolog-
ical processes for each cluster ordered by P-value, the results of
complete GO analysis are reported in the Table S4 and Table S5.

In the UKF-NB-4 cells, we observed two subcellular clusters
characterized by significant biological processes (FDR < 0.01)
(Fig. 2E): the CL0 was characterized by gene pathways involved
in the regulation of DNA and RNA metabolic process and the CL5
by pathways related to tissues and organ development (with terms
such as tissue migration, gastrulation, stem cell differentiation). In
the UKF-NB-4 CDDP cells, all cisplatin resistant clusters showed
significant biological processes (FDR < 0.01). Particularly, CL1 and
CL2 are both characterized by pathways involved in cell cycle reg-
ulation, DNA repair, and protein post-trasdutional modification,
while CL3 and CL4 share a pathway involved in protein mainte-
nance to endoplasmic reticulum.

In the HTLA-230 cells, all clusters showed an enrichment of sig-
nificant biological processes (Fig. 2F). The over expressed genes of
subcellular cluster CL0 are involved in tissues and organ develop-
ment (Fig. 2F and Table S5), those of the CL1 and CL3 in DNA and
RNA metabolic and gene expression processes while the CL7 is
fully characterized by biological processes involved in nervous sys-
tem development and organization. In the HTLA-230 ER cells only
the CL4 results significantly enriched in biological pathways;
mainly involved in regulation of gene expression and protein
post- translational modification. Together these results suggest
that drug treatment induces the acquisition of DNA repair and
post- translational modifications pathways as biological mecha-
nisms liable for drug resistance in NB cells. Full results of GO anal-
ysis are reported in Table S4 and Table S5 while a map showing the
connections among the most significant GO terms (FDR < 1x10-5)
and the other known biological themes is in Fig. S5.

3.4. ITH of NB cell lines can predict neuroblastoma outcome

To analyze the composition and biological programs involved in
drug resistance in a large cohort of NB samples, we used the
expression signatures of each cluster derived from scRNAseq clus-
tering analysis of UKF-NB-4 CDDP vs UFK-NB-4 and HTLA-ER vs
HTLA-230 cells to decompose the transcriptomes of bulk NB
Fig. 2. Enrichment analysis of genes expressed in the cellular clusters. (A) Balloon plot sh
NB-4 CDDP and UKF-NB-4, and (C) in HTLA-230 ER and HTLA-230. Balloon size indicates t
the enrichment test. (B) Plot showing Log(ER) results of comparison analysis of MES and
and (D) HTLA-230 ER and HTLA-230.(E) Enrichment analysis for the top cluster markers in
HTLA-230. Parental and resistant cell lines are delineated by pink and blue boxes respec
least 10 markers in one, were included. Data represents significant results from WebGes
quantile (to avoid highly significant pathways dominating the heatmap). Not significant e
color in this figure legend, the reader is referred to the web version of this article.)
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tumors [39]. By this approach, we observed in NB samples (SEQC
cohort) an ITH comparable to that observed in UKF-NB-4 and
HTLA-230 cell line populations (Fig. 3A, B). Hierarchical clustering
of bulk NB transcriptomes by their relative abundances of individ-
ual cell populations of each cluster indicated the presence of high
ITH. Indeed, we observed that diverse clusters while belonging to
the same cell population are associated with different, positive or
negative, clinical factors. For instance (Fig. 3C) CL0 and CL5 (UKF
NB-4 cells) are associated with high-risk (HR)-NBs (Padj = 9.2 � 10
-9) and low-risk (LR)-NBs (Padj = 2.1 � 10-18), respectively while
CL2 and CL3 (UKF NB4-CDDP cells) are associated with HR-NBs
(Padj = 2 � 10-20) and LR-NBs (Padj = 6.1 � 10-9), respectively. Sim-
ilarly (Fig. 3C), CL3 (belonging to HTLA-230 cells) is associated with
HR-NBs (Padj = 1.6 � 10-12) while CL2 and CL5 (both belonging to
HTLA-230 ER cells) are associated with LR-NBs (Padj = 7.8 � 10-33)
and HR-NBs (Padj = 2 � 10-20), respectively. We also evaluated
other NB clinical parameters with prognostic significance as MYCN
amplification (Fig. 3D), stage (Fig. 3E) and age of tumor onset
(Fig. 3F), and for each CL, we assessed the same clinical association
observed in risk comparison (Fig. 3C).

Notably, in the UKF-NB-4 CDDP cells, CL2 is associated with all
worst prognostic factors evaluated (Fig. 3D,E,F):MYCN amplification
(Padj = 2.7� 10-12), stage 4 (Padj = 6.8� 10-13), and age at diagnosis
(Padj=7.5�10-7) highlighting thepresence of amore aggressive cell
subclone (due to cisplatin treatment) and corroborating the biolog-
ical significance observed in GO analysis (Fig. 2E). In the HTLA-230
ER cells CL5 (Fig. 3D,E,F) is relevantly associated with MYCN ampli-
fication (Padj = 3.6 � 10-19), stage 4 (Padj = 3.3 � 10-15), and age of
onset of NB (Padj = 1.3 � 10-10), suggesting that this cell subclone
might be a more aggressive clone (due to etoposide treatment);
indeed, theGOanalysis (Table S5) showed the enrichmentof biosyn-
thetic and metabolic biological processes.

In addition, we investigated the association of the expression
signatures of each cluster with patient survival. Expectedly, CL1
and CL3 (UKF-NB-4 CDDP) (Fig. S6a,b) and CL2 (Fig. S7a) (HTLA-
230 cells) that are directly associated with good clinical factors
are also significantly associated with favorable prognosis. Interest-
ingly, CL7 of HTLA-230 cells, as mentioned above, characterized by
the expression of genes involved in nervous system development
and organization process (Fig. 2F), is significantly associated with
a high survival rate (Fig. S7c), reinforcing the hypothesis that this
CL is composed of cells more differentiated and less aggressive.
The clusters CL0 (UFK-NB4), CL2 (UFK-NB4 CDDP) (Fig. S6c and
Fig. 3G), and CL3 (HTLA-230) and CL5 (HTLA-230 ER) (Fig. S7b
and Fig. 3H) are associated with bad clinical factors have a signifi-
cant worst prognosis. Notably, CL2 (cisplatin resistant cells) and
CL5 (etoposide resistant cells) signatures might be of clinical rele-
vance in non responders NB patients screening (Fig. 3G,H). These
results emphasize the importance of ITH in drug resistance studies
and the chance that scRNA-seq analysis offers in the identification
of genes and pathways liable for drug resistance.

4. Discussion

The urgent medical need to overcome NB therapy resistance led
us to use, for the first time, the single cell transcriptomic approach
owing the enrichment of ADN and MES signatures in each cluster identified in UKF-
he statistical significance in log scale, color indicates the Enrichment Ratio (ER) from
ADN signatures expressed in the cellular clusters of UKF-NB-4 CDDP and UKF-NB-4
relation to GO terms in UKF-NB-4 CDDP and UKF-NB-4, and (F) in HTLA-230 ER and

tively and clusters are delineated by colored dots. GO gene sets overlapping with at
talt analysis (FDR < 0.01), and shown in color scale ranging from 0 to the 99th data
nrichments (FDR > 0.01) are reported in gray. (For interpretation of the references to



Fig. 3. Neuroblastoma cell type composition deduced from bulk transcriptomes. (A) Hierarchical clustering of SEQC cohort patients based on the relative abundance of UKF-
NB-4 (CL0, CL5, CL6), UFK-NB-4 CDDP (CL1, CL2, CL3, CL4) and (B) HTLA-230 (CL0, CL1, CL3, CL7) and HTLA-230 ER (CL2, CL4, CL5, CL6) cell clusters. Clinical parameters
associated with better and worse prognosis are reported in grey and black, respectively. Boxplots reporting correlations between UKF-NB-4, UFK-NB-4 CDDP, HTLA-230 and
HTLA-230 ER clusters abundances in SEQC patients and risk classification (C), MYCN amplification (D), INSS stages (E) and age at the diagnosis (F). Concerning the latter two
parameters, patients are divided in two groups (individuals classified as stage 4 against those classified as stage 1, 2, 3 and 4 s; individuals older than 18 months against those
younger than 18 months at diagnosis). Grey boxes represent distributions of patients with clinical markers associated with worse prognosis. White boxes represent
distributions of patients with clinical markers associated with a better prognosis. Boxes are ordered to show UKF-NB-4 (CL0, CL5 and CL6), UFK-NB-4 CDDP (CL1, CL2, CL3 and
CL4), HTLA-230(CL0, CL1, CL3 and CL7) and HTLA-230 ER (CL2, CL4, CL5 and CL6) cluster abundances. Kaplan-Meier analysis of Overall Survival (OS) in neuroblastoma
patients according to the absolute abundance of UFK-NB-4 CDDP CL2 (G). HTLA-230 ER CL5 (H) – values were calculated using log-rank test. Significant P-value are indicated
by *(* <0.05 ** <0.01,*** <0.001,****< 1e-04) Ns indicates non significant P-value.
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to examine the link between ITH and therapy resistance in NB. In
this study, we investigate the change of transcriptomic profiles at
single cell levels of NB cell lines parental and resistant to etoposide
and cisplatin drugs that are currently used in the first line treat-
ment of NB patients. The analysis described in this work has
demonstrated the utility of single cell RNA data in: (1) identifying
distinct tumor cell populations that determine the ITH of drug-
resistant and their parental NB cells; (2) discovering the drug resis-
tance effects on NB cell identity; (3) unraveling that ITH of NB cell
lines reflects the cellular composition of NB tumors.

We have identified the concomitant presence of transcription-
ally different subpopulations of cells acquired during cisplatin or
etoposide treatment that clustered apart from parental NB cells,
emphasizing the phenomenon of ITH and the link with chemore-
sistance. Moreover, we also demonstrated that the two
4443
drug-resistant NB cell lines clustered apart from each other, to fur-
ther strengthens the role of ITH in NB drug resistance.

In line with our observation, recent scRNAseq studies, in colon
and in non-small cell lung cancer, report that drug treatment
induces distinct transcriptome phenotypes and unique cell popula-
tions compared to the untreated samples [37,38].

Translating the mechanisms of differentiation between ADN to
MES identity is a key step to better understand the NB biology and
improve the therapeutic management of patients. The differences
in chemoresistance and invasion/migration properties of these
two identities may have important clinical relevance [18,19].
Indeed, MES cells have been already reported as more resistant
after in vitro treatment of NB cells to cisplatin, doxorubicin, and
etoposide compared to ADN cells [18,19], and also that post-
chemotherapy or relapsed NB samples might be enriched in MES
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cells [40]. Unexpectedly, our analysis detected, in the parental
UKF-NB4 cell lines, two cell clusters (CL0 and CL5) significantly
enriched in MES genes while, in those that are cisplatin resistant
(UKF-NB4 CDDP), all clusters were enriched in ADN genes. These
results are in line with past observations indicating that tumors
at relapse are not systematically enriched in MES cells [18], prob-
ably because cells switch from ADN to MES identity under
chemotherapy, and switch back from MES to ADN after treatment,
supporting the idea of plasticity understood as the reversion of cell
identity [41]. Instead, in the parental HTLA-230 cells, we observed
that two clusters are strongly enriched in ADN genes while etopo-
side treatment seems to emphasize NB cells plasticity potential,
showing a significant increase in HTLA-230 ER clusters of both sig-
natures (ADN and MES) and highlighting the bi-directional ability
of NB cells to transdifferentiate [40].

We also performed a gene set enrichment analysis and found
that the diverse subpopulations of cisplatin resistant cell lines
are characterized by biological pathways related to the DNA dam-
age response and protein localization to endoplasmic reticulum
while in both cisplatin and etoposide resistant cells we found sub-
cellular populations enriched in genes involved in post-
translational modification processes. Of note, the alteration of
endoplasmic reticulum functions and epiproteomic modifications
have been recently proposed as the cause of cancer drug resistance
[42,43]. In cisplatin resistant cell clusters, we found BRCA1, BRCA2,
BARD1, PARP1 genes involved in Double Strand Break Repair (DSBR)
pathway that are known to play a relevant role in drug resistance
and in NB therapy [12,44,45]. While surprisingly, we uncovered
several genes belonging to Ribosomal Protein Large (RPL) and Ribo-
somal Protein Small (RPS) genes families. Beyond their essential
roles in ribosome assembly and protein translation, ribosome-
independent functions of ribosomal proteins have also been
greatly appreciated, especially in the study achievements connect-
ing cancer diagnosis and therapy [46]. Indeed, the alkylating and
intercalating agents can induce ribosome biogenesis inhibition,
contributing to their toxic action on cancer cells. This is in agree-
ment with our results that show significant expression of ribosome
protein genes in cisplatin resistant cluster cells [47,48]. Further-
more, we also observed several genes belonging to Histone H1 axis,
known to be a therapeutic target in cancer cell self-renewal [49].
Interestingly, in etoposide resistant clusters we found numerous
genes belonging to PSMB, PSMC, and PSMD proteasome-subunit
families, known to confer drug resistance in diverse cancers [50–
52].

In contrast to the single-cell analysis, previous bulk analyses of
the same cells that are used in this study, did not reveal [53,54] the
above-mentioned pathways or genes. This demonstrates the utility
of scRNA-seq to identify tumor features that were previously
unable to be found. Moreover, unlike what has been observed from
past studies, our scRNA-seq strategy allowed us to highlight, in
both parental cells, metabolic processes of nucleic acids and of
pathways related to cardiac, muscle, respiratory, embryonic and
neuronal tissues development, reflecting the dynamic cell origin
of NB from the neural crest cells.

It is reasonable to believe that the analysis of gene expression
signatures of drug resistance from scRNA-seq clustering integrated
with the transcriptome of a large cohort of NB samples could
advance translational science, corroborating the passage from
in vitro to in vivo. In this regard by a deconvolution analysis of bulk
transcriptomic data from 486 tumors using the expression signa-
ture of cell subpopulations, we observed that the transcriptional
heterogeneity of our cellular models reflected the ITH of NB
tumors. Moreover, the cell populations of CL2 in UKF-NB-4CDDP
and of CL5 in HTLA-230 ER cell lines expressed gene signatures
associated with worse NB patient survival and unfavorable clinical
markers, suggesting their tumor aggressiveness features. These
4444
findings provide evidence that prediction based on single cell gene
expression data may allow the identification of treatment strate-
gies targeting cell population heterogeneity.

We are aware that our analysis has limitations imposed by the
use of cell lines to investigate the ITH, but so far, cultured cell lines
represent the core of cancer research because are simple and con-
trolled systems where to fine-tune the experimental approach.
Indeed, a recent scRNA-seq work, that describes the landscape of
heterogeneity across 198 cell lines from 22 cancer types, demon-
strated that they surprisingly recapitulate the heterogeneity
observed among malignant cells in tumors [22]. In this perspective,
our scRNAseq approach combined with deconvolution analysis of
bulk transcriptomic data from NB tumors provides interesting pre-
liminary results for the understanding of drug resistance in NB.
Whereas further analyses are required, our next intent is to move
from the analysis of effects derived by the in cellulo modelling of
the drug treatment to a more patient-relevant system, using NB
tissues and patient-derived tumor xenograft models.
5. Conclusions

In conclusion, our study demonstrates the distinct cell popula-
tions characterized by expressed genes involved in different bio-
logical processes can have a role in drug resistance in NB
treatment and further support the evidence that single-cell
sequencing allows for a better understanding of the genomic prin-
ciples of tumor heterogeneity and might represent the basis for
more successful tumor treatments.
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