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Abstract

Glutathione (GSH) is one of the most important components of the cellular antioxidant
system, and it is able to exert several pleiotropic functions influencing cell growth,
proliferation, adaptation and death. It has been demonstrated that changes in GSH levels
underlie the pathogenesis of many human diseases, including cancer. In detail, although
on one hand GSH homeostasis plays a protective role from the onset of cancer, on the
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other, it is involved in cancer progression and in therapy resistance. In this review, after
a brief report on the physiological role of GSH, we have focused the attention on its role
in cancer and refractoriness to anticancer therapy giving an update on the preclinical
and clinical studies relied on the compounds targeting GSH system. Based on these

considerations, a deeper knowledge of GSH-dependent network can be crucial to identify

new strategies for preventing and/or curing cancer.
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Introduction

Glutathione (GSH) is mainly present in the cytosol, and
its distribution between the intracellular compartments
is crucial to regulate redox homeostasis, gene expression,
cell signaling and proliferation (Sies 1999). The increase
in GSH content is associated with early cell proliferation
and is crucial to stimulate the shift from GO to G1 phase
of the cell cycle (Lu & Ge 1992). Moreover, it has been
reported that GSH sequestration in the nucleus correlates
with a reduced transcription of genes encoding for stress
and defense proteins and is involved in the modulation of
DNA synthesis (Diaz Vivancos et al. 2010). It is also likely
that the presence of GSH and GSH-related enzymes in the
nucleus (Soboll et al. 1995) can contribute to maintain
nuclear proteins, such as histones and other chromatin-
related proteins, in a reduced state in order to guarantee
chromatin stability and cell cycle progression.

In this context, the glutathionylation of histone H3,
which increases cell proliferation, has been shown to

increase the susceptibility of human breast cancer cells to
doxorubicin treatment (de Luca et al. 2011).

With regard to cancer development and treatment,
a different role of GSH has been described in the
literature. In fact, on one hand GSH is involved in the
detoxification and elimination of carcinogens (Forman
et al. 2009), and on the other hand the elevated levels
of GSH and of other antioxidants detected in different
cancers (i.e. melanoma, hepatocarcinoma, bone marrow,
breast, colon, pancreatic and lung cancer) can contribute
to neoplastic progression and support the acquisition of
drug resistance (Gamcsik et al. 2012, Traverso et al. 2013).

In fact, the anticancer strategy is often based on the
induction of oxidative stress through the administration
of pro-oxidant chemotherapeutic drugs or ionizing
radiation (Pelicano et al. 2004, Holley et al. 2014).
Unfortunately, these approaches, after an initial success,
lead to the onset of chemoresistance due to the increase
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of antioxidant defense (Kim et al. 2019, Domenicotti &
Marengo 2022).

Then, the antioxidant response in cancer is triggered
by the increased production of reactive oxygen species
(ROS) as a result of mitochondrial dysfunctions, metabolic
alterations or long-term anticancer therapy (Sabharwal &
Schumacker 2014) (Fig. 1). It has been demonstrated that
GSH and other antioxidants maintain ROS at physiological
levels stimulating cell survival and proliferation through
the activation of redox signaling pathways (e.g. protein
kinase B (Akt), mitogen-activated protein kinase (MAPK)
and protein kinase C (PKC)) and suppressing cell death
induced by supraphysiological ROS concentrations
(Dickinson & Chang 2011, Marengo et al. 2016).

Biosynthesis and physiological role of GSH

GSH is a tripeptide, consisting of glutamic acid, cysteine
and glycine. The majority of GSH is represented by the
reduced form (GSH), while the oxidized form (glutathione
disulfide, GSSG) is found to be less than 1% of the total GSH
(Lu 2013). Notably, the GSH/GSSG ratio has been reported
to be decreased under some physiological conditions as
observed in newborns (full-term and preterm) (Frosali et al.
2004) and following anaerobic exercise (Wiecek et al. 2015).

GSH is present at millimolar concentrations mainly in
the cytosol, reachingover 70% of total intracellular content.
The remaining intracellular GSH (30%) is distributed in the
mitochondria (Mari et al. 2009), in the nucleus (Garcia-
Giménez et al. 2013) and in the endoplasmic reticulum
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Figure 1

Redox balance in healthy and cancer cells. Healthy and cancer cells
maintain redox homeostasis by balancing ROS production with adequate
levels of antioxidants. Cancer cells produce greater amounts of ROS, due
to their high metabolic rate, and consequently have an increased
production of antioxidants. In both cells, when redox balance is not
maintained, a condition of oxidative stress occurs, leading to cell death.
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where GSSG is the predominant form (Hwang et al.
1992). The distribution between different intracellular
compartments is important to better regulate cell needs
and functions. In fact, GSH can act as a substrate for GSH
peroxidases (GPXs) and GSH-S-transferases (GSTs) (Forman
et al. 2009), it takes part in iron and sulfur metabolism
(Liochev 1996) and it is involved in maintaining the
reduced form of several dehydrogenases, ATPases (Huang
& Philbert 1995) and thioredoxin which is required for the
activity of ribonucleotide reductase, a critical enzyme in
DNA synthesis (Holmgren 1981).

GSH synthesis is strongly influenced by the availability
of cysteine and by the activity of glutamate cysteine ligase
(GCL), an enzyme consisting of a modifier subunit (GCLM)
and a catalytic subunit, which, in the presence of ATP and
Mg?+, forms y-glutamylcysteine starting from cysteine
and glutamate (Lu 2013). Subsequently, the synthesis
is finished through the activity of GSH synthetase (GS)
which adds glycine to the dipeptide (Forman et al. 2009,
Lu 2013). Moreover, the maintenance of intracellular
GSH and its aminoacids as well as de novo synthesis is
guaranteed by the ‘GSH or y-glutamyl cycle’ (Fig. 2)
(Orlowski & Meister 1970). In fact, in this pathway, GSH
is degraded into cysteinyl glycine and 5-oxoproline by the
enzyme y-glutamyltransferase (GGT) which is followed by
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Figure 2

GSH cycle. GSH is synthesized within the cytosol from its precursor
aminoacids cysteine, glutamate and glycine through two consecutive
reactions controlled by the catalytic and modifier subunits of GSH cysteine
ligase (GCLC and GCLM) and by GSH synthase (GS). Cystine is imported
through xCT, a cystine/glutamate transporter, and converted to cysteine by
GSH reductase (GR); glutamate and glycine can be obtained from their
precursors, glutamine and serine, through a reaction catalyzed by
glutaminase (GLS) and serine hydroxymethyltransferase (SHMT). GSH can
be conjugated with other molecules (GS-X) through the activity of
GSH-S-transferase (GST) and then exported via multidrug resistance
protein (MRP), or it can detoxify ROS by means the activation of glutathione
peroxidase (GPX). If GSH is oxidized to GSSG, it can be regenerated via GR
and nicotinamide adenine dinucleotide phosphate (NADPH).
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the release of cysteine, glycine and glutamate. Indeed, GSH
is the main source of cysteine, controlling and maintaining
the pool and allowing its storage in the reduced form, and
in the free form it is rapidly oxidized to cystine (Lu 2013,
Traverso et al. 2013).

GSH plays a key role not only in maintaining
intracellular oxidative balance, acting as an antioxidant,
but also in driving metabolism (Meister 1995, Sies 1999)
and detoxification mechanisms (Lu 2013). In fact, GSH is
able to neutralize free radicals and ROS, and it is also crucial
for the activity of GPXs, by acting as a substrate (Forman
etal. 2009). Upon reaction with oxidizing compounds, GSH
is converted to GSSG that, being potentially toxic to cells,
is extruded or converted to GSH through the action of GSH
reductase (GR), whose coenzyme is nicotinamide adenine
dinucleotide phosphate (NADPH) (Couto et al. 2016).
Moreover, GSH prevents lipid peroxidation of membranes
through the regeneration of alpha-tocopherol and
protects from ferroptosis, an iron-dependent form of cell
death characterized by intracellular lipid hydroperoxide
accumulation (Ursini & Maiorino 2020).

In addition, GSH can form conjugates with xenobiotic
compounds, either directly or via GSTs which catalyze
the conjugation of the sulfhydric residue of GSH with
the electrophilic residue of xenobiotic compounds
inactivating their toxic potential and favoring their export
out of the cell (Strange et al. 2001). According to substrate
specificity and amino acid sequences, GST isoenzymes are
classified as alpha (A), pi (P), mu (M), sigma (S), theta (T)
and zeta (Z), which are located into the cytosol, and kappa
(K) and omega (O) which are detected respectively into
mitochondria and associated to membranes (Hayes et al.
2005). In addition to the transferase function, GSTs have
been shown to form protein-protein interactions with
members of the MAPKs involved in cell survival and death
signaling. For instance, GSTP1 inhibits the activity of c-Jun
N-terminal kinase in vivo, blocking apoptosis and favoring
cellular transformation (Chatterjee & Gupta 2018).

Notably, GSH is also involved in (i) the transport and
metabolism of copper and iron, (ii) in the homeostasis
of nitric oxide, (iii) in the metabolism of estrogens,
leukotrienes, prostaglandins and nucleotides, (iv) in DNA
repair and (v) in the modulation of cell death (Sies 1999,
Lu 2013).

Therefore, GSH has several pleiotropic functions
that are mainly due to its ability to maintain intracellular
proteins (e.g. metabolic enzymes, transcription factors and
antioxidant molecules) in a reduced state, supporting and
guaranteeing cell metabolism and survival (Aquilano et al.
2014) (Fig. 3).
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Role of GSH in cancer

The pathogenesis of several human diseases including
cancer is characterized by alterations of intracellular redox
homeostasis (Traverso et al. 2013, Nitti et al. 2022).

As reported in the introduction, ROS production
is enhanced in cancer cells (Weinberg et al. 2010) that
trigger an adaptive response by increasing GSH levels and
activating GSH-dependent enzymes (Estrela et al. 2006,
Gamcsik et al. 2012). Also, many anticancer therapies
(anthracyclines, alkylating agents, platinum coordination
complexes and camptothecins) act by increasing ROS
production, and cancer cells defend their survival keeping
low ROS thresholds and abolishing senescence or cell
death (O’Brien & Tew 1996). However, it has not yet been
fully clarified whether the increase in the antioxidant
defense, and in particular of GSH content, is the adaptive
response triggered by cancer cells as a consequence of the
altered redox balance or it is an innate property of cancer
cells which makes them ‘ready in advance’ to counteract
any possible increase of ROS generation.

However, an important role is played by the nuclear
factor erythroid 2-related factor 2 (NRF2) that is involved
in the regulation of several antioxidant genes and, in
particular, of those coding for the enzymes involved in
GSH synthesis, such as GCL, GR, GPX and GST, which
have been found to be overexpressed in several cancers
(e.g. pancreatic, lung, breast, ovarian, skin and prostate
cancers) (Gorrini et al. 2013, Rojo de la Vega et al. 2018).
Moreover, it has been reported that NRF2 can modulate
GSH by promoting the expression of solute carrier family
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Figure 3

The biological functions of GSH. GSH plays pleiotropic functions including
antioxidant defense, redox signaling, cell cycle progression, xenobiotic
detoxification, regulation of cell death, post-translation modifications,
protein synthesis and folding, DNA synthesis and repair.
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7 member 11 (SLC7A11) encoding xCT (Sasaki et al. 2002),
a cysteine/glutamate antiporter, which is overexpressed
in many cancers (Jiang et al. 2015) and in chemoresistant
ones (Monteleone et al. 2021).

Interestingly, it has been reported that the expression
of GCLM and SLC7A11 genes are regulated by hypoxia-
inducing factor with an upregulation of GSH biosynthesis
in hypoxic cancers (Cuperlovic-Culf et al. 2016).

As above reported, cells can resynthesize GSH from
GSSG via GR activity which requires the presence of
NADPH as a substrate (Lu 2013). With this regard, high
GSH/GSSG ratios in cancer cells can be due to the
activation of pentose phosphate pathway (PPP), leading
to NADPH production indispensable for GSH reduction
(Lietal. 2014, Zhang et al. 2016).

PPP activity in cancer cells can be upregulated by the
activation of oncogenes (i.e. Ras, mTORC1 and Nrf2) or the
inactivation of oncosuppressors (p53) and is increased in
response to ionizing radiation or chemotherapy (Patra &
Hay 2014). This metabolic response plays a crucial role in
helping glycolytic cancer cells to synthesize nucleic acids,
coenzymes, ATP and fatty acids and to fight oxidative stress
via GSH reduction.

Although cancer cells prefer aerobic glycolysis
(Warburg effect), in order to satisfy their energy demands,
under pro-oxidant conditions their metabolism can shift
toward oxidative phosphorylation (OXPHOS), which is
a dynamic and reversible process strongly involved in
cancer progression and therapy resistance (Nitti et al.
2022). In this connection, our recent study demonstrated
that the inhibition of PKCa, by favoring the switch from
OXPHOS to aerobic glycolysis, is able to reduce GSH
levels and stimulate ferroptosis (see the next paragraph)
of chemoresistant neuroblastoma stem cells (Monteleone
etal. 2021).

GSH and cancer cell death

GSH plays a crucial role in the induction of apoptosis,
autophagy, necroptosis and ferroptosis, and consequently
modulation of GSH levels may have important therapeutic
implications.

In detail, it has been recognized that the reduction
in the GSH/GSSG ratio and the resulting increase in
ROS production lead to mitochondrial damage and
induce apoptosis (Franco & Cidlowski 2009). However,
since GSH loss precedes mitochondrial injury followed
by cytochrome c release and caspase activation, the
stimulation of GSH synthesis could be a strategy of
cancer cells to escape apoptosis.
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GSH is also involved in necroptosis, a form of necrosis
regulated by receptor interacting protein kinases 1 (RIPK1)
and 3 (RIPK3), and characterized by translucent cytoplasm,
organelle swelling, increased cell volume and disruption of
the plasma membrane (Gong et al. 2019). In this regard, it
has been reported that dimethyl fumarate and artesunate
are used for inducing necroptosis in colon cancer cells
and in renal carcinoma cells, respectively (Xie et al. 2015,
Chauhan et al. 2017). Conversely, the use of necrostatin-1,
an inhibitor of RIPK1, prevents cell death by preserving
them from GSH depletion (Xu et al. 2007).

The drastic reduction in GSH levels is also
accompanied by ferroptosis, an iron-dependent cell
death that can be induced by GPX4 inhibition resulting
in lipid peroxidation and ROS accumulation (Ursini &
Maiorino 2020). In this regard, it has been shown that
RSL3 induces ferroptosis by inactivating GPX4 active
site and, consequently, leading to lipid peroxidation and
ROS accumulation (Sui et al. 2018). Another ferroptosis
inducer is erastin, an xCT inhibitor that acts by inducing
GSH depletion (Dixon et al. 2014). On the contrary,
compounds able to inhibit lipid peroxidation, such as
liproxstatin-1 and ferrostatin-1, counteract ferroptotic
death (Zilka et al. 2017).

However, it has been demonstrated that GSH depletion
due to xCT inhibition can also lead to autophagy which
represents a mechanism of tumor suppression (Jin & White
2008) even though more studies are needed to clarify the
relationship between GSH and autophagy.

GSH and chemoresistance

Chemoresistance is a complex and frequent consequence
of cancer treatment, and it is responsible for a poor
prognosis for cancer patients. There are several mechanisms
underlying cancer cell resistance to chemotherapeutic
drugs: (i) drug inactivation, (ii) induction of efflux
transporters, (iii) inhibition of apoptosis, (iv) deregulation
of cell cycle and checkpoints, (v) enhanced DNA repair and
(vi) genetic and epigenetic alterations of cellular oxidative
metabolism (Zheng 2017). Indeed, as reported earlier, the
increase in GSH levels and the activation of GSH-related
enzymes can support tumor growth and counteract the
efficacy of therapy, contributing to promote the onset of
chemoresistance (Kim et al. 2019). In this context, our study
demonstrated that chronic treatment with etoposide, a
drug which exerts its cytotoxic effect by stimulating ROS
overproduction, leads to a selection of multidrug resistant
neuroblastoma cells displaying higher levels of GSH with

https://rem.bioscientifica.com
https://doi.org/10.1530/REM-22-0023

© 2023 the author(s)
Published by Bioscientifica Ltd.

This work is licensed under a Creative Commons
Attribution 4.0 International License.

@ O


https://doi.org/10.1530/REM-22-0023
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

EDOX G E Valenti et al.
EXPERIMENTAL
MEDICINE

respect to parental cells (Colla et al. 2016). In addition, the
drugs targeting xCT, by limiting the influx of cysteine and
GSH biosynthesis, were able to sensitize neuroblastoma
stem cells to etoposide counteracting chemoresistance
(Monteleone et al. 2021).

Notably, the overexpression of GGT in ovarian, colon,
liver, prostate, sarcoma, melanoma and breast cancer
has been associated with a poor prognosis and resistance
to treatment with alkylating agents (e.g. cisplatin and
oxaliplatin), which are metabolized and inactivated by
GGT (Pompella et al. 2006).

Another GSH-dependent
chemoresistance is GST which is highly expressed in
many cancers that become chemoresistant (Singh &
Reindl 2021). In fact, as reported earlier, GST catalyses
the conjugation of GSH with drugs (e.g. cisplatin) and
facilitates drug efflux through multidrug resistance
proteins (MRPs), which are membrane transporters
whose enhanced expression can be associated with the
acquisition of chemoresistance (Lautier et al. 1996).
Also, the overexpression of GR, a key enzyme involved
in the GSH cycle, contributes to the development of
chemoresistance as observed in temozolomide-resistant
glioblastoma cells (Zhu et al. 2018).

Furthermore, the overexpression of the enzymes
involved in GSH synthesis such as GCL and GS can
contribute to chemoresistance by enhancing GSH levels
(Backos et al. 2012).

An eminent role is played by GPX4, an enzyme
involved in the regulation of ferroptosis and that has been
found overexpressed in drug-resistant tumors with poor
prognosis (Liu et al. 2021).

Based on these findings, GSH and GSH-dependent
antioxidant pathways are under investigation as potential
targets of innovative therapeutic strategies aimed at
counteracting cancer progression and therapy resistance.

enzyme involved in

GSH-based therapies

Therefore, it is clearly evident that GSH is related to cancer
progression and therapy resistance, although many aspects
need to be investigated. However, several strategies aimed
at targeting GSH system have been proposed, and many of
them are currently included in clinical trials (Table 1).
Themostused strategy isrepresented by GSH depletion.
In fact, since many anticancer therapies act by stimulating
ROS overproduction, their failure is due to scavenging
effects of GSH and of GSH-dependent antioxidant system.
Therefore, the combination of GSH-depleting agents

2023:1 | €2200RS

with a pro-oxidant therapy can be effective to enhance
therapeutic sensitivity. In addition, the depletion of GSH,
which is involved in drug metabolism, could lead to an
increase in the bioavailability of chemotherapeutic drugs,
enhancing their efficacy and allowing the clinical use of a
lower drug dosage with a decrease in side effects.

The main strategies that can be exploited to induce
GSH depletion are the following: (i) to inhibit GSH
biosynthesis; (ii) to block precursor amino acids of GSH;
(iii) to promote GSH efflux or (iv) to consume intracellular
GSH reservoir (Fig. 4).

GSH biosynthesis inhibitors

Inordertoinhibit GSHbiosynthesis, itisnecessarytotarget
the enzymes involved in its synthesis and regeneration.
Indeed, GCL is critical for GSH synthesis, and one of its
inhibitors mainly used is L-buthionine sulfoximine (BSO,
Table 1), which has been shown to induce cancer cell
death and to increase chemotherapeutic drug sensitivity
of neuroblastoma cells (Domenicotti et al. 2003, Marengo
et al. 2008, Marengo et al. 2011, Monteleone et al. 2021).
However, although these results are encouraging, the
clinical use of BSO is restricted due to its short half-life
and the non-selective effect of GSH depletion in both
healthy and cancer cells. In addition, a further limitation
is the difficulty to distinguish and produce the active
stereoisomer that might be tumor selective (Sandor
et al. 1995, Lewis-Wambi et al. 2009, Wu & Batist 2013,
Hamilton et al. 2007).

In order to overcome this limitation, interesting
studies using polymeric
nanoparticles loaded with BSO and other anticancer
agents (Cruz et al. 2020).

Moreover, also GS could be a therapeutic target. In
fact, Wang and coauthors have realized a novel L-cysteine-
based poly(disulfideamide) polymer encapsulated with
UNCO0638 (a histone methyltransferase G9a inhibitor)
which is able to inhibit GSH synthesis and to eliminate
its intracellular pool (Wang et al. 2020). The nanodrug,
in comparison with UNCO0638 per se, had an improved
anticancer activity on pancreatic ductal adenocarcinoma
and, more importantly, a greater tolerability and absence
of toxic effects (Wang et al. 2020).

Notably, another possibility to induce GSH depletion
is to counteract its regeneration by inhibiting the enzymes
involved in the reduction reaction of GSSG. In this context,
Xia et al. have recently investigated the effects of Stattic,
a STAT3 inhibitor, able to inhibit GR and to induce ROS-
mediated death of cervical cancer cells (Xia et al. 2021).

have been carried out

https://rem.bioscientifica.com
https://doi.org/10.1530/REM-22-0023

© 2023 the author(s)
Published by Bioscientifica Ltd.

This work is licensed under a Creative Commons
Attribution 4.0 International License.

(©MOoM


https://doi.org/10.1530/REM-22-0023
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

EDOX G E Valenti et al. | 2023:1 | €220023
EXPERIMENTAL
MEDICINE

Table 1 Drugs targeting GSH system and currently included in clinical trials.

Drug Cancer type Status Identifier

Blocking aminoacid precursors
Sulfasalazine

Breast cancer Recruiting NCT03847311
Glioblastoma Recruiting NCT04205357
Sorafenib
Prostate cancer Completed NCT00090545
Hepatocellular cancer Completed NCT00813293
Breast cancer Completed NCT00101400
Ovarian cancer Completed NCT00436215
Lung cancer Completed NCT00609804
Solid tumors Completed NCT00572078
Artemisinin
Breast cancer Completed NCT00764036
Cervical neoplasia Recruiting NCT04098744
Colorectal cancer Recruiting NCT03093129
Ovarian cancer Recruiting NCT04805333
Luteolin
Tongue carcinoma Unknown NCT03288298
Synthesis inhibitors
BSO
Neuroblastoma Completed NCT00005835
Neuroblatoma Completed NCT00002730
B-lapachone (ARQ 501)
Advanced solid tumors Completed NCT00524524
Solid tumors Completed NCT00099190
Solid tumors Completed NCT01502800
Head-and-neck cancer Completed NCT00358930
Pancreatic cancer Completed NCT00102700
Pancreatic cancer Stopped NCT02514031
Efflux promoters
Verapamil
Brain cancer Completed NCT00706810
Gastric cancer Completed n.a.
Lymphoma Active NCT03013933
Colorectal cancer Completed n.a.
Resveratrol
Colon cancer Completed NCT00256334
Colon cancer Completed NCT00433576
Colorectal cancer Completed NCT00920803
Colorectal cancer Completed n.a.
Cancer prevention Completed NCT00098969
Multiple myeloma Completed NCT00920556
Apigenin
Colorectal cancer Unknown NCT00609310
Quercetin
Prostate cancer Unknown NCT01538316
Prostate cancer Completed NCT01912820
Prostate cancer Completed NCT03493997
Childhood cancer Recruiting NCT04733534
Oral cancer Recruiting NCT05456022
Colon cancer Completed NCT00003365
Colorectal cancer Completed NCT02195232
Kidney cancer Unknown NCT02446795
Squamous cell carcinoma Recruiting NCT03476330
Lymphoma Unknown NCT00455416
Sulforaphane
Lung cancer Active NCT03232138
Prostate cancer Completed NCT01228084
Breast cancer Recruiting NCT03934905
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Table 1 (continued)
Drug Cancer type Status Identifier
Melanoma Completed NCT0T5689%
Romidepsin
Lung cancer Completed NCT01302808
Solid tumors Completed NCT00379639
Solid tumors Completed NCT01537744
Solid tumors Completed NCT00019318
Prostate cancer Completed NCT00106418
Colorectal cancer Completed NCT00077337
Colorectal cancer Completed NCT02512172
Thyroid cancer Completed NCT00098813
Leukemia Completed NCT00042822
Reserve consumption
Disulfiram
Breast cancer Recruiting NCT04265274
Breast cancer Recruiting NCT03323346
Prostate cancer Completed NCT01118741
Solid tumors Completed NCT00742911
Multiple myeloma Recruiting NCT04521335
Glioblastoma Completed NCT02678975

Also, 2-acetylamino-3-(4-(2-acetylamino-2-carboxye
thylsulfanylcarbonylamino) phenyl carbamoylsulfanyl)
propionic acid has been identified as a GR inhibitor
that is able to induce cell cycle arrest of human
esophageal cancer cells through a generation of
oxidative stress (Li et al. 2017).

An additional approach to reduce GSH availability
is the inhibition of GGT that, as above reported, is
upregulated in many cancers (Pompella et al. 2006).
Glutamate analogues, such as acivicin, azaserine and
boronate derivatives, which have been identified as GGT
inhibitors have shown a marked toxicity in patients
(Joyce-Brady & Hiratake 2011). Notably, the nanoparticle-
encapsulated compound OU749 revealed a greater efficacy
than the GGT inhibitor alone, and it has been tested on
cisplatin-resistant human non-small cell lung cancer cells
(Wang et al. 2021).

Synthesis inhibition

Blocking aminoacid

Strategies for GSH precursors
depletion
Efflux promotion
Reserve consumption
Figure 4

Strategies aimed at inducing GSH depletion.

GSH precursor amino acid uptake inhibitors

Another possibility to limit GSH synthesisis toreduce the
availability of cysteine by inhibiting xCT transporter. In
this context, erastin and its analogues and sulfasalazine
(Table 1) have been found to be effective in depleting
GSH by reducing cysteine influx. Consequently,
erastin has been found to induce ferroptosis and to
counteract the progression of several cancers (Zhao et al.
2020). Furthermore, erastin combined with docetaxel
reduced the onset of chemoresistance
cancer (Zhou et al. 2019), while an encapsulated form
was effective in breast cancer (Yu et al. 2019). Notably,
two erastin analogues, imidazole ketone erastin and
piperazine erastin, due to improvement of solubility,
potency and stability, induced ferroptosis in mouse
models of fibrosarcoma, lymphoma and hepatocellular
carcinoma (Zhang et al. 2019). Also, sorafenib acts
by inhibiting xCT, and its administration alone or
in combination with other drugs has been shown to
activate ferroptosis in hepatocellular carcinoma and in
kidney cancer (Table 1) (Lachaier et al. 2014). Among
XCT inhibitors, sulfasalazine, initially identified as an
immunosuppressant for chronic inflammatory diseases,
has been recognized as ferroptosis inducer in breast
cancer, lymphoma, bladder cancer and colon cancer
treated in combination with cisplatin (Table 1) (Liu et al.
2017). Moreover, it has been recently demonstrated that
C2-4, a PKCa inhibitor, analogously to sulfasalazine,
sensitizes etoposide-resistant neuroblastoma stem cells
by inducing ferroptosis (Monteleone et al. 2021).

in ovarian
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Other compounds, such as capsazepine, pseudolaric
acid B, artemisinin (Table 1) and its derivatives and
metaderin, are able to inhibit xCT (Zhang et al. 2021), and
among them, artesunate and dihydroartesiminin have
shown anticancer properties by inducing ferroptotic death
(Zhang et al. 2021).

Since xCT overexpression may be due to the
increased activity of Nrf2, the compounds targeting this
transcription factor have been proposed to treat cancer
and/or to counteract the onset of chemoresistance. In this
regard, natural compounds such as brusatol, halofuginone
luteolin, chrysin and emetine showed anticancer
properties (Table 1) (Xiang et al. 2018, Panda et al. 2022)
and a chemosensitizer action (Panieri & Saso 2019).

Notably, the glucocorticoid clobetasol propionate
(Choietal. 2017) and antitubercular drugs such as isoniazid
and ethionamide, by interfering with Nrf2 nuclear
translocation, were able to enhance therapy sensitivity in
lung cancer and leukemia cells, respectively (Verma et al.
2015, Peng et al. 2016).

Also trigonelline, by inhibiting Nrf2, has been
demonstrated to increase the sensitivity of lung cancer
cells to etoposide and cisplatin (Fouzder et al. 2021).
Analogously, Zhou et al. reported that digoxin, a drug used
to treat heart failure, sensitizes chemoresistant pancreatic
cancer cells to gemcitabine by inhibiting Nrf2-dependent
pathways (Zhou et al. 2019). In addition, luteolin, a natural
flavonoid, and its derivative apigenin were found to
sensitize resistant colorectal cancer and hepatocarcinoma
cells to doxorubicin via Nrf2 inhibition (Chian et al. 2014,
Gaoetal. 2017).

With regard to synthetic Nrf2 inhibitors, (i) Im3829
has been shown to sensitize lung cancer patients to
radiotherapy (Lee et al. 2012); (ii) AEM1 sensitized A549
lung cancer cells to various anticancer agents (Bollong et al.
2015); (iii) compound f4 counteracted A549 and leukemia
cell growth and proliferation (Zhang et al. 2014, Zhang et al.
2017); (iv) compound ML38S5 sensitized lung cancer cells to
carboplatin (Singh et al. 2016) and (v) Stattic, above cited
as GR inhibitor, was able to sensitize colon cancer cells to
S-fluorouracil (Tajmohammadi et al. 2019).

GSH efflux promoters

Furthermore, another strategy to induce GSH loss is to
promote its efflux from cells (Table 1). In this context, the
modulation of MRP1, the main transporter of free and drug-
conjugated GSH, may lead to GSH depletion circumventing
chemoresistance in cancer cells (Lorendeau et al. 2017). In
addition, verapamil and derivatives, used in the treatment
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of cardiovascular disease, and flavonoids such asresveratrol,
quercetin  and  aminothienopyrimidine
derivatives, have been demonstrated to inhibit MRP1
in preclinical studies (Lorendeau et al. 2017). Several of
these compounds have been also tested in clinical trials
which are still ongoing (Table 1). However, the majority
of clinical studies (phase 1) carried out are focused to
analyze the toxicity of the drug, and only a little number
of them (phase 2) are aimed at analyzing the efficacy of the
treatment with results not yet available. Recently, a novel
MRP1 inhibitor, YAN, has been identified, and a promising
effect was observed in the treatment of multidrug-resistant
lung cancer cells (Gao et al. 2021).

apigenin,

GSH-consuming drugs

Interestingly, the binding of GSH to anticancer drugs
leading to a consumption of intracellular GSH stores is
determinant to induce cancer chemoresistance. Therefore,
isothiocyanates, such as g-phenylethyl isothiocyanate and
sulforaphane, having affinity for GSH binding, can have
a promising antitumor activity (Table 1). In detail, it has
been found that sulforaphane conjugated with polymer
nanoparticles reduces drug toxicity and is effective in
counteracting breast cancer cell survival (Xu et al. 2019).
Aldehydes or a,-unsaturated ketones as quinone methide,
oridonin and cinnamaldehyde are able to form conjugates
with GSH and showed anticancer properties (Luo et al.
2018). In particular, romidepsin binds to GSH and has been
proposed for the treatment of cutaneous T-cell lymphoma
and urothelial carcinoma (Table 1) (Pattarawat et al. 2020).
Notably, intracellular GSH levels can be depleted
by exposure to pro-oxidant compounds, leading to
GSSG formation. They are commonly encapsulated in
nanocarriers to avoid systemic toxicity and to obtain a
major selectivity. In fact, several metal-based nanomaterial
approaches, such as manganese dioxide, metal-organic
frameworks based on copper, iron or platinum or
complexes of several metals, have shown a marked
antitumor activity (Wang et al. 2019). In addition, it has
been demonstrated that disulfiram is able to convert GSH
to GSSG and is effective in the combined treatment of
metastatic melanoma (Meraz-Torres et al. 2020).

Conclusions

Cancer cells, due to their increased metabolic rate, produce
high levels of ROS that are balanced by the presence of
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efficient antioxidants and in particular of GSH-related
system. The maintenance of the redox homeostasis
guarantees cancer cell survival and proliferation and
drives the adaptation to therapy-induced stress. In
fact, several traditional anticancer drugs exert their
cytotoxic action by stimulating ROS production, and
although the initial treatment is able to kill cancer cells,
the long-term treatment leads to a selection of more
malignant cells equipped with antioxidant defense and
characterized by drug refractoriness. Therefore, a strategy
able of overcoming such ‘adaptive tolerance threshold’
could help to fight chemoresistant cancer cells. In this
context, GSH depletion has been proposed as a strategy
to counteract cancer progression and therapy resistance,
via the inhibition of key enzymes or precursors of GSH
synthesis, consumption of its intracellular stores and
promotion of its efflux.

These GSH-depleting compounds, used alone or
in combination with traditional therapies, not only
potentiate the pro-oxidant effect of chemotherapeutic
drugs but also enhance their biodisponibility as a
consequence of the decrease in GSH conjugation and drug
elimination. In addition, since GSH is fundamental for
GPX4 activity, it is possible to induce ferroptosis of cancer
cells by directly targeting GPX4 (Ursini & Maiorino 2020,
Wei et al. 2020).

Interestingly, the most innovative strategies are
focused to load the anticancer drugs or chemosensitizers
on nanoparticles limit
toxic side effects and favor a more selective release of
the compounds.

Furthermore, considering that oxidative state can be
highly variable in each tumor and each phase of cancer
progression, monitoring GSH levels in patients before
and during therapy could be crucial to early identify
refractory patients and to direct therapy toward a
personalized approach.
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