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Abstract. We prove a local Lipschitz stability estimate for Gel’fand-Cal-
derón’s inverse problem for the Schrödinger equation. The main novelty is

that only a finite number of boundary input data is available, and those are

independent of the unknown potential, provided it belongs to a known finite-
dimensional subspace of L∞. A similar result for Calderón’s problem is ob-

tained as a corollary. This improves upon two previous results of the authors

on several aspects, namely the number of measurements and the stability with
respect to mismodeling errors. A new iterative reconstruction scheme based

on the stability result is also presented, for which we prove exponential con-
vergence in the number of iterations and stability with respect to noise in the

data and to mismodeling errors.

1. Introduction

Consider the Schrödinger equation

(1) (−∆ + q)u = 0 in Ω,

where Ω ⊆ Rd, d ≥ 3, is an open bounded domain with Lipschitz boundary and
q ∈ L∞(Ω) is a potential. Assuming that

(2) 0 is not a Dirichlet eigenvalue for −∆ + q in Ω,

it is possible to define the Dirichlet-to-Neumann (DN) map

Λq : H1/2(∂Ω)→ H−1/2(∂Ω), u|∂Ω 7→
∂u

∂ν

∣∣∣∣
∂Ω

,

where ν is the unit outward normal to ∂Ω. Gel’fand-Calderón’s inverse problem
consists of the reconstruction of q from the knowledge of the associated DN map
Λq.
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Thanks to a change of variables (see, e.g., [34]), this can be seen as a generaliza-
tion of Calderón’s inverse conductivity problem [16], where one wants to determine
a conductivity distribution σ ∈ L∞(Ω) satisfying

(3) λ−1 ≤ σ ≤ λ almost everywhere in Ω

for some λ > 1, from the DN map

Λσ : u|∂Ω 7→ σ ∂νu|∂Ω ,

where u solves the conductivity equation −∇ · (σ∇u) = 0 in Ω. For further details,
the reader is referred to the review papers [17, 15, 35, 1, 36] and to the references
therein.

The DN maps represent an infinite number of boundary measurements, a clearly
unrealistic setting. In our previous work [2] we showed uniqueness and Lipschitz sta-
bility for both inverse problems when only a finite number of measurements is avail-

able, under the assumption that q (or ∆
√
σ√
σ

) belongs to a known finite-dimensional

subspace W of L∞(Ω). Note that Lipschitz stability results were previously known
only with infinitely many measurements [9, 13, 12, 10, 20, 11, 7, 6, 8, 14]. In the
case of a finite number of measurements, few Lipschitz stability results have recently
appeared [21, 32, 4, 22].

The main drawback of [2] is that the boundary input data depend on the un-
known to be reconstructed (even though their number is given a priori). This issue
was solved in [21] for electrical impedance tomography (EIT), at the price of a non
constructive choice for the number of measurements. In our recent work [4], we
showed that it is possible to give a priori both the number and the type of mea-
surements for a large class of inverse problems. However, with respect to [2], this
approach yields a higher number of measurements and a worse Lipschitz stability

constant in case of mismodeling errors, namely, when q (or ∆
√
σ√
σ

) is not exactly in

W.
In the present work we continue along the approach of [2], based on the nonlinear

method tailored for Calderón’s problem. We consider both Gel’fand-Calderón’s
and Calderón’s problems, and prove a local Lipschitz stability result and derive a
nonlinear iterative reconstruction algorithm, with few measurements given a priori
and a good stability with respect to mismodeling errors (and so, keeping the best
aspects of the previous results). We also prove that the reconstruction algorithm is
stable with respect to noise in the data, which can be seen as a first step towards
a new regularization strategy for these problems. This is achieved at the expense
of a local argument, namely, it is assumed that the unknown q is sufficiently close
to a known potential q0.

The paper is structured as follows. In Section 2 we state the main results regard-
ing uniqueness and Lipschitz stability. Their proofs are given in Section 3. Section 4
is devoted to a new nonlinear reconstruction algorithm for which we prove expo-
nential convergence and stability with respect to noise and to mismodeling errors.
The main technical lemmata needed to prove the main results are in Section 5 and
concern some properties of generalized single and double layer operators.

2. Main results

It is useful to recall the main result of our previous work [2]. We first focus on
Gel’fand-Calderón’s problem. Without loss of generality, we assume that Ω ⊆ Td,
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d ≥ 3, where T = [0, 1]. In the following we will extend any function of L∞(Ω)
to L∞(Rd) by zero. We assume the a priori upper estimate ‖q‖∞ ≤ R for some
R > 0 and that q is well-approximated by W, a fixed finite-dimensional subspace
of L∞(Ω).

The method is based on a particular class of solutions to (1), called complex
geometrical optics (CGO) solutions [34] (see also [19]).

For k ∈ Zd, choose η, ξ ∈ Rd such that |ξ| = |η| = 1 and ξ · η = ξ · k = η · k = 0.
For t ∈ R define

(4) ζk,t = −i(πk + tξ) +
√
t2 + π2|k|2η.

For every t ≥ c1, where c1 = c1(R) is given in Lemma 6 below, we can construct a
solution ψk,t of (1) in Rd (with q extended to Rd by zero) of the form

ψk,tq (x) = eζ
k,t·x(1 + rk,tq (x)), x ∈ Rd,

where the remainder term rk,tq satisfies suitable decay estimates [2]. We consider

an ordering of the frequencies in Zd, namely a bijective map ρ : N → Zd, n 7→ kn,
such that

(5) |kn| ≤ Cρ n1/d, n ∈ N,

for some Cρ > 0. Here and in the following we use the notation N = {1, 2, . . . }. Set
tn = c(|kn|d + 1), where c ≥ c1 is a sufficiently large positive constant depending
only on R. We use the notation

(6) ζn = ζkn,tn , ψnq = ψkn,tnq , fnq = ψnq |∂Ω.

The main stability result of [2], giving Lipschitz stability (and uniqueness) with a
finite number of measurements, reads as follows. We use the following notation. Let
PW : L2(Td)→ L2(Td) be the orthogonal projection onto i(W), where i : L∞(Ω)→
L2(Td) is the extension operator by zero. We also set P⊥W = I − PW .

Theorem 1 ([2, Theorem 2 and Remark 6]). Take d ≥ 3 and let Ω ⊆ Td be
a bounded Lipschitz domain and W ⊆ L∞(Ω) be a finite-dimensional subspace.
There exists N ∈ N such that the following is true.

For every R, ε > 0 and q1, q2 ∈ L∞(Ω) satisfying (2) and

(7) ‖qj‖∞ ≤ R and
∥∥P⊥Wqj∥∥L2(Td)

≤ ε, j = 1, 2,

we have

‖q2 − q1‖L2(Ω) ≤ eCN
∥∥∥(Λq2fnq1 − Λq1f

n
q1

)N
n=1

∥∥∥
H−1/2(∂Ω)N

+ 8ε

for some C > 0 depending only on Ω and R.

Remark. It is worth observing that the stability constant eCN may be lowered to

eCN
1
2
+α

for any fixed parameter α > 0. However, in this paper we will not track
the dependence of the stability constants on N precisely, and so we opted for this
simplified version.

The main drawback of this result is that, even if only finitely many boundary
measurements are used (and the number of measurements N is given a priori),
these still depend on the unknown potential q1. The main result of this work states
that local uniqueness and stability hold with boundary values given a priori.
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Theorem 2. Take d ∈ {3, 4}, ε > 0 and let Ω ⊆ Td be a bounded Lipschitz domain
with connected complement, W ⊆ L∞(Ω) be a finite-dimensional subspace and N
be as in Theorem 1. Take R > 0 and q0 ∈ L∞(Ω) satisfying ‖q0‖L∞(Ω) ≤ R and
(2).

There exist δ, C > 0 and L ∈ N depending only on Ω, Cρ, R, W and ‖(−∆ +
q0)−1‖H−1(Ω)→H1

0 (Ω) such that for every q1, q2 ∈ L∞(Ω) satisfying (7), if

(8) ‖q0 − qj‖L2(Ω) ≤ δ j = 1, 2,

then q1 and q2 satisfy (2) and

‖q2 − q1‖L2(Ω) ≤ C
∥∥∥(fLn,1 − fLn,2)Nn=1

∥∥∥
H1/2(∂Ω)N

+ 16ε,

where

(9) fLn,j =

L∑
l=1

(
(Sq0ζn(Λqj − Λq0)

)l
(fnq0), j = 1, 2,

and Sq0ζn is the generalized single layer operator corresponding to the Faddeev-Green

function and to the potential q0 (see (11)).

We put together several comments on this result.

• If ε = 0, namely, if the potentials qj belong exactly to W, Theorem 2
yields uniqueness, since if fLn,1 = fLn,2 for n = 1, . . . , N we immediately get
q1 ≡ q2.
• The number N of the boundary input voltages {fnq0} is the same in both

Theorems 1 and 2 and it behaves polynomially in the dimension of W in
some explicit examples (see [2]). This is a much stronger result than what
we obtained in [4], where the number of measurements needed for Lipschitz
stability in EIT was of the order of exp(dim(W)).
• While in Theorem 1 the stability constant depends on N explicitly (and

so on W), the constant C of Theorem 2 is not explicit. This is due to
the fact that the constants appearing in Lemma 6 and Proposition 10 were
not made explicit in order to simplify the proofs. It is reasonable to guess,
nonetheless, that the constant depends exponentially on N as in Theorem 1.
• The functions fLn,j do not require boundary data depending on the unknown

as in Theorem 1. Starting from fnq0 , which is known by assumption, one

constructs (Sq0ζn(Λqj − Λq0))lfnq0 , l = 1, . . . , L, in an iterative way. Here
we did not make the dependence of L on N explicit. Nonetheless, if the
Lipschitz constant C grows exponentially in N , it is easy to prove that L
grows linearly (or at worst polynomially) with N and not exponentially,
making this nonlinear approach stronger than the linearized one of [4] for
EIT.
• Another strong point of Theorem 2 compared to the stability result of [4]

is the dependence with respect to the mismodeling error ε. Here we have a
universal constant multiplying ε while it easy to show that the techniques
of [4] would require the Lipschitz constant C to multiply ε. This means
that with a linearized approach the mismodeling error ε would be greatly
amplified in the reconstruction, while with the present nonlinear method it
is not.



CALDERÓN’S INVERSE PROBLEM WITH FINITELY MANY MEASUREMENTS II 5

• As a future research direction, it would be interesting to investigate whether
methods based on compressed sensing, and in particular on the approach for
inverse problems in PDE developed in [3], may be used to reduce the number
of measurements by exploiting the sparsity of the unknown. It would also
be interesting to consider the global problem, namely, whether it is possible
to drop assumption (8) (by possibly taking additional measurements).

Theorem 2 readily yields a similar result for Calderón’s problem.

Corollary 1. Take d ∈ {3, 4} and let Ω ⊆ Td be a bounded Lipschitz domain with
connected complement, W ⊆ L∞(Ω) be a finite-dimensional subspace and N be as
in Theorem 1. Take R, λ > 0 and σ0 ∈ W 2,∞(Ω) satisfying (3), ‖σ0‖W 2,∞(Ω) ≤ R
and σ0 = 1 in a neighborhood of ∂Ω.

There exist δ, C > 0 and L ∈ N depending only on Ω, R, Cρ, λ and W such that
for every σ1, σ2 ∈W 2,∞(Ω) satisfying

‖σj‖W 2,∞(Ω) ≤ R and
∥∥∥P⊥W ∆

√
σj√
σj

∥∥∥
L2(Td)

≤ ε, j = 1, 2,

and σ1 = σ2 = 1 in a neighborhood of ∂Ω, if

(10) ‖σj − σ0‖H2(Ω) ≤ δ for j = 1, 2,

then

‖σ2 − σ1‖L2(Ω) ≤ C
∥∥∥(fLn,1 − fLn,2)Nn=1

∥∥∥
H1/2(∂Ω)N

+ c(Ω, λ)ε,

where

fLn,j =

L∑
l=1

(
(Sq0ζn(Λσj − Λσ0

)
)l

(fnq0), q0 =
∆
√
σ0√
σ0

.

For the Gel’fand-Calderón problem, the a priori hypothesis on the potential q is
written directly in terms of the subspace W, namely, q is assumed to be (almost

in) W. Here, however, we assume ∆
√
σ√
σ

to be well-approximated by W. This is a

shortcoming of the approach, and we do not know whether it is possible to derive
a result involving an assumption on σ directly, as in [21, 4]. We leave this issue as
an interesting open problem.

3. Lipschitz stability

This section contains the proof of Theorem 2. The Lipschitz continuity of the
forward map will be a crucial ingredient.

Lemma 3. Let Ω ⊆ Rd, d = 3, 4, be an open bounded domain and q1, q2 ∈ L∞(Ω)
satisfy (2) and ‖qj‖∞ ≤ R for some R > 0 and

max
(
‖(−∆ + q1)−1‖H−1(Ω)→H1

0 (Ω), ‖(−∆ + q2)−1‖H−1(Ω)→H1
0 (Ω)

)
≤ U

for some U > 0. Then

‖Λq1 − Λq2‖∗ ≤ c‖q1 − q2‖L2(Ω),

where ‖ · ‖∗ = ‖ · ‖H1/2(∂Ω)→H−1/2(∂Ω) and c > 0 depends only on Ω, R and U .

Proof. The operator norm is defined as

‖Λq1 − Λq2‖∗ = sup
f1,f2∈H

1
2 (∂Ω),

‖f1‖
H

1
2

=‖f2‖
H

1
2

=1

|〈f1, (Λq1 − Λq2)f2〉
H

1
2 ,H−

1
2
|.
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From Alessandrini’s identity [5] we have

|〈f1, (Λq1 − Λq2)f2〉
H

1
2 ,H−

1
2
| =

∣∣∣∣∫
Ω

(q1 − q2)u1u2

∣∣∣∣
≤ ‖q1 − q2‖L2(Ω)‖u1‖L4(Ω)‖u2‖L4(Ω),

by Hölder’s inequality and where uj ∈ H1(Ω) is the unique solution of (−∆+qj)uj =
0 in Ω and uj = fj on ∂Ω. In dimension d = 3, 4, by Sobolev embedding and the
standard energy estimate for elliptic equations we have

‖uj‖L4(Ω) ≤ c(Ω)‖uj‖H1(Ω) ≤ c(Ω, R, U)‖fj‖
H

1
2 (∂Ω)

.

The proof follows. �

The following lemma shows, by proving a quantitative estimate, that hypothesis
(2) is stable under small L2 perturbations of q.

Lemma 4. Let Ω ⊆ Rd, d = 3, 4, be an open bounded domain and q0 ∈ L∞(Ω)
satisfy (2). There exists δ > 0 depending only on Ω and ‖(−∆+q0)−1‖H−1(Ω)→H1

0 (Ω)

such that if q ∈ L∞(Ω) satisfies

‖q − q0‖L2(Ω) ≤ δ,

then q satisfies (2) and

‖(−∆ + q)−1‖H−1(Ω)→H1
0 (Ω) ≤ 2‖(−∆ + q0)−1‖H−1(Ω)→H1

0 (Ω).

Proof. Take q ∈ L∞(Ω) satisfying ‖q − q0‖L2(Ω) ≤ δ for some δ > 0 to be deter-

mined later. Let T = −∆ + q0 : H1
0 (Ω) → H−1(Ω) and Mq−q0 : H1

0 (Ω) → H−1(Ω)
be the operator of multiplication by q − q0. For F ∈ H−1(Ω) let us consider the
Dirichlet problem

(−∆ + q)u = F

for u ∈ H1
0 (Ω). This may be rewritten as

(IH1
0 (Ω) + T−1Mq−q0)u = T−1F.

In order to conclude, it is enough to show that ‖T−1Mq−q0‖H1
0→H1

0
≤ 1

2 for δ small
enough. Observe that

‖T−1Mq−q0‖H1
0→H1

0
≤ ‖T−1‖H−1→H1

0
‖Mq−q0‖H1

0→H−1 .

It remains to estimate the last factor. For v ∈ H1
0 (Ω), by the Sobolev embedding

theorem we have

‖Mq−q0v‖H−1(Ω) = sup
w∈H1

0 ,‖w‖H1
0

=1

|
∫

Ω

(q − q0)vw dx|

≤ sup
‖w‖

H1
0

=1

‖q − q0‖L2(Ω)‖v‖L4(Ω)‖w‖L4(Ω)

≤ c(Ω)‖q − q0‖L2(Ω) sup
‖w‖

H1
0

=1

‖v‖H1
0 (Ω)‖w‖H1

0 (Ω)

≤ c(Ω)δ‖v‖H1
0 (Ω).

This gives ‖Mq−q0‖H1
0→H−1 ≤ c(Ω)δ, and so

‖T−1Mq−q0‖H1
0→H1

0
≤ c(Ω)‖T−1‖H−1→H1

0
δ ≤ 1

2
,

provided that δ = (2c(Ω)‖T−1‖H−1→H1
0
)−1. �
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We need to introduce the following functions and operators for ζ ∈ Cd:

gζ(x) = −
(

1

2π

)d ∫
Rd

eiξ·x

ξ · ξ + 2ζ · ξ
dξ,

Gζ(x) = eiζ·xgζ(x),

Gq0ζ (x, y) = Gζ(x− y) +

∫
Rd
Gζ(x− z)q0(z)Gq0ζ (z, y)dz,

Sq0ζ f(x) =

∫
∂Ω

Gq0ζ (x, y)f(y)dσ(y).(11)

The function Gζ is the Faddeev-Green function, the function Gq0ζ was introduced in

[29] (it is called R0 there) and Sq0ζ is a generalized single layer operator correspond-

ing to the potential q0. In Lemma 6 we prove that Sq0ζ : H−1/2(∂Ω) → H1/2(∂Ω)

is bounded for |ζ| ≥ c1(R).
We are now ready to prove Theorem 2.

Proof of Theorem 2. With an abuse of notation, several different positive constants
depending only on Ω, R, Cρ, W and ‖(−∆ + q0)−1‖H−1(Ω)→H1

0 (Ω) will be denoted

by the same letter c (the dependence on N is omitted since, by Theorem 1, N
depends only on Ω and W). Take L ∈ N and δ > 0 (to be determined later), and
let q1, q2 ∈ L∞(Ω) satisfy (7) and (8).

First, note that by Lemma 4 it is possible to choose δ small enough (depending
only on Ω and ‖(−∆ + q0)−1‖H−1(Ω)→H1

0 (Ω) ) so that q1 and q2 satisfy (2) and

(12) ‖(−∆ + qj)
−1‖H−1(Ω)→H1

0 (Ω) ≤ 2‖(−∆ + q0)−1‖H−1(Ω)→H1
0 (Ω), j = 1, 2.

For n = 1, . . . , N set

rLn =
∥∥fLn,1 − fLn,2∥∥H1/2(∂Ω)

.

Observe that, in view of (4), (5) and (6) we have

(13) |ζn| ≤ DN, n = 1, . . . , N,

for some D > 0 depending only on R and Cρ.
We claim that the following inequality holds:

(14) ‖fnq2 − f
n
q1‖H1/2(∂Ω) ≤ c

L+ 1

2L
‖q2 − q1‖L2(Ω) + 2rLn , n = 1, . . . , N.

Take n ∈ {1, . . . , N}. From [29, Theorem 1] we have that fnqj satisfies the following
boundary integral equation:

(15) fnqj = fnq0 + Sq0ζn(Λqj − Λq0)fnqj , j = 1, 2.

By Lemma 6 and (13) we have that the operator Sq0ζn : H−1/2(∂Ω) → H1/2(∂Ω) is
bounded with

(16)
∥∥∥Sq0ζn∥∥∥H−1/2→H1/2

≤ c.

Further, Lemma 3, (8) and (12) yield

(17) ‖Λqj − Λq0‖∗ ≤ c(Ω, R, ‖(−∆ + q0)−1‖H−1(Ω)→H1
0 (Ω)) δ,



8 GIOVANNI S. ALBERTI AND MATTEO SANTACESARIA

where ‖ · ‖∗ = ‖ · ‖H1/2→H−1/2 . Choose δ > 0 small enough (depending only on Ω,
R, Cρ, W and ‖(−∆ + q0)−1‖H−1(Ω)→H1

0 (Ω)) so that (12) holds and

(18) ‖Sq0ζn(Λqj − Λq0)‖H1/2→H1/2 ≤
1

2
.

Thus, equation (15) can be solved with Neumann series converging in H1/2(∂Ω):

fnqj =

+∞∑
l=0

(Sq0ζn(Λqj − Λq0))lfnq0 , j = 1, 2.

Then we obtain:

fnq2 − f
n
q1 =

∑
l≥L+1

(Sq0ζn(Λq2 − Λq0))lfnq0 −
∑
l≥L+1

(Sq0ζn(Λq1 − Λq0))lfnq0 + fLn,2 − fLn,1

= (Sq0ζn(Λq2 − Λq0))L+1fnq2 − (Sq0ζn(Λq1 − Λq0))L+1fnq1 + fLn,2 − fLn,1
= ((Sq0ζn(Λq2 − Λq0))L+1 − (Sq0ζn(Λq1 − Λq0))L+1)fnq2

+ (Sq0ζn(Λq1 − Λq0))L+1(fnq2 − f
n
q1) + fLn,2 − fLn,1.

As a result, by (18) we have

‖fnq2 − f
n
q1‖H1/2 ≤ ‖(Sq0ζn(Λq2 − Λq0))L+1 − (Sq0ζn(Λq1 − Λq0))L+1‖H1/2→H1/2‖fnq2‖H1/2

+ ‖(Sq0ζn(Λq1 − Λq0))L+1‖H1/2→H1/2‖fnq2 − f
n
q1‖H1/2 + rLn

≤ c‖(Sq0ζn(Λq2 − Λq0))L+1 − (Sq0ζn(Λq1 − Λq0))L+1‖H1/2→H1/2

+
1

2L+1
‖fnq2 − f

n
q1‖H1/2 + rLn ,

where we used the fact that

(19) ‖fnq2‖H1/2 ≤ c

(see (13) and [2, Proof of Theorem 2]). As a consequence, we have

‖fnq2 − f
n
q1‖H1/2 ≤ c‖(Sq0ζn(Λq2 − Λq0))L+1 − (Sq0ζn(Λq1 − Λq0))L+1‖H1/2→H1/2 + 2rLn .

In order to estimate the remaining term we need the following identity for
bounded linear operators A,B on H1/2(∂Ω):

AL+1 −BL+1 =

L∑
h=0

Ah(A−B)BL−h.

Putting A = Sq0ζn(Λq2 − Λq0) and B = Sq0ζn(Λq1 − Λq0) we find

(20)

‖(Sq0ζn(Λq2 − Λq0))L+1 − (Sq0ζn(Λq1 − Λq0))L+1‖H1/2→H1/2

≤ ‖Sq0ζn(Λq2 − Λq1)‖
L∑
h=0

‖Sq0ζn(Λq2 − Λq0)‖h‖Sq0ζn(Λq1 − Λq0)‖L−h

≤ cL+ 1

2L
‖Λq2 − Λq1‖∗,

where we used (16) and (18). Using Lemma 3 again we have ‖Λq2 − Λq1‖∗ ≤
c‖q2 − q1‖L2(Ω). So estimate (14) is proved.
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In order to finish the proof we need to connect (Λq1−Λq2)(fnq1) to fnq2−f
n
q1 . This

is done again via a boundary integral equation from [29, Theorem 1]:

(21) fnq1 − f
n
q2 = −Sq2ζn(Λq2 − Λq1)fnq1 , n = 1, . . . , N.

From Proposition 10, (12) and (13), we immediately obtain the following estimate:

‖(Λq1 − Λq2)fnq1‖H−1/2(∂Ω) ≤ c‖fnq2 − f
n
q1‖H1/2(∂Ω), n = 1, . . . , N.

Therefore, by (14) and Theorem 1 we obtain

‖q2 − q1‖L2(Ω) ≤ ec(Ω,R)N
∥∥∥((Λq2 − Λq1)fnq1

)N
n=1

∥∥∥
H−1/2(∂Ω)N

+ 8ε

≤ c
∥∥∥(fnq2 − fnq1)Nn=1

∥∥∥
H1/2(∂Ω)N

+ 8ε

≤ c
(
L+ 1

2L
‖q2 − q1‖L2(Ω) + ‖(rLn )n‖2

)
+ 8ε.

Taking L sufficiently large, so that c L+1
2L
≤ 1

2 , we obtain the Lipschitz stability
estimate of the statement. �

We conclude this section by showing how Corollary 1 on the Calderón problem
is an immediate consequence of Theorem 2.

Proof of Corollary 1. Set qj =
∆
√
σj√
σj

for j = 0, 1, 2. Thanks to (3), by assumption

we have

‖qj‖∞ ≤ c(R, λ), j = 0, 1, 2.

Similarly, (10) and (3) yield

‖q0 − qj‖L2(Ω) ≤ c(R, λ)δ, j = 1, 2.

Thus, it is possible to apply Theorem 2 to q0, q1 and q2, by using the standard
Liouville transformation. For the details, the reader is referred to [2, Corollaries 1
and 2]. �

4. Reconstruction

We extend the reconstruction scheme of our previous work [2] to the setting of the
present article. We also incorporate noise and mismodeling errors. We consider only
Gel’fand-Calderón’s problem; the reconstruction algorithm for Calderón’s problem

may be obtained by using the usual change of variables q = ∆
√
σ√
σ

, as in Corollary 1.

Here we do not assume to know the boundary traces of the CGO solutions of an
unknown potential q̄, but only those of an approximation q0.

Consider the setting of Theorem 2 and assume ‖q0 − q̄‖L2(Ω) ≤ δ. We now
present a reconstruction algorithm able to recover q̄ from q0 and a finite number of
measurements in the same spirit of Theorem 2. The noisy boundary measurements
correspond to finitely many evaluations of the boundary map

Ληq̄ = Λq̄ + E,

where E : H
1
2 (∂Ω) → H−

1
2 (∂Ω) is a linear operator representing noise (E stands

for error) and satisfies

‖E‖∗ ≤ η,
where η ≥ 0 is the noise level.
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From q0 we can stably compute its associated CGO solution fnq0 , for n = 1, . . . , N ,
and the quantity

fLn =

L∑
l=0

(Sq0ζn(Ληq̄ − Λq0))lfnq0 ,

which can be obtained iteratively by solving Dirichlet problems for the Schrödinger
equation (1) with boundary values (Sq0ζn(Ληq̄ − Λq0))lfnq0 for l = 0, . . . , L− 1.

Let L∞R (Ω) = {q ∈ L∞(Ω) : ‖q‖∞ ≤ R} be equipped with the distance induced
by the L2 norm. We define the nonlinear mapping A : L∞R (Ω)→WR by

(22) A(q) = PWR
(F−1PNT (q) + F−1P⊥NFi(q)− F−1PNB(q)),

where i is the extension operator already defined and, as in [2]:

• WR = L∞R (Ω) ∩W;
• F : L2(Td)→ `2 is the discrete Fourier transform defined by

(23) (Fq)n =

∫
Td
q(x)e−2πikn·x dx, n ∈ N;

• B : L2(Ω)→ `2 is the perturbation given by

(B(q))n =

∫
Ω

q(x)e−2πikl·xrkn,tnq (x) dx

= 〈eζ̃n·x, (Λq − Λ0)fnq 〉H 1
2 (∂Ω)×H−

1
2 (∂Ω)

− (Fq)n,

where, as in (4), ζ̃n = −i(πkn−tnξ)−
√
t2n + π2|kn|2η (note that the second

identity holds only when q satisfies (2));
• PN : `∞ → `∞ is the projection onto the first N components, namely
PN (a1, a2, . . . ) = (a1, . . . , aN , 0, 0, . . . ), and P⊥N = I − PN ;
• PWR

is the projection from L2(Td) onto the closed and convex set i(WR);
• and

(T (q))n =
〈
eζ̃n·x, (Ληq̄ − Λ0)

(
fLn + (Sq0ζn(Ληq̄ − Λq0))L+1fnq

)〉
H

1
2 (∂Ω)×H−

1
2 (∂Ω)

.

The main result of this section reads as follows.

Theorem 5. Take d ∈ {3, 4} and R, ε > 0 and let Ω ⊆ Td be a bounded Lipschitz
domain with connected complement, W ⊆ L∞(Ω) be a finite-dimensional subspace
and N and δ be as in Theorem 2. Take q0 ∈ L∞R (Ω) satisfying (2) and q̄ ∈ L∞R (Ω)
satisfying

‖q̄ − PWR
(q̄)‖L2(Td) ≤ ε, ‖q0 − q̄‖L2(Ω) ≤ δ.

There exist L ∈ N and C, S > 0 depending only on Ω, Cρ, R, W and ‖(−∆ +
q0)−1‖H−1(Ω)→H1

0 (Ω) such that, if η ∈ [0, S] and q1 ∈ WR is any initial guess, then
the sequence

qn = A(qn−1), n ≥ 2,

converges to qεη ∈ WR and

(24) ‖qεη − qn‖L2(Ω) ≤ 8

(
7

8

)n
‖q2 − q1‖L2(Ω), n ≥ 1.

Further, we have

(25) ‖q̄ − qεη‖L2(Ω) ≤ 14ε+ Cη.
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Remark. As expected from Theorem 2, in absence of noise (η = 0) and without
modeling errors (q̄ ∈ W), the unknown q̄ may be recovered exactly, as the limit
q̄ = limn q

n. Further, it is worth observing that the stability with respect to noise
in the data and with respect to modeling errors given in (25) is consistent with the
estimate of Theorem 2: the factor ε is multiplied by an absolute constant, while
the noise level η by a constant that becomes larger as dimW increases.

Remark. This result may be seen as a first step towards a new regularization strat-
egy for Gel’fand-Calderón’s and Calderón’s problems [30, 24, 31], by considering
an exhaustive sequence of nested subspaces Wm. In this case the method would
fall into the classes of regularization by projection [18] and regularization by dis-
cretization [23].

Proof. With an abuse of notation, several different positive constants depending
only on Ω, R, Cρ, W and ‖(−∆ + q0)−1‖H−1(Ω)→H1

0 (Ω) will be denoted by the same
letter c. The proof is divided into four steps.

Step 1: A is Lipschitz continuous. In view of [2, Lemma 1] we have that B is a
contraction on L∞R (Ω), namely

(26) ‖B(q2)−B(q1)‖`2 6
1

2
‖q2 − q1‖L2(Ω) , q1, q2 ∈ L∞R (Ω).

Further, thanks to Parseval’s identity the map F is an isometry, and so for q1, q2 ∈
L∞R (Ω) we have

(27) ‖A(q2)−A(q1)‖L2(Td) ≤ ‖PNT (q2)− PNT (q1)‖`2 +
3

2
‖q2 − q1‖L2(Ω),

where we also used that PWR
is Lipschitz continuous with constant 1 by the Hilbert

projection theorem. It remains to estimate the term with PNT .
For n ∈ N we have

(T (q2)− T (q1))n =
〈
eζ̃n·x, (Ληq̄ − Λ0)(Sq0ζn(Ληq̄ − Λq0))L+1(fnq2 − f

n
q1)
〉
H

1
2×H−

1
2
,

which gives for n ∈ {1, . . . , N}

|(T (q2)− T (q1))n| ≤ ec|ζ̃n|‖(Ληq̄ − Λ0)(Sq0ζn(Ληq̄ − Λq0))L+1(fnq2 − f
n
q1)‖

H
1
2 (∂Ω)

≤ c ‖Sq0ζn(Λq̄ − Λq0 + E)‖L+1

H
1
2→H

1
2
‖fnq2 − f

n
q1‖H 1

2 (∂Ω)

≤ c (1/2 + cη)L+1‖fnq2 − f
n
q1‖H 1

2 (∂Ω)
,

where we used (16), (18) and Lemma 3. Choose S = 1
4c , so that cη ≤ 1

4 for η ≤ S.
Thus, by (16), (19), (21) and Lemma 3, we have

|(T (q2)− T (q1))n| ≤ c (3/4)L+1
∥∥∥Sq1ζn(Λq1 − Λq2)fnq2

∥∥∥
H

1
2 (∂Ω)

≤ c (3/4)L+1‖q2 − q1‖L2(Ω).

As a result, we have ‖PN (T (q2) − T (q1))‖`2 ≤ c (3/4)L+1‖q2 − q1‖L2(Ω). Choose

L sufficiently large so that c (3/4)L+1 ≤ 1
8 (the constant 1

8 will be handy below).
Then

(28) ‖PN (T (q2)− T (q1))‖`2 ≤
1

8
‖q2 − q1‖L2(Ω), q1, q2 ∈ L∞R (Ω).
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(From now on, L is fixed). Thus, by (27) we obtain

(29) ‖A(q2)−A(q1)‖L2(Td) ≤
13

8
‖q2 − q1‖L2(Ω), q1, q2 ∈ L∞R (Ω).

Step 2: A|WR
is a contraction and has a fixed point. The number of measure-

ments N , which is given in Theorem 1, is chosen so that
∥∥P⊥NFPW∥∥L2(Td)→`2 6

1
4

[2]. Thus, (22), (26) and (28) yield

(30) ‖A(q2)−A(q1)‖L2(Td) ≤
7

8
‖q2 − q1‖L2(Ω), q1, q2 ∈ WR.

Note that WR is a complete metric space with the distance given by the L2 norm.
As a consequence, the Banach fixed-point theorem yields the existence of a fixed
point qεη, and (24) holds. It remains to prove (25).

Step 3: ‖A(q̄)− PWR
(q̄)‖L2(Td) ≤ cη. Let us consider the map Ã : L∞R (Ω)→WR

corresponding to the noiseless case. Namely, we define

Ã(q) = PWR
(F−1PN T̃ (q) + F−1P⊥NFi(q)− F−1PNB(q)),

where

(T̃ (q))n =
〈
eζ̃n·x, (Λq̄ − Λ0)

(
f̃Ln + (Sq0ζn(Λq̄ − Λq0))L+1fnq

)〉
H

1
2 (∂Ω)×H−

1
2 (∂Ω)

,

and

f̃Ln =

L∑
l=0

(Sq0ζn(Λq̄ − Λq0))lfnq0 .

We start by noting that Ã(q̄) = PWR
q̄. Indeed, observe that fnq̄ solves the

boundary integral equation

fnq̄ = f̃Ln + (Sq0ζn(Λq̄ − Λq0))L+1fnq̄ ,

which follows immediately from (15). Thus T̃ (q̄) = F q̄ +B(q̄) and so

Ã(q̄) = PWR
(F−1PN (F q̄ +B(q̄)) + F−1P⊥NF q̄ − F−1PNB(q̄)),

= PWR
(F−1PNF q̄ + F−1P⊥NF q̄)

= PWR
(q̄).

Since PWR
is non-expansive and F is an isometry, we have

‖A(q̄)− PWR
(q̄)‖L2(Td) = ‖A(q̄)− Ã(q̄)‖L2(Td) ≤ ‖PN T̃ (q̄)− PNT (q̄)‖`2 .

Setting

an = f̃Ln + (Sq0ζn(Λq̄ − Λq0))L+1fnq̄ , bn = fLn + (Sq0ζn(Ληq̄ − Λq0))L+1fnq̄ ,

by using again that |ζ̃n| ≤ c and the triangle inequality, we readily derive

|(T̃ (q̄)− T (q̄))n| = |〈eζ̃n·x, (Λq̄ − Λ0)(an)− (Ληq̄ − Λ0)(bn)〉
H

1
2×H−

1
2
|

≤ c‖(Λq̄ − Λ0)(an)− (Ληq̄ − Λ0)(bn)‖
H−

1
2

≤ c‖(Λq̄ − Λ0)(an − bn)‖
H−

1
2

+ c‖(Ληq̄ − Λq̄)(bn)‖
H−

1
2

≤ c‖Λq̄ − Λ0‖∗‖an − bn‖
H

1
2

+ c‖E‖∗‖bn‖
H

1
2

≤ c‖an − bn‖
H

1
2

+ cη,
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where the last inequality follows from (16), (19) and Lemma 3. It remains to
estimate ‖an − bn‖

H
1
2

. Using again (19) we obtain

‖an − bn‖
H

1
2
≤ ‖f̃Ln − fLn ‖H 1

2
+ ‖
(
(Sq0ζn(Λq̄ − Λq0))L+1 − (Sq0ζn(Ληq̄ − Λq0))L+1

)
fnq̄ ‖H 1

2

≤ c
L+1∑
l=0

‖(Sq0ζn(Λq̄ − Λq0))l − (Sq0ζn(Ληq̄ − Λq0))l‖
H

1
2→H

1
2
.

Arguing as in (20), we can bound the last term with c‖Λq̄ − Ληq̄‖∗ ≤ cη, so that
‖an − bn‖

H
1
2
≤ cη. Altogether, we have

(31) ‖A(q̄)− PWR
(q̄)‖L2(Td) ≤ ‖PN T̃ (q̄)− PNT (q̄)‖`2 ≤ cη,

as desired.
Step 4: Proof of (25). Since qεη is a fixed point of A, we have∥∥qεη − PWR

(q̄)
∥∥
L2(Td)

≤
∥∥A(qεη)−A(PWR

(q̄))
∥∥
L2(Td)

+ ‖A(PWR
(q̄))−A(q̄)‖L2(Td) + ‖A(q̄)− PWR

(q̄)‖L2(Td).

Thus, by (29) , (30) and (31) we obtain∥∥qεη − PWR
(q̄)
∥∥
L2(Td)

≤ 7

8

∥∥qεη − PWR
(q̄)
∥∥
L2(Td)

+
13

8
‖PWR

(q̄)− q̄‖L2(Td) + cη

≤ 7

8

∥∥qεη − PWR
(q̄)
∥∥
L2(Td)

+
13

8
ε+ cη,

so that
∥∥qεη − PWR

(q̄)
∥∥
L2(Td)

≤ 13ε+ cη. Finally, we have∥∥qεη − q̄∥∥L2(Td)
≤
∥∥qεη − PWR

(q̄)
∥∥
L2(Td)

+ ‖PWR
(q̄)− q̄‖L2(Td) ≤ 14ε+ cη.

This concludes the proof. �

5. Layer potentials estimates and invertibility properties

This section is devoted to the proof of new properties of the generalized layer
potential.

Throughout this section, we let Ω ⊆ Rd, d ≥ 2 be an open bounded domain with
Lipschitz boundary, and q ∈ L∞(Rd) be a potential satisfying (2) and such that
supp(q) ⊆ Ω, ‖q‖L∞(Ω) ≤ R, for some R > 0.

We recall from the previous section the following functions:

gζ(x) =

(
1

2π

)d ∫
Rd

eiξ·x

ξ · ξ + 2ζ · ξ
dξ,

Gζ(x) = eiζ·xgζ(x),

Gqζ(x, y) = Gζ(x− y)−
∫
Rd
Gζ(x− z)q(z)Gqζ(z, y)dz, x, y ∈ Rd, x 6= y,(32)

Sqζf(x) =

∫
∂Ω

Gqζ(x, y)f(y)dσ(y), x ∈ Rd,(33)

gqζ(x, y) = e−iζ·(x−y)Gqζ(x, y), x, y ∈ Rd, x 6= y.(34)

Note that

−∆Gζ(x− y) = (−∆ + q(x))Gqζ(x, y) = δ(x− y).
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We also introduce the generalized double layer potential

Dq
ζf(x) =

∫
∂Ω

∂Gqζ
∂νy

(x, y)f(y)dσ(y), x ∈ Rd \ ∂Ω,

and the generalized boundary, or trace, double layer potential by

Bqζf(x) = p.v.

∫
∂Ω

∂Gqζ
∂νy

(x, y)f(y)dσ(y), x ∈ ∂Ω.

Since the singularity of Gqζ(x, y) for x near y is the same as that of Gζ(x, y) (see

[26, Theorem 7.1]), it is locally integrable on ∂Ω and the trace single layer potential
is given by (33). Finally, let us consider the operator Gqζ defined by

(Gqζf)(x) =

∫
Ω

Gqζ(x, y)f(y)dy.

We start by showing that Sqζ is bounded.

Lemma 6. Let D > 0 and Ω̃ be a bounded C1,1 neighborhood of Ω. There exists
c1 = c1(R) > 0 such that, for every c1 ≤ |ζ| ≤ D, we have

(35) ‖Gqζf‖H2(Ω̃) ≤ C(D,R, Ω̃)‖f‖L2(Ω), f ∈ L2(Ω),

and

(36) ‖Sqζf‖H1/2(∂Ω) ≤ C(D,R,Ω)‖f‖H−1/2(∂Ω), f ∈ H−1/2(∂Ω).

Remark 1. The constants C can be estimated using similar ideas as in [24, Lemma 2.2],
and they grow exponentially in D.

Proof. In the proof, with an abuse of notation, several different positive absolute
constants will be denoted by the same letter c. We first prove (35) and then (36).

Proof of (35). For δ = 3
4 (the argument below works for any δ ∈ ( 1

2 , 1), but for

our purposes it is enough to let δ = 3
4 ), consider the Hilbert space

L2
δ(Rd) =

{
f : ‖f‖δ =

(∫
Rd

(1 + |x|2)δ|f(x)|2
)1/2

< +∞

}
.

From [27, Proposition 2.1.b)] we have that, for ζ ∈ Cd \ Rd with |ζ| ≥ 1,

(37) ‖gζ ∗ f‖−δ ≤
c

|ζ|
‖f‖δ, f ∈ L2

δ(Rd),

for an absolute constant c > 0. Now, let gqζ be the operator defined by

(gqζf)(x) =

∫
Rd
gqζ(x, y)f(y)dy, f ∈ L2

δ(Rd).

We want to extend (37) to gqζf . From (34) and the integral equation (32) we have

gqζf(x) = gζ ∗ f(x)−
∫
Rd
gζ(x− z)q(z)(gqζf)(z)dz

= gζ ∗ f(x)− (gζ ∗ q(gqζf))(x),

where q denotes the operator of multiplication by q, which maps L2
−δ to L2

δ with

norm bounded by ‖q(x)(1 + |x|2)δ‖L∞(Rd). For |ζ| ≥ c‖q(x)(1 + |x|2)δ‖L∞(Rd) the
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operator gζ ∗q maps L2
−δ into itself and ‖gζ ∗q‖L2

−δ→L
2
−δ
≤ 1/2 thanks to (37) (see

[27, Corollary 2.2] for more details). Thus

gqζf = (I + gζ ∗ q)−1(gζ ∗ f),

and we obtain, using (37),

‖gqζf‖−δ ≤
c

|ζ|
‖f‖δ, f ∈ L2

δ(Rd),

for |ζ| ≥ c(R). Consider now H2
δ (Rd) = {f : Dαf ∈ L2

δ(Rd), 0 ≤ |α| ≤ 2}, the
weighted Sobolev space with norm

‖f‖2,δ =

∑
|α|≤2

‖Dαf‖2δ

1/2

.

Using the same ideas as in the proof of [27, Lemma 2.11], based on [25], we obtain

(38) ‖gqζf‖2,−δ ≤ c(D,R)‖f‖δ, f ∈ L2
δ(Rd).

Then the main estimate (35) is a direct consequence of (38), (34) and the bound-

edness of Ω̃ and Ω, since

Gqζf(x) = eiζ·x
∫

Ω

gqζ(x, y)e−iζ·yf(y) dy = eiζ·xgqζ(e
−iζ·yf)(x).

Proof of (36). Using similar arguments as in [27, Section 6] we can rewrite
equation (32) as follows:

(39) Gqζ(x, y) = Gζ(x− y)−
∫
Rd
Gqζ(x, z)q(z)Gζ(z − y)dz,

which yields the identity

(40) Sqζf(x)− Sζf(x) = −
∫
Rd
Gqζ(x, z)q(z)Sζf(z)dz,

where Sζ is the generalized single layer potential for q = 0. We recall [27, Lemma
2.3], which states, for 0 ≤ s ≤ 1,

‖Sζf‖Hs+1(∂Ω) ≤ c(D, s,Ω)‖f‖Hs(∂Ω),

for ∂Ω ∈ C1,1. This can be easily extended to −1 ≤ s ≤ 0 and ∂Ω Lipschitz using
the same arguments as in the proof of [28, Lemma 7.1]. Therefore, by the trace
theorem and (35), we have

‖Sqζf‖H1/2(∂Ω) ≤ c(Ω, D)‖f‖H−1/2(∂Ω) + c(Ω)

∥∥∥∥∫
Rd
Gqζ(·, z)q(z)Sζf(z)dz

∥∥∥∥
H1(Ω)

≤ c(D,R,Ω)
(
‖f‖H−1/2(∂Ω) + ‖Sζf‖L2(Ω)

)
≤ c(D,R,Ω)‖f‖H−1/2(∂Ω).

Here we have used the fact that u := Sζf solves ∆u = 0 in Ω (see [27, Lemma 2.4])
so, by interior regularity one has ‖Sζf‖H1(Ω) ≤ c(Ω)‖Sζf‖H1/2(∂Ω) (see [33, Theo-

rem 3]). �

In order to study the invertibility of Sqζ , we need other technical results. We
start with the following solvability result for an exterior Dirichlet problem. Let
ρ0 > 0 be such that Ω ⊆ Bρ0 = {x ∈ Rd : |x| < ρ0}. For ρ > ρ0 let Ω′ρ = Bρ \ Ω.
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Lemma 7. Suppose that Ω′ = Rd \ Ω is connected and let ζ ∈ Cd be such that
|ζ| ≥ c1, where c1 is given by Lemma 6. For any f ∈ H1/2(∂Ω) there is a unique
solution u to the exterior Dirichlet problem:

• ∆u = 0 in Ω′,
• u ∈ H2(Ω′ρ), for any ρ > ρ0,
• u satisfies the following generalized Sommerfeld radiation condition:

lim
ρ→+∞

∫
|y|=ρ

(
Gqζ(x, y)

∂u

∂νy
(y)− u(y)

∂Gqζ
∂νy

(x, y)

)
dσ(y) = 0, a.e. x ∈ Ω′,

• u|∂Ω′ = f.

This is a slight generalization of [27, Lemma A.6], and the proof can be obtained
with the same approach.

We also need to establish some jump formulas for the single and the double layer
potentials.

Lemma 8. Let ζ ∈ Cd be such that |ζ| ≥ c1, where c1 is given by Lemma 6, f ∈
H−1/2(∂Ω) and u = Sqζf . Then the nontangential limits ∂u/∂ν+ (resp. ∂u/∂ν−)

of ∂u/∂ν as the boundary ∂Ω is approached from outside (resp. inside) Ω satisfy:

(41)
∂u

∂ν−
− ∂u

∂ν+
= f, a.e. on ∂Ω.

Proof. The proof for q = 0, f ∈ H1/2(∂Ω) and ∂Ω ∈ C1,1 is given in [27, Lemma
2.4]. Based on [37], using the same arguments as in [28, Lemma 7.1], this can be

extended to f ∈ H−1/2(∂Ω) and ∂Ω Lipschitz. For q 6= 0, note that if Ω̃ is a

bounded C1,1 neighborhood of Ω, the right hand side of identity (40) is in H2(Ω̃)
by Lemma 6. Thus

∂

∂ν−

(
Sqζ − Sζ

)
f =

∂

∂ν+

(
Sqζ − Sζ

)
f,

and the proof follows from the corresponding result for q = 0. �

Lemma 9. Let ζ ∈ Cd be such that |ζ| ≥ c1, where c1 is given by Lemma 6,
f ∈ H1/2(∂Ω) and v = Dq

ζf . Then, the nontangential limits v+(v−) of v as we

approach the boundary from outside (respectively inside) Ω exist and satisfy:

v±(x) = ±1

2
f(x) +Bqζf(x), for a.e. x ∈ ∂Ω.

Proof. For q = 0 this was proved in [27, Lemma 2.5] for f ∈ H3/2(∂Ω) and ∂Ω ∈
C1,1 but using the results of [37] it can be extended to f ∈ H1/2(∂Ω) and ∂Ω
Lipschitz. For q 6= 0, using identity (39) we have

Dq
ζf(x) = D0

ζf(x)−
∫
Rd
Gqζ(x, z)q(z)D

0
ζf(z)dz, x ∈ Rd \ ∂Ω,

Bqζf(x) = B0
ζf(x)−

∫
Rd
Gqζ(x, z)q(z)D

0
ζf(z)dz, x ∈ ∂Ω.

The result for q = 0 directly gives

v±(x) = ±1

2
f(x) +B0

ζf(x)−
∫
Rd
Gqζ(x, z)q(z)D

0
ζf(z)dz = ±1

2
f(x) +Bqζf(x),

as desired. �
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We now come to the main result of the section.

Proposition 10. Let D > 0 and Ω be a bounded domain with Lipschitz boundary
such that Ω′ = Rd \ Ω is connected. Let ζ ∈ Cd be such that |ζ| ≥ c1, where c1 is
given by Lemma 6, and q ∈ L∞(Rd) satisfy the assumptions at the beginning of the
section.

Then the operator Sqζ : H−1/2(∂Ω)→ H1/2(∂Ω) is invertible with bounded inverse
and

‖(Sqζ )−1‖ ≤ c
(
Ω, R,D, ‖(−∆ + q)−1‖H−1(Ω)→H1

0 (Ω)

)
.

Proof. The proof is inspired by [27, Lemma A.7].
For the injectivity we follow the argument at the beginning of the proof of [27,

Theorem 1.6, §6]. Assume Sqζf = 0 on ∂Ω. Then u = Sqζf is a Dirichlet eigenfunc-
tion of −∆+q in Ω, and so u = 0 in Ω by the assumptions on q. On the other hand,
u solves the exterior Dirichlet problem of Lemma 7 with homogeneous conditions
(the Sommerfeld radiation condition can be checked as in [27, Lemma 2.4]) and so
u = 0 in Ω′. This means that both ∂u/∂ν+ and ∂u/∂ν− vanish on ∂Ω. By the
jump formula (41), f mush vanish as well.

In order to prove surjectivity we construct an inverse explicitly. Thanks to
Lemma 7, we can define the Dirichlet-to-Neumann map Λ+

q f = ∂u
∂ν+

for f ∈
H1/2(∂Ω), where u is the unique solution to the exterior problem given in Lemma 7.
Now applying Green’s formula to Gqζ(x, y) and u(y) in Ω′ρ and letting ρ→ +∞ we
obtain, using the generalized radiation condition:

u(x) = −
∫
∂Ω

(
Gqζ(x, y)

∂u

∂νy
(y)− u(y)

∂Gqζ
∂νy

(x, y)

)
dσ(y) for a.e. x ∈ Ω′.

Taking the trace on the boundary and using Lemma 9 we obtain

(42) SqζΛ+
q = −1

2
I +Bqζ ,

where I denotes the identity operator on H1/2(∂Ω).
Now let u′ be the unique solution of (−∆+q)u′ = 0 in Ω and u′|∂Ω = f . Applying

again Green’s formula to Gqζ(x, y) and u′(y) for x ∈ Ω we obtain

u′(x) =

∫
∂Ω

(
Gqζ(x, y)

∂u′

∂νy
(y)− u′(y)

∂Gqζ
∂νy

(x, y)

)
dσ(y).

Letting x approach the boundary nontangentially inside Ω we find, using again
Lemma 9,

(43) SqζΛq =
1

2
I +Bqζ .

Now, identities (42) and (43) give Sqζ (Λq−Λ+
q ) = I, which show that Sqζ is surjective

and that its inverse is Λq − Λ+
q .

Finally, the boundedness of (Sqζ )−1 comes from the estimates

‖Λqf‖H−1/2(∂Ω) ≤ c‖f‖H1/2(∂Ω),

‖Λ+
q f‖H−1/2(∂Ω) ≤ c‖f‖H1/2(∂Ω),

which follow from classical elliptic estimates, where c > 0 depends only on Ω, R,
D and ‖(−∆ + q)−1‖H−1(Ω)→H1

0 (Ω). �
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[32] Angkana Rüland and Eva Sincich. Lipschitz stability for the finite dimensional fractional

Calderón problem with finite Cauchy data. Inverse Probl. Imaging, 13(5):1023–1044, 2019.
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