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A B S T R A C T

This paper presents a continuum-molecular formulation for bi-dimensional micropolar media within the
mathematical formalism of a revised peridynamic theory with oriented material points. A variational procedure
is considered to derive the fundamental governing equations of the model, which postulates that material
points interact through pair potentials allowing generalized pairwise actions to be derived as energy conjugates
to properly defined pairwise deformation measures. While continuity of mass is assumed, constitutive laws
are produced for long-range micro-interactions to reproduce the effective behavior of the material at the
macro-scale. The definition of proper micromoduli functions respecting material symmetries and invariance
properties allows then to obtain a non-local micropolar continuum based on pseudo-discrete kinematics,
while providing a mechanism-based description of material anisotropy and coupling behaviors uncovered by
classical elasticity. An analytic micro-macro moduli correspondence procedure is also established, based on the
formal analogy with the constitutive tensor of centrosymmetric planar micropolar continua. As an important
result of this research, we show that distinctive chiral effects of micropolar elasticity can be reproduced
by introducing a directional independent pseudo-scalar pair potential, which turns out to be analytically
vanishing when the rotationally invariant part of the corresponding continuum elastic tensor is invariant to
mirror reflections as well. Moreover, the proposed formulation demonstrates sensitivity to elastic bending
size-effect as specific property of structured materials homogenized as micropolar continua, and related to
the characteristic length of their underlying microstructure. The resulting constitutive non-locality, which
plays an important role in fracture problems, is conceptually separated with respect to the intrinsic non-local
character of the model related to the integral nature of its governing equations, and then does not vanish
when the horizon reduces to zero. The theoretical findings and the effectiveness of the model are successfully
verified through illustrative examples referred to representative cases of structured materials homogenized as
micropolar continua, including length-scale dependent quasi-static crack propagation as well as the mechanism-
based description of the coupling between bulk strain and micro-rotation in elastic bi-dimensional homogenized
chiral lattices.
1. Introduction

Molecular models and related structure theories have been proposed
in solid mechanics with the aim of providing a mechanism-based
description of the elastic and inelastic behavior of materials at the
observation scale, by using the concept of generalized distance force as
ultimate action (Love, 1944; Diana, 2023). The first models of this kind,
developed by French mathematicians of the nineteenth century, were
based on the hypothesis of central forces depending only on the mutual
distance between pairs of molecules. The latter were regarded as simple
centers of forces endowed with the property of mass, their displacement
being defined by a vector field in the continuum of Euclidean geometry
associated with the corresponding elastic body (Love, 1944; Capecchi
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and Ruta, 2015). As a consequence of the assumed structure theory, an
internal constrain holds for constitutive equations, namely the Cauchy
relation(s), which causes the number of independent elastic constant
in standard bi-dimensional solids to reduce to five. This drawback
was later overcame by Voigt (1900), whose structure theory postu-
lated oriented molecules interacting in pairs via a system of actions
derivable from a scalar quadratic pair potential, and reducible to a
force and a couple (Capecchi et al., 2010). The resulting governing
equations of the molecular model, which assigns an auxiliary role to the
physical concept of continuum, do not necessarily verify the Cauchy re-
lation, the corresponding elastic constants being six in the most general
two-dimensional case. Nevertheless, the mechanism-based view was
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020-7683/© 2024 The Author(s). Published by Elsevier Ltd. This is an open access ar
c-nd/4.0/).

https://doi.org/10.1016/j.ijsolstr.2024.112810
Received 22 December 2023; Received in revised form 13 March 2024; Accepted 2
ticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

April 2024

https://www.elsevier.com/locate/ijsolstr
https://www.elsevier.com/locate/ijsolstr
mailto:vito.diana@unige.it
https://doi.org/10.1016/j.ijsolstr.2024.112810
https://doi.org/10.1016/j.ijsolstr.2024.112810
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijsolstr.2024.112810&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


International Journal of Solids and Structures 295 (2024) 112810V. Diana et al.
abandoned in favor of the phenomenological approach of (classical)
Continuum Mechanics or local field theory (Truesdell, 1992), which has
provided over time the foundation for well-established models of the
mechanical response of solids at the meso- and macro-scale (Truesdell
and Toupin, 1960). However, several important phenomena observed
in mechanical tests such as elastic size-effect and dispersion of elas-
tic waves in materials due to their microstructure heterogeneity turn
out to be unpredictable by local field theory (Mindlin et al., 1963;
Kunin, 1982). These considerations led several mathematicians of twen-
tieth century towards the introduction of additional kinematic degrees
of freedom of rigid bodies, to describe the arrangement of material
microstructure (Di Paola et al., 2013; Cosserat and Cosserat, 1909;
Eringen, 1966a), and towards the development of refined non-local
field theories, constructed on a phenomenological basis, involving gra-
dients or integrals of the strain field in the constitutive equations to
account for the inhomogeneity of the material at a lower scale (Mindlin
and Eshel, 1968; Eringen and Edelen, 1972; Green and Rivlin, 1964).
Specifically, the enriched kinematics proper of oriented media or polar
field theories (Cosserat and Cosserat, 1909; Eringen, 1966a, 1972),
which traces back to Voigt studies on crystals (Voigt, 1887), naturally
lends itself to the elastic multiscale modeling of discrete and lattice-
like materials such as modern periodic architectured solids made up
of lumped masses/rigid blocks and elastic ligaments/interfaces, as the
additional micro-rotation field turns out to be kinematically consis-
tent with the discrete Lagrangian description of the corresponding
microstructures (Bacigalupo and Gambarotta, 2017). Moreover, besides
length-scale sensitivity, micropolar elasticity (through continualization
schemes) has been also proved useful to provide a synthetic and ef-
fective description of several unusual behaviors uncovered by classical
Continuum as well as exotic properties of great engineering interest
in bi-dimensional mechanical metamaterials, such as auxetics, high
compressibility, etc. Liu et al. (2012), Chen et al. (2014b), Bacigalupo
and Gambarotta (2020), Diana et al. (2023), Cui and Ju (2022), Fleck
et al. (2010), Prall and Lakes (1997). Recently, research interest in
this field has extended to the design and modeling of periodic lattices
with kinking prohibition directions (Huang et al., 2023), high fracture
toughness micro-architectured materials (Liu et al., 2020; Fleck and
Qiu, 2007; Quintana-Alonso and Fleck, 2009; Omidi and St-Pierre,
2023), and indentation resistant microstructures (Evans and Alderson,
2000). However, it is well known that field theories are, in general,
limited in their ability to describe problems involving (possibly evolv-
ing) geometric discontinuities and spontaneous formation of cracks
in solids, as a direct consequence of the intrinsic requirements of
their governing equations involving spatial derivatives. Important and
relatively recent contributions in the attempt of bridging the views of
field and structure theories were given, among others, by Kröner (1967)
and Kunin (1982). Later, Tadmor et al. (1996) presented a quasicon-
tinuum approach for defect analysis in solids, whereas Gao and Klein
proposed an integration of continuum models with cohesive surfaces
and molecular models with virtual bonds for fracture problems (Gao
and Klein, 1998). In this context, a general theory of solid mechanics,
namely Peridynamics, based on actions at a distance and formulated
in terms of integro-differential equations without partial derivatives in
space, was proposed by Silling (2000). The range of forces and the
continuity of matter being two different concepts (Kröner, 1967), the
original (bond-based) model postulated material points in a continuum
interacting through pairwise vector valued central force functions.
Hence, although it represented a generalization of the early structure
theory (Love, 1944) to include discontinuities and non-locality in an
explicit form, Cauchy relations were not evaded (Silling, 2000). The
strategy proposed later to overcome this restriction and to enlarge the
scope of applicability of the model consisted in the introduction of
proper point-wise defined deformation measures, force functions and
multi-body potentials (state-based type (Silling et al., 2007; Warren
et al., 2009) and continuum-kinematic inspired formulations (Javili
2

et al., 2019)). As a different approach, Gerstle et al. (2007) maintained
the pairwise formalism of bond-based type equations while endowing
material points with additional kinematic descriptors, the assumed
kinematic of pair interactions steming from that of a virtual Euler–
Bernoulli beam. In the spirit of Voigt structure theory, Diana and Casolo
(2019) proposed instead an oriented peridynamic continuum-molecular
model based on a generalized kinematic employing the definition of
a non-central pair potential consisting of three independent terms,
quadratic functions of equal number of pairwise deformation mea-
sures (Diana, 2023). This approach has been followed by later works,
and applied to the reduced case of isotropic and anisotropic standard
elasticity (Diana, 2023; Diana et al., 2022). The enriched kinematics
and the specific features characterizing the above referenced oriented
continuum-molecular formulation (Diana, 2023) allows for its natural
extension to micropolar elasticity and then to a consistent description
of length-scale sensitivity, overall shear anisotropy and other microp-
olar effects in micro-architectured solids such as periodic lattice-like
materials (Diana et al., 2023; Bacigalupo and Gambarotta, 2017; Ca-
solo, 2021). Previous studies of this kind on micropolar media, most
based on mechanical formulations featuring multi-body potentials, only
consider the particular case of isotropic materials (Chen et al., 2019;
Chowdhury et al., 2015; Zhou et al., 2023; Wan et al., 2022), whereas
a general constitutive modeling strategy for chirality (i.e. lack of in-
variance with respect to mirror reflection resulting in the absence
of axes of reflection symmetry) in bi-dimensional micropolar solids
is not available. It can be noted that the pairwise formalism may
provide an intuitive mechanism-based description of overall macro
properties of materials, at the same time being closely related to the
mechanics of full-discrete models for lattice-like mechanical metama-
terials (Diana et al., 2023; Diana, 2023). In a computational context,
pair-potential based continuum-molecular (peridynamic) models lead
to mathematical formulations resulting in an easier implementation
and higher computational efficiency compared to models based on
multi-body potentials as state-based type models (Boys et al., 2021).
Actually, their use is preferred, when possible, as the large number of
literature works on bond-based models demonstrates. It is reminded
here that micropolar elasticity is specifically sensitive to chirality (Chen
et al., 2014b; Prall and Lakes, 1997; Auffray et al., 2022). In particu-
lar, differently from standard elasticity, hemitropy (invariance under
arbitrary proper orthogonal transformations, e.g. SO(2) invariance)
of the constitutive tensor does not necessarily implies its isotropy
(invariance under arbitrary orthogonal transformations, e.g. O(2) in-
variance) in micropolar continua (Auffray et al., 2022). Actually, as it
can be shown by invoking the hierarchical structure of bi-dimensional
micropolar elasticity tensors (Zou et al., 2001), this intrinsic feature
enables the appearance of hemitropic solids (also referred to as isotropic
chiral (Liu et al., 2012)) as well as orthotropic chiral solids (Chen
et al., 2014b; Bacigalupo and Gambarotta, 2020, 2014; Giorgio et al.,
2022). Considering that the coupling between the bulk deformation and
independent nodal rotation is the reason for many unusual behaviors
observed in periodic chiral lattice-like materials and metamaterials,
such as auxetics, high compressibility, etc., micropolar theory can
provide an intuitive and effective description of their overall behav-
ior (Chen et al., 2014b; Diana et al., 2023). Furthermore, while for
tri-dimensional solids non-centrosymmetric micropolar continuum the-
ory is usually used to capture chiral effects, in the bi-dimensional case
non-centrosimmetry (i.e. lack of invariance with respect to inversion)
and chirality turn out to be analytically decoupled (Liu et al., 2012;
Bacigalupo and Gambarotta, 2017; Auffray et al., 2022). It is worth
considering that inversion in two-dimensions is a rotation by 𝜋, while in
three dimensions it is defined by an improper transformation (Auffray
et al., 2022).

This paper proposes a generalized continuum-molecular formula-
tion for bi-dimensional centrosymmetric chiral and achiral structured
materials homogenized as micropolar media. The micropotential func-

tions allow modeling chirality as well as bending size-effect and elastic
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Fig. 1. Detail of the interaction between the oriented material point 𝐱 and the generic oriented material point 𝐱′ ∈ 𝐻𝐱 (𝗮); Typical elastic coupling between axial/bulk strain and
micro-rotation in bi-dimensional hemitropic micropolar solids (𝗯).
anisotropy in homogenized micropolar solids while using pairwise de-
scriptions of deformation and constitutive properties. We demonstrate
that a mechanism-based description of specific chiral properties owing
to SO(2) invariance can be obtained in a rigorous form by introducing
a properly-defined direction-independent pseudo-scalar pair-potential.
Moreover, because of the adopted pairwise formalism, we show essen-
tial analogies between continuum-molecular mathematical models and
real lattice-like materials that can provide new insight for the design of
modern micro-architectured solids endowing exotic mechanical prop-
erties. Finally, the influence of the characteristic length in bending – a
property related to the size of the underlying microstructure – during
crack nucleation and propagation in micropolar media is investigated.
The paper is organized as follows: Kinematics and field equations of
the oriented continuum-molecular model are defined in Section 2. The
constitutive model and the general micro-macro correspondence proce-
dure for anisotropic chiral and achiral micropolar elasticity is detailed
in Section 2.1 and Section 2.1.1, respectively. Benchmark problems and
validation examples involving materials of different symmetry classes
are presented in Section 3.

2. The oriented continuum-molecular model

Let us consider a two-dimensional continuum solid body 𝛺, com-
posed of oriented material points 𝐱. Material points 𝐱 and 𝐱′ within a
finite distance (namely the horizon 𝛿 (Silling, 2000)), are assumed to in-
teract with each other through non-central pairwise actions depending
on pairwise constitutive parameters and pairwise deformation variables
(Fig. 1). The set of all material points 𝐱′ ∈ 𝛺 such that ‖𝐱′ − 𝐱‖ ≤ 𝛿 is
denoted by 𝐻𝐱, which defines the horizon region of material point 𝐱.
The generic vector 𝝃 = 𝐱′ − 𝐱 is called bond (Silling, 2000) or virtual
fiber. A theoretical (peridynamic) model of this kind is here referred
to as oriented continuum-molecular (CM) model (Diana, 2023). Given
the reference orthonormal basis

{

𝐞1, 𝐞2
}

, the body configuration at time
𝑡 is described by the displacement field 𝐮(𝐱, 𝑡) = 𝑢𝑖𝐞𝑖 and rotation field
𝜃(𝐱, 𝑡) defined over 𝛺. The applied body forces and couples are denoted
by 𝒃(𝐱, 𝑡) and 𝑐(𝐱, 𝑡), respectively, and are assumed conservative. The
scalar-valued constant functions 𝜌(𝐱, 𝑡) = 𝜌 and 𝜚(𝐱, 𝑡) = 𝜚 denote instead
the densities of mass and mass moment of inertia, respectively. We
define three linearized pairwise deformation measures, depending on
3

the relative position 𝝃 = 𝐱′ − 𝐱, relative displacement 𝜼 = 𝐮(𝐱′, 𝑡) −
𝐮(𝐱, 𝑡) = 𝐮′−𝐮 and rotations 𝜃(𝐱, 𝑡) = 𝜃 and 𝜃(𝐱′, 𝑡) = 𝜃′ of the generic pair
of interacting material points (Diana and Casolo, 2019). Specifically,
the deformation in the direction 𝐧 = 𝝃∕‖𝝃‖ defined by the generic
virtual fiber is the pairwise stretch 𝑠,

𝑠(𝐱, 𝐱′, 𝑡) = 𝜼 ⋅ 𝐧
‖𝝃‖

=
𝜂n
‖𝝃‖

(1)

with 𝜂n = 𝑢′n − 𝑢n being the component of the vector 𝜼 along the unit
vector 𝐧. The pairwise shear or angular deformation is defined as

𝛾(𝐱, 𝐱′, 𝑡) = 𝜼 ⋅ 𝐭
‖𝝃‖

− 𝜃′ + 𝜃
2

=
𝜂t
‖𝝃‖

− �̄� (2)

where, since 𝜂t = 𝑢′t − 𝑢t is the component of 𝜼 along the unit vector
𝐭 ∶ 𝐭 ⊥ 𝐧 (Fig. 1), the shear deformation can be interpreted as the
difference between the linearized rotation angle of the virtual fiber
𝜂t∕‖𝝃‖ and the average rotation �̄� of the corresponding pair of oriented
material points 𝐱 and 𝐱′. The third pairwise deformation variable turns
out to be function instead of the relative rotation of two interacting
oriented material points according to the dimensional ratio

𝜒(𝐱, 𝐱′, 𝑡) = 𝜃′ − 𝜃
‖𝝃‖

= 𝜗
‖𝝃‖

(3)

which can be rather interpreted as the average curvature of the generic
virtual fiber.

The elastic pair potential or micropotential function for energy
conserving materials can be defined as

w(𝐱, 𝐱′, 𝑡) =
[

w𝑠(𝐱, 𝐱′, 𝑡) + w𝛾 (𝐱, 𝐱′, 𝑡) + w𝑠𝛾 (𝐱, 𝐱′, 𝑡) + w𝜒 (𝐱, 𝐱′, 𝑡)
]

= 1
2
𝛬(𝐱, 𝐱′)‖𝝃‖

[

𝑘n𝑠
2 + 𝑘t𝛾2 + 2𝑘a𝑠𝛾 + 𝑘b𝜒2

]

(4)

such that the scalar-valued mutual actions between pairs of oriented
material points result to be work-conjugate to the pairwise deformation
measures defined above, and then obtained as

𝑓n(𝐱, 𝐱′, 𝑡) =
𝜕𝑤(𝐱, 𝐱′, 𝑡)

𝜕𝑠
=
𝜕w(𝐱, 𝐱′, 𝑡)

𝜕𝜂n
= 𝛬(𝐱, 𝐱′)[𝑘n𝑠 + 𝑘a𝛾] (5)

𝑓t (𝐱, 𝐱′, 𝑡) =
𝜕𝑤(𝐱, 𝐱′, 𝑡)

𝜕𝛾
=
𝜕w(𝐱, 𝐱′, 𝑡)

𝜕𝜂t
= 𝛬(𝐱, 𝐱′)[𝑘t𝛾 + 𝑘a𝑠] (6)

𝗆b(𝐱, 𝐱′, 𝑡) =
𝜕𝑤(𝐱, 𝐱′, 𝑡)

=
𝜕w(𝐱, 𝐱′, 𝑡)

= 𝛬(𝐱, 𝐱′)𝑘b𝜒 (7)

𝜕𝜒 𝜕𝜗
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where 𝑤(𝐱, 𝐱′, 𝑡) = w(𝐱, 𝐱′, 𝑡)∕‖𝝃‖ is the pairwise elastic potential energy
unction per unit distance ‖𝝃‖, while 𝑘n = 𝑘n(𝐱, 𝐱′) = 𝑘n(𝜓), 𝑘t =
𝑘t (𝐱, 𝐱′) = 𝑘t (𝜓), 𝑘a = 𝑘a(𝐱, 𝐱′) = 𝑘a(𝜓) and 𝑘b = 𝑘b(𝐱, 𝐱′) = 𝑘b(𝜓) are the
micromoduli functions or pairwise constitutive functions depending,
in general, on the spatial orientation 𝜓 = Arg

(

𝝃 ⋅ 𝐞1 + 𝚤𝝃 ⋅ 𝐞2
)

of the
virtual fiber. In the above, 𝛬 ≡ 𝛬(𝐱, 𝐱′) = 𝛬(‖𝝃‖) is instead the in-
fluence or attenuation function, that weights the nonlocal interactions
within the spatial domain 𝐻𝐱 with respect to ‖𝝃‖ (Eringen, 1966b;
Seleson and Parks, 2011). Differently from the continuum-molecular
formulation for standard elasticity detailed in Diana (2023), here non
vanishing micro-bending potential w𝜒 (𝐱, 𝐱′, 𝑡) is considered, whereas
w𝑠𝛾 (𝐱, 𝐱′, 𝑡) is suitably introduced for reproducing specific elastic cou-
plings that may appear in bi-dimensional microstructured materials
homogenized as chiral micropolar continua (Fig. 1) (Lakes, 2001; Liu
et al., 2012; Bacigalupo and Gambarotta, 2020; Auffray et al., 2022).
Because of the assumed hypothesis of centrosymmetry, there are no
micropotential terms coupling the pairwise deformations defined in
Eqs. (1)–(2) with that introduced in Eq. (3). As it will be discussed
later, in bi-dimensional solids chirality is due to the absence of lines
of material reflection symmetry, a property that reflects itself in a
particular arrangement of the axial-shear coupling moduli in the matrix
representation of the micropolar elastic tensor relating stress and strain
of the homogenized material.

The nonlocal elastic energy density at 𝐱, namely the macroelastic
energy density (Silling and Askari, 2005), is obtained by integrating
the pairwise potential w(𝐱, 𝐱′, 𝑡) over the horizon region 𝐻𝐱 of radius 𝛿

(𝐱, 𝑡) = 1
2 ∫𝐻𝐱

w(𝐱, 𝐱′, 𝑡) d𝐱′ (8)

he Hamiltonian action integral is defined as

= ∫

𝑡2

𝑡1
∫𝛺

{(𝐱, 𝑡) + (𝐱, 𝑡) −(𝐱, 𝑡)} d𝐱 d𝑡 (9)

where the density of kinetic energy1is

(𝐱, 𝑡) = 1
2
𝜌 �̇� ⋅ �̇� + 1

2
𝜚 �̇�2 (10)

hile the virtual work of the assigned body forces and couples is

(𝐱, 𝑡) = 𝒃 ⋅ 𝐮 + 𝑐 𝜃 (11)

y substituting the latter relation together with Eqs. (8),(10) in Eq. (9),
onsidering Eqs. (1)–(3), and imposing the stationarity of the functional
, we obtain

 = ∫

𝑡2

𝑡1
∫𝛺

{

(𝒃 ⋅ 𝛿𝐮 + 𝑐 𝛿𝜃) + ∫𝐻𝐱

𝛬
[

𝑘n
𝜼 ⋅ 𝐧
‖𝝃‖

𝛿𝐮 ⋅ 𝐧

+ 𝑘a

(

𝜼 ⋅ 𝐭
‖𝝃‖

− �̄�
)

𝛿𝐮 ⋅ 𝐧 + 𝑘t

(

𝜼 ⋅ 𝐭
‖𝝃‖

− �̄�
)

𝛿𝐮 ⋅ 𝐭

+ 𝑘a
𝜼 ⋅ 𝐧
‖𝝃‖

𝛿𝐮 ⋅ 𝐭 +
𝑘t
2

(

𝜼 ⋅ 𝐭
‖𝝃‖

− �̄�
)

‖𝝃‖𝛿𝜃 + 𝑘a
𝜼 ⋅ 𝐧
2
𝛿𝜃 + 𝑘b

𝜗
‖𝝃‖

𝛿𝜃
]

d𝐱′+

−
(

𝜌 �̈� ⋅ 𝛿𝐮 + 𝜚 �̈� 𝛿𝜃
)

}

d𝐱 d𝑡 = 0 (12)

here 𝛿 denotes the mathematical symbol for variation (Diana et al.,
022). Eq. (12) allows deriving the field equations at 𝐱 ∈ 𝛺

∫𝐻𝐱

𝐟 (𝐮′,𝐮, 𝜃′, 𝜃, 𝐱′, 𝐱)d𝐱′ + 𝒃(𝐱, 𝑡) = 𝜌�̈�(𝐱, 𝑡) (13)

∫𝐻𝐱

𝗆(𝐮′,𝐮, 𝜃′, 𝜃, 𝐱′, 𝐱)d𝐱′ + 𝑐(𝐱, 𝑡) = 𝜚�̈�(𝐱, 𝑡) (14)

1 Non-local inertiae can be also included in the mathematical formulation,
specially for reproducing the intrinsic dynamic properties of microstructured
aterials in the regime of short and medium wavelengths (Bacigalupo and
ambarotta, 2017; Diana et al., 2023).
4

where 𝐟 (𝐮′,𝐮, 𝜃′, 𝜃, 𝐱′, 𝐱) = 𝐟 (𝜼, 𝜃′, 𝜃, 𝐱′, 𝐱) is the force density vector
function given by

𝐟 (𝜼, 𝜃′, 𝜃, 𝐱′, 𝐱) = 𝛬
[

𝑘n
𝜼 ⋅ 𝐧
‖𝝃‖

𝐧 + 𝑘a

(

𝜼 ⋅ 𝐭
‖𝝃‖

− 𝜃′ + 𝜃
2

)

𝐧

+ 𝑘t

(

𝜼 ⋅ 𝐭
‖𝝃‖

− 𝜃′ + 𝜃
2

)

𝐭 + 𝑘a
𝜼 ⋅ 𝐧
‖𝝃‖

𝐭
]

(15)

nd 𝗆(𝐮′,𝐮, 𝜃′, 𝜃, 𝐱′, 𝐱) = 𝗆(𝜼, 𝜃′, 𝜃, 𝐱′, 𝐱) is the moment density function
given by

𝗆(𝜼, 𝜃′, 𝜃, 𝐱′, 𝐱) = 𝛬
[

𝑘t
2

(

𝜼 ⋅ 𝐭
‖𝝃‖

− 𝜃
′ + 𝜃
2

)

‖𝝃‖+𝑘a
𝜼 ⋅ 𝐧
2

+𝑘b
𝜃′ − 𝜃
‖𝝃‖

]

= 𝗆t+𝗆b

(16)

As it will be shown later in detail, when considering the special case
of CM model for standard elasticity, the micromoduli functions 𝑘a and
𝑘b turn out to be analytically vanishing, and the balance equations can
then be rewritten in terms of microforces only (Diana, 2023). This result
is consistent with Voigt (1928).

A meshfree scheme is considered in this work for the spatial dis-
cretization of the CM governing equations (Silling and Askari, 2005;
Diana, 2023). The analytical scheme and the variational procedure
used to derive the discretized algebraic system of equations referred
to the generic solid body occupying a closed domain 𝛺 is detailed in
Appendix.

2.1. Material properties and micropotential functions

Given the reference orthonormal basis
{

𝐞1, 𝐞2
}

defined in Sec-
tion 2, the general form of the uncoupled constitutive relations of
bi-dimensional centrosymmetric micropolar continua can be written in
compact matrix Voigt notation as

𝝈 = 𝐂𝜺

𝝇 = 𝐄𝝒 (17)

which in component form read

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜎11
𝜎22
𝜎12
𝜎21

⎫

⎪

⎪

⎬

⎪

⎪

⎭

=

⎡

⎢

⎢

⎢

⎢

⎣

𝐶1111 𝐶1122 𝐶1112 𝐶1121
𝐶1122 𝐶2222 𝐶2212 𝐶2221
𝐶1112 𝐶2212 𝐶1212 𝐶1221
𝐶1121 𝐶2221 𝐶1221 𝐶2121

⎤

⎥

⎥

⎥

⎥

⎦

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜀11
𝜀22
𝜀12
𝜀21

⎫

⎪

⎪

⎬

⎪

⎪

⎭

(18)

𝜍31
𝜍32

}

=
[

𝐸3131 𝐸3132
𝐸3132 𝐸3232

]{

𝜘31
𝜘32

}

(19)

he strain tensor components being 𝜀𝑖ℎ = u𝑖,ℎ + 𝜖3𝑖ℎ𝜙3 with u𝑖 displace-
ent field and 𝜙3 = 𝜙 micro-rotation field, while 𝜘3𝑖 = 𝜙3,𝑖. The stress

ensor and couple-stress vector components are instead denoted by
𝑖ℎ and 𝜍3𝑖, respectively. The components of the fourth-order elasticity
ensor C = 𝐶𝑖ℎ𝑗𝑙𝐞𝑖 ⊗ 𝐞ℎ ⊗ 𝐞𝑗 ⊗ 𝐞𝑙 are 𝐶𝑖ℎ𝑗𝑙, whereas 𝐸3𝑖3ℎ are the
omponents of the equivalent reduced second-order tensor relating the
urvature vector 𝝒 and the couple-stress vector 𝝇.

Considering now a generic orthogonal basis
{

�̂�1, �̂�2
}

, obtained from
igid rotation of the reference basis, Eqs. (17) can be rewritten as

̂ = �̂��̂�

�̂� = �̂��̂� (20)

here �̂� = 𝐐⊤
𝝈, �̂� = 𝐐⊤

𝜺, �̂� = 𝐐⊤𝝇 and �̂� = 𝐐⊤𝝒, with

 =

⎡

⎢

⎢

⎢

⎢

⎣

cos2 𝜓 sin2 𝜓 − sin𝜓 cos𝜓 − sin𝜓 cos𝜓
sin2 𝜓 cos2 𝜓 sin𝜓 cos𝜓 sin𝜓 cos𝜓

sin𝜓 cos𝜓 − sin𝜓 cos𝜓 cos2 𝜓 − sin2 𝜓
sin𝜓 cos𝜓 − sin𝜓 cos𝜓 − sin2 𝜓 cos2 𝜓

⎤

⎥

⎥

⎥

⎥

⎦

(21)
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and

𝐐 =
[

cos𝜓 − sin𝜓
sin𝜓 cos𝜓

]

(22)

respectively. Note that 𝐐 is associated with 𝐐, which is a proper
rthogonal tensor (det𝐐 = 1). The angle 𝜓 = Arg

(

�̂�1 ⋅ 𝐞1 + 𝚤�̂�1 ⋅ 𝐞2
)

is
ositive if the basis rotation is counterclockwise, with �̂� and �̂� in Eqs.
21)–(22) being defined as

̂ =

⎡

⎢

⎢

⎢

⎢

⎣

�̂�1111 �̂�1122 �̂�1112 �̂�1121
�̂�1122 �̂�2222 �̂�2212 �̂�2221
�̂�1112 �̂�2212 �̂�1212 �̂�1221
�̂�1121 �̂�2221 �̂�1221 �̂�2121

⎤

⎥

⎥

⎥

⎥

⎦

= 𝐐⊤
𝐂𝐐 (23)

�̂� =
[

�̂�3131 �̂�3132
�̂�3132 �̂�3232

]

= 𝐐⊤𝐄𝐐 (24)

According to Eqs. (23)–(24), the off-axis moduli �̂�𝑖ℎ𝑗𝑙 with 𝑖, ℎ, 𝑗, 𝑙 = 1, 2
and �̂�3𝑖3ℎ with 𝑖, ℎ = 1, 2 can be written as circular functions of the angle
𝜓 as

�̂�𝑖ℎ𝑗𝑙 =�̂�𝑖ℎ𝑗𝑙(𝜓) = �̂�𝑖ℎ𝑗𝑙(𝜓,𝐶𝑖ℎ𝑗𝑙)

�̂�3𝑖3ℎ =�̂�3𝑖3ℎ(𝜓) = �̂�3𝑖3ℎ(𝜓,𝐸3𝑖3ℎ) (25)

where 𝐶𝑖ℎ𝑗𝑙 and 𝐸3𝑖3ℎ are the given elastic constants defining the
centrosymmetric in-plane fully anisotropic Cosserat elasticity.2 Mirror
reflection operations (across a line at an angle of �̃� = 𝜓/2) is instead
defined for the elastic matrix 𝐂 and non-local elastic matrix3 𝐄 by
substituting 𝐐 and 𝐐 in Eqs. (23)–(24) with

𝐐|

 =

⎡

⎢

⎢

⎢

⎢

⎣

cos2 𝜓 sin2 𝜓 sin𝜓 cos𝜓 sin𝜓 cos𝜓
sin2 𝜓 cos2 𝜓 − sin𝜓 cos𝜓 − sin𝜓 cos𝜓

sin𝜓 cos𝜓 − sin𝜓 cos𝜓 −cos2 𝜓 sin2 𝜓
sin𝜓 cos𝜓 − sin𝜓 cos𝜓 sin2 𝜓 −cos2 𝜓

⎤

⎥

⎥

⎥

⎥

⎦

(26)

and

𝐐| =
[

cos𝜓 sin𝜓
sin𝜓 −cos𝜓

]

(27)

Hence, considering that a reflection matrix is symmetric as well as
orthogonal, Eqs. (23)–(24) can be rewritten as

�̃� = ̃̊𝐂 =

⎡

⎢

⎢

⎢

⎢

⎣

�̃�1111 �̃�1122 �̃�1112 �̃�1121
�̃�1122 �̃�2222 �̃�2212 �̃�2221
�̃�1112 �̃�2212 �̃�1212 �̃�1221
�̃�1121 �̃�2221 �̃�1221 �̃�2121

⎤

⎥

⎥

⎥

⎥

⎦

= 𝐐|

𝐂𝐐
|

 (28)

�̃� = ̃̊𝐄 =
[

�̃�3131 �̃�3132
�̃�3132 �̃�3232

]

= 𝐐|𝐄𝐐| (29)

from which it follows that in this case, given an orthonormal basis, the
material reflection operation is equivalent to the reflection operation
applied to the orthonormal basis, with the material configuration being
unchanged (the transformed mathematical objects are denoted by ̃̊𝐂
and ̃̊𝐄 in the former case). Note that 𝐐|

 is associated with 𝐐|, which is
an improper orthogonal tensor (det𝐐| = −1). By applying the reflection
operator to the elastic matrix 𝐂 and non-local elastic matrix 𝐄 with
respect to the directions (e.g. axes) defined by the reference basis unit
vectors 𝐞1 and 𝐞2, Eqs. (28)–(29) give the relations

�̃�𝑖𝑖𝑖𝑗 =
̃̊𝐶𝑖𝑖𝑖𝑗 = −𝐶𝑖𝑖𝑖𝑗 , �̃�𝑖𝑖𝑗𝑖 =

̃̊𝐶𝑖𝑖𝑗𝑖 = −𝐶𝑖𝑖𝑗𝑖 (30)

2 In the most general (centrosymmetric) two-dimensional case, the number
f independent material constants in Eq. (18) is ten. If not otherwise specified,
he attention is focused on orthotropic chiral and achiral materials in generic
oordinate description.

3 It can be shown that both 𝐂 and 𝐄 transform as true tensors (Desmorat
5

et al., 2023).
with 𝑖, 𝑗 = 1, 2 and

�̃�3132 =
̃̊𝐸3132 = −𝐸3132 (31)

the other elasticities remaining unchanged after performing the orthog-
onal operations defined above. More in general, it can be shown that
this property holds also for micropolar constitutive matrices written
considering a generic basis, if they are reflected with respect to one of
the two axes defined by the corresponding basis unit vectors. It follows
that, under these conditions, the elastic moduli 𝐶𝑖𝑖𝑖𝑗 , 𝐶𝑖𝑖𝑗𝑖 and 𝐸3132
show sensitivity to mirror reflection operations of the orthonormal
basis (or, alternatively, to material reflection), while the remaining
elasticities do not. It is worth to note that this property is related to
the anisotropy of the corresponding tensors, as well as to the chiral
properties of the material homogenized as a micropolar continuum.
Actually, if it characterizes also the rotationally invariant (hemitropic)
part of the constitutive tensor4,5 the corresponding bi-dimensional
micropolar solid (regardless of its elastic anisotropy) turns out to be
chiral, as specified in Zou et al. (2001), Chen et al. (2014b). Hence,
the orthogonal irreducible decomposition of the elastic tensors (Zou
et al., 2001) is proved useful to identify chiral properties owing to
SO(2) invariance.

The mechanistic nature of the continuum-molecular model requires
the definition of pairwise constitutive laws for microstructure (i.e. the
virtual fibers, namely the pairwise interactions) such that the overall
elastic behavior of the material is the result of the assigned micro-
interactions properties (Diana et al., 2022). Besides, to assign micro-
scopic properties on the basis of macroscopic ones, the identification of
a representative cell is of the essence (DiCarlo and Podio-Guidugli, 2021;
Diana et al., 2022). In non-local models of this kind, the representative
cell is the horizon region 𝐻𝐱 over the integral in Eq. (8) is defined,
while the micro-macro moduli correspondence principle is based on a
micro-macro energy equivalence, which allows macroscopic properties
to be directly associated to microscale-defined constitutive laws (Diana,
2023). Considering the constitutive behavior of in-plane centrosymmet-
ric micropolar linear elastic media which is defined by ten independent
elastic moduli 𝐶𝑖ℎ𝑗𝑙 together with the uncoupled moduli 𝐸3𝑖3ℎ, it can
be shown that the micromoduli functions 𝑘n(𝜓), 𝑘t (𝜓), 𝑘a(𝜓) and 𝑘b(𝜓)
introduced in Section 2 may be written in general form as

𝑘n(𝜓) =𝑘n(𝜓,1111,1122,2222,1112,1121,2212,

4 The micropolar constitutive tensors, expressed in matrix form by 𝐂 and 𝐄
in Eqs. (17), possess a hierarchical structure and can be decomposed into sev-
eral parts according to the symmetry of the underlying microstructure (Chen
et al., 2014b). The following relations hold

𝐂 = 𝐂𝑜 + 𝐂4 + 𝐂2

𝐄 = 𝐄𝑜 + 𝐄2
(32)

where 𝐂𝑜 and 𝐄𝑜 are the rotationally invariant parts of 𝐂 and 𝐄, respectively,
while the remaining terms refer to their anisotropic parts with D4 invariance
(four axes of reflection symmetry) and D2 invariance (two axes of reflection
symmetry), respectively. While 𝐄𝑜 is isotropic (Spencer, 1970), 𝐂𝑜 can show
O(2) or SO(2) invariance. In particular, if 𝐂𝑜 is SO(2) invariant, namely
hemitropic (invariant, in general, under basis or material rotations but not
under mirror reflections), the corresponding micropolar solid turns out to
be consequently chiral (Chen et al., 2014a) (for further details refer to Zou
et al. (2001), Chen et al. (2014b)). It is noted that for a chiral orthotropic
solid (𝐂𝑜 is SO(2) invariant), if the last terms of Eqs. (32) are vanishing, the
verall continuum is characterized by Z4 invariance (i.e. invariance under 𝑛𝜋∕2
otation of coordinate). If not, the principal axes of 𝐂2 are included in and

aligned with those of 𝐂4, the micropolar continuum being characterized by
verall Z2 invariance (i.e. invariance under 𝑛𝜋 rotation of coordinate).

5 The set of symmetry classes in centrosymmetric 2D micropolar elasticity
s I =

{[

Z2
]

,
[

D2
]

,
[

Z4
]

,
[

D4
]

, [SO(2)], [O(2)]
}

(Auffray et al., 2022; Trovalusci
and Masiani, 1999). The Z2 class includes chiral orthotropic solids (with, in
general, non-vanishing 𝐂2 and 𝐄2) as well as fully anisotropic media (which are
then also chiral by definition, regardless of 𝐂𝑜). General definitions of D𝑘 and
Z𝑛 invariance are given in Auffray et al. (2022), Auffray and Ropars (2016),
Forte and Vianello (1996).
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2221,1212,1221,2121) (33)
𝑘t (𝜓) =𝑘t(𝜓,1111,1122,2222,1112,1121,2212,

2221,1212,1221,2121) (34)

𝑘a(𝜓) =𝑘a(𝜓,1112,1121,2212,2221) (35)

𝑘b(𝜓) =𝑘b(𝜓,3131,3132,3232) (36)

where 𝑖ℎ𝑗𝑙 with 𝑖, ℎ, 𝑗, 𝑙 = 1, 2 and 3𝑖3ℎ with 𝑖, ℎ = 1, 2 are the
aterial micromoduli characterizing the continuum-molecular model

or two-dimensional micropolar elasticity. They define the polar mi-
roelastic functions and then the directional dependency of the pairwise
onstitutive laws of virtual fibers (Diana, 2023). It is worth to note
hat the set of (analytical) micropotential functions (Eqs. (33)–(36))
apable to reproduce the overall elastic behavior of a micropolar solid
haracterized by a given anisotropic structure is not unique (Diana,
023).

Let us assume here, without losing generality and in analogy with
he micropolar continuum6 (Cosserat and Cosserat, 1909), that the
airwise axial, shear and bending micromoduli functions 𝑘n(𝜓), 𝑘t (𝜓)
nd 𝑘b(𝜓) exhibit a directional dependency as �̂�1111(𝜓), �̂�2121(𝜓) and
̂3131(𝜓) in Eqs. (23) and (24), respectively. Hence,

n(𝜓) =1111 cos4 𝜓 + 2
(

1112 +1121
)

sin𝜓 cos3 𝜓

+
(

21122 +1212 + 21221 +2121
)

sin2 𝜓 cos2 𝜓

+ 2 sin3 𝜓 cos𝜓
(

2221 +2212
)

+2222 sin
4 𝜓 (37)

𝑘t (𝜓) =2121 cos4 𝜓 + 2
(

2221 −1121
)

sin𝜓 cos3 𝜓

+
(

1111 +2222 − 21122 − 21221
)

sin2 𝜓 cos2 𝜓

+ 2 sin3 𝜓 cos𝜓
(

1112 −2212
)

+1212 sin
4 𝜓 (38)

𝑘b(𝜓) =3131 cos2 𝜓 + 23132 sin𝜓 cos𝜓 +3232 sin
2 𝜓 (39)

where 1111 and 2222 are the microelastic axial moduli of virtual
fibers parallel to the unit vectors 𝐞1 and 𝐞2, respectively, whereas 2121
and 1212 are the microelastic shear moduli corresponding to virtual
fibers along the directions defined by the aforementioned unit vectors.
Differently, 1122 and 1221 are axial-axial and shear-shear coupling
moduli. Moreover 1112, 1121, 2212 and 2221 are microelastic moduli
related to the macro axial-shear couplings in micropolar (Cosserat)
anisotropic elasticity. Finally, 3131 and 3232 are the two bending
micromoduli referred, as usual, to the orthogonal directions defined
by 𝐞1 and 𝐞2, respectively, while 3132 is a bending-bending coupling
micromodulus7.

It is worth to note that the directional dependent micromoduli in
Eqs. (37)–(38) alone are able to describe general coupling between

6 Considering for the generic virtual fiber �̂� ≡ �̂�1, and �̂� ≡ �̂�2.
7 Eqs. (37)–(39) can be also recast in the equivalent form

n(𝜓) =
1
8
[

1111(3 + 4 ⋅ cos 2𝜓 + cos 4𝜓)

+ (1212 +2121 + 21122 + 21221)(1 − cos 4𝜓)

+ 2(1112 +1121)(2 sin 2𝜓 + sin 4𝜓)

+ 2(2212 +2221)(2 sin 2𝜓 − sin 4𝜓)

+ 2222(3 − 4 cos 2𝜓 + cos 4𝜓)
]

(40)

𝑘t (𝜓) =
1
8
[

2121(3 + 4 ⋅ cos 2𝜓 + cos 4𝜓)

+ (1111 +2222 − 21122 − 21221)(1 − cos 4𝜓)

+ 2(1112 −2212)(2 sin 2𝜓 − sin 4𝜓)

+ 2(2221 −1121)(2 sin 2𝜓 + sin 4𝜓)

+ 1212(3 − 4 cos 2𝜓 + cos 4𝜓)
]

(41)

𝑘b(𝜓) =
1
2
[

3131(1 + cos 2𝜓) +3232(1 − cos 2𝜓) + 23132 sin 2𝜓
]

(42)

hich may be useful for a direct understanding the structure of the
icropotential function.
6

acro shear and axial deformation due to directional anisotropy in
icropolar solids. Specifically, the micromodulus function 𝑘a(𝜓) in-

roduced in Eq. (4), and whose general form is given in Eq. (35),
s not required when considering achiral micropolar continua (more
n general, when 𝐂𝑜 is O(2) invariant). Actually, the presence of the
dditional pair potential term 𝑘a(𝜓) in Eq. (4) is related to that of a
emitropic part of 𝐂 with SO(2) invariance (Chen et al., 2014b). The
irectional-independent function

a(𝜓) = 𝑘a = 𝛤
[

(2221 −2212) + (1121 −1112)
]

(43)

s defined, having the formal structure of the scalar-valued directional-
ndependent variable

ℋ = 𝛤 {[𝐶2221 − 𝐶2212] + [𝐶1121 − 𝐶1112]} (44)

ith 𝛤 ∈ N+ (𝛤 = 1∕2 is considered here for convenience). Actually,
or any given rotation defined by the angle 𝜓 , Eqs. (23) and (44) lead
o the relation

(�̂�2221 − �̂�2212) + (�̂�1121 − �̂�1112)] = [(𝐶2221 −𝐶2212) + (𝐶1121 −𝐶1112)] (45)

onsidering instead reflection symmetry operations across any arbi-
rary line defined by the angle �̃� = 𝜓∕2, from Eq. (29) and Eq. (44)
e obtain

(�̃�2221− �̃�2212)+(�̃�1121− �̃�1112)] = −[(𝐶2221−𝐶2212)+(𝐶1121−𝐶1112)] (46)

ence, 𝐶ℋ is a pseudo-scalar which has the property to be invariant
nder arbitrary basis (or material) rotations, while inverting its sign for
rbitrary mirror reflections operations as defined above. Consequently,
ℋ turns out to be non-vanishing in the case that the rotationally

nvariant part of the micropolar elastic tensor is rather not invariant to
irror reflections, its sign being dependent on the handedness of the
icrostructure. By invoking the orthogonal irreducible decomposition

f elastic tensors (Zou et al., 2001), it is easy to show that 𝐶ℋ is
unction through 𝛤 of the chiral elastic constant 𝐴 characterizing
he hemitropic part of 𝐂 (see Section 3). The micromodulus constant
unction 𝑘a allows then modeling those couplings behaviors uncovered
y Eqs. (37)–(38) and specific of centrosymmetric micropolar periodic
icrostructures with chiral topology. Actually, if the hemitropic part

f 𝐂 is not isotropic as well, 𝐶ℋ results to be non-vanishing regardless
f the symmetry class (SO(2), Z4, i.e. invariance under 𝑛𝜋∕2 rotation
f coordinate, or Z2, i.e. invariance under 𝑛𝜋 rotation of coordinate)
f the overall constitutive tensor. As it will be shown later, since the
roperties exhibited by 𝐶ℋ naturally hold for 𝑘a as well, a properly
efined mirror reflection operation of the elastic matrix 𝐂 characteriz-
ng a given chiral micropolar continuum, results in a sign inversion of
he pseudo-scalar micropotential term in Eq. (43), which thus provides
he information of chirality owing to SO(2) invariance in the CM
odel. Moreover, it is apparent from the considerations above that
a turns out, naturally and analytically, to be vanishing for all achiral
icropolar solids with arbitrary orientation of the material reference

ystem (e.g. micropolar media with D2,D4 and O(2) invariance). In
hese cases, (as well as in the other cases of asymmetry not explicitly
entioned here), material anisotropy and related couplings behaviors

an be fully represented by the directional dependent axial and shear
icropotential functions in Eqs. (37)–(38) (see also Diana (2023)).

inally it can be noted that the effective anisotropy of 𝐄 can be fully
epresented (in a mechanism-based framework) by the micropotential
unction in Eq. (39), even in the most general case of chiral solids with
2 invariance8 (i.e. the elastic tensor is invariant under 𝑛𝜋 rotation
f coordinates), 𝐸3132 being a constant related to classical anisotropy,
ot to chirality (Chen et al., 2014b). This because axes of reflection
ymmetry always exist for 𝐄. Interestingly, as for global anisotropy, the
ffective coupling between bulk strain and micro-rotation, which may

8 �̂�3131(𝜓), as well as �̂�1111(𝜓) and �̂�2121(𝜓), assume the same formal
structure of �̃� (𝜓), �̃� (𝜓) and �̃� (𝜓), respectively.
3131 1111 2121
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be observed in micropolar chiral solids (Chen et al., 2014b; Giorgio
et al., 2020), can be fully reproduced by the definition of proper
pairwise micro-constitutive relation.

In the following subsection, we establish analytical relations be-
tween the aforementioned microelastic moduli and the corresponding
elasticities of a centrosymmetric two-dimensional micropolar Cosserat
continuum, adopting a general and consistent approach that does not
require the definition of specific deformation fields.

2.1.1. Micro-macro moduli identification
Let us consider a time-independent two-dimensional deformation

field. The components of 𝜺 and 𝝒 are assumed, without loss of gener-
lity, not to depend on the specific position 𝐱 ∈ 𝛺. The elastic energy

density of a two-dimensional centrosymmetric micropolar continuum
reads

𝜑𝒞 + 𝜑ℰ =1
2

[

(

𝐶1111𝜀
2
11 + 𝐶2222𝜀

2
22 + 2𝐶1122𝜀11𝜀22

+ 𝐶1212𝜀
2
12 + 𝐶2121𝜀

2
21 + 2𝐶1221𝜀12𝜀21

+ 2𝐶1112𝜀11𝜀12 + 2𝐶1121𝜀11𝜀21 + 2𝐶2212𝜀22𝜀12 + 2𝐶2221𝜀22𝜀21
)

+
(

𝐸3131𝜘2
31 + 2𝐸3132𝜘31𝜘32 + 𝐸3232𝜘2

32
)

]

(47)

where the elasticities and the macro-strain and curvatures components
are defined in the reference basis

{

𝐞1, 𝐞2
}

. According to Eq. (8) and Eqs.
(37)–(43), the corresponding quantity for the continuum-molecular
model is instead given by the general integral

 = 1
2 ∫𝐻𝐗

[w𝑠(𝐱, 𝐱′) + w𝛾 (𝐱, 𝐱′) + w𝑠𝛾 (𝐱, 𝐱′) + w𝜒 (𝐱, 𝐱′)] d𝐱′

= ℎ
4 ∫

𝛿

0

{

‖𝝃‖2𝛬(‖𝝃‖)∫

2𝜋

0

[

𝑘n(𝜓)𝑠2(𝜓) + 𝑘t (𝜓)𝛾2(𝜓)

+ 𝑘a𝑠(𝜓)𝛾(𝜓) + 𝑘b(𝜓)𝜒2(𝜓)
]

d𝜓
}

d‖𝝃‖ (48)

where, under the assumed conditions, the pairwise deformations 𝑠(𝜓),
𝛾(𝜓) and 𝜒(𝜓) of the generic virtual fiber can be expressed as linear
functions of the macro-strain 𝜀𝑖ℎ and curvature 𝜘3𝑖 components, and
as quadratic functions of the direction cosines of the orthonormal unit
vectors 𝐧 = n𝑖𝐞𝑖 and 𝐭 = t𝑖𝐞𝑖 by

𝑠(𝜓) = �̂�11(𝜓) = 𝜀𝑛𝑛(𝜓) = 𝜀𝑖𝑗n𝑖n𝑗 (49)

𝛾(𝜓) = �̂�21(𝜓) = 𝜀𝑡𝑛(𝜓) = 𝜀𝑖𝑗 t𝑖n𝑗 (50)

𝜒(𝜓) = �̂�31(𝜓) = 𝜘3𝑛(𝜓) = 𝜘3𝑖n𝑖 (51)

which are consistent with the Cauchy-Born rule (Ericksen, 1984, 2008)
adapted and generalized to our case, and according to �̂� = 𝐐⊤

𝜺 and
�̂� = 𝐐⊤𝝒, with 𝐐 and 𝐐 being defined by Eqs. (21)–(22), respectively.
Hence, the following relations hold

𝑠(𝜓) = 𝜀11 cos2 𝜓 + 𝜀22 sin
2 𝜓 + (𝜀12 + 𝜀21) cos𝜓 sin𝜓 (52)

(𝜓) = 𝜀21 cos2 𝜓 − 𝜀12 sin
2 𝜓 − (𝜀11 − 𝜀22) cos𝜓 sin𝜓 (53)

(𝜓) = 𝜘31 cos𝜓 + 𝜘32 sin𝜓 (54)

ubstituting Eqs. (52)–(54) in Eq. (48), and assuming 𝑘n(𝜓), 𝑘a(𝜓),
t (𝜓) and 𝑘b(𝜓) by Eqs. (37)–(39), Eq. (48) gives as general solution

=ℎ
[

𝒜1111𝜀
2
11 +𝒜2222𝜀

2
22 +𝒜1122𝜀11𝜀22

+ 𝒜1212𝜀
2
12 +𝒜2121𝜀

2
21 +𝒜1221𝜀12𝜀21 +𝒜1112𝜀11𝜀12

+ 𝒜1121𝜀11𝜀21 +𝒜2212𝜀22𝜀12 +𝒜2221𝜀22𝜀21

+ ℬ3131𝜘2
31 +ℬ3232𝜘2

32 +ℬ3132𝜘31𝜘32
]

(55)

here  =  (𝛿) is a scalar-valued function of the horizon 𝛿, depending
n the specific influence function considered while 𝒜𝑖ℎ𝑗𝑙 with 𝑖, ℎ, 𝑗, 𝑙 =
, 2 and ℬ3𝑖3ℎ with 𝑖, ℎ = 1, 2 are functions of the previously defined
icromoduli 𝑖ℎ𝑗𝑙 and 3𝑖3ℎ, respectively. In case of dimensionless

ttenuation functions,  can be expressed as  = 𝛿3𝒬, with 𝒬 ∈ R+.
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n what follows, we assume without loss of generality that 𝛬(‖𝝃‖) = 1,
hus 𝒬 = 𝜋∕384. Hence, comparing Eqs. (47) and (55), and collecting
he terms that multiply the same strain 𝜀𝑖𝑗 and microcurvature 𝜘3𝑖

components, the analytical expressions relating Cosserat macromoduli
and continuum-molecular micromoduli are obtained

𝐶1111 = 𝒜1111

= (191111 + 32222 + 21122 + 51212 + 52121 + 21221)

𝐶2222 = 𝒜2222

= (31111 + 192222 + 21122 + 51212 + 52121 + 21221)

𝐶1122 = 𝒜1122 = (1111 +2222 + 61122 + 61221 −1212 −2121)

1212 = 𝒜1212

= (51111 + 52222 − 21122 + 191212 + 32121 − 21221)

2121 = 𝒜2121

= (51111 + 52222 − 21122 + 31212 + 192121 − 21221)

1221 = 𝒜1221 = (1111 +2222 + 61122 + 61221 −1212 −2121)

𝐶1112 = 2𝒜1112 = 2(91112 − 31121 + 32212 −2221)

1121 = 2𝒜1121 = 2(91121 − 31112 + 32212 −2221)

2212 = 2𝒜2212 = 2(31112 −1121 + 92212 − 32221)

2221 = 2𝒜2221 = 2(1112 − 31121 − 32212 + 92221)

3131 = 8ℬ3131 = 8(33131 +3232)

3232 = 8ℬ3232 = 8(3131 + 33232)

3132 = 16ℬ3132 = 163132 (56)

here  = 2ℎ . It is noted that Eqs. (56) lead to the analytical relation
1122 = 𝐶1221. An important consideration is that the obtained rela-

ion between axial-axial and shear-shear coupling macromoduli does
ot depend on the specific micromoduli functions adopted. Moreover,
his analytical evidence results to be independent of the attenuation
unction considered and is rather related to the assumed pair potential
escription of elasticity under the hypothesis of non-symmetric macro-
train conditions. Similarly to the well known Cauchy relation 𝐶1122 =
1212 (Love, 1944) characterizing mathematical models associated with
entral pair-potentials for planar standard elasticity (symmetric macro-
trains) (Silling, 2000; Love, 1944; Stakgold, 1950; Diana, 2023), the
ere obtained relation is instead an intrinsic feature of non-central
air potential based formulations for planar micropolar elasticity (non
ymmetric macro-strains). Another formal similarity with the Cauchy
elation is that the aforementioned identity refers, in its irreducible
orm, to the rotationally invariant part of the elastic tensor of the
quivalent continuum, as it is independent of the anisotropy of the
aterial and holds even in case of O(2) invariance. We shall refer to

his as Voigt relation, in honor to W. Voigt and his pioneering studies
n polar elasticity and non-central pair potentials (Voigt, 1887, 1900).
t is worth noting that the same relation can be found in chiral or
chiral periodic full discrete systems, bi-dimensional block-lattices, and
eam-lattices with body(node)-centered periodic cell homogenized as
icropolar continua (see Liu et al. (2012), Chen et al. (2014b), Kumar

nd McDowell (2004), Bacigalupo and Gambarotta (2017, 2020), Ca-
olo (2021) among others), insofar their Lagrangian description can be
irectly or indirectly associated with the definition of spatially uniform
e.g. not dependent of the specific centroid position) elastic non-central
air-potentials (Diana, 2023). These aspects allow then to establish an
nteresting natural theoretical correspondence between the continuum-
olecular framework and the mechanics of periodic discrete lattice-like
aterials, which could be of support in the study, the design and the

ptimization of new architected materials featuring repetitive unit cells
omposed of rigid elements connected by elastic ligaments or elastic
nterfaces (Bacigalupo and Gambarotta, 2017; Diana, 2023).

By solving the algebraic system given by Eqs. (56) for the micro-
oduli, and considering the relations obtained in the reduced case of

nisotropic standard elasticity (Diana, 2023), we obtain

= 2𝒵 (4𝐶 − 2𝐶 − 𝐶 − 𝐶 ) (57)
1111 1111 1221 1212 2121
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Fig. 2. Polar plots of the normalized micromoduli functions 𝑘n(𝜓), 𝑘t (𝜓), 𝑘a(𝜓) and 𝑘b(𝜓) in Eqs. (37)–(43) corresponding to a representative chiral material with Z4 invariance
(block-lattice architectured material with tetrachiral topology whose micropolar continuum elastic tensor is given analytically in Section 3).
2222 = 2𝒵 (4𝐶2222 − 2𝐶1221 − 𝐶1212 − 𝐶2121) (58)

1122 = 2𝒵 (12𝐶1122 − 2𝐶1221 − 𝐶1212 − 𝐶2121) (59)

1212 = 2𝒵 (4𝐶1212 + 4𝐶1221 − 𝐶1111 − 𝐶2222 − 2𝐶1122) (60)

2121 = 2𝒵 (4𝐶2121 + 4𝐶1221 − 𝐶1111 − 𝐶2222 − 2𝐶1122) (61)

1221 = 2𝒵 (2𝐶2121 + 2𝐶2121 + 4𝐶1221 − 𝐶1111 − 𝐶2222 − 2𝐶1122) (62)

1112 = 𝒵 (9𝐶1112 + 3𝐶1121 − 3𝐶2212 − 𝐶2221) (63)

1121 = 𝒵 (9𝐶1121 + 3𝐶1112 − 3𝐶2221 − 𝐶2212) (64)

2212 = 𝒵 (9𝐶2212 + 3𝐶2221 − 3𝐶1112 − 𝐶1121) (65)

2221 = 𝒵 (9𝐶2221 + 3𝐶2212 − 3𝐶1121 − 𝐶1112) (66)

3131 = 2𝒵 (3𝐸3131 − 𝐸3132) (67)

3232 = 2𝒵 (3𝐸3232 − 𝐸3131) (68)

3132 = 8𝒵 (𝐸3132) (69)

with 𝒵 = 3∕(2𝜋ℎ𝛿3). It can be noted from Eqs. (57)–(69) that the
micromoduli 1112, 1121, 2212, and 2221 in Eqs. (63)–(66) are di-
rectly related to the corresponding elasticities 𝐶1112, 𝐶1121, 𝐶2212, and
𝐶2221, and that the properties announced for 𝑘a in Eq. (43) turn out to
hold analytically. Moreover, consistently with centrosymmetric planar
micropolar elasticity, the bending micromoduli turn out to be decou-
pled with respect to the other micromoduli, these being dependent of
the bending macro-moduli 𝐸3𝑖3ℎ only. Polar plots of the micromoduli
functions 𝑘n(𝜓), 𝑘t (𝜓), 𝑘a(𝜓) and 𝑘b(𝜓) in Eqs. (37)–(43) correspond-
ing to a representative chiral material (Bacigalupo and Gambarotta,
2020; Diana et al., 2023) with Z4 invariance are reported in Fig. 2.
Specifically, we refer here to a block-lattice architectured material
with tetrachiral topology, for which the micropolar continuum elastic
tensor has been identified analytically by Diana et al. (2023). Details
about the considered material are reported in Section 3. It should
be underlined that under general inhomogeneous deformations, the
micropotential functions here detailed fully define the linear elastic
macroscopic behavior of the equivalent micropolar continuum (Di-
ana et al., 2022; Diana, 2023), while providing a mechanism-based
description of material anisotropy and chirality.

In the special case in which the (structured) material under con-
sideration is homogenized within the framework of standard elasticity
(symmetric macro-strains), one obtains 𝐸3𝑖3ℎ = 0, 𝐶1112 = 𝐶1121, 𝐶2212 =
𝐶 and 𝐶 = 𝐶 = 𝐶 . Therefore, Eqs. (57)–(69) reduce
8

2221 1212 1221 2121
to the micro-macro moduli relations reported in Diana (2023), Diana
et al. (2022) for equivalent Cauchy materials. As previously announced,
because of the symmetric nature of strain in standard continua, the
relation 𝐶1122 = 𝐶1221 is evaded in this case9 (Diana et al., 2022), as
Eq. (56) reduce to those obtained by Diana (2023)

𝐶1111 = (191111 + 32222 + 121212 + 21122) (70)

𝐶2222 = (31111 + 192222 + 121212 + 21122) (71)

𝐶1122 = (1111 +2222 + 41212 + 61122) (72)

𝐶1212 = (31111 + 32222 + 121212 + 21122) (73)

𝐶1112 = 4(31112 +2212) (74)

𝐶2212 = 4(1112 + 32212) (75)

Moreover, it is self-apparent that in the limit case of 𝐶1111 = 3𝐶1212
in isotropic standard elasticity, these relations further reduces to those
of the well-known Silling’s non-local continuum with central actions
(Silling, 2000). Further details can be found in Diana (2023).

It should be mentioned that arbitrary material rotations can be
easily taken into account in the proposed model. Consider a micropolar
solid, and let

{

�̌�1, �̌�2
}

be an orthonormal basis embedded in the material
such that, in the initial configuration, we have �̌�1 ≡ 𝐞1, �̌�2 ≡ 𝐞2.
For arbitrary rotations of the material, Eqs. (37) and (39) modify
substituting the bond angle 𝜓 with the angle difference 𝜓 − 𝜁 , where
𝜁 = Arg

(

�̌�1 ⋅ 𝐞1 + 𝚤�̌�2 ⋅ 𝐞2
)

is positive if denotes a counterclockwise
rotation of �̌�𝑖 with respect to 𝐞𝑖. Moreover, in case of achiral orthotropic
micropolar media (D2 or D4 invariance) with principal material axes in
the direction of the unit vectors �̌�𝑖, Eqs. (37) and (38) can be written
in the equivalent general reduced form

𝑘n(𝜓, 𝜁) =1111 cos4(𝜓 − 𝜁 ) +2222 sin
4(𝜓 − 𝜁 )

+
(

21122 +1212 + 21221 +2121
)

sin2(𝜓 − 𝜁 ) cos2(𝜓 − 𝜁 )
(76)

𝑘t (𝜓, 𝜁) =2121 cos4(𝜓 − 𝜁 ) +1212 sin
4 𝜓

+
(

1111 +2222 − 21122 − 21221
)

sin2(𝜓 − 𝜁 ) cos2(𝜓 − 𝜁 )
(77)

𝑘b(𝜓, 𝜁) =3131 cos2(𝜓 − 𝜁 ) +3232 sin
2(𝜓 − 𝜁 ) (78)

9 Under these conditions, Eqs. (50) and (53) implicitly assume that �̂�12 =
�̂� . Moreover, one obtains 𝑘 (𝜓) = 𝑘 (𝜓) = 0.
21 a b
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Fig. 3. Normalized macroelastic energy – namely strain energy density – as function of the orientation 𝜁 of the material reference system and corresponding to a simple extension,
for increasing values of the density paramenter 𝑚. Left: Chiral material with Z4 invariance; Right: Orthotropic material with D2 invariance. The micropolar elasticities of the
considered homogenized structured materials are reported in Section 3. The gray polar plots refer to the 𝜁 = 0 initial condition.
where the micromoduli given by Eqs. (57)–(62) and Eqs. (67)–(68),
are obtained using macro-moduli defined in the material basis

{

�̌�1, �̌�2
}

.
Moreover, in case of bi-dimensional orthotropic chiral micropolar mate-
rials possessing Z4 or Z2 invariance (Chen et al., 2014b), the relations
(76)–(78) have to be adopted in Eq. (4) together with Eq. (43). It
should be noted that in the case of hemitropic solids (Liu et al., 2012)
(i.e. micropolar media with SO(2) invariance) these equations, as well
as Eqs. (37)–(43) reduce to the directionally-independent scalar func-
tions 𝑘n = 1111 = 2222, 𝑘t = 2121 = 1212, 𝑘b = 3131 = 3232, with
the pseudo-scalar 𝑘a = 22221 = 21121 = −22212 = −21112 which
alternates its sign according to the handedness of the microstructure,
while turning out to be vanishing for isotropic micropolar materials
(O(2) invariance).

Considering the thermodynamic constraints on the effective mate-
rial constants in planar micropolar continua (Liu et al., 2012; Chen
et al., 2014b), it should be noted that, in general, the micromoduli func-
tions 𝑘n(𝜓), 𝑘t (𝜓) and 𝑘b(𝜓) are required to be non-negative for material
and numerical stability (Silling, 2000; Diana, 2023; Diana and Carvelli,
2021). Regarding this point, it should be underlined that Eqs. (37)–(43)
derive from a specific assumption, and then other circular functions
for detailing the directional dependency of the micromoduli can be
adopted, if necessary, provided that conditions imposed by material
symmetries are satisfied (Diana, 2023). For instance, the parametric
micromoduli functions

𝑘n(𝜓, 𝜁) = 1111 cos[(𝜓 − 𝜁 )]4𝗇 + 𝖠1122 cos[(𝜓 − 𝜁 )]2𝗇 sin[(𝜓 − 𝜁 )]2𝗇

+2222 sin[(𝜓 − 𝜁 )]4𝗇 (79)
𝑘t (𝜓, 𝜁) = 2121 cos[(𝜓 − 𝜁 )]4𝗉 + 𝖡1221 cos[(𝜓 − 𝜁 )]2𝗉 sin[(𝜓 − 𝜁 )]2𝗉

+1212 sin[(𝜓 − 𝜁 )]4𝗉 (80)

𝑘b(𝜓, 𝜁) = 3232 + (3131 −3232) cos[(𝜓 − 𝜁 )]2𝗋 (81)

with 𝖠,𝖡 ∈ Z, and exponents 𝗇, 𝗉, 𝗋 ∈ N+ can be suitably particu-
larized to model a wide variety of structured materials homogenized
as (orthotropic) micropolar media, while ensuring the requirement
above (see also Diana (2023)). Under these conditions, if the rotational
invariant part of the elasticity tensor characterizing the orthotropic
material results to be not isotropic (e.g. chiral orthotropy with Z2 and
Z4 invariance (Chen et al., 2014b)), the micropotential term in Eq. (43)
is also included in the mathematical expression of the microelastic
potential w(𝜓). Furthermore, in a similar way to what described above,
Eqs. (79)–(80) – in which 𝜁 defines the orientation of the principal
material basis of unit vectors �̌�𝑖 – assume reduced forms in the limit case
of equivalent standard orthotropic continua (with 𝑘 = 𝑘 (𝜓, 𝜁) = 0).
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a b
Consider now the discretized system detailed in Appendix. The
scalar-valued micromoduli functions have to be evaluated for prede-
termined values of the virtual fiber angle 𝜓 , such that the direction-
dependent pairwise constitutive parameters turn out to be assigned
for a finite number of bond directions (Diana, 2023). In the case of
regular grids with uniform spacing 𝛥x and given quadrature rule (Se-
leson, 2014), the number of bond directions to be associated with
𝑘n(𝜓), 𝑘t (𝜓), 𝑘b(𝜓) and 𝑘a(𝜓) depends on the density parameter 𝑚 =
𝛿∕𝛥x (Bobaru, 2011) expressing the ratio between the horizon and
the grid spacing considered. It can be noted that larger values of the
density parameter require finer angular discretization of the continuous
trigonometric functions, which are written in their general form in
Eqs. (33)–(36). Therefore, the scalar-valued parameter 𝑚 should be
chosen in such a way that the effective material anisotropy of the
micropolar solid under consideration is correctly reproduced by the
discretized model (Diana et al., 2022; Diana, 2023). Specifically, given
a macro-deformation field defined over the horizon region 𝐻𝐱, the
macroelastic energy of the discretized CM model should equal the
micropolar continuum counterpart (i.e. its elastic energy density) for
any arbitrary rigid rotation 𝜁 of the material. As a representative case
we consider here a uniaxial extension (affine displacement field over
𝐻𝐱 with vanishing uniform micro-rotation) in the direction of the
unit vector 𝐞1 of the usual reference basis

{

𝐞1, 𝐞2
}

. The orthogonal
basis

{

�̌�1, �̌�2
}

is considered embedded in the material with the initial
condition �̌�1 ≡ 𝐞1 (𝜁 = 0). A micropolar tetrachiral solid (Z4 invariance)
and a orthotropic achiral solid of D2 invariance (with

{

�̌�1, �̌�2
}

being the
principal material basis) are considered, whose Cosserat constitutive
relations will be shown in detail in Section 3. As Fig. 3 shows, 𝑚 > 3
should be adopted in discretized CM models with overall anisotropic
properties to correctly represent the variation of the elastic energy
density as function of the material rotation 𝜁 (Diana, 2023). However,
it is self apparent that larger values of the density parameter lead to
progressively increasing computational costs, since larger turns out to
be the corresponding number of non-zero elements in the elastic stiff-
ness operator as well (e.g. Eq. (A.15)) (Ballarini et al., 2018). In what
follows, unless otherwise specified, 𝑚 = 5 is adopted, which represents
a good compromise between computational cost and accuracy of the
elastic problem solution (Diana et al., 2022) (see Fig. 3).

At this point, it should be also noted that the analytical identifica-
tion of the material micromoduli (namely the micro-macro correspon-
dence scheme) developed in this section is derived by tacitly assuming
an unbounded domain, or implicitly referring to material points located
in the bulk (Silling, 2000). Actually, material points 𝐱 ∈ 𝛺 with dis-
tance ℒ̆ < 𝛿 from the nearest point on the boundary do not have a full
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Fig. 4. Thick beam problem in isotropic micropolar elasticity: Layout of the problem and boundary conditions (𝗮); Global vertical reaction force 𝐹2 to the imposed displacements
of magnitude u∗2 as function of the non-dimensional length-scale parameter 𝑙 = 𝓁∕𝜛 and corresponding to different horizon size 𝛿 (𝗯). The micropolar (Cosserat) continuum solution
is also reported for reference and denoted by dashed gray line.
horizon region 𝐻𝐱 (Silling, 2000), thus their material properties result
to be slightly different from those characterizing generic points in the
bulk. In order to take into account this important aspect in numerical
simulations, a specific surface correction algorithm is required. In this
work we refer for simplicity to the volume method by Le and Bobaru
(2017), as particularized to our case (Diana, 2023).

3. Benchmark problems

The proposed formulation is validated through several benchmark
examples involving homogeneous and non-homogeneous deformation
in chiral and achiral micropolar continua with different invariance
properties. The nomenclature used for discretized systems as well as
the details about the implementation of the CM governing equations
based on meshfree approach are detailed in Appendix. The first prob-
lem focuses on the analysis of the size-dependent behavior of the
continuum-molecular model as referred to the representative case of
an isotropic – i.e. O(2) invariance – micropolar (Cosserat) solid under
plane strain. In this case, the elastic matrices 𝐂 and 𝐄 can be written
in the form

𝐂 =

⎡

⎢

⎢

⎢

⎢

⎣

𝐶1111 𝐶1122 0 0
𝐶1122 𝐶1111 0 0
0 0 𝐶1111 − 𝐶1122 − 𝐶1221 𝐶1221
0 0 𝐶1221 𝐶1111 − 𝐶1122 − 𝐶1221

⎤

⎥

⎥

⎥

⎥

⎦

(82)

𝐄 =
[

𝐸3131 0
0 𝐸3131

]

=
[

𝑆 0
0 𝑆

]

(83)

with 𝐶1111 = 𝐶2222 = 𝜆 + 2𝜇, 𝐶1122 = 𝜆, 𝐶1212 = 𝐶2121 = 𝐶1111 − 𝐶1122 −
𝐶2121 = 𝜇 + 𝜅 and 𝐶1221 = 𝜇 − 𝜅, 𝜆 and 𝜇 being the Lamé constants,
whereas 𝜅 and 𝑆 are the additional micropolar elastic moduli. The
elastic modulus relating couple-stress to microcurvatures can be put in
the form 𝑆 = 4𝜇𝑙2 (Nakamura and Lakes, 1995) which turns out to be
a quadratic function of the characteristic length in bending 𝑙, defined
as a dimensional parameter related to the size of the heterogeneity
of the material homogenized as micropolar medium. In the case of
microstructured periodic lattice-like materials, the characteristic length
has been shown to be strictly related to the lattice spacing 𝓁 (Liu
et al., 2012; Diana et al., 2023; Kumar and McDowell, 2004). We study
the problem of a thick beam (length 𝐿 = 3𝜛 and height 𝑍 = 2𝜛)
with fixed left edge and subjected to an imposed vertical displacement
u∗ = 𝐿 × 10−2 along the right edge, as shown in Fig. 5. In order to
maximize the resulting overall micropolar effects for same 𝑙, 𝜅 = 𝜇 is
assumed for the isotropic material (Wu and Gao, 2023), which is also
10
characterized by vanishing Poisson’s ratio (𝜆 = 0). The CM solution is
compared with the micropolar (Cosserat) continuum solution obtained
by finite element (FE) analysis and considering different values of
the non-dimensional parameter 𝑙 = 𝑙∕𝜛. To this purpose, a FE code
is written for the in-plane micropolar elasticity problem, employing
eight-node isoparametric quadrilateral elements (Zhang et al., 2005).

It is observed that for relatively small values of the non-dimensional
parameter 𝑙, the problem turns out to be bending-dominated with
resulting overall stiffness and deformed configuration asymptotically
convergent to the classical (Cauchy) elasticity solution (Figs. 4–6). Mi-
cropolar effects become significant for 𝑙 > 10−1, such that a substantial
increase in flexural stiffness is observed which leads to the progressive
increase of the overall stiffness of the body (Fig. 4). Under these
conditions (e.g. 𝑙 is on the order of 𝜛), micro-rotation decreases with
the decrease of the characteristic length parameter 𝑙, while deformation
resulting from the imposed displacement goes from being bending-
dominated to being shear-dominated. The transition between these
different elastic behaviors, which is consistent with results detailed
in Wu and Gao (2023), Obrezkov et al. (2022), is clearly visible in
Figs. 5–6. When 𝑙 ≈ 10, which is of interest only from a theoretical
perspective, the flexural stiffness has increased to the level where
bending is almost suppressed insofar the global stiffness is invariant to
further increases of the characteristic length parameter 𝑙 (Fig. 4) (Deng
and Dargush, 2021).

The proposed CM model demonstrates very good accuracy in repro-
ducing the typical size-dependent elastic behavior of planar micropo-
lar elasticity as the computed generalized displacement fields clearly
exhibit length-scale sensitivity as well as excellent agreement with
Cosserat continuum solution. Moreover, the CM solution shows fast
convergence to the micropolar continuum solution as the value of the
horizon 𝛿 decreases (keeping the density factor 𝑚 constant). In any
case, numerical predictions result to be in accordance with the Cosserat
solution even in the case of coarser discretizations, as shown in Fig. 4.
Indeed, the CM formulation presented here, together with the micro-
macro-correspondence relations detailed in Section 2.1, constitutes a
sort of integral-type generalization (accounting for distance actions) of
the Cosserat micropolar continuum (Forest, 2005). This (expected) re-
sult is consistent with those obtained by continumm-molecular models
for standard elasticity (Diana, 2023; Silling, 2000), for which con-
vergence properties to classical (Cauchy) continuum mechanics (for
reducing values of the horizon) has been extensively demonstrated (see
for instance (Silling, 2000; Silling and Lehoucq, 2008; Bobaru et al.,
2009; Diana, 2023)). It is worth noting that while in the CM model for
standard media (Diana, 2023), the rotation field 𝜃(𝐱) reproduces the
macro-rotation of classical elasticity (in the limit of 𝛿 going to zero),
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Fig. 5. Thick beam problem in isotropic micropolar elasticity: Non-dimensional vertical displacement u2∕𝜛 and rotation 𝜃 along the abscissa x2 = −𝜛∕2 obtained by the CM
model with 𝛿 = 𝜛∕8 for different values of the non-dimensional length-scale parameters 𝑙 = 𝓁∕𝜛 (first column); Non-dimensional horizontal displacement u1∕𝜛 along the abscissae
x2 = −𝜛∕2 and x1 = 2𝜛 obtained by the CM model with 𝛿 = 𝜛∕8 for different values of the non-dimensional length-scale parameters 𝑙 = 𝑙∕𝜛 (second column). The CM solution
is compared with the corresponding Cosserat FE solution and Cauchy reference solution with 𝜙 being the micropolar continuum micro-rotation. CM solution obtained adopting
𝛿 = 𝜛∕8.
here 𝜃(𝐱) turns out to represent the micro-rotation field of micropolar
(Cosserat) elasticity (see Fig. 5).

In order to demonstrate the ability of the proposed CM framework
to model size-dependent anisotropic elastic behavior, we consider now
the case of a microstructured material homogenized as an orthotropic
micropolar continuum. In particular, we refer to a two-dimensional
periodic masonry-like material composed of rigid units of finite di-
mensions (length 𝑏 and the height 𝑎) and linearly elastic interfaces
featuring a running-bond type tessellation, with 𝑟 = 𝑏∕𝑎 being the
non-dimensional ratio defining the shape of the brick units (Bacigalupo
et al., 2021). The elastic parameters of the interfaces are 𝖪𝑛 = 𝗄𝑛𝑑,
𝖪𝑡 = 𝗄𝑡𝑑, 𝖪𝜙 = 𝗄𝑛𝑑3∕12, which define their axial, shear and rotational
equivalent stiffness, respectively. The normal and tangential stiffness
per unit length (𝑑 = 𝑎 or 𝑑 = 𝑏∕2 depending on the coordination direc-
tion) of the interfaces are instead denoted by 𝗄𝑛 and 𝗄𝑡, respectively. The
non-dimensional stiffness ratio of the interfaces is 𝛼 = 𝖪𝑡∕𝖪𝑛. It is worth
mentioning that microstructures of this kind also characterize bio-
inspired nacre-like composites (Greco et al., 2020; Bertoldi et al., 2008).
The continualization procedure detailed in Bacigalupo and Gambarotta
(2017), Diana et al. (2023) allows obtaining the governing equations in
elastostatics of an equivalent micropolar continuum of D2 invariance,
whose constitutive elastic matrix 𝐂 and non-local elastic matrix 𝐄 in
11
the (principal) reference basis
{

�̌�1 = 𝐞1, �̌�2 = 𝐞2
}

read

𝐂 =

⎡

⎢

⎢

⎢

⎢

⎣

𝐶1111 𝐶1122 0 0
𝐶1122 𝐶2222 0 0
0 0 𝐶1212 𝐶1221
0 0 𝐶1221 𝐶2121

⎤

⎥

⎥

⎥

⎥

⎦

(84)

𝐄 =
[

𝐸3131 0
0 𝐸3232

]

(85)

where the non-vanishing moduli are expressed by the analytical rela-
tions

𝐶1111 =
1
4
𝑟𝗄𝑛𝑎(4 + 𝛼𝑟), 𝐶2222 = 𝑎𝗄𝑛 (86)

𝐶1212 = 𝛼𝑎𝗄𝑛, 𝐶2121 =
1
4
𝑟𝗄𝑛𝑎(4𝛼 + 𝑟) (87)

𝐸3131 =
1
96
𝑟𝗄𝑛𝑎

3 (5𝑟3 + 18𝛼𝑟 + 8
)

, 𝐸3232 =
1
24

𝗄𝑛𝑎
3 (𝑟2 + 8𝛼𝑟 + 2𝛼

)

(88)

depending on the constitutive parameters of the interface (𝛼 and 𝗄𝑛), on
the block shape parameter 𝑟 and the block dimension 𝑎 (Diana et al.,
2024). Different realistic values of the shape parameter 𝑟 = 2 and 𝑟 = 3
are adopted in this study, with non-dimensional ratio 𝛼 = 2∕5 corre-
sponding to an interface made of homogeneous linearly elastic material
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Fig. 6. Thick beam problem is isotropic micropolar elasticity: CM solutions corresponding to non-dimensional length scale parameters 𝑙 = 0.1, 𝑙 = 0.5 and 𝑙 = 1, while adopting
𝛿 = 𝜛∕8. First row: Deformed configuration and horizontal displacement map (with �̃� = 1.2 × 10−2); Second row: Deformed configuration and rotation displacement map (with
𝜃 = 1.3 × 10−2). Contour lines define ten equally-spaced intervals of the variables’ range, whereas displacements are magnified by a factor of ten.

Fig. 7. Shear strip problem in block-lattice masonry-like materials homogenized as orthotropic micropolar solids with D2 invariance: Polar plots of the off-axis micropolar elastic
moduli �̂�1111, �̂�1212 and �̂�3131 in the case of 𝛼 = 2∕5 and shape parameter of the blocks 𝑟 = 2 (𝗮) and 𝑟 = 3 (𝗯).

Fig. 8. Shear strip problem in block-lattice masonry-like materials homogenized as orthotropic micropolar solids with D2 invariance: Layout of the problem and definition of the
underlying microstructure considered.
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Fig. 9. Shear strip problem in block-lattice masonry-like materials homogenized as orthotropic micropolar solids with D2 invariance: CM solution (𝜃 field) obtained considering
𝛼 = 2∕5 and 𝜛 = 10𝑎 with shape parameter 𝑟 = 2 (𝗮) and 𝑟 = 3 (𝗯). Contour lines define ten equally-spaced intervals of the variables’ range, while 𝜃 = −1.85 × 10−2.
Fig. 10. Shear strip problem in block-lattice masonry-like materials homogenized as orthotropic micropolar solids with D2 invariance: Analytical and CM solution considering
𝛼 = 2∕5, shape parameter 𝑟 = 2 and 𝑟 = 3, 𝛼 with 𝜛 = 10𝑎 (Left) and 𝜛 = 4𝑎 (Right).
with Poisson’s ratio 𝜈 = 1∕5. Polar plots of the off-axis moduli obtained
by Eq. (88) for the two microstructures considered are reported in
Fig. 7. Hence, a constrained two-dimensional strip of masonry-like
material homogenized as a micropolar continuum, having finite height
𝜛 and theoretically unlimited in the horizontal direction, is considered
(Fig. 8) (Bacigalupo and Gambarotta, 2010). The bottom edge is fully
restrained, whereas a unitary quasi-static horizontal displacement u∗1 is
applied to the top edge (the other degrees of freedom being restrained).
Due to the characteristics of the problem and the considered boundary
conditions, the generalized displacements turn out to be independent
of the horizontal abscissa x1, whereas the vertical displacements are
vanishing. The analytical solution of the micropolar elastic problem in
terms of horizontal displacement u1(x2) and micro-rotation field 𝜙(x2)
can be expressed as

u
(

x
)

= 𝑐 + 𝑐 𝑥 + 𝑐 e
𝖻
𝖺
x2 + 𝑐 e−

𝖻
𝖺
x2 (89)
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1 2 1 2 2 3 4
𝜙
(

x2
)

= − 1
𝖺
(

𝖻2 + 𝛼
) 𝑐2𝛼𝖺 + 𝑐3𝖻

(

𝛼 + 𝖻2
)

e
𝖻
𝖺
x2 + − 𝑐4𝖻

(

𝛼 + 𝖻2
)

e−
𝖻
𝖺
x2 (90)

where 𝖺 and 𝖻 are auxiliary variables such that

𝖺2 = 1
24

(

𝑟2 + 8𝛼𝑟 + 2𝛼
)

, 𝖻2 = 1
4
𝑟(4𝛼 + 𝑟), (91)

whereas 𝑐1, 𝑐2, 𝑐3, 𝑐4 are constants that can be determined from the four
boundary condition equations u1 (0) = 0, u1 (𝜛) = 0, 𝜙 (0) = 0 and
𝜙 (𝜛) = 0 (Bacigalupo et al., 2021).

The constrained strip domain is discretized using a CM regular grid
with 𝛿 = 𝜛∕8 (see previous benchmark problem), and considering a
lateral length 𝐿 = 10𝜛 in such a way to avoid perceptible boundary
effects at x1 = 0. We compare the analytical solution in terms of micro-
rotation 𝜙(x2) of the homogenized microstructured materials, which is
characterized by rapid transition of values along the height 𝜛, with
the 𝜃(x ) field obtained by the discretized CM model. In this case, the
2
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Fig. 11. Hexagonal chiral honeycombs homogenized as micropolar planar chiral solids with SO(2) invariance (Liu et al., 2012); CM micromoduli (see Section 2.1.1) as function
of the chirality angle 𝛽 of the corresponding discrete lattice, and in the case of three different values of the slenderness ratio of the lattice ligaments 𝜔 (𝗮); Layout of the elastic
problem considered (imposed displacement u∗1 = 𝜛∕5) involving affine displacement field with vanishing microcurvature (𝗯).
(

parametric generalized micromodulus functions given by Eqs. (79)–
(81) are adopted to describe the overall anisotropy of the material
while ensuring the thermodinamically-consistency of the microelastic
constitutive relations (Diana, 2023) (see Section 2.1.1). In particular,
𝖠 = 1, 𝖡 = 0 with 𝗇 = 2, 𝗉 = 1, 𝗋 = 1 and 𝗇 = 3, 𝗉 = 2, 𝗋 = 3 are
adopted in the case of shape parameter 𝑟 = 2 and 𝑟 = 3, respectively.
In order to underline the influence of the microstructure properties as
well as the length-scale sensitivity of the micropolar elastic solution,
two different strip heights are considered (𝜛 = 4𝑎 and 𝜛 = 10𝑎)
together with the two aforementioned values of the shape parameters
𝑟. It is noted that the size of the problem influences the smoothness of
the solutions, thus the decay of the micro-rotation from the horizontal
boundaries to the center of the constrained strip. On the contrary,
the slenderness of the blocks has primary influence on the average
magnitude of the resulting micro-rotation field along the height of
the strip (Figs. 9–10). Results obtained by the CM formulation are in
very good agreement with the analytical solutions corresponding to the
representative cases of materials considered. Hence, the CM model for
micropolar planar elasticity shows high accuracy in reproducing the
size-dependent behavior of microstructured materials homogenized as
micropolar continua accounting for their directional dependent elastic
properties, as shown in Figs. 9–10.

Consider now the case of a hemitropic bi-dimensional material. In
particular, we refer here to the well-known hexagonal chiral honey-
combs (Prall and Lakes, 1997) consisting of periodic patterns of (rigid)
circles linked by straight elastic beam-like ligaments homogenized as
micropolar continua with SO(2) invariance (Liu et al., 2012; Chen et al.,
2014b; Bacigalupo and Gambarotta, 2014). The resulting effective con-
stitutive tensor 𝐄 takes the same form as Eq. (83), whereas the general
form of 𝐂 in this case reads

𝐂 =

⎡

⎢

⎢

⎢

⎢

⎣

𝐶1111 𝐶1122 𝐶1112 −𝐶1112

𝐶1122 𝐶1111 𝐶1112 −𝐶1112

𝐶1112 𝐶1112 𝐶1111 − 𝐶1122 − 𝐶1221 𝐶1221

−𝐶1112 −𝐶1112 𝐶1221 𝐶1111 − 𝐶1122 − 𝐶1221

⎤

⎥

⎥

⎥

⎥

⎦

(92)

which turns out to be invariant under arbitrary rotations of the ref-
erence basis, but not to mirror reflections (see Section 2.1). In this
case, mirror reflection operations lead to sign inversion of the moduli
𝐶 ,𝐶 , 𝐶 and 𝐶 , the elastic matrix 𝐂 being coincident to
14

1112 1121 2212 2221
its hemitropic part (Zou et al., 2001). In other words, these constants
alternate their signs according to the handedness of the microstructure
(see Fig. 11).

According to Liu et al. (2012), Bacigalupo and Gambarotta (2014)
the elastic matrix 𝐂 may be written, alternatively, as

𝐂 =

⎡

⎢

⎢

⎢

⎢

⎣

2𝜇 + 𝜆 𝜆 −𝐴 𝐴
𝜆 2𝜇 + 𝜆 −𝐴 𝐴
−𝐴 −𝐴 𝜇 + 𝜅 𝜇 − 𝜅
𝐴 𝐴 𝜇 − 𝜅 𝜇 + 𝜅

⎤

⎥

⎥

⎥

⎥

⎦

(93)

where the following moduli are analytically defined

𝜇 =

√

3
4
�̌�𝐸𝑠𝜔

(

1 + 𝜔2) 𝜆 =

√

3
4
�̌�𝐸𝑠𝜔

(

1 − 𝜔2) cos 2𝛽 (94)

𝜅 =

√

3
2
�̌�𝐸𝑠𝜔

[

sin2 𝛽 + 𝜔2 cos2 𝛽
]

𝐴 =

√

3
4
�̌�𝐸𝑠𝜔

(

1 − 𝜔2) sin 2𝛽 (95)

with 𝛽 being the chirality angle (e.g. the smallest angle between the
line connecting the centroids of two neighboring rigid circles and the
corresponding ligament of lenth 𝓁), 𝜔 = 𝑜∕𝓁 the non-dimensional
slenderness) ratio between the ligament in-plane thickness 𝑜 and the

length 𝓁, and 𝐸𝑠 = 𝐸𝑏∕
(

1 − 𝜈2𝑏
)

or 𝐸𝑠 = 𝐸𝑏 under plane strain or plane
stress assumptions, respectively (𝐸𝑏 and 𝜈𝑏 are the Young’s modulus and
Poisson’s ratio of the lattice) (Liu et al., 2012; Bacigalupo et al., 2023).
The non-dimensional parameter �̌� denotes the ratio between the out-of
plane thickness of the ligaments to that of the rigid circles of diameter
�̌� = 𝓁 tan 𝛽 (Bacigalupo et al., 2023). The constitutive matrix 𝐂, as
written in Eq. (93), is that of a hemitropic planar solid characterized
by positive chirality when 𝛽 > 0 (i.e. tensile bulk strain leads to positive-
defined counterclockwise micro-rotation with 𝐴 > 0). In our case,
𝐸3131 = 𝑆 =

√

3�̌�𝐸𝑠𝜔𝓁2(4𝜔2+3 tan2 𝛽)∕12. We consider hexagonal chiral
lattices characterized by three realistic values of the slenderness ratio 𝜔
while assuming chirality angles ranging from 𝛽 = −𝜋∕3 to 𝛽 = 𝜋∕3, with
�̌� being unitary. The CM micromoduli are determined using Eq. (93)
and the analytical micro-macro correspondence procedure detailed in
Section 2.1.1 particularized to the case of hemitropic solids. Actually,
in this case the directional invariant micromodulus 𝑘a in Eq. (43) turns
out to be non vanishing, as the pseudo-scalar defined in Section 2.1 is
𝐶ℋ = 2𝐴. As shown in Fig. 11, the resulting directional independent
micromoduli 𝑘n and 𝑘t are even function of the chirality angle 𝛽 (see
Fig. 12) characterizing the underlying microstructure. Conversely, the
micromodulus 𝑘 turns out to be a odd function of 𝛽, and it reverses
a
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Fig. 12. Hexagonal chiral honeycombs made of rigid rings and slender beam-like elastic ligaments: Elastic coupling between (ring) rotation and equivalent overall bulk strain in
he case of positive (𝛽 > 0) chirality (𝗮) and negative (𝛽 < 0) chirality (𝗯).
Fig. 13. Hexagonal chiral honeycombs homogenized as micropolar planar chiral solids with SO(2) invariance (Liu et al., 2012) under uniaxial extension; Analytic and CM values
of the resulting Poisson’s ratio of the chiral micropolar solid as function of the chirality angle 𝛽 (Left); Analytic micro-rotation 𝜙 and CM rotation 𝜃 as function of 𝛽 (Right). Only
positive values of the chirality angle are considered here as the Poisson’s ratio turns out to be an even function of 𝛽 whereas the micro-rotation results to be a odd function of
the same angle.
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its sign when the microstructure is reversed as well (Fig. 11). It can be
noted that, as a result of the conceived micro-macro correspondence
scheme, 𝑘n, 𝑘t and 𝑘a exhibit similar analytical dependency on 𝛽 as the
macro-constants 𝐶1111, 𝐶1212 and 𝐶ℋ , respectively. The Layout of the
elastic problem considered is reported in Fig. 11. The imposed bound-
ary conditions lead to theoretical affine displacements and vanishing
microcurvature field. In this case, the exact solution of the elastostatic
problem in terms of (uniform) micro-rotation 𝜙(𝐱) = 𝜙 reads

𝜙 =
(1 − 𝜈)𝐴𝜀∗11

2𝜅
=

(1 − 𝜈)𝐴u∗

2𝜅𝜛
=

(1 − 𝜔4) sin(2𝛽)u∗

[2(𝜔4 − 1) cos(𝛽)2 + 2(3𝜔2 + 1)]𝜛
(96)

ith 𝜈 being the overall Poisson’s ratio (plane stress conditions are
ssumed) defined as

= 𝐴2 − 𝜅𝜆
𝐴2 − (2𝜇 + 𝜆)𝜅

(97)

The micro-rotation and the resulting overall Poisson’s ratio derived
from Eqs. (96)–(97) and characterizing the chiral micropolar contin-
uum (i.e. the homogenized microstructured chiral lattice) are compared
with the corresponding values computed by the proposed CM model.
In this case, the overall Poisson’s ratio is obtained as 𝜈 = −ũ2∕ũ1,

ith ũ1 and ũ1 being the displacement components at x1 = x2 = 𝜛.
esults shown in Figs. 13 demonstrate that the CM model is capable to
eproduce with accuracy the coupling behavior between bulk strain and
icro-rotation typical of micropolar chiral planar solids, and uncovered

y classical elasticity (see Fig. 12). Moreover, the micropotential term
15

𝑠𝛾 introduced in Section 2 is able to describe the resulting strong
uxeticity of the material as well (Fig. 13). It is worth to underline
hat the aforementioned overall elastic behaviors arise naturally as
result of properly-defined constitutive relations produced for micro

nteractions (i.e the virtual fibers). In other words, as opposed to the
henomenological approach of continuum mechanics, the CM approach
eads to a mechanism-based description of auxeticity and chirality.
s last validation example, we consider the case of an anisotropic

wo-dimensional chiral solid. We refer to the tetrachiral block-lattice
aterial (Bacigalupo and Gambarotta, 2020; Diana et al., 2023) already
entioned in Section 2.1.1, and made up of periodic tessellations of

quare rigid units of side 𝑎, inclined by the chirality angle 𝛽(−𝜋∕4 <
𝛽 < 𝜋∕4), and connected by elastic interfaces of length 𝑏 = (1 − tan 𝛽)𝑎
and vanishing thickness (see Fig. 14). Similarly to the previous case,
the chirality angle 𝛽 is defined as the smallest angle between the
line connecting the centroids of two neighboring blocks and the line
perpendicular to the corresponding elastic interface. The axial, shear
and rotational overall stiffness of the interfaces are 𝖪𝑛 = 𝗄𝑛𝑏, 𝖪𝑡 =
𝗄𝑡𝑏, 𝖪𝜙 = 𝗄𝑛𝑏3∕12, respectively (Bacigalupo and Gambarotta, 2020).
Considering the usual reference basis

{

𝐞1, 𝐞2
}

, the elastic matrices of
the equivalent micropolar continuum of Z4 invariance, as identified
analytically by Diana et al. (2023), read

𝐂 =

⎡

⎢

⎢

⎢

⎢

𝐶1111 𝐶1122 𝐶1112 𝐶1121
𝐶1122 𝐶1111 −𝐶1121 −𝐶1112
𝐶1112 −𝐶1121 𝐶1212 𝐶1221

⎤

⎥

⎥

⎥

⎥

(98)
⎣

𝐶1121 −𝐶1112 𝐶1221 𝐶1212 ⎦
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Fig. 14. Tetrachiral periodic block-lattices (Bacigalupo and Gambarotta, 2020) homogenized as micropolar continua with Z4 invariance: Discrete square tessellation of 5 × 5 rigid
units and elastic interfaces with indication of the periodic cell (𝗮). Two-dimensional domain of the equivalent chiral micropolar continuum considered for the elastostatic problems

hose boundary conditions are detailed in Table 1 (𝗯).
i
m
e
a

𝜙

=
[

𝐸3131 0
0 𝐸3131

]

(99)

he non-vanishing moduli being

1111 = 𝖪𝑛
(

cos2 𝛽 + 𝛼 sin2 𝛽
)

𝐶1121 = 𝖪𝑛 (1 − 𝛼) sin 𝛽 cos 𝛽 (100)

1212 = 𝖪𝑛(sin
2 𝛽 + 𝛼 cos2 𝛽) 𝐸3131 =

[

𝖪𝜙 + �̃�𝓁2𝖪𝑛
(

sin2 𝛽 + 𝛼 cos2 𝛽
)]

(101)

hich depends on the constitutive parameters of the interface 𝖪𝑛 and
(e.g. the usual non-dimensional stiffness ratio), on the block centroid

istance or lattice-spacing 𝓁 = 𝑎∕ cos 𝛽, and on the chirality angle 𝛽,
ith �̃� = 1∕12. In this case, we consider two elastostatic problems
efined over the continuum square domain of side 2𝜛 reported in
ig. 14, and characterized by different sets of boundary conditions
e.g. 𝒫1 and 𝒫2) detailed in Table 1. The same elastic problems, the dis-
lacements being affine and the micro-rotations being uniform, are also
olved for the full-discrete Lagrangian model of the periodic mechanical
etamaterial (Bacigalupo and Gambarotta, 2020) featuring a square
eriodic tessellation of rigid units and elastic interfaces (Fig. 14). Since
he resulting microcurvature field turns out to be vanishing, the elasto-
tatic problems result to be size-independent and then the choice of the
attice spacing 𝓁 does not affect the solution. For illustrative purposes, a
quare tessellation of 5 × 5 rigid blocks and elastic interfaces is adopted
n this case, which corresponds to the lattice spacing 𝓁 = 𝜛∕2. Two
ifferent values of the non-dimensional stiffness ratio of the interface
re considered (i.e. 𝛼 = 1∕2 and 𝛼 = 1∕4) while the chirality angle is
aried within the range 𝛽(−𝜋∕4 < 𝛽 < 𝜋∕4). It is noted that, due to
4 invariance of the material, when inverting the chirality angle 𝛽, the
seudo-scalar 𝐶ℋ together with the angle 𝜁 defining the principal direc-
ion of unit vector �̌�1 such that max �̂�1111 = �̌�1111, reverse their sign. The
atter condition influences the resulting overall anisotropic properties
f the material (Fig. 15). The microelastic constants of the CM model
re derived using Eqs. (57)–(69) with the corresponding standard direc-
ion dependent micromoduli functions given by Eqs. (37)–(43) in the
ase of 𝛼 = 1∕2. Moreover, in order to show the effectiveness of the
eneralized parametric directional dependent functions for orthotropic
aterials with chirality, while ensuring positive-definiteness of the
icroelastic constants as discussed in Section 2.1.1, Eqs. (79)–(81)
ith 𝖠 = 𝖡 = 1, 𝗇 = 4, 𝗉 = 2, 𝗋 = 1 are adopted in the case
f 𝛼 = 1∕4. The corresponding microelastic constants are analytically
etermined using Eqs. (47) and (55), via energy-based procedure as
16
Table 1
Tetrachiral periodic block-lattices homogenized as micropolar continua with Z4 invari-
ance: Elastic problem defined by boundary conditions on the four edges of the square
domain in Fig. 14 and corresponding to two different cases involving theoretical affine
displacements and uniform rotations.

Case/Problem left (x1 = 0) right (x1 = 2𝜛) bottom (x2 = 0) top (x2 = 2𝜛)

𝒫1 𝐮 = 𝟎 u1 = 𝜛∕5 free free
𝒫2 u1 = 0 u1 = 𝜛∕5 u2 = 0 u2 = 𝜛∕5

detailed in Section 2.1.1. In the case of problem 𝒫1, the imposed
boundary conditions lead to the affine transversal displacement field
analytically given for an equivalent micropolar continuum by

u2(x1) =
6�̃�(𝛼 − 1) cos 𝛽 sin 𝛽
5(sin2 𝛽 + 𝛼 cos2 𝛽)

x1 (102)

while the (uniform) micro-rotation 𝜙(𝐱) = 𝜙 turns out to be van-
shing, the elastic response being in this case basically governed by
aterial anisotropy. Considering instead the problem 𝒫2, the imposed

quivalent uniform expansion leads to the uniform micro-rotation field
nalytically given by

=
6�̃�(1 − 𝛼) cos 𝛽 sin 𝛽
5(sin2 𝛽 + 𝛼 cos2 𝛽)

(103)

the mechanical response of the lattice-like material being influenced
by its chiral properties (owing to SO(2) invariance of 𝐂𝑜 in Eqs. (32))
as the characteristic direct elastic coupling between bulk strain and
pure rotation appears (Chen et al., 2014b) (see Fig. 16). The numerical
solutions obtained using the CM model and corresponding to the elastic
problems 𝒫1 and 𝒫2 with the aforementioned assumed parameters
result to be in excellent agreement with the analytical micropolar con-
tinuum solution in Eqs. (102)–(103), as well as with the solution of the
governing equations of the discrete Lagrangian tetrachiral block-lattice
system (Bacigalupo and Gambarotta, 2020) (Fig. 17).

An additional size-dependent problem, whose layout is detailed
in Fig. 18, is also considered for the tetrachiral lattice homogenized
as micropolar medium with Z4 invariance, involving this time inho-
mogeneous deformation and non-uniform microcurvature field. The
size-dependent problem is solved considering two different values of
the length scale parameter 𝓁 characterizing the underlying material
microstructure (i.e. 𝓁 = 𝜛∕2 and 𝓁 = 𝜛∕10), and directly associated

with the block-lattice dimensions. The assumed reference values of
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Fig. 15. Tetrachiral periodic block-lattices homogenized as micropolar continua with Z4 invariance: Polar plots of the off-axis micropolar elastic moduli �̂�1111, �̂�1212, �̂�3131 and
̂
ℋ = 𝐶ℋ in the case of 𝛼 = 1∕4 and chirality angle 𝛽 = arctan(1∕2) (𝗮) and 𝛽 = −arctan(1∕2) (𝗯). Dashed lines indicate negative values.
Fig. 16. Tetrachiral block-lattice (Z4 invariance) with 𝛼 = 1∕4 and chirality angle 𝛽 = ±arctan(1∕2) subjected to equivalent uniform expansion (problem 𝒫2): The bulk deformation
leads to uniform counterclockwise blocks rotations in case of 𝛽 > 0 (𝗮), and uniform clockwise blocks rotations in case of 𝛽 < 0 (𝗯). Rotations are magnified by a factor of two for
better visualization.
the non-dimensional stiffness and chirality angle are 𝛼 = 1∕4 and
= −arctan(1∕2), respectively. As shown in Figs. 18–20, the material

ength-scale parameter 𝓁 leads to two main important effects in the
lobal material response. Actually, lower values of the internal length
ccentuate the asymmetry of the resulting elastic response of the mate-
ial as well as the localization of the deformation in a smaller zone close
o the load-application area (see Fig. 20). It is noted that, in the case
f 𝓁 = 𝜛∕10, the resulting displacement field turns out to be slightly

influenced by micropolar effects sufficiently far from the top bound-
ary (Fig. 19). In any case, models associated with classical Cauchy
continuum are in no way capable to reproduce the characteristic micro-
rotation field influenced by chiral-type elastic coupling effects in the
microstructured material. Results obtained confirm the effectiveness of
17

𝜇

the proposed CM formulation and its ability to describe the mechanical
behavior of planar anisotropic chiral micropolar media under general
inhomogeneous deformation.

3.1. Crack nucleation and propagation

In this last section we investigate the size effect of elasticity and
energy dissipation during the crack nucleation and propagation in
two-dimensional micropolar media. The classical single-edge notched
tension and shear tests are considered to this purpose, with layout and
boundary conditions detailed in Fig. 21. We assume, without loss of
generality, an isotropic micropolar solid (O(2) invariance) with 𝜅 =
= 105 GPa and 𝜆 = 0 (see Eq. (82) and Section 3), the resulting Young
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Fig. 17. Tetrachiral periodic block-lattices homogenized as micropolar continua with Z4 invariance: Vertical displacement ũ2 obtained by analytical solution, CM and full-discrete
models, as function of the chirality angle 𝛽 and corresponding to the problem/case 𝒫1 in Table 1 (left); Analytic micro-rotation 𝜙, CM rotation 𝜃 and discrete block rotation 𝛩 as
function of the chirality angle 𝛽 and corresponding to the problem/case 𝒫2 in Table 1 (right).
Fig. 18. Tetrachiral periodic block-lattices (Z4 invariance): Layout of the elastic problem defined for the homogenized micropolar medium and involving inhomogeneous deformation
(𝗮); Vertical displacement map obtained by the CM model in the case of structured material with 𝓁 = 𝜛∕2 (𝗯) and 𝓁 = 𝜛∕10 (𝗰); The assumed non-dimensional stiffness and the
chirality angle are 𝛼 = 1∕4 and 𝛽 = −arctan(1∕2), respectively, whereas q̌ = 𝖪𝑛ℎ∕10 with �̃� = −𝜋∕20. Contour lines define ten equally-spaced intervals of the variables’ range.
modulus and Poisson’s ratio being 𝐸 = 210 GPa and 𝜈 = 0, respectively.
The considered values for the micropolar internal length as defined at
the beginning of Section 3 are instead 𝑙 = 𝜛∕50, 𝑙 = 𝜛∕10 and 𝑙 = 𝜛∕5.
It can be noted that the here assumed conditions allow the resulting
overall micropolar effects for same 𝑙 to be maximized (see Section 3),
whereas length-scale effects on fracture result to be isolated from those
related to the elastic anisotropy of the material.

Focusing on brittle fracture, we provide a mechanism-based descrip-
tion of crack nucleation and propagation in micropolar solids using an
energy-based failure criterion (Diana and Ballarini, 2020; Foster et al.,
2011) characterized by the definition of a critical scalar-valued function
w𝑐 (𝐱, 𝐱′, 𝜁) = w𝑐 (𝜓, 𝜁) of the bond total stored energy density defined in
Eq. (4). The energy-based criterion adopted considers the instantaneous
bond or virtual fiber failure when the scalar-valued critical micropoten-
tial energy function w(𝐱, 𝐱′, 𝑡) attains its critical value w𝑐 (𝜓, 𝜁), which,
in general, result to be direction-dependent (Diana, 2023). Assuming
for simplicity that the material resistance to fracture is uniform, the
angular-independent critical value w𝑐 is derived analytically by equat-
ing the fracture energy 𝒢𝑐 to the total work required to break all the
bonds per unit fracture area (with fracture surface having arbitrary
18
orientation in the considered special case) (Diana, 2023). Consider the
generic plane �̂� passing through �̂�, and 𝑧 be the distance between �̂�
and the generic point 𝐱 along the positive axis perpendicular to �̂� and
passing through �̂� as well (Silling and Askari, 2005; Diana and Ballarini,
2020). Hence, the following relation holds

𝒢𝑐 = ∫

𝛿

0 ∫

𝛿

𝑧 ∫

ℐ

−ℐ
w𝑐 (𝜓, 𝜁) ℎ‖𝝃‖ d𝜓 d𝜉 d𝑧 (104)

where ℐ = arccos 𝑧∕‖𝝃‖, whereas w𝑐 (𝜓, 𝜁) = w𝑐 under the assumed
hypotheses10 (for further details about the computation of the integral
in Eq. (104) refer to Silling (2000), Diana (2023)). From Eq. (104) one

10 When considering directionally non-uniform fracture resistance, the para-
metric critical function w𝑐 (𝜓, 𝜁) = w𝑐2 + (w𝑐1 −w𝑐2)cos𝑛[ℱ (𝜓 − 𝜁 )] with ℱ ∈ N+

frequency parameter can be adopted, which allows to model different angular-
dependent behaviors (Rezaei et al., 2021; Diana, 2023). In this case, given the
orientation of the generic fracture plane 𝜋, Eq. (104) should be particularized
depending on the specific orientation of the material as defined by the angle
𝜁 (Diana, 2023).
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Fig. 19. Tetrachiral periodic block-lattices (Z4 invariance): Normalized displacements and rotation 𝜃 obtained by the CM model along the abscissa x2 = 3𝜛∕2 in the case of
structured material with non-dimensional stiffness 𝛼 = 1∕4 and chirality angle 𝛽 = −arctan(1∕2) under inhomogeneous deformation. The FE micropolar solution in terms of
micro-rotation 𝜙 is also reported for reference and denoted by filled dots (𝓁 = 𝜛∕2) and filled diamonds (𝓁 = 𝜛∕10).
Fig. 20. Tetrachiral block-lattice (Z4 invariance): Deformed configuration (corresponding to the elastic problem defined for the homogenized micropolar medium and involving
homogeneous deformation) obtained by the CM model in the case of 𝓁 = 𝜛∕2 (left) and 𝓁 = 𝜛∕10 (right); The assumed non-dimensional stiffness and the chirality angle are
𝜂 = 1∕4 and 𝛽 = −arctan(1∕2), respectively. Displacements are magnified by a factor of two.
Fig. 21. Quasi-static benchmark fracture tests in micropolar isotropic solids (O(2) invariance): Geometry and boundary conditions of the considered single-edge notched (𝗮) tension
test and (𝗯) shear test.
then obtains

w =
3𝒢𝑐 (105)
19

𝑐 2ℎ𝛿3
At this point, it should be noted that in our case fracture is naturally
described as a mechanism-based process, since cracks nucleate and
grow when a number of bond failures coalesce into a surface and
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Fig. 22. Quasi-static benchmark fracture tests in micropolar isotropic solids (O(2) invariance): Displacement maps and crack paths obtained by the CM model for the classical
single-edge notched tensile (row 𝗮, with 𝛯 = 1.16×10−2, 𝛯 = 1.12×10−2 and 𝛯 = 1.11×10−2 for the first, second and third column, respectively) and shear (row 𝗯, with 𝛯 = 2.2×10−2,
𝛯 = 2.4×10−2 and 𝛯 = 4×10−2 for the first, second and third column, respectively) test considering different micropolar internal lengths. CM and phase-field solutions (corresponding
to 𝗅𝑐∕2𝜛 = 7.5 × 10−3 and denoted by gray shaded triangles) referred to the special case of classical Cauchy solid are also reported for reference.
propagate (Foster et al., 2011). This is very different with respect to
phenomenological approaches to fracture as those based on phase-field
method. The status of each virtual fiber can be specified by a history-
dependent pairwise scalar valued function 𝜇(𝐱, 𝐱′, 𝑡) (Silling and Askari,
2005) such that

𝜇(𝐱, 𝐱′, 𝑡) =
{

0, w(𝐱, 𝐱′, 𝑡) ≥ w𝑐 (𝜓, 𝜁)
1, w(𝐱, 𝐱′, 𝑡) < w𝑐 (𝜓, 𝜁)

(106)

where w(𝐱, 𝐱′, 𝑡) = w(𝜓, 𝑡). It allows then defining at each position
𝐱 and time 𝑡 a local scalar-valued damage variable associated to the
energy-based failure criterion, namely

𝑑(𝐱, 𝑡) = 1 −
∫𝐻x

𝜇(𝐱, 𝐱′, 𝑡)d𝐱

∫𝐻x
d𝐱

(107)

The square material domain in Fig. 21 is discretized using a uniform
grid spacing 𝛥x = 𝜛∕100, with usual value of the density parameter
𝑚 = 5 (see Section 2.1.1 and Diana (2023)). The pre-existing edge
crack of length 𝜛 = 0.5 mm is introduced by removing bonds/virtual
fibers that would pass through the corresponding pre-crack pseudo
line (Bobaru et al., 2015; Silling and Askari, 2005; Diana and Ballarini,
2020). The (uniform) fracture energy of the material is assumed as
𝒢𝑐 = 2.7 N/mm. Numerical analyses are conducted in quasi-static
regime using an implicit non-linear solver in displacement control and
adaptive-step refinement (Ni et al., 2019; Diana, 2023). Regarding
the tensile test, an incremental applied vertical displacement 𝛥u2 =
𝛥u∗ = 10−5 mm is imposed at each pseudo-time step of the simulation,
whereas for the single-edge shear test an incremental applied horizontal
displacement 𝛥u2 = 𝛥u∗ is considered. In both the cases, the bottom
part of the domain is fixed. For the purposes of this discussion, the
special case of classical Cauchy solid (𝜅 = 0 and vanishing bending
internal length 𝑙) is also considered for comparison. Regarding Cauchy
solution, results obtained using phase-field approach to brittle fracture
(based on finite-elements formulation) are also provided for reference.
In particular, the phase-field simulations are performed using a FEniCS
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Python script with a staggered implementation of the phase field frac-
ture method (Natarajan et al., 2019), particularized to the problems
and material object of this study, while assuming two different phase-
field regularization lengths 𝗅𝑐 with same pseudo-load increments as in
CM simulations. Specifically, 𝗅𝑐∕2𝜛 = 1.5 × 10−2 and 𝗅𝑐∕2𝜛 = 7.5 ×
10−3 are considered, which represent well known values in phase-field
literature (Miehe et al., 2010; Ambati et al., 2015), the corresponding
finite element mesh being characterized by element size of 𝗅ℎ ≈ 𝗅𝑐∕5
around the potential crack propagation trajectory (Gerasimov and De
Lorenzis, 2016).

Considering the pure tensile test, it is noted that the pre-existing
crack propagates horizontally till the complete failure of the specimen,
with same final crack pattern as for the case of classical Cauchy
solid and regardless of 𝑙 (Fig. 22). Moreover, the corresponding load–
deflection curves exhibit very similar response with slight reduction
of the critical vertical displacement u∗2 and a slight increase of the
global stiffness with increasing micropolar internal length value 𝑙 (see
Fig. 23). This result is expected, as introducing the micro-polar effect
does not break the overall symmetry of the boundary value problems
in pure Mode I effective global loading (Suh et al., 2020). Conversely,
the higher-order constitutive response plays an important role in the
single-edge notched shear test as it has significant influence on crack
kinking angle and crack propagation direction under Mode II loading.
Specifically, the micropolar effect leads to an effective reduction of the
obtained kinking angle, with crack propagation direction that bends
counterclockwise while reducing its global curvature with increasing
the micropolar internal length. Obviously, micropolar effects have
profound impact on the corresponding load–deflection curves as the
resulting peak load and critical horizontal displacement u∗1 strongly
depend on the specific value of the micropolar internal length (Fig. 23).
It is worth noting that for the CM model, the crack driving force at the
micro-scale w(𝐱, 𝐱′, 𝑡) depends, through the bending micromodulus 𝑘b,
on the pairwise curvature measure 𝜒(𝐱, 𝐱′, 𝑡) defined in Eq. (3), which
in turn is function of the resulting micro-rotation field 𝜃(𝐱, 𝑡) gradient.

Given the asymmetric loading, the macro energy dissipation during the
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Fig. 23. Quasi-static benchmark fracture tests in micropolar isotropic solids (O(2) invariance): Force–displacement relationships obtained for the classical single-edge notched
tension (left) and shear (right) test considering different micropolar internal lengths. CM and phase-field solution (envelope of the results denoted by gray shaded area) referred
to the special case of classical (Cauchy) solid are also reported for reference.
Fig. 24. Quasi-static benchmark fracture tests in micropolar isotropic solids (O(2) invariance): 𝜃 field map (with limits �̌� = −2.2×10−2 and �̂� = 6.0×10−3) obtained for the classical
single-edge notched shear test considering micropolar internal length 𝑙 = 𝜛∕50 and corresponding to three different subsequent steps (𝑆.0, u∗1∕𝜛 = 1.48×10−2; 𝑆.1, u∗1∕𝜛 = 1.74×10−2;
𝑆.2, u∗1∕𝜛 = 1.82 × 10−2). It can be seen that in the vicinity of the crack front separated particles tend to rotate in opposing directions, them being no longer interlocked after
fracture formation.
crack nucleation and propagation in two-dimensional micropolar media
under Mode II result to be strongly affected by the specific value of
the micropolar bending characteristic length. This affects the resulting
crack pattern, which in turn leads to different global response for the
same boundary value problem (Suh et al., 2020).

As pointed out by Yavari et al. (2002) and later taken up in Suh
et al. (2020), the mechanism of crack propagation in a micropolar
continuum consists, in general, of the following steps: (a) crack-tip par-
ticles withstand rotation and separation, (b) micro-rotational bonding
between adjacent particles at the crack tip breaks and the particles
start to rotate with respect to each other, and (c) the particles then
move apart and the adjacent set of particles become the next crack-tip
particles. Based on this mechanism, if the material is isotropic and ho-
mogeneous, the crack path that minimizes the effort required to break
the micro-rotational pairwise interaction turns out to be the shortest
path towards the boundary (Suh et al., 2020). Furthermore, as shown in
Fig. 24, since separated particles are no longer interlocked after fracture
formation, they tend to rotate in opposing directions (Suh et al., 2020).
Interestingly, the results by CM model for both the cases of tensile and
shear single-edge tests result to be consistent with this interpretation as
well as with those reported in Suh et al. (2020), Wan et al. (2022), and
obtained using different approaches, methods and material properties.
Finally, it should be underlined that the CM solutions in terms of load–
deflection curves and crack-paths obtained for the reduced case of
Cauchy material are in very good agreement with those by phase-field
21
model here reported, which, differently from the CM model, is based on
purely phenomenological considerations (Marigo, 2023) (the envelopes
of the two load–deflection curves as referred to the two values of the
regulazization length considered are reported in Fig. 23, and denoted
by gray shaded areas). This is an important and encouraging result as
it confirms (see also Diana (2023)) the effectiveness and the natural ca-
pabilities of the CM formulation in modeling fracture problems within
a mechanism-based framework.

4. Conclusions

In this paper we have presented an analytical continuum-molecular
formulation for two-dimensional centrosymmetric micropolar media
within the mathematical formalism of a revised peridynamic the-
ory with oriented material points. The model is able to reproduce
overall anisotropy as well as chiral effects in architectured materi-
als homogenized as micropolar bi-dimensional solids. In particular,
a mechanism-based description of elastic anisotropy is achieved by
defining proper direction-dependent micromoduli functions analyti-
cally identified based on the formal analogy with the micropolar elastic
constitutive tensor. Distinctive chiral effects in micropolar elasticity are
reproduced by introducing a directional independent pseudo-scalar pair
potential, which turns out to be analytically vanishing when the rota-
tionally invariant part of the corresponding continuum elastic tensor is
invariant to mirror reflections as well. This aspect theoretically enables
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all the symmetry classes of 2D centrosymmetric micropolar elasticity to
be covered. Moreover, the proposed formulation demonstrates sensitiv-
ity to elastic bending size-effect as specific property of structured solids
homogenized as micropolar continua, and related to the characteristic
length of their underlying microstructure. An important consideration
is that the model turns out to be characterized by two different length-
scale parameters. Specifically, the constitutive bending internal length,
proper of micropolar elasticity, is conceptually separated with respect
to the intrinsic non-local character of the model that is related instead
to the integral nature of its governing equations. By reducing the
horizon size to zero, the constitutive length-scale does not vanish, and
convergence to the elastic solution of Cosserat continuum is obtained.
Essential analogies between continuum-molecular mathematical mod-
els and real periodic lattice-like materials associated with a Lagrangian
description have been also shown, which may provide new insight
for the design of modern micro-architectured solids endowing exotic
mechanical properties. The theoretical findings and the effectiveness of
the model have been successfully verified through illustrative examples
featuring representative cases of structured materials homogenized as
micropolar continua.
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Appendix. Discretized systems and equations

Considering a meshfree discretization approach (Silling and Askari,
2005; Diana, 2023), the material domain 𝛺 be divided into a set
of 𝑁 sub-domains 𝛥𝜐𝑝, each of which is associated to a particle 𝑝
of coordinates x𝑝1, x

𝑝
2. A properly defined proximity search algorithm

identifies particles 𝑞 belonging to the 𝑝-centered horizon region 𝐻𝑝
according to the one-point quadrature scheme proposed by Hu et al.
(2010), Seleson (2014) which accounts for partial neighbor intersec-
tions (alternatively, other quadrature rules, especially developed for
22
non-local models, could be adopted (Seleson, 2014; Trask et al., 2019)).
The displacements 𝐮𝑝 = 𝑢𝑝1𝐞1 + 𝑢

𝑝
2𝐞2,𝐮𝑞 = 𝑢𝑞1𝐞1 + 𝑢

𝑞
2𝐞2 and rotations 𝜃𝑝, 𝜃𝑞

of the material generic particles 𝑝 and 𝑞 can be collected column-wise
in vector form as

𝐯𝑝 =
{

𝑢𝑝1 𝑢𝑝2 𝜃𝑝
}⊤ , 𝐯𝑞 =

{

𝑢𝑞1 𝑢𝑞2 𝜃𝑞
}⊤ (A.1)

such that, for each pair of interacting particles 𝑝 and 𝑞 ∈ 𝐻𝑝, we can
collect column-wise 𝐯𝑝 and 𝐯𝑞 as

𝐯𝑝𝑞 =
{

𝐯𝑝
𝐯𝑞

}

= 𝐑⊤𝑝𝑞

{

�̂�𝑝
�̂�𝑞

}

= 𝐑⊤𝑝𝑞 �̂�𝑝𝑞 , (A.2)

where 𝐑𝑝𝑞 is a properly defined transformation matrix (Diana, 2023),
and the displacements and rotations collected column-wise in vector
form as

�̂�𝑝 =
{

�̂�𝑝1 �̂�𝑝2 𝜃𝑝
}⊤ , �̂�𝑞 =

{

�̂�𝑞1 �̂�𝑞2 𝜃𝑞
}⊤ (A.3)

are aligned with the local reference basis
{

�̂�1, �̂�2
}

, where the unit vec-
tors �̂�1 ≡ 𝐧 and �̂�2 ≡ 𝐭. The compatibility equation relating the pairwise
deformation variables collected in the vector 𝐡𝑝𝑞 =

{

𝑠𝑝𝑞 𝛾𝑝𝑞 𝜒𝑝𝑞
}⊤, to

the generalized displacements of the interacting particles can be written
in compact matrix form as

𝐡𝑝𝑞 = 𝐁𝑝𝑞𝐑𝑝𝑞𝐯𝑝𝑞 = 𝐁𝑝𝑞 �̂�𝑝𝑞 (A.4)

where

𝐁𝑝𝑞 =
1

2‖𝝃‖𝑝𝑞

⎡

⎢

⎢

⎣

−2 0 0 2 0 0
0 −2 −‖𝝃‖𝑝𝑞 0 2 −‖𝝃‖𝑝𝑞
0 0 −2 0 0 2

⎤

⎥

⎥

⎦

(A.5)

being ‖𝝃‖𝑝𝑞 the distance between the generic particles 𝑝 and 𝑞. The
pairwise constitutive equation of the virtual fiber is instead

𝐫𝑝𝑞 = 𝐀𝑝𝑞𝐡𝑝𝑞 = 𝐀𝑝𝑞𝐁𝑝𝑞 �̂�𝑝𝑞 , (A.6)

where

𝐀𝑝𝑞 = 𝛬𝑝𝑞
⎡

⎢

⎢

⎣

𝑘𝑝𝑞n 𝑘𝑝𝑞a 0
𝑘𝑝𝑞a 𝑘𝑝𝑞t 0
0 0 𝑘𝑝𝑞b

⎤

⎥

⎥

⎦

(A.7)

defines the specific elastic property of each interaction. It relates the
scalar-valued mutual actions defined in Eqs. (5)–(7) and collected in
the vector 𝐫𝑝𝑞 , to the pairwise deformations measures defined by Eqs.
(1)–(3). The non-dimensional factor 𝛬𝑝𝑞 = 𝛬𝑝𝑞(‖𝝃‖𝑝𝑞) controls the
radial dependence of the non-local interaction between two particles,
as specified in Section 2.

As for the balance of linear and angular momentum of the (molecu-
lar) continuum (Section 2), the discrete algebraic system of governing
equations in elastodynamics, and the analytical expression of the stiff-
ness operator, can be derived from Hamilton’s variational principle
referred to a closed discretized domain. The variation of the first term
of Eq. (9), i.e. 𝛿[∫ 𝑡2𝑡1 ∫𝛺 (𝐱, 𝑡) d𝐱 d𝑡] can be written in discrete form as

𝛿

[

∫

𝑡2

𝑡1

𝑁
∑

𝑝=1

1
2
�̇�⊤𝑝 𝐏𝑝�̇�𝑝𝛥𝜐𝑝 d𝑡

]

= −∫

𝑡2

𝑡1

𝑁
∑

𝑝=1
𝛿𝐯⊤𝑝 𝐏𝑝�̈�𝑝𝛥𝜐𝑝 d𝑡 (A.8)

where integration-by-parts is used between the first and the second
steps, and

𝐏𝑝 = diag{𝜌𝑝 𝜌𝑝 𝜚𝑝} (A.9)

The variation of the second term of Eq. (9), i.e. 𝛿[∫ 𝑡2𝑡1 ∫𝛺 (𝐱, 𝑡) d𝐱 d𝑡],
can be treated in discrete form as

∫

𝑡2

𝑡1

𝑁
∑

𝑝=1
𝛿𝐯⊤𝑝 𝐛𝑝 𝛥𝜐𝑝 d𝑡 (A.10)

where 𝐛𝑝 = {𝑏𝑝1 𝑏𝑝2 𝑐𝑝}𝑇 is the vector of body forces and body
couples applied at particle 𝑝 in the global reference system of unit
vectors 𝐞 , 𝐞 . Finally, considering Eq. (4), the last term of Eq. (9),
1 2
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a

𝛿

w
h
t
E
c

w
n
a
d
i
w

𝐌

T
d

𝐩

i.e. 𝛿[∫ 𝑡2𝑡1 ∫𝛺(𝐱, 𝑡) d𝐱 d𝑡], can be written instead for a discretized body
s
[

1
2 ∫

𝑡2

𝑡1

𝑁
∑

𝑝=1

𝐻
∑

𝑞=1

‖𝝃‖𝑝𝑞
2

𝛼𝑝𝑞𝛥𝜐𝑞𝛥𝜐𝑝𝐯⊤𝑝𝑞
[

𝐑⊤𝑝𝑞𝐁
⊤
𝑝𝑞𝐀𝑝𝑞𝐁𝑝𝑞𝐑𝑝𝑞

]

𝐯𝑝𝑞d𝑡
]

(A.11)

here 𝐻 denotes the number of particles 𝑞 within the 𝑝-centered
orizon 𝛿, while 𝛼𝑝𝑞 is the partial sub-domain factor for 𝛥𝜐𝑞 related
o the specific quadrature rule adopted (Seleson, 2014). Considering
q. (9) together with Eqs. (A.8), (A.10) and (A.11), the stationary
ondition 𝛿 = 0 gives

(𝑁,𝐻)
(𝑝,𝑞)=(1,1)

[

𝐋𝑝𝑞𝐏𝑝�̈�𝑝𝛥𝜐𝑝 − 𝐋𝑝𝑞𝐛𝑝𝛥𝜐𝑝

+
‖𝝃‖𝑝𝑞
2

[

𝐑⊤𝑝𝑞𝐁
⊤
𝑝𝑞𝐀𝑝𝑞𝐁𝑝𝑞𝐑𝑝𝑞𝛼𝑝𝑞𝛥𝜐𝑞 𝛥𝜐𝑝

]

𝐋𝑝𝑞𝐯𝑝

]

= 𝟎 (A.12)

here 𝐋𝑝𝑞 =
[

𝐈3 𝟎3
]⊤ is a specific topology incidence matrix for

on-pairwise defined matrices and vectors (Diana et al., 2022). The
ssembly operator replaces the double sum symbol, and is here intro-
uced so that each algebraic object is added to the appropriate location
n properly defined global matrices and vectors (Hughes, 2012). In this
ay, Eq. (A.12) can be then rewritten in compact form as

�̈� +𝐊𝐯 = 𝐩 (A.13)

where the global mass matrix is given by

𝐌 =
(𝑁,𝐻)
(𝑝,𝑞)=(1,1) 𝐋𝑝𝑞𝐏𝑝𝛥𝜐𝑝 (A.14)

whereas the stiffness operator in global coordinate system correspond-
ing to the whole body is defined as

𝐊 =
(𝑁,𝐻)
(𝑝,𝑞)=(1,1)

‖𝝃‖𝑝𝑞
2

[

𝐑⊤𝑝𝑞𝐁
⊤
𝑝𝑞𝐀𝑝𝑞𝐁𝑝𝑞𝐑𝑝𝑞𝛼𝑝𝑞𝛥𝜐𝑞 𝛥𝜐𝑝

]

(A.15)

he vector of global generalized body forces and global generalized
isplacements are

=
(𝑁,𝐻)

(𝑝,𝑞)=(1,1) 𝐋𝑝𝑞𝐛𝑝𝛥𝜐𝑝, 𝐯 =
(𝑁,𝐻)

(𝑝,𝑞)=(1,1) 𝐋𝑝𝑞𝐯𝑝, (A.16)

respectively. Quasi-static conditions adopted in this work are obtained
neglecting the inertial terms in Eq. (A.13).
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