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H I G H L I G H T S

ERA5 skills for wind energy predictions
are assessed in a time span of 20 years.
Climatology-based wind-energy predic-
tions systematically outperform raw ERA5.
Our ensemble ML-based calibration brings
out the ERA5 value.
Our best ensemble ML-based based cali-
bration outperforms a 3-km ERA5 down-
scaling.
Costly high-resolution downscaling can
be avoided for wind energy applications.
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A B S T R A C T

The skill of ERA5 has been assessed in relation to the prediction of the wind energy associated with 28
SYNOP stations located in Italy for a time span of 20 years (2001–2020). For comparison, a WRF-based high-
resolution downscaling (3 km horizontally) was also produced for the same period. We found that simple
predictions based on materialized past wind measures outperform the wind energy predictions from ERA5.

∗ Corresponding author.
E-mail addresses: mattia.cavaiola@edu.unige.it (M. Cavaiola), peter.enos.tuju@edu.unige.it (P.E. Tuju), francesco.ferrari@unige.it (F. Ferrari),

abriele.casciaro.r@gmail.com (G. Casciaro), andrea.mazzino@unige.it (A. Mazzino).
vailable online 9 May 2023
666-5468/© 2023 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

ttps://doi.org/10.1016/j.egyai.2023.100269
eceived 16 January 2023; Received in revised form 28 April 2023; Accepted 1 May 2023

https://www.elsevier.com/locate/egyai
http://www.elsevier.com/locate/egyai
mailto:mattia.cavaiola@edu.unige.it
mailto:peter.enos.tuju@edu.unige.it
mailto:francesco.ferrari@unige.it
mailto:gabriele.casciaro.r@gmail.com
mailto:andrea.mazzino@unige.it
https://doi.org/10.1016/j.egyai.2023.100269
https://doi.org/10.1016/j.egyai.2023.100269
http://crossmark.crossref.org/dialog/?doi=10.1016/j.egyai.2023.100269&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Energy and AI 13 (2023) 100269M. Cavaiola et al.

t

c
h
a
l
p

Machine learning calibration This result can be ascribed to the particularly complex characteristics of the Italian territory. Motivated by
this expected behavior, we have implemented a Quantile Random Forest (QRF) calibration which greatly
alleviates the problems encountered in the ERA5 reanalysis dataset. This technique provides a calibrated
ensemble prediction system for the wind speed at the station. Surprisingly, the calibrated ERA5 outperforms
wind energy estimations from the high-resolution 3-km downscaling. Once properly calibrated, the high-
resolution downscaling provides predictions very similar to the calibrated ERA5. Limiting our conclusions
to the estimation of wind energy over a long time span (here 20 years), having at disposal a high-resolution
wind-field dataset does not necessarily mean greater accuracy. A careful calibration of the original coarser
wind-field dataset produces better results than the raw high-resolution dataset.
1. Introduction

In recent years, wind energy production from the wind industry has
proven a strong and positive growth trend. It is expected that before the
year 2025 the production of wind energy from the wind industry will
exceed 1 TW in global cumulative installations of onshore and offshore
wind energy [1]. The wind sector has thus become a primary energy
policy among several European countries for decreasing carbon dioxide
emissions thus attenuating climate change impacts. Its contribution to
2030 and 2050 EU greenhouse emission reduction targets will be thus
crucial.

The wind is however highly intermittent in space and in time thus
its prediction presents the most challenging task, even for the shortest
look-ahead forecast horizons of interest for both the energy industry
and the power system regulators [1]. The issue of having accurate
predictions for wind power is however even more dramatic. The rela-
tionship between wind speed and wind power is indeed cubic implying
that a given relative error in the wind speed prediction becomes a factor
3 larger for the wind power. The intermittent nature of the wind source
also causes difficulties/inaccuracies to assess the wind potential of a
given area. Indeed, observed data are rarely available for a sufficiently
long time in the past in regions having a potential interest in wind
energy exploitation. One thus has to resort to reanalysis models [2–5]
to estimate such a potential [6].

From a very general point of view, a reanalysis is a state-of-the-
art strategy to produce datasets for climate monitoring. Reanalyses are
created via a suitable data assimilation scheme and numerical weather
prediction (NWP) models which ingest all available observations (e.g.,
data from radiosondes, satellites, SYNOP stations, buoys, air crafts,
and ships) every 6–12 h over the period being analyzed. Observations
distributed irregularly in space and time are in this way synthesized by
NWP models into global regularly gridded meteorological datasets at
high frequencies.

Although reanalysis datasets possess several key strengths (e.g., they
are global datasets, they are built with a consistent spatial and temporal
resolution covering several decades, they include hundreds of variables,
their spatial resolution continues to increase, they incorporate millions
of observations into a stable data assimilation system) some limitations
are also present. The most important is probably due to changes in
the observing system, affecting its reliability. Observations can indeed
considerably vary depending on the location, time period, and variable
considered. Spurious variability and non-physical trends may be thus
present in the record. Despite the fact that a reanalysis resolution has
been continuously increased over the years, it is still too coarse for some
applications [7], in particular for applications related to the assessment
of wind potential in regions of complex terrain [8]. Focusing on
the Swiss Alps, the authors of [8] concluded that both reanalyses
considered in their study, with resolution of 2 and 6 km, are insufficient
o reproduce site-specific wind speeds in Switzerland’s complex terrain.

A similar conclusion has been drawn by [9] where authors con-
luded that using the ERA5 reanalysis from ECMWF [10] in place of
igher-resolution regional reanalysis products should be avoided when
ddressing sites with high variation of topography and, in particular,
and use. A comprehensive recent review on those aspects has been
2

rovided by [6]. On the other hand, studies performed in northern
Europe showed good ERA5 performances also in relation to extreme
events [11–14]. Moreover, comparisons between ERA5 and other re-
analysis products show as ERA5 is the most suitable data source for
wind energy applications [15,16] in regions with gentle orography.
There is thus a clear evidence that ERA5 skills do strongly depend
on the complexity of the terrain, a fact which is not surprising in
view of the coarse resolution of the dataset which necessarily ignores
topographic variations having wavelengths smaller than about 30 km.

Our paper offers a change of paradigm with respect to the current
scientific knowledge on the supposed uselessness of coarse-resolution
reanalysis as ERA5, for the assessment of wind potential in regions of
complex terrain. To quantitatively ascertain this fact, a time span of
20 years (from 2001 to 2020) will be considered for a set of 28 different
locations where we will provide different estimations for the wind
energy accumulated over the 20 years and the corresponding degree
of variability (i.e. the wind-energy variance). Being able to capture the
correct variance of the wind energy signal is important when a given
location is a potential candidate for wind energy exploitation. Indeed,
among two sites having the same accumulated wind energy, the one
associated with the smallest variance is surely preferable. Our estimates
will be quantitatively compared against wind power obtained from
ground measurements of the 10-m wind speed available from official
SYNOP stations. The study area selected for the present work is a subset
of the Italian territory (see Fig. 1 where pink crosses refer to the SYNOP
stations). Italy indeed presents a huge variety in its orographic shape,
ranging from alpine regions, with station elevations up to 3500m, to
flat areas as, e.g., the Padana valley, the wind regime of which is how-
ever strongly affected by the surrounding Alps. Moreover, the mutual
interaction between land and sea circulations makes wind prediction
even more challenging [17]. To estimate the 20-year accumulated wind
energy and its variance, different strategies will be considered. Two of
them belong to the realm of differential-equation-based strategies: the
coarse-in-space world-class global atmospheric reanalysis ERA5 from
ECMWF ([10], resolution of 30 km horizontally) and its high-resolution
(3 km horizontally) downscaling based on the Weather Research and
Forecasting (WRF) model [18]. While ERA5 is freely available and easy
to handle, its high-resolution downscaling is demanding in terms of
computational costs, especially for a 20-year horizon. The downscal-
ing strategy is nowadays considered as the most accurate strategy to
deal with small-scale (e.g. orographically-induced) effects. The main
question addressed here is: can a robust AI-based strategy, easy to train
and economic in terms of computational cost, provide a relevant added
value with respect to the costly high-resolution downscaling, when used
in synergy with ERA5? Said in equivalent terms, can the features from
ERA5 be used to train a suitable AI-based strategy to obtain a prediction
with higher skills than the WRF-based (costly) strategy? To answer
these questions, the so-called Quantile Random Forest (QRF) [19,20],
an evolution of the more popular Random Forest (RF) algorithm [19],
is exploited here. Several reasons motivated our choice. (i) QRF is
robust to overfitting, easy to train and computationally cheap; (ii) QRF
being and ensemble methods, it is particularly suitable to pass from the
wind speed prediction to the wind energy prediction: each ensemble
member must be separately mapped from the wind speed to the wind
power, member by member, and successively processed to compute
the relevant wind power/energy statistics; (iii) for the main paper

message, it seems relevant that even a relatively simple AI strategy is



Energy and AI 13 (2023) 100269M. Cavaiola et al.
Fig. 1. The SYNOP stations considered in the present study (pink crosses) from 2001
to 2020. The background shows (part) of the Italian peninsula with colors denoting
different orography elevations. Blue: sea areas, green: flat regions; brown: regions with
orography, the elevation of which increases as it becomes darker and darker. (For
interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

enough to transform a prediction with low skills to a prediction greatly
overcoming a costly high-resolution downscaling.

To anticipate the main paper conclusions, a clear evidence of
the disruptive role of AI in capturing local effects (i) otherwise lost
by coarse dynamical models; (ii) otherwise captured only via high-
resolution dynamical downscaling, but at a steep price, will clearly
emerge.

The paper is organized as follows. Section 2 describes the collected
wind data from SYNOP stations over Italy and the ERA5 dataset, and
Section 3 presents the motivation of our work. Section 4 compares
simple predictions based on materialized past wind measures against
the raw reanalysis-based predictions. In Section 5 we introduce the
concept of calibration via EMOS and QRF, and in Section 6 we show
the results of the calibrated reanalysis. Section 7 analyzes whether
a high-resolution downscaling brings out an added value in term of
accuracy.

Finally, Section 8 draws the conclusions.

2. Wind data

2.1. Observed data from SYNOP stations

The observation data used in this study are surface-based synoptic
data from 28 different stations scattered in central and northern Italy.
Synoptic observation stations are representative of an area up to 100
km around the station, but for local applications, the area can be
considered to have a dimension of 10 km or less [21]. The station
synoptic data used are retrieved for a period of 20 years from 1st
January 2001 to 31st December 2020. The temporal frequency of the
data is 3 h. The 3-h time frequency corresponds to synoptic hours at
00, 03, 06, 09, 12, 15, 18, and 21 UTC. Details on the synoptic station
data used in the present study are provided as supplementary material.

2.2. The ERA5 reanalysis dataset

ERA5 is the fifth-generation atmospheric reanalysis of the global
climate covering the period from January 1950 to the present. ERA5
is produced by the Copernicus Climate Change Service (C3S) at the Eu-
ropean Centre for Medium-Range Weather Forecasts (ECMWF). ERA5
3

provides hourly estimates of a large number of atmospheric, land, and
oceanic climate variables. The data cover the Earth on a 30 km grid and
resolve the atmosphere using 137 levels from the surface up to a height
of 80 km [22].

In the present study, in addition to the 10m wind speed, we col-
lected in the period 2001–2020 other atmospheric variables listed
in the supplementary material, that will be used as meteorological
features to train our ML algorithm.

3. Motivation of the work and method

Let us consider the issue of siting selection for planning wind energy
development, and suppose to have at disposal two main ingredients: a
sufficiently long record, say 1 year, of measured wind speed in a given
site, and a long-term say 20 years, state-of-the-art reanalysis dataset,
ERA5 in the present study. Also, imagine using the one-year measure-
ment to extrapolate the wind energy accumulated over the entire period
of 20 years. Let us define this parsimonious way to infer the wind
energy in the 20-year time span, based on information collected in a
sole year, as the climatology-based prediction (climatology in short,
even if we are well aware that climatology focuses on the processes that
create climate patterns and multi-decade variability in the atmospheric
science jargon).

Our question now is whether the longer reanalysis may provide
more accurate information than climatology on the wind energy associ-
ated to the site under consideration accumulated in a period of 20 years
from 2001 to 2020. Imagine focusing the attention just on a specific
site to which the ERA5 wind speed is associated via a standard bilinear
interpolation; the same considerations will be trivially extended to all
sites in Fig. 1 where wind energy must by evaluated. To evaluate the
wind power necessary to compute the wind energy either from the
measured wind speed or from the reanalysis dataset, we used in way of
example a typical transfer function corresponding to a turbine having
a capacity of 2MW.

Provided the observed wind, and thus the associated wind energy
accumulated in the 20 years from 2001 to 2020 (the truth), any
prediction can be compared against the truth. Let 𝐸 denote the true
accumulated wind energy in the 20 years, 𝐸𝑐 the predicted climatology
based on one observed reference year, and 𝐸ℎ the prediction based on
ERA5. While 𝐸 and 𝐸ℎ are two single values, one may perform 𝑁 = 20
different climatological predictions depending on the specific selected
reference year at disposal. Let us thus replace 𝐸𝑐 by 𝐸𝑖

𝑐 , 𝑖 = 1,⋯ , 𝑁 to
account for all possible climatologies.

4. Comparing the climatology-based predictions against the raw
reanalysis-based predictions

Fig. 2 tells us which among climatology 𝐸𝑐 and 𝐸ℎ better represents
𝐸. For each SYNOP station (along the 𝑥-axis, from north to south in
Fig. 1) we have reported the following error indices:

𝛥ℎ =
|𝐸 − 𝐸ℎ|


𝛥𝑐 =

1
𝑁

𝑁
∑

𝑖=1

|

|

𝐸𝑖
𝑐 − 𝐸|

|


(1)

 being the normalization factor corresponding to the maximum
energy one can extract from the site in the 𝑁 years. Plus symbols (blue
line) are relative to 𝛥ℎ, the error associated with the reanalysis; open
circles (green line) represent 𝛥𝑐 , the error associated with climatology.
For the majority of sites, the climatology outperforms the reanalysis-
based prediction. The same conclusion holds (not shown) if the year
from which the climatology-based prediction is built is removed from
the test set. The skill of the climatology-based estimation is highlighted
in the inset of Fig. 2 where the skill score ((𝛥𝑐 − 𝛥ℎ)∕𝛥𝑐 ) × 100 (see the
appendix of [23]) is reported for all sites using as a reference error the
one obtained from climatology. The fact that it is negative for 25 out
of 28 sites confirms what we have already concluded from the main
frame of the figure. The inset also shows that the error associated with
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Fig. 2. Main frame: behavior of the two dimensionless error indices 𝛥𝑐 and 𝛥ℎ (expressed as a percentage) measuring how much climatology (green line, open circles) and the
reanalysis (blue line, crosses) are successful to predict the available wind energy accumulated in the 20-year time span for all sites reported in Fig. 1. Inset: the skill score of 𝛥ℎ
using 𝛥𝑐 as a reference. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
climatology is, by averaging over all stations, about 50% smaller than
the error associated with the reanalysis-based prediction.

Let us now analyze the role of the length of the time period where
observed data are supposed to be known (1 year in Fig. 2) and from
which the climatology-based predictions are formulated. In Fig. 3 we
address this issue by showing the skill score of 𝛥ℎ, averaged over all
sites, using climatology as a reference. The abscissa reports different
lengths (measured in months) where measurements are supposed to be
available. The case of Fig. 2 corresponds to the abscissa taking the value
12 months. As expected, the added value of climatology with respect
to the reanalysis-based predictions tends to reduce as the number of
months where measures are available reduces. Quite surprisingly, cli-
matology however still overcomes reanalysis-based predictions also for
time intervals smaller than 1 month, even if they tend to be practically
indistinguishable from each other.

Do our results suggest that the reanalysis has no value for wind
energy site selection in regions of complex meteorological conditions
as the one considered in the present study? As we will see in the next
sections, a suitable calibration strategy can bring out the best from the
reanalysis.

5. Calibration strategies: Quantile Random Forest (QRF), Random
Forest (RF), and Ensemble Model Output Statistics (EMOS)

Although at first glance the results of the previous section might
appear surprising, actually a modeling strategy with a spatial resolution
necessarily coarse, because of the need to cover the entire globe,
can hardly capture local effects. These effects are surely important
in the Italian territory characterized by the interplay of orographic
effects and sea-induced flows. Our aim here is to show that those
small-scale contributions can be incorporated into the reanalysis by
means of suitable Machine-Learning (ML) algorithms with a resulting
added value. Our choice here falls on three well-known strategies: the
Quantile Random Forest (QRF) [19,20] a supervised ML algorithm still
in its infancy in relation to applications in the field of wind energy,
the Random Forest (RF) [19], and a widely used statistical calibration
4

strategy, the Ensemble Model Output Statistics (EMOS) [24–27]. Here,
RF and EMOS are used as a benchmark, because of their simplicity,
affordability, and widely-used character. The general ideas of the three
methods are reported in the supplementary material.

6. Results on the calibrated reanalysis

Let us proceed in the same spirit of Section 3 and suppose to
consider a year (among the 20) where wind speed measures are avail-
able and use these measures to train both the QRF and the RF, using
the features reported in the supplementary material, and the standard
EMOS algorithm. For the same reason for which different (20 in this
specific example) climatology-based predictions can be constructed, we
similarly have 20 possible QRF calibrations depending on the year one
selects for the training. Let us denote 𝐸𝑖

𝑄𝑅𝐹 , 𝑖 = 1, 20 such 20 predictions
for the wind energy accumulated over the entire period of 20 years. The
value of 𝐸𝑖

𝑄𝑅𝐹 , for each training year labeled by the index 𝑖 is obtained
from the predicted QRF wind speed ensemble upon transforming each
wind speed member into a wind power member and finally a wind
energy member. Having the entire distribution of members of the wind
energy for each year, it is an easy task to obtain the mean of the
distribution and then sum up to obtain the accumulated energy in
the 20 years. The resulting total energy when using the 𝑖th year as a
training set is just 𝐸𝑖

𝑄𝑅𝐹 as defined above. Given the predictions 𝐸𝑖
𝑄𝑅𝐹

the error with respect to the truth can be defined in analogy to (1):

𝛥𝑄𝑅𝐹 = 1
𝑁

𝑁
∑

𝑖=1

|

|

|

𝐸𝑖
𝑄𝑅𝐹 − 𝐸|

|

|


(2)

The added value of the QRF-based reanalysis calibration can be
detected from Fig. 4 where the skill score ((𝛥𝑐 − 𝛥𝑄𝑅𝐹 )∕𝛥𝑐 ) × 100 is
reported (filled squares, red line) for all sites using a reference error
obtained from climatology. For 23 sites out of 28 this index is positive
signaling now a clear added value with respect to the climatology-based
prediction. For comparison, the blue line (plus symbols) refers to the
same skill score as before but is now computed using the EMOS-based
prediction. QRF clearly outperforms the standard EMOS as expected.
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Fig. 3. Skill score of 𝛥ℎ, averaged over all SYNOP stations, using climatology as reference. The abscissa reports different durations of the hypothetical, measurement campaign
(in months) where wind speed measurements are supposed to be available.
Fig. 4. Skill score of 𝛥𝑄𝑅𝐹 using 𝛥𝑐 as a reference (red line, filled squares) for all considered SYNOP stations (along the abscissa). The blue line (crosses) is analog but it refers
to the EMOS-based calibration. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
It is now interesting to investigate the role of the measurement
interval length (one year in the previous analysis) on the resulting skill
of the calibrated reanalysis. This interval coincides with the period
of training of EMOS, RF, and QRF strategies and also serves to build
the climatology-based prediction. It is not a priori obvious the final
outcome. Indeed, if on the one hand increasing the length of the
training set would correspond to a more robust calibration, on the other
5

hand for a longer measure interval the prediction based on climatology
is also expected to achieve larger skills.

The results reported in Fig. 5 show an optimal length at about 7
months of training at which the skill score of the QRF error with respect
to the error of the climatology-based prediction ((𝛥𝑐 − 𝛥𝑄𝑅𝐹 )∕𝛥𝑐 ) × 100

averaged over all analyzed sites, reaches the peak (red line, filled
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Fig. 5. Skill score of 𝛥𝑄𝑅𝐹 , averaged over all SYNOP stations, using climatology as reference (red line, filled square). The abscissa reports different durations of the, hypothetical,
measurement campaign (in months) where wind speed measurements are supposed to be available. The blue line (crosses) is as the red line but refers to the EMOS calibration.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
squares). For longer training, climatology increases its importance re-
maining, however, less effective than the calibrated reanalysis. The
EMOS strategy does not show a peak, with its skill score line being
always negative and monotonically decreasing as the length of the
training set increases. No added value is thus brought out by the EMOS
strategy for all considered lengths of the training set.

We are now ready to show the superiority of the QRF strategy with
respect to the RF strategy in predicting the accumulated wind energy in
the 20-year interval. Fig. 6, analogous to Fig. 5, shows the skill score of
𝛥𝑄𝑅𝐹 , averaged over all SYNOP stations, using the RF-based predictions
as reference (main frame). The abscissa reports the different duration
of the measurement campaign where wind speed measurements are
supposed to be available.

How the skill score behaves for all SYNOP stations is shown in the
inset of Fig. 6. The resulting skill scores are remarkably larger, up to
40%, signaling a consistently added value brought by the QRF strategy
against the simpler, but more widely used RF strategy.

Having shown that the QRF-calibrated reanalysis outperforms both
the climatology-based predictions and the RF-based predictions in esti-
mating the wind energy accumulated in a time interval of 20 years, we
now pass to address the question on whether the QRF calibration also
brings an added value with respect to the raw reanalysis in relation to
the description of the inter-annual variability of the wind energy in the
N = 20 years. In doing that, let us fix to 1 year the length of the time
span on which we want to assess the wind energy variability, while
allowing to vary the length of the training period which coincides with
the time span in which measurements are supposed to be available.
Having defined 𝐸 (see Section 3) the total wind energy in the 20-year
time span considered, let us now define by 𝐸𝑖, 𝑖 = 1,⋯ , 20 the wind
energy in the 𝑖th year of the 20 years considered. In terms of 𝐸𝑖, we
can describe the inter-annual variability of wind energy through the
standard deviation;

𝜎𝑡𝑟 =

√

∑𝑁
𝑖=1

(

𝐸𝑖 − ⟨𝐸𝑖
⟩

)2

𝑁
⟨𝐸𝑖

⟩ =
∑𝑁

𝑖=1 𝐸
𝑖

𝑁
(3)

Our aim is now to compare against the truth the analogous standard
deviations from the calibrated ERA5 (via QRF and EMOS). Climatology
6

based on 1-year measurements trivially gives no inter-annual variability
and will thus not be considered. For the raw reanalysis, we define
𝜎ℎ in strict analogy with (3) by simply replacing (i) 𝐸𝑖 with the
reanalysis-based prediction for the 𝑖th year, (ii) ⟨𝐸𝑖

⟩ with the average
reanalysis-based annual wind energy. For the calibrated reanalysis we
have M possible standard deviations, depending on the position of the
selected time span (of length 20 years/M) corresponding to the training
period. Namely, we define

𝜎(𝑗)𝑄𝑅𝐹 =

√

√

√

√

√

∑𝑁
𝑖=1

(

𝐸(𝑗)
𝑄𝑅𝐹 𝑖 − ⟨𝐸(𝑗)

𝑄𝑅𝐹 𝑖⟩
)2

𝑁
⟨𝐸(𝑗)

𝑄𝑅𝐹 𝑖⟩ =

∑𝑁
𝑖=1 𝐸

(𝑗)
𝑄𝑅𝐹 𝑖

𝑁
(4)

𝐸(𝑗)
𝑄𝑅𝐹 𝑖 denoting the QRF-based prediction of the wind energy in the

year 𝑖th (among the 20) relative to the 𝑗th training set (among all pos-
sible different M training sets). In a similar way, we can define 𝜎(𝑗)𝐸𝑀𝑂𝑆 ,
which differs from (4) simply because the predictions now come from
the EMOS-based calibration. Having defined 𝜎ℎ, 𝜎(𝑗)𝑄𝑅𝐹 , 𝜎

(𝑗)
𝐸𝑀𝑂𝑆 , 𝑗 =

1,⋯ ,𝑀 we can quantify the errors with respect to the truth 𝜎𝑡𝑟. This
can be easily done, e.g., in terms of the following normalized error
index:

𝛥𝜎𝑄𝑅𝐹
=

∑𝑀
𝑗=1

|

|

|

𝜎(𝑗)𝑄𝑅𝐹 − 𝜎𝑡𝑟
|

|

|

𝑀𝜎𝑡𝑟
(5)

𝛥𝜎𝐸𝑀𝑂𝑆
=

∑𝑀
𝑗=1

|

|

|

𝜎(𝑗)𝐸𝑀𝑂𝑆 − 𝜎𝑡𝑟
|

|

|

𝑀𝜎𝑡𝑟
(6)

𝛥𝜎ℎ =
|

|

𝜎ℎ − 𝜎𝑡𝑟||
𝜎𝑡𝑟

(7)

Fig. 7 (panel (a)) shows the behavior of 𝛥𝜎𝑄𝑅𝐹
, 𝛥𝜎𝐸𝑀𝑂𝑆

, and 𝛥𝜎ℎ for
all considered SYNOP stations (abscissa). The superiority of the QRF
calibration (red line, filled squares) in reproducing the wind energy
inter-annual variability (for the majority of stations, 22 out of 28)
clearly emerges from this figure both with respect to the raw reanalysis
(red line, open circles) and with respect to the EMOS-based calibration
(blue line, crosses). Panel (b) shows the skill score of the inter-annual
variability quantified from the (i) QRF ((𝛥 −𝛥 )∕𝛥 ) using the raw
𝜎ℎ 𝜎𝑄𝑅𝐹 𝜎ℎ
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Fig. 6. Main frame: skill score of 𝛥𝑄𝑅𝐹 averaged over all SYNOP stations, using the RF-based predictions as reference. The abscissa reports different durations of the hypothetical,
measurement campaign (in months) where wind speed measurements are supposed to be available. Inset: for a training period of 12 months, the skill score of 𝛥𝑄𝑅𝐹 using the
RF-based predictions as a reference, is shown for all considered SYNOP stations.
reanalysis prediction as a reference (red line, filled squares), and (ii)
EMOS ((𝛥𝜎ℎ − 𝛥𝜎𝐸𝑀𝑂𝑆

)∕𝛥𝜎ℎ ) again using the raw reanalysis prediction
as a reference (blue line, crosses). The added value of the QRF-based
calibration over the EMOS-based calibration is evident. For the QRF
we have 22 stations out of 28 for which the skill score is positive
(i.e. signaling an added value of the calibration with respect to the
raw prediction in accounting for the inter-annual variability of the
wind energy) but only 11 stations out of 28 manifest an added value
when exploiting the EMOS strategy. We conclude by analyzing how
the skill scores of Fig. 7, averaged over all SYNOP stations, depending
on the length of the training set. From Fig. 8, it is possible to see
that both considered calibrations only show minor variations in their
performances, a fact indicating their robustness in assessing the inter-
annual variability of the wind energy, for the analyzed range of lengths
of the training set.

A quantitative evaluation of the skills of the ERA5 QRF-based
calibration against the raw ERA5 estimations for the 10-m wind speed
is provided in the supplementary material.

7. Does high-resolution downscaling always mean high accuracy?

In this section, we ask the question on whether or not a high-
resolution downscaling may be competitive with respect to our best
ML-based calibration. The question raises from a practical perspective
related to wind energy assessment where high-resolution hindcasts
are typically built from a dynamical downscaling where a coarser
hindcast, as for example ERA5, provides the necessary initial/boundary
conditions for the high-resolution simulations. In order to answer the
question we performed a downscaling starting from ERA5 in the same
period already considered in previous sections. In doing that, the
Weather Research and Forecasting (WRF) model [18] has been used.
The model configuration is as in [28] a part for the resolution that
here is of 3 km for the area considered in Fig. 1 and 10 km for the
remaining area covering the European region. Results are reported in
Fig. 9. This figure is analogous to Fig. 4 and shows the skill score of
𝛥 from the calibrated ERA5 now using 𝛥 from WRF as a reference,
7

𝑄𝑅𝐹
both in its raw version (dashed line) and after calibration (continuous
line). Calibrations have been performed via the same QRF used to
calibrate ERA5 (also in relation to the used features). From this figure
a clear answer to our question arises. The calibrated ERA5 is superior
with respect to the raw WRF even if a high-resolution (3 km) is used.
Differences between the calibrated WRF predictions and those based on
the calibrated ERA5 are small, and negligible in practice.

8. Conclusion

The possible added value to estimate the 20-year time span wind
energy has been explored by using the ERA5 dataset vs. its high-
resolution downscaling based on WRF at a resolution of 3 km. 28
SYNOP stations located in Italy in a time span from 2001 to 2020
are considered to define the truth against which different predictive
models are considered, including two machine learning algorithms
known as Random Forest (RF) and Quantile Random Forest (QRF),
a more parsimonious and well-known parametric calibration strategy
referred to as EMOS, and a climatology-based prediction. This latter
strategy determines the cumulative wind energy in a 20-year time
span by simply multiplying by 20 the wind energy resulting from one
year of observations. The results suggest that the climatology-based
prediction, despite its simplicity, outperforms greatly the raw ERA5-
based prediction. A possible reason for such a failure can be due to the
complex characteristics of the Italian territory which is well-known to
cause nontrivial dynamical sub-synoptical effects not properly captured
by models too coarse in space.

Motivated by this result, we implemented a machine learning al-
gorithm capable of providing not just a mean wind speed in a given
station but rather, the whole probability density function (PDF) of the
wind speed. Once this PDF is obtained one can easily determine the
resulting wind power PDF from which the mean wind power, or the
mean wind energy, can be computed. The selected ensemble calibration
strategy has been the so-called Quantile Random Forest. As a result of
our analysis, the QRF-based calibration brings out the power of the

ERA5 reanalysis, showing a significant improvement with respect to
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Fig. 7. Panel (a): 𝛥𝜎ℎ , 𝛥𝜎𝑄𝑅𝐹
, and 𝛥𝜎𝐸𝑀𝑂𝑆

are shown for all analyzed SYNOP stations. Panel (b): Skill score of 𝛥𝜎𝑄𝑅𝐹
using 𝛥𝜎ℎ as a reference (red line, filled squares) for all considered

SYNOP stations (along the abscissa). The blue line (crosses) is analog but it refers to the EMOS-based calibration. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
both the RF-based prediction, the climatology-based prediction, and
the raw reanalysis. The improvement brought by the QRF calibration
turned out to be not limited to the sole wind energy in the 20-year time
span. It manifests also when assessing the inter-annual variability of the
wind energy in the time span of 1 year.

The results of the QRF-based predictions have also been compared
against the more parsimonious EMOS-based and RF-based predictions
finding a significant added value of the first strategy with respect to
the other two strategies.

Finally, we compared our best ERA5 calibration against its 3-km
dynamic downscaling done with the WRF model, both in its raw version
and with the same calibration used for ERA5. The results show that
the calibrated ERA5 provides more accurate estimations of the 20-
year time span wind energy than the raw WRF-based high-resolution
downscaling. Differences become negligible when the raw WRF simu-
lations are replaced by their calibrated counterpart done in the same
8

way as for ERA5. In view of the fact that producing high-resolution
hindcasts is expensive, both for the time it takes and for the cost of the
computational resources, using a properly calibrated coarser hindcast
appears a more convenient option.

Let us now provide some motivations on why our results can be
of interest for the wind energy industry despite the fact that, in a
wind park, wind turbines operate at heights higher than 10 m a.g.l.
A first possible objection in this respect is that SYNOP stations can
be heavily affected by the terrain and land-use around them. Actually,
also assuming that local phenomena affect the measured wind velocity
from SYNOP stations, this seems an important strength from wind
energy applications. A wind farm is indeed an environment strongly
perturbed by wake effects. Being able to capture this kind of nonlocal
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Fig. 8. Skill scores of Fig. 7, averaged over all SYNOP stations, as a function of the length of the training set.
Fig. 9. Skill score of 𝛥𝑄𝑅𝐹 using 𝛥 from the raw WRF simulations as a reference (gray dashed-line, crosses) and from the calibrated WRF simulations (orange line, filled squares).
The skill scores have been calculated for all considered SYNOP stations (along the abscissa). (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
phenomena via suitable AI methods is thus a key fact proving how our
conclusions can be of direct interest to the wind energy industry. A
second possible objection is that the sampling time from the wind tower
nacelle anemometer is of 10 minutes and thus shorter than the one of
SYNOP stations. This fact however does not seem a problem, the AI-
based tool we have implemented is indeed totally agnostic with respect
to the wind speed sampling frequency. We conclude by noticing that
9

our results are expected to bring advantages in other energy-related
realms beyond the one of wind industry. Having accurate calibrations
of high-resolution downscaling capable to bring out their possible supe-
riority with respect to coarser hindcasts, especially for the 10 m wind
speed, is an issue of paramount importance in met-ocean applications
where the 10-m wind velocity forces wave models through which the
wave potential in a given sea region can be estimated [29–33] also for
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issues related to climate change [34] or to study coupling mechanisms
between atmosphere and sea [35].
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