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ABSTRACT?

In the present study, the potential of Sentinel-2 (S-2) multispectral satellite images for Surface Soil Moisture (SSM) estimate is investigated.
For this purpose, dependency is looked for between S-2 images and an 18-months (from 1st of January 2020 to 30th of June 2021) dataset
of hourly SSM measurements, acquired at four different depths (-10cm, -35cm, -55c¢m, -85c¢m) from each of the nodes of a monitoring
network in Mendatica (Liguria, Italy). Data acquired by the sensors were previously calibrated, considering the soil-specific characteristics
of the areas, and the reliability of the dataset was verified. After performing the required preprocessing on satellite images, the performance
of three nonlinear regression methods, when applied to four different types of inputs (12 spectral channels, NDVI, NDWI and NDMI), was
quantitatively assessed.

1. INTRODUCTION 2022, Hachani et al., 2023, Serrano et al., 2019). Several ML
techniques, such as Gradient Boosting Regression (GBR),

Surface Soil Moisture (SSM) is an Essential Climate Variable Support Vector Regression (SVR)’ Elastic Net Regression
(ECV) that crucially influences rainfall-triggered landslides, (ENR), and Random Forest (RF), showed great potential
where slope stability can be markedly affected by the (Adab et al., 2020). In the present study, the potential of
propagation of the saturation front within the unsaturated zone multispectral satellite images acquired by Sentinel-2 (S-2) for
(Viaggio et al., 2022). SSM can be monitored using traditional SSM extraction at the spatial resolution of 10 meters is
methods such as ground-based measurements through contact investigated. For this purpose, an 18-months dataset of hourly
sensors; they provide accurate but single-point measurements, SSM measurements, acquired by sensors placed at four
require manual placement and intensive maintenance and are different depths in four nodes of a monitoring network in
therefore particularly onerous over wide areas (Nguyen et al., Mendatica (Liguria, Italy), from 1st of January 2020 to 30th of
2022). Since SSM is a heterogeneous variable in terms of June 2021, is used to look for dependency with S-2 images.
space and time, data acquisition with traditional single-point For this purpose, the ML algorithms RF, SVR, and GBR, have
measurement methods is limited to the local scale. Remote been trained for each measurement node and at the various
Sensing (RS) offers the possibility to continuously observe the depth, and the resulting regression performance have been
land surface and characterize the spatio-temporal variation of evaluated and compared.
the SSM (Adab et al., 2020), because it is one of the influential
factors that control the radiation emitted from the Earth’s 2. SOIL MOISTURE MONITORING NETWORK:
surface (Gao et al., 2013). All parts of the electromagnetic CHARACTERISTICS, CALIBRATION AND
(EM) spectrum normally used for Earth Observation (EO) can RELIABILITY ANALYSIS
be analyzed for quantitative SSM estimate. RS-based methods
for SSM retrieval can be classified into three categories, as a Capacitive sensors are the most versatile and economically
function of the type of input data: thermal, microwave, and sustainable soil moisture sensors. They are relatively easy to
optical. Most globally available SSM products are derived install and replace and can be installed in the soil at different
from microwave RS, due to the ability of microwave radiation depths and locations in the study area, thus creating a
to penetrate cloud cover, and their potential to provide all- monitoring network (Bovolenta et al., 2020). Such monitoring
weather all-time sensing (Yuana et al., 2020). However, soil network was installed in Mendatica (Liguria, Italy), using the
moisture products obtained from input space-borne passive WaterScout SM100 (Spectrum Tec.). The network consists of
microwave data are sensitive to surface roughness and have five measurement nodes (M1, M2, M3, M4, M5) and a
coarse spatial resolution (in the range of km), making them retriever node, that collects and sends data. Each node is
inefficient for studies over small areas (Fang et al., 2019). connected with four sensors placed at different depths (-10cm,
Active microwave data can be used for retrieving soil moisture -35c¢m, -55cm, -85cm), providing information on soil water
at higher spatial resolution (e.g., 20m), although their potential content along a vertical measuring line (Viaggio et al., 2022).
for this retrieval task often decreases in the case of vegetation However, the M2 node was not considered in the further
covered areas (Cui et al, 2023, Graldi and Vitti, 2022). analysis, because unrepresentative of the study area. The
Thermal RS usually exploits the differences between Land adopted soil moisture sensors need to be site-specifically
Surface Temperature (LST) and air temperature to estimate calibrated considering the characteristics of the soil samples
evaporative fraction as a proxy of the SM (Sini et al, 2008). taken from the study area at the measuring points. The results
Separating LST from canopy temperature is anyway a difficult of the soil-specific calibration are shown in Table 1, in which
task (Gao et al., 2013). Optical RS, in the visible, near-infrared 0 defines the volumetric water content of the soil while the
(NIR), and shortwave infrared (SWIR) ranges, measures the ratio between output and input voltage (Vou/Vin) represents the
reflected radiation from the earth surface, which can be raw data from the soil moisture sensors.

correlated with soil moisture to provide very high spatial
resolution data (Adab et al., 2020). Numerous researches
focused on multi-sensor data fusion, satellite-derived
vegetation, water and soil indices, and different Machine
Learning (ML) techniques (Nguyen et al., 2022). Multispectral
indices, like Normalized Difference Vegetation Index (NDVI)
and Normalized Difference Water Index (NDWI), have
demonstrated strong associations with SSM (Ramat et al,
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Figure 1. Mendatica soil moisture monitorng network
(Regione Liguria orthophoto on the background)

Number
Equation of data a b R? R¥SE
[%]
samples
%
0=a-2Typ 64 286.8 | 893 | 0.95 3.1
Vin

Table 1. Calibration function for SM100 in Mendatica. R?:
coefficient of determination; RMSE: root mean square error.

The reliability verification of the acquisitions obtained through
the SM monitoring network was conducted through the
analysis of the correlation between rainfall and volumetric
water content 0 variations recorded by the four sensors along
the vertical of each measurement node. As expected, a higher
correlation between rainfall and SM is evident in the shallower
sensors, with maximum values positioned at short lags. A
decrease in correlation is evident for the deepest sensors, with
a progressive delay of the peaks (Figure 2). In Figure 3 an
example of SM acquisition performed by M1 node is
presented.
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Figure 2. Rainfall-0 cross-covariance referred to May 2021.

Rainfall and Surface Soil Molsture variations (M1) (Jan. 2020 - Jun. 2021) in Mendatica
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Figure 3. SM data measured by M1 measurement node at
different depth, and rainfall data during the study period.

3. SATELLITE REMOTE SENSING DATA

S-2 provides systematic global acquisition of high-resolution
multispectral images (MSI) with 12 spectral bands at spatial
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resolutions of 10m, 20m and 60m. The availability of cloud-
based platforms for acquiring and processing satellite images
has significantly simplified the implementation of large-scale
RS applications like time series analysis (Duan et al., 2020).
In this study, we used the Harmonized S-2 MSI Level 2A
(“COPERNICUS/S2-SR-HARMONIZED”) image collection
in Google Earth Engine over the considered study period. This
image collection contains Surface Reflectance (SR) values of
12 spectral bands. SR values for all bands of S-2 were used in
this study to train regression models. SR was exported for all
bands from the image collection with 10 meter spatial
resolution on each measurement node in the monitoring
network through the study period. Accordingly, a dataset
containing values of SR of each band based on the specific
geometry for the whole study period was generated.

3.1. Machine Learning for Supervised Regression

In order to train the model, all bands of S-2 were set as input
observations and the field-measured SSM at each node (M1,
M3, M4 and MS5) was considered as the target variable.
Separate regression models were trained with measurement
data at distinct depths. In the following, working SM sensors
(11 in total) connected to measurement nodes are identified
with a notation that defines their measurement depth XX in cm
(SSMXX). Optical reflectance can serve as an indirect
measure of root-zone SM. Most vegetation indices, related to
biomass and leaf area index like Normalized Different
Vegetation Index (NDVI), or canopy water-based indices like
Normalized Different Water Index (NDWI) and Normalized
Difference Moisture Index (NDMI), are associated with root-
zone SM (Liu et al, 2018). Subsequently, each regression
method was trained using three indices in input: the NDVI, the
NDWI, and the NDMI. Each site was considered independent
because of the different land-use types at the various locations.
Hence, soil moisture content has been estimated at four sites
and the available depths, by developing eleven individual
models for each regression algorithm used, i.e. RF, SVR, and
GBR. The following model selection settings were chosen: for
RF, the maximum number of features to be used in each split
was set using the well-known rule of thumb of the square root,
while the number of trees in the ensemble was fixed to 10.000.
For SVR, four different kernels, i.e., linear, sigmoidal,
polynomial, and Gaussian radial basis function (RBF) were
used. The regularization parameters C and € were set to 1 and
0.1, respectively. For GBR, the number of estimators, the
learning rate (shrinkage), the minimum number of
observations at each node and the maximum depth were 100,
0.1, 10 and 3, respectively. In this study, the dataset was split
as 80% for training the models and 20% for testing their
performances. The total number of acquisitions for sites M1
(land use: agriculture), M3 (land use: woods and brambles),
M4 (land use: agriculture close to houses) and M5 (land use:
agriculture close to woods) were 106, 113, 108, and 108,
respectively. Discrepancies in acquisition numbers arose due
to the cloud cover or shadow obscuring the desired pixels.
External tests help to ensure the robustness of the model.
Accuracy assessment was done using the root mean squared
error (RMSE) to evaluate the difference between the observed
values of SSM and the retrieved values computed by the
different regression algorithms on the test samples.

4. RESULTS AND CONCLUSIONS

The main goal of this study was to explore the relationship
between S-2 MSI data and ground-based SSM measurements.
Initially, 12 different spectral channels (Bl to B12) were
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considered as potential variables for model training.
Subsequently, common vegetation indices were examinated,
due to the significant impact of vegetation cover on the
received surface reflectance from earth surface. Table 2 shows
that the accuracy of the results is considerably dependent on
the training dataset, hence the land-use types at each location
and the analysed depth. The highest dependency between the
measured soil moisture and the inputs of the regression models
was observed at the deepest measurement depth across all
monitoring nodes (M1, M3, M4, and M5). Except for the M4
sensor, which operates in areas characterized by high
heterogeneity in land use, both NDVI and NDMI exhibited a

more pronounced dependency on soil moisture for the
remaining measurement nodes. This highlights the substantial
impact of vegetation dynamics on soil moisture assessment,
particularly as measurement depth increases. Previous studies
(Liu et al, 2018) have emphasized the effectiveness of
vegetation indices such as NDVI in elucidating the
relationship between SSM, root-zone SM, and crop water
content. Root-zone SM significantly influences vegetation
cover and alters the surface energy balance.

M1 Node M3 Node M4 Node M35 Node
Method kernel 7} ) 7] » %) %) ) ) %) ) ©
[z} 2] %2} [} [z} 2] 2] 2] 2] 2] w2
< < < < < 2 < < 4 < <
— [oe) v ) — ) = oe) [ = [y
= =] (=] (=] f=1 W (=} W W [=} [=)
RF 4.21 5.12 3.42 2.62 3.64 2.13 6.43 6.43 2.55 2.89 1.87
Linear 3.39 3.67 3.11 3.26 2.69 1.76 6.71 5.31 5.80 4.90 2.62
Sigmoid 4.18 4.46 3.08 3.11 2.99 2.43 8.40 4.82 4.71 4.97 2.84
12 Channels SVR
RBF 434 4.72 3.16 2.62 3.33 227 8.54 4.51 5.00 4.77 1.78
Polynomial 4.58 5.05 3.46 3.36 2.87 2.05 13.82 21.99 16.1 6.00 2.89
GBR 5.47 5.35 4.04 3.29 3.35 2.39 6.74 3.02 2.25 3.16 1.68
RF 2.93 3.64 1.81 1.76 2.15 1.38 7.63 6.12 6.59 2.15 1.42
Linear 571 6.76 3.64 3.43 3.94 2.79 7.61 7.61 7.66 4.60 3.15
Sigmoid 5.71 6.85 5.47 5.69 5.47 4.72 7.86 8.06 8.20 6.12 5.82
NDVI SVR
RBF 5.66 6.68 3.54 3.37 3.85 2.75 7.32 7.56 7.60 4.52 291
Polynomial 572 6.78 3.61 3.46 3.95 2.78 8.03 8.12 8.05 4.68 3.20
GBR 4.63 6.03 3.96 5.09 3.27 227 8.65 5.02 5.22 3.70 2.41
RF 2.50 3.09 1.82 1.93 2.15 1.29 4.52 3.05 3.12 2.17 145
Linear 491 6.09 3.21 3.49 3.99 2.85 8.12 5.54 5.82 4.58 2.99
Sigmoid 4.93 6.14 3.23 3.51 5.92 5.86 8.58 7.19 7.40 4.68 4.65
NDWI SVR
RBF 4.97 6.15 3.21 3.46 3.85 2.66 8.17 5.33 5.63 4.48 2.87
Polynomial 4.89 6.07 3.26 3.49 3.96 2.79 8.26 577 6.22 4.61 3.09
GBR 3.69 4.64 2.47 2.73 3.28 2.15 6.51 4.34 4.38 3.64 2.29
RF 2.78 3.29 1.74 1.86 1.88 1.27 4.52 3.05 3.12 2.31 1.61
Linear 5.59 6.53 3.51 3.51 3.81 2.82 8.79 6.19 6.62 4.60 3.24
NDMI Sigmoid 5.62 6.49 3.74 5.51 5.18 4.00 8.85 6.15 7.18 5.00 3.41
SVR
RBF 5.51 6.33 3.35 3.26 3.68 2.71 8.39 5.92 6.02 4.46 2.96
Polynomial 5.64 6.77 3.65 3.47 3.88 2.89 8.92 6.12 6.59 4.53 3.35
GBR 4.46 5.13 2.73 2.7 3.03 2.07 7.14 4.77 4.75 3.57 4.72

Table 2. RMSE of Volumetric Water Content data (expressed as percentage) using different ML algorithms. The lowest values for
each sensor and each training are highlighted in bold.
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The findings of this study indicate that the greenness-based
vegetation index (NDVI) is more reliant on variations in soil
moisture in the root-zone area in agricultural land use cases
(M1 and M5), compared to canopy water content indices like
NDWI and NDMI, particularly evident in M3 with denser
vegetation cover. Among the three algorithms used to estimate
soil moisture, the RF method demonstrated the highest
proficiency in soil moisture retrieval, particularly when
combined with NDVI, consistent with findings from other
studies (Wang and Fu, 2023). For future works, it is suggested
to consider the homogeneity of land use within each pixel and
verify that the selected pixel accurately represents the area
surrounding the sensor.
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