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Abstract—In this article, we propose a radar-based hu-
man action recognition system, capable of recognizing ac-
tions in real time. Range-Doppler maps extracted from a
low-cost frequency-modulated continuous wave (FMCW)
radar are fed into a deep neural network. The system is
deployed on an edge device. The results show that the
system can recognize five human actions with an accuracy
of 93.2% and an inference time of 2.95 s. Raising an alarm
when a harmful action happens is a crucial feature in an
indoor safety application. Thus, the performance during
the binary classification, i.e., fall vs nonfall actions, is also
assessed, achieving an accuracy of 96.8% with a false-
negative rate of 4%. To find the best tradeoff between accu-
racy and computational cost, the energy precision ratio of
the system deployed on the edge is measured. The system
achieves a 1.04 energy precision ratio value, where an ideal
ratio would be close to zero.

Index Terms—Action recognition, deep neural networks
(DNNs), edge deployment, frequency-modulated continu-
ous wave (FMCW) radar.

I. INTRODUCTION

FALLS are a major public health concern and the main cause
of accidental death in the senior population worldwide.

Timely and accurate detection permits immediate assistance
after a fall and, thereby, reduces complications of fall risk [1].
Edge-based approaches are essential to support time-dependent
healthcare applications [2].

Due to the advantages of portability, low cost, and availability,
wearable devices are regarded as one of the key types of sensors
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for fall detection and have been widely studied [3], [4], [5], [6].
The main drawback of these systems is the battery life which can
limit the usability of the wearable devices. The second drawback
is that the monitored subjects must always wear them, causing
obvious discomfort, especially for the elderly.

Vision-based fall detection is another prominent method. Ex-
tensive effort in this direction has been demonstrated, showing
promising results [7], [8], [9]. Although cameras are not as
portable as wearable devices, they offer other advantages that
deem them as decent options depending on the scenario: most
static RGB cameras are not intrusive and wired, hence there is no
need to worry about battery limitations. One major drawback of
vision-based detection is the potential violation of privacy due
to the levels of detail that cameras can capture, such as personal
information, appearance, and visuals of the living environment.
The second drawback is the high sensibility to clutters and
environmental conditions (e.g., smoke, light, etc.). In addition,
a vision-based approach could introduce issues related to color
bias [10].

Ambient sensors (e.g., ultrasonic, WiFi antennas, radars, etc.)
provide another nonintrusive means of fall detection. Ambient
sensing is drawing more attention which can be attributed to
being device-free for users and can solve the problem of people’s
privacy and color bias. Ultrasonic sensor network systems are
one of the solutions for fall detection [11]. One drawback is
that the waves are affected by environmental factors, such as
humidity and smoke. These would affect the accuracy of the
measurement. In [12], a fall detection approach uses WiFi sig-
nals, showing promising results in detecting falls. This approach
is susceptible to security threats and has a limited range of
efficiency.

Radars have become popular in recent years, proving to be
an effective sensor to recognize human actions in cluttered en-
vironments [13]. In [14] and [15], the human action recognition
is performed by a machine learning (ML) algorithm trained on
hand-crafted features extracted from the radar signals. The main
drawback is the time and effort required for the processing of
the data and the feature extraction operation. Some other works
propose deep neural networks (DNNs) to automatically extract
features for human action recognition and fall detection. In [16],
stack autoencoders (AEs) are used to automatically extract
the features from the gray-scale spectrogram and to classify
four activities including the fall. In [17], the authors combine
convolutional neural networks (CNNs) and AEs to classify 12
actions based on micro-Doppler signatures. In [18], two DNNs
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automatically extract the features from the time series corre-
sponding to the fast time of an ultra-wideband (UWB) radar
return signal and classify fall actions. In [19], bidirectional
long short-term memory (LSTM) networks classify activities,
in real-time, based on the fusion of data collected using radar
and wearable devices. In [20], LSTMs with and without bidirec-
tional neurons classify the activities based on the micro-Doppler
spectrograms. The data are considered as a continuous temporal
sequence. In [21], the authors adopt a generative adversarial
network (GAN) to enrich with synthetic samples a dataset
containing a low number of micro-Doppler signatures repre-
senting human actions. Using this method, the capability of
generalizing on new data is increased. In [22], a DNN takes
binary-masked spectrograms as input. Those are computed on
the signals of the UWB radar, classifying falls. In [23], the
authors propose an algorithm to extract the optimal range bin
from the range-Doppler spectrograms of a moving target for the
subsequent time-frequency analysis, then a DNN built upon a
pretrained model classifies the falls based on the optimal resulted
spectrograms.

This article proposes a system for human action recognition
based on deep learning (DL). The blocks of the system are
designed for edge deployment. The data are collected using a
low-cost frequency-modulated continuous wave (FMCW) radar
connected to the edge device. The device transforms the signals
into range-Doppler maps, treated as a series of images by the
DNN. The performance of the system is evaluated both in terms
of generalization accuracy and computational cost measured on
the edge device. This evaluation covered the multiclass classifi-
cation (i.e., five human action classes) and binary classification
(i.e., fall versus nonfall classes).

The following are the novel contributions of this article.
1) The system is low-cost and deployed on the edge.
2) The proposed DNN classifies a series of range-Doppler

maps through the medium of a time-distributed layer
(TDL).

3) The DNN size achieves real-time edge inference.
The rest of this article is organized as follows. In Section II,

the multiclass human action recognition method is described.
In Section III, the radar specifications, data collection, training
procedure, and edge deployment procedure are detailed. In
Section IV, experimental results including both model and edge
system assessment are presented. Finally, Section V concludes
this article.

II. METHODOLOGY

In this section, the authors present the multiclass action
recognition system. Fig. 1 presents the block diagram of the
action elaboration, from the acquisition of the signals to the
classification. The block diagram consists of four stages after
the radar. In the following, all the stages are detailed.

A. 2-D FFT

In the 2-D FFT stage, the signals received by the Position2Go
FMCW radar [24] are processed by the edge device (i.e.,
the Raspberry Pi 4) to obtain range-Doppler matrixes, also
known as range-Doppler maps [25]. The radar receiver antenna

Fig. 1. Block diagram of the action elaboration.

receives a delayed and attenuated copy of the transmitted wave.
An I/Q mixer demodulates the received wave and returns an
intermediate frequency (IF) signal. The signal is sampled by an
analog-to-digital converter (ADC) and data are organized in a
2-D matrix. Following the notation adopted in [26], the matrix
can be represented as

qIF (ns, nc) = AIF e
j2π(fbTsns−fDncTPRI) with

ns = 0, . . ., Ns − 1; nc = 0, . . ., Nc − 1 (1)

where AIF is proportional to received echo, Ts is the sampling
period, fD is the Doppler frequency shift, fb is the beat
frequency, TPRI is the pulse repetition interval, and Nc is the
number of chirps with Ns samples per chirp. According to
(1), the signals in qIF are filtered producing a filtered matrix
u(ns, nc). The range-Doppler (RD) map is computed as

RD(Ksf )(nb, nD)

= FND

D

{
FNR

r

{
u× ω

(Ksf )
r

}
× ω

(Ksf )
D

}
(nb, nD)

(2)

where u is the filtered matrix after removing the clutters [25],
ω
Ksf
r and ω

Ksf

D are the Kaiser windows to be applied on the
beat frequency and Doppler dimensions with a shape factor
Ksf , and FNR

r and FND

D are the range-FFT and Doppler-FFT
outputting sequences of length NR and ND, respectively. After
the processing, the RD map has the dimension NR ×ND. In
this work, NR = ND = 256.

Since an RD map is a 3-D tensor, it can be considered an
image and can be formalized as RD ∈ NNR×ND×C , where NR

and ND represent the height and width of the image, while C
represents the number of channels (e.g., C = 1 in a gray-scale
image and C = 3 in RGB format).

B. Image Transformation

A transformation can be applied to an image to convert it from
one domain to another. Viewing an image in different domains
enables the identification of features that may not be as easily
detected in the initial domain. Among the image transformation
techniques, edge detectors proved to increase accuracy in DL
applications [27]. In this article, five transformations have been
applied to the RD maps (RD in Fig. 1), three of which are
based on edge detectors (i.e., Canny, Sobel, and Roberts). During
the transformation, the RD maps are also resized to cope with
the dimension of the input tensor of the classifier. Fig. 2 shows
the different transformations applied on an exemplary RD map.
The RD map format is RGB [Fig. 2(a)]. As aforesaid, this
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Fig. 2. Example of image transformations applied to the original image
(a). (b) Grayscale. (c) Canny. (d) Roberts. (e) Sobel. (f) Binary.

Fig. 3. Example of a 4-D tensor representing an action.

image is a 3-D tensor of dimensionNR ×ND × C. The applied
transformations are the following.

1) Gray [Fig. 2(b)] decreases the number of channels C to
1, reducing also the color dependency.

2) Canny [Fig. 2(c)] uses a multistage algorithm to detect a
wide range of edges in images.

3) Sobel [Fig. 2(d)] convolves the image with a small,
separable, and integer-valued filter in the horizontal and
vertical directions.

4) Roberts [Fig. 2(e)] approximates the gradient of an im-
age through discrete differentiation which is achieved
by computing the sum of the squares of the differences
between diagonally adjacent pixels.

5) Binary [Fig. 2(f)] image is obtained by first applying the
k-means clustering algorithm to an RD map, obtaining a
gray-scale image. The clusters of pixels are then passed
through a median filter to remove the outliers and set the
nonoutlier pixels to white.

A transformed and resized RD map can be formulated as
˜RD ∈ NN×M×C .

C. Image Sequence Collection

The content of RD maps varies over time. Therefore, the
sequence of RD maps is time-dependent. To classify the action,
T ×˜RD images of each action are collected as a 4-D tensor
datum, as shown in Fig. 3. The 4-D tensor can be formalized as
X ∈ NN×M×C×T .

The adoption of sequences of RD maps results in an increment
of classification accuracy over the single image, as demonstrated
for human action recognition in [28].

Fig. 4. Proposed DNN.

D. Classifier

Fig. 4 shows the proposed DNN (Classifier in Fig. 1) used to
classify the 4-D tensor.

Human actions are dynamic and occur over time, and are thus
captured in multiple RD maps, with each map constructed in
approximately 30 ms, as described in Section III-A. To address
the classification problem, we propose a hybrid model that
utilizes a CNN to extract image features and an LSTM to capture
the dependencies between consecutive maps. A TDL applies the
same layer(s) to every time step of the input [29]. In this article,
the TDL uses a CNN to extractT feature maps from theT images
of the 4-D input tensor and the output of the TDL is a sequence of
feature maps. An LSTM layer learns the dependencies between
the sequence of feature maps. Finally, two dense layers are the
output layers of the DNN. The first one is a fully connected
network with an ReLU activation function. The second is made
of Neu neurons, i.e., the number of classes, with a Softmax
activation function to assign the action label.

Three CNNs have been designed. The use of CNNs aims
to automatically extract features by learning the kernels (i.e.,
filters) that convolve with data. This practice is adopted to
topple the domain-specific feature extraction, which is usually
manually crafted by experts. The CNNs have been designed as
a proof of concept for the feasibility of the action recognition
system. The model’s number of parameters is correlated with
the size/performance ratio. Therefore, three CNN architectures
of different sizes are adopted to investigate the effect of distinct
number of layers on the performance of the overall system.

Fig. 5 shows the CNN reference architecture (called CNN2).
The CNN2 comprises six main blocks: the first one, B1, consists
of six 2-D convolutional layers taking as input a 3-D tensor
of dimensions N ×M × C, where N and M represent the
dimension of the map and C is the number of channels. In
this article, the range-Doppler maps [Fig. 2(a)] have C = 3,
while all the transformed images [Fig. 2(b)–(f)] have C = 1.
Each one of the five blocks (i.e., B2, B3, B4, B5, and B6)
consists of a batch normalization layer followed by a 2-D
average pooling and a dynamic number of 2-D convolutional
layers (the number of convolutional layers decreases by one
along with the blocks). The last block, B6, contains only one
convolutional layer. Following this block, batch normalization
and global average pooling layers are added. In particular, the
global pooling flattens the last feature map.

Two different instances of the CNN2 architecture have been
also taken into account. CNN1 has an architecture similar to
CNN2 but with a lower number of layers: it contains five blocks
instead of six, each block has a convolutional layer less than
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Fig. 5. CNN2 architecture.

TABLE I
POSITION2GO RADAR SPECIFICATIONS

CNN2, and the global pooling is applied to the output of the
fifth block (the last one in this case). On the opposite, CNN3
has one more convolutional layer in each block with respect
to CNN2, thus presenting seven main blocks. In the following,
DNN1, DNN2, and DNN3 will refer to the DNN presented in
Fig. 4 that uses CNN1, CNN2, and CNN3, respectively.

III. EXPERIMENTAL SETUP

A. FMCW Radar Specifications

The radar used in the experiments is the Position2Go FMCW
radar model operating on the 24-GHz ISM band, by Infineon
Technologies [24]. The radar is equipped with a pair of arrays
of microstrip patch antennas (one for transmitting and two for
receiving) characterized by a 12-dbi gain and 19 × 76 degree
beam widths, defining the field of view (FoV) in both elevation
and azimuth axes, respectively. The sampling rate used for the
data collection is 213 kHz to detect the high-frequency compo-
nents of the signal (around 60 Hz) [28]. The development kit
allows the user to implement and test several applications at the
24-GHz ISM bands, such as localizing, tracking, and collision
avoidance [24]. Table I lists the radar parameters that are set for
the data collection procedure. According to the specifications,
each RD map is built upon 64 chirps. Every chirp consists
of 300μs of ramp-up, 100μs of ramp-down, and 100μs of
steady-state period until the next chirp is generated. As a result,
each map is thus computed over 32 ms of data. It takes 168 ms
to transform a chirps frame into the RD map by applying the

Fig. 6. Environments for data collection. (a) Environment 1 - Area ≈
12 m2. (b) Environment 2 - Area ≈ 23 m2.

TABLE II
COLLECTED DATASET SUMMARY

2-D FTT. The next acquisition begins once the processing of the
previous frame is complete, and the RD map has been saved.

B. Data Collection

The data have been collected in two different environments
at the University of Genova, Italy. The environments contain
clutters, such as desks, PCs, and metal lockers, as shown in
Fig. 6.

A data sample consists of 15 consecutive range-Doppler maps
acquired during 3 s of a human action performed in the FoV of
the radar. The dataset contains five classes as follows.

1) Fall: The subject falls from a walking or standing state
on a mattress.

2) Bed-Fall: A couch [Fig. 6(b)] represents a bed. It has
been moved around the environment to perform the “fall
from bed” action from different angles with respect to the
radar’s FoV.

3) Sit: The subject sits down on the couch or chairs posi-
tioned in different locations of the environment.

4) Stand: The subject stands up from the couch or chairs
positioned in different locations of the environment.

5) Walk: The subject walks in the FoV of the radar.
The actions have been performed by five healthy subjects

aged between 25 and 30. Only one subject performed one action
at a time. To eliminate possible data-collection selection bias,
the subject executed the same action in different ways (e.g.,
change the starting and/or ending positions with respect to the
radar, perform the action faster/slower, etc.). In total, 100 data
samples, i.e., 20 per subject, have been collected for each class
(50 for each environment).
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Fig. 7. Example of range-Doppler maps for the five actions.

Table II summarizes the collected data. The first column
shows the performed actions, the second column the correspond-
ing class to each action, and the last column reports the number
of data acquired in each environment per class.

Five datasets have been generated from the DOrig dataset
by applying the transformation techniques described in
Section II-A. The datasets can be formalized as

Dd =
{
(X , y)i ;Xi ∈ N224×224×1×15; yi ∈ {Fall,

Bed-Fall, Sit, Stand, Walk} ; i = 1, . . ., 500}
(3)

with d ∈ {Gray, Canny, Sobel, Roberts, Binary}.
Fig. 7 illustrates five RD maps per action, highlighting the

most significant differences. Each map represents a snapshot
of the action captured by the radar, where the x-axis denotes
the distance of the human target from the radar, and the y-axis
represents the speed retrieved by the Doppler FFT. A negative
speed indicates that the moving target is approaching the radar,
while a positive speed means that the target is walking away. The
numbering in the bottom-right corner of each figure corresponds
to the map position in the sequence. In the first row, the Walk
action shows a target moving forward from the radar, with an
increasing range and a speed lower than 5 km/h. The last map
(number 12) displays a vertical distribution along the speed axis,
indicating a Doppler spread caused by different ways in which
the human body joints move, resulting in different Doppler
frequencies. The Sit action in the second row shows a similar
motion to the Walk action until the subject sits on the chair,
resulting in a fixed position on the range axis in maps 5 and 15,
and different frequencies due to body movements on the chair.
On the other hand, the Stand action in the third row shows the
subject sitting on a chair in maps 1 and 2, then standing up and

TABLE III
NUMBER OF PARAMETERS OF THE THREE DNNS

starting to walk in maps 7, 10, and 15. The target approached
the radar, resulting in a negative speed and a decreasing range.
In the Fall action in the fourth row, the subject approaches the
radar by walking in maps 1, 2, and 4. Map 6 captures the falling
action, presenting a spread across both axes, most noticeable
in the Doppler one. In the last map, the subject is lying on the
mattress, resulting in a zero-Doppler frequency. The Bed-Fall
action in the last row presents a similar pattern across all maps,
with a zero Doppler frequency at a fixed range. Map 4 shows a
frequency spread on the speed axis due to the falling action.

C. DNNs Parameters

According to Fig. 5, the CNN input has dimensions
N ×M × C. In this article, we set N = M = 224 and C = 3
in case of an RGB image [i.e., Fig. 2(a)] and C = 1 for all
the other transformations [i.e., Fig. 2(b)–(f)]. As mentioned in
Section II-B, since the original RD maps (i.e.,RD in Fig. 1) have
dimension 256 × 256 × 3, all the images have been resized to
224 × 224 × 3 before applying the transformations. In the B1
block of all the models, the number of filtersF is set to 8 while, in
the further blocks, F is doubled while N and M are reduced by
50%. As a result, in the last block of CNN2 in Fig. 5 (i.e., B6 for
CNN2) the output has dimension 7 × 7 × 256. Consequently,
the output of CNN1 has dimensions 14 × 14 × 128, while the
output of CNN3 has dimensions 3 × 3 × 512. The LSTM layer
that follows the TDL layer in Fig. 4 has 128 neurons for all the
DNNs. The first dense layer has 64 neurons in all the DNNs. The
output layer has five neurons, corresponding to the five classes.
Table III presents the total number of parameters for each DNN.
DNN1 refers to the architecture of Fig. 4 using CNN1. Equally,
DNN2, and DNN3 use CNN2 and CNN3, respectively. Each of
the three DNNs is trained using the six datasets (3).

D. Training

The training procedure has been implemented offline on a
desktop PC with an Nvidia GeForce RTX 2080Ti GPU. All the
DNNs are trained with the following parameters.

1) Adam optimizer with a learning rate lrstart = 7e−5.
2) Number of epochs ep = 200.
3) Batch size bs = 10.
4) Loss function lf = categorical cross entropy.
5) Early stop on validation accuracy with patience p = 10.

The stratified K-fold technique is adopted to provide fair
results. According to the technique, a labeled dataset (popu-
lation) is split into K parts containing the same proportion of
data per class as in the population. This mechanism guarantees
that the training and test sets contain the same proportion of
data in each fold without affecting the approximation of the
generalization accuracy. Each kth part is used, in turn, as the
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Fig. 8. Quantization from FP32 to FP16.

test set. The remaining K − 1 folds compose the training set. In
our experiments, K is set to 5. In this way, each fold contains
100 data samples, 20 per class. The generalization accuracy
results presented in the next section are averaged over the five
folds. Early stop criterion is adopted: from the K − 1 folds used
during the training, a validation set using a ratio of 1/4 over
the number of training data is extracted randomly. Eventually, a
learning rate decay is adopted: during the training process, the
learning rate is reduced every 10 epochs, multiplying it by 0.9.
When the early stop criterion is satisfied (i.e., the validation
accuracy decreases continuously for p epochs), the training
procedure ends.

E. Edge Deployment

During inference, all stages (Fig. 1) are deployed on an edge
device, where the tradeoff between generalization accuracy and
the time for retrieving the action label becomes crucial. When
it comes to classifiers, it is necessary to evaluate the trade-
off between model size, latency, and accuracy. Hence, model
optimization options must be considered during the model’s
conversion for edge deployment.

TensorFlow Lite (TF-Lite) is used to deploy DL models
on mobile and edge devices, such as development boards and
microcontrollers, offering optimization options for converting
a TensorFlow model into the TF-Lite format. The adopted
optimization option is quantization, which represents the model
with lower precision [e.g., floating-point 16 (FP16) instead of the
default floating-point 32 (FP32) representation]. This reduces
the memory occupied by the model and the inference time.
In this work, two quantization options have been used: no
quantization, where the model parameters are represented as
FP32, and FP16, where the parameters are converted to FP16,
reducing the model size without affecting the inference time.
The edge device used in this research is the Raspberry Pi4,
which includes a high-performance 64-bit quad-core processor
and 4 GB of RAM. The 4 GB version of the Raspberry Pi has
been proven to be a reliable edge computing device for the
signal processing of data collected by an FMCW radar [26],
[30]. Posttraining quantization was performed on the host PC,
where the TensorFlow-trained models were saved, converting
all the weights of the network from FP32 to FP16. In the case of
no quantization, the TensorFlow model was simply converted to

TABLE IV
AVERAGE ACCURACY ON THE 5-FOLDS

TF-Lite format. Fig. 8 shows the representation of FP32 and
FP16 numbers and provides a snippet of C++ code used to
convert an FP32 number to an FP16 number according to the
IEEE754 standard. Since the Raspberry Pi4 device does not
support any operation but FP32, when the TF-Lite model is
run, the FP16 numbers are cast back to FP32. Once the models
are converted, they are deployed on the Raspberry device. With
Python code, it is possible to load the sequence of RD maps,
transform the original data (if necessary), and predict the label
by running the TF-Lite model. In a real-time application, data
are acquired from the radar by the Raspberry Pi4 using the script
for data collection, and then the Python script is run to predict
human action.

IV. RESULTS AND DISCUSSION

When introducing edge AI systems, it is crucial to assess
two complementary aspects, i.e., the classification accuracy and
the efficiency (e.g., inference time, power consumption, energy
precision ratio, etc.).

A. Classification Accuracy

In this section, the results in terms of accuracy are presented.
At first, the accuracy of the multiclass classification problem
is assessed. Second, some performance metrics are evaluated
in a binary classification problem. In this case, the classes Fall
and Bed-Fall are considered fall actions (i.e., harmful), and the
other classes are considered nonfall actions. The performance is
computed on the multiclass classification results, by grouping
the predicted labels into harmful and nonharmful classes.

Multiclass Classification
Table IV shows the average accuracy on the test set computed

over the K folds for each of the three DNNs. The first column
indicates the datasets and the other three columns report the
average accuracy with their standard deviation. The accuracies,
computed on the test sets, are averaged over the five folds. The
best accuracy for each DNN is emboldened. Concerning DNN1,
which contains the lowest number of parameters according to Ta-
ble III,DCanny presents the highest accuracy. For both DNN2 and
DNN3, the best accuracies are achieved on theDGray dataset. The
overall best accuracy (i.e., 93.2%), is obtained by DNN3 which
contains the largest number of parameters (Table III), therefore
the highest memory occupation and power consumption on an
edge device.

Fig. 9 shows the confusion matrixes for the best DNNs,
emboldened in Table IV, i.e., DNN1 trained with DCanny, DNN2
and DNN3 trained with DGray. The predicted labels of the five
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Fig. 9. Confusion matrixes of the three best models computed over the five folds. (a) DNN1 trained on DCanny. (b) DNN2 trained on DGray.
(c) DNN3 trained on DGray.

TABLE V
METRICS COMPUTED ON BINARY CLASSIFICATION

folds have been merged, resulting in a hundred test samples
for each class. The most reliable DNN for detecting falls, which
coincides with the classes named Fall and Bed-Fall, as described
in Section III-B, is DNN3. DNN2 shows a lower accuracy in
detecting the Fall class. As one can notice from the first row
in DNN3, the miss-classified samples are mostly classified as
Sit. This is possibly due to the similarity between Fall and Sit
actions.

Binary Classification
The following notation is used: True positives (TP) are fall ac-

tions correctly classified, false positives (FP) are nonfall actions
incorrectly classified as Fall, true negatives (TN) are nonfall
actions correctly classified, false negatives (FN) are fall actions
incorrectly classified as NonFall. The following metrics are then
adopted:

1) Precision (PR), PR = TP
TP+FP , indicates how many pre-

dicted positive labels are positive.
2) Recall or sensitivity (SE), SE = TP

TP+FN , indicates how
much a model is accurate to predict the positive class.

3) Specificity (SP), SP = TN
TN+FP , indicates how much a

model is accurate to predict the negative class.
4) False positive rate (FPR), FPR = FP

FP+TN = 1 − SP.
5) False negative rate (FNR), FNR = FN

FN+TP = 1 − SE.
6) F-score, F = 2 × PR*SE

PR+SE , balances between PR and SE.
The results presented in Table V prove that the proposed

system is capable of distinguishing harmful from nonharmful
actions. In particular, the FNR, which represents the percentage
of harmful actions that do not activate the alarm since they are
classified as nonharmful, is low, especially in DNN3. In general,
DNN3 presents the best performance for all the metrics with
respect to DNN1 and DNN2.

To further investigate the performance of the three best DNNs
(in terms of accuracy) the receiver operating curves (ROC) and
the area under curves (AUC) are computed on each fold. The
ROC curve plots the true positive rate (TPR) against the false
positive rate (FPR), varying the threshold for the score (i.e., the
probability) based on which the output neurons assign the label.

The AUC represents the area under the ROC curve and represents
the degree of separability between classes. The AUC can be
considered as an indicator of the performance of a classifier:
the higher the value the higher the prediction accuracy. Fig. 10
reports the ROC and the AUC for the three best DNNs. Each
plot presents seven lines: five colored lines refer to the ROC in
each fold, the blue dotted line represents the average ROC curve,
and the black dashed line corresponds to the baseline classifier,
where FPR is equal to TPR. The plot legends report the AUC
values corresponding to each fold and the average.

DNN3 presents the highest average AUC value. In general,
DNN3 trained on DGray is a reliable model for detecting fall
actions, achieving the highest accuracy in the multiclass clas-
sification problem, the lowest false negative rate in the binary
classification problem, and the highest AUC value. Also, DNN2
could be a valuable option: despite it presenting slightly lower
generalization performance with respect to DNN3, it contains
less than one-third of the parameters than DNN3 (Table III).
Thus, it is expected that, when deploying the models on the edge
device, the computational cost of DNN2 is lower than the DNN3
one. In fact, during the deployment not only the generalization
performance is important but also the computational cost. In
this article, the computational cost is measured keeping into
consideration all the stages of data elaboration (Fig. 1).

B. Edge System Assessment

The computational cost is evaluated as the inference time,
power consumption, size of the model, and energy-precision
ratio. Power consumption is estimated using a USB multimeter
that is attached to the power supply of the edge device while
running the inference. The energy-precision ratio (EPR) can be
computed as EPR = Error × EPI, where Error represents the
classification error and EPI is the energy consumption per classi-
fied data item (Energy Per Item). According to Section III-E, two
TF-Lite optimization methods are applied during the conversion
of the three best DNNs in TF-Lite models. These classifiers and
the previous stages are deployed on the Raspberry Pi4.

Table VI shows the computational cost and the classification
accuracy of the quantized DNNs. All the results are averaged on
the 500 test data used to evaluate the classification performance
in the previous section. The first column depicts the models, the
second column reports the quantization applied to each model
for the deployment, and from the third to the last column, the
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Fig. 10. ROC and AUC computed over the folds of the best performing models. (a) DNN1 trained on DCanny. (b) DNN2 trained on DGray.
(c) DNN3 trained on DGray.

TABLE VI
SYSTEM ASSESSMENT ON RASPBERRY PI4

table shows the five metrics averaged on 100 test samples over
the five folds.

As expected, the first model (i.e., DNN1) has the lowest
inference time and energy consumption, because of the lowest
number of parameters that affect the model size. Straightfor-
wardly, DNN3 presents the highest inference time and energy
consumption. As can be noticed, the quantization to FP16 in
DNN1 and DNN2 slightly improves the classification accuracy
because it can act as a filter removing bits related to noise.
The best tradeoff between generalization accuracy and inference
time is achieved by DNN2, following EPR column of the table.
The inference time of all the stages, with DNN2 as a classifier,
is 2.4 s, thus guaranteeing the generation of an alarm in less than
6 s also considering 3 s for data acquisition.

C. Model Interpretability

Model interpretability is a crucial aspect in the analysis of
DL models, especially in safety-critical applications where the
prediction’s correctness is fundamental. In this work, we employ
GradCam++ to visualize the input regions that have the most
significant impact on the network’s decision. Figs. 11 and 12
show the results of GradCam++ [31] computed on the fea-
ture maps extracted from an average pooling layer in DNN3,
specifically after the last residual block. GradCam++ produces
heatmaps that highlight the parts of the input image that are
most important in explaining the predicted class. In Fig. 11, the
first row displays four RD maps of an input sequence consisting
of 15 maps, where a fall action occurred correctly classified by
the network. Maps 6 and 7 in the first row capture the falls,
while map 1 refers to walking and map 10 to lying on the
mattress after the fall. The second row shows the corresponding
GradCam++ heatmap, highlighting the most relevant parts of the
feature maps, which coincide with the most salient parts of the

Fig. 11. Fall action correctly classified.

Fig. 12. Fall action classified as Sit.

input. The third row depicts the pointwise multiplication of the
GradCam++ heatmap with the input, clearly showing the regions
of the input image that contributed the most to the classification.
Similarly, in Fig. 12, the first row displays four RD maps of
an input sequence consisting of 15 maps, where a fall action
occurred, specifically maps 10 and 11. However, this sequence
was misclassified as sitting by DNN3. The second and third rows
show the corresponding GradCam++ heatmap and pointwise
multiplication, respectively. The heatmaps look more spread,
especially in map 11, with respect to the former example because
of the higher level of noise that affected the measurements. Thus,
even though GradCam++ seems to highlight salient regions of
the input, probably the noise collected by the radar influences
the eventual decision of the classifier.
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Fig. 13. Confusion matrixes of DNN2 and DNN3 computed on the new dataset with no transformation and in grayscale. (a) DNN2 tested on TOrig.
(b) DNN2 tested on TGray. (c) DNN3 tested on TOrig. (d) DNN3 tested on TGray.

TABLE VII
COMPARISON WITH ADVANCED IMAGE RECOGNITION MODELS ON

FIVE-CLASS CLASSIFICATION

TABLE VIII
COMPARISON OF METRICS WITH ADVANCED IMAGE RECOGNITION MODELS

ON BINARY CLASSIFICATION

D. Comparison With Advanced Image Recognition
Models

Table VII presents a comparison of achieved results with state-
of-the-art (SoA) algorithms for image recognition that utilize
pretrained CNNs on the Imagenet dataset. Specifically, we con-
sidered MobileNetV2 (MNV2) [32], Xception (Xcep) [33], and
ResNet50V2 (RN50V2) [34], all of which were encapsulated
in the TDL layer (Fig. 4). We trained these deep architectures
using two strategies: first, we adopted the transfer learning
paradigm and only tuned the LSTM and dense layers while
keeping the CNNs frozen; second, we unfroze the last layers
of the CNNs and fine-tuned them together with the LSTM and
dense layers. Table VII displays the total and trainable number
of parameters, as well as the average accuracy on the five classes
using the five-cross fold validation technique. The subscript
“FT ” denotes CNNs that were partially tuned by unfreezing
the last layers. We used dataset DOrig to train all networks since
the RD maps were represented with three mandatory channels
for these three pretrained CNNs. The results indicate that the
DNN2 and DNN3 models achieve higher accuracy compared

TABLE IX
COMPARISON ON RASPBERRY PI4 WITH IMAGE RECOGNITION MODELS

TABLE X
GENERALIZATION PERFORMANCE IN ANOTHER ENVIRONMENT

to all other networks, despite having a lower number of pa-
rameters. It is noteworthy that the partially fine-tuned models
exhibit higher accuracy compared to their corresponding frozen
models.

Table VIII presents a comparison of the metrics computed
for the three deep networks based on image recognition models
and the proposed approach. Only the partially fine-tuned models
were included in the analysis, as they achieved better accuracy
in the five-class classification problem. Once again, DNN2 and
DNN3 exhibit superior performance across all the metrics.

Table IX shows the assessment of the three deep networks
and the proposed models on the Raspberry Pi. We report only
the results obtained with the FP16 quantization, as we have pre-
viously demonstrated that quantization has no significant impact
on classification accuracy. The MobileNetV2-based network
presents a lower inference time compared to our models, owing
to the use of depthwise convolutions, leading to a lower energy
consumption per predicted datum. However, our models offer
a lower EPR as they achieve an accuracy improvement of over
6% compared to the MobileNetV2-based network.

E. Generalization Performance Assessment

A dataset comprising 100 samples (20 per class) was
collected from a private house kitchen and bedroom, to evaluate
the generalization performance of DNN2 and DNN3 on two
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TABLE XI
COMPARING THE PROPOSED SYSTEM WITH RADAR-BASED HUMAN ACTION RECOGNITION AND FALL DETECTION IN SOA

different subjects aged 26 and 32 years old. Based on the
previous results, the networks were tested on the dataset
using no transformation and grayscale. The datasets can
be represented as Td = {(X , y)i;Xi ∈ N224×224×1×15; yi ∈
{Fall, Bed-Fall, Sit, Stand, Walk}; i = 1, . . ., 100} with d ∈
{Orig, Gray}. Table X summarizes the performance of the clas-
sification of the two networks on Td. The first six columns show
the metrics computed in the binary classification, while the last

column presents the accuracy achieved in the five-class problem.
The results indicate that both DNN2 and DNN3 have good gen-
eralization performance on Td with both transformations, with
DNN3 achieving higher accuracy in both the binary and five-
class classification. In particular, DNN3 tested on TGray achieves
a 0% of false negatives recognizing all the fall actions and having
a low rate of false positives. Fig. 13 visualizes the confusion
matrixes.
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TABLE XII
COMPARING RADAR WITH WEARABLE AND CAMERA-BASED SYSTEMS

F. Comparison With Radar-Based Works

Table XI presents a comparison of the proposed system with
the most relevant SoA systems in radar-based human action
classification using ML. The table provides detailed informa-
tion on the number of actions classified, the type of input
processed by each model, the acquisition time for each data
point, the classification model, the strengths and weaknesses of
each approach, and the inference time if available. The last row
of the table presents the proposal and includes an analysis of
the two most accurate models, DNN2 and DNN3, which were
trained using DGray. All of the works achieved high accuracy in
radar-based human action recognition, but some did not specif-
ically focus on fall detection, such as [35], [36], [37], [38], and
[39]. Several studies have focused on binary classification for
fall detection among common daily activities, such as walking,
sitting, standing, and other nonfalling actions [16], [18], [22],
[40]. Most of the works used raw data or computed spectrograms
to train the classifiers, while only one [41] collected sequences
of RD maps to continuously monitor human actions. Only two
works addressed the implementation of classifiers on embedded
devices, namely, [35] and [40]. Although the authors designed
tiny models with a very low inference time on the edge, they did
not deploy the data preprocessing stages on the edge which were
performed offline, e.g., blocks 2-D FFT, image transformation,
and image sequence collection in Fig. 1. To the best of our
knowledge, this is the first work on radar-based human action
recognition with fall detection in which the entire pipeline has
been deployed on the edge.

G. Comparison With Wearable and Cameras-Based
Systems

In the SoA, many works addressed human action recognition
and fall detection with a multitude of sensors, such as wearables,
cameras, and radars. A recent review can be found in [45].
Table XII summarizes most of the highly cited research on the
topic. Each sensor category has its own strengths and weak-
nesses, which are highlighted in the table. Overall, the studies
achieve high levels of accuracy, comparable to those obtained
with radar-based approaches (see Table XI). The choice of

which type of sensor to use depends on the specific application.
Wearable-based systems are ideal when users can consistently
wear the sensors, as they can monitor people at all times, are
relatively low-cost, may require less complex processing, and
guarantee privacy. Conversely, when wearable sensors are not
an option, radars or cameras can be chosen instead. Radars guar-
antee privacy, can monitor people in cluttered environments, and
are not affected by changes in lighting conditions. Camera-based
systems are more accurate at detecting multiple people in the
same room, but they do not guarantee privacy, and clutter can
interfere with monitoring.

V. CONCLUSION

This article presents an on-the-edge radar-based human action
recognition system using DL. The system uses sequences of
range-Doppler maps extracted from a low-cost FMCW radar. A
time-distributed layer processes the sequence of range-Doppler
maps. The results showed that the model with the highest number
of parameters (i.e., DNN3) achieves the best accuracy (93.2%) in
the five-class classification using grayscale data transformation.
Moreover, the same model distinguished harmful from non-
harmful actions with an accuracy of 96.8% and a false-negative
rate of 4%. Using a radar that has higher performance
would certainly help reduce the classification error and the false
negative rate. The proposed system was deployed on a Raspberry
Pi4. The results showed that the system that uses DNN2 achieves
the best tradeoff, with a slight drop in accuracy, i.e., lower
than 1%, with respect to DNN3 and an inference time lower
than 2.5 s.

In future works, we will tackle the multitarget classification
problem by using radars that can overcome the limitations of
range and speed resolution. To address this scenario, we will also
explore techniques for separating targets and subsequently clas-
sifying their actions. In addition, we will focus on implementing
a continuous monitoring system to reduce the acquisition and
classification time, and we will test the system on a sample
of the elderly. Finally, we will leverage semisupervised and
unsupervised techniques with the aim of detecting a broader
variety of human actions.
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