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1. INTRODUCTION 

1.1. Feedback loops and multistability in living systems 

 Starting from the work of Von Bertalanffy [1] it has been understood that many systems of living 

beings behave as control systems, and that the feedback mechanisms described in physiological 

processes are inherent to this kind of functional organization [2]. As the importance of feedback 

loops increased in biological studies, concepts used in engineering were applied to explain some 

functional aspects of living systems [3]. The collaboration between physiologists and engineers was 

fundamental to analyze biological processes at the metabolic, cardiovascular, and respiratory levels 

[4, 5], as well as in regulatory systems involved in thermoregulation, water exchange control, 

endocrine regulation, and pupillary reactions [6-8]. By this new approach, living beings, and 

specifically the human body, were assimilated to a machine made up of processes finely regulated 

by specific dynamics that prevent the reaching of catastrophic levels of activity in the system [9]. 

Feedback loops are characterized by three main properties: homeostasis, amplification, and 

switching. Homeostasis is guaranteed by negative feedback loops, known to maintain physiological 

homeostatic processes by reporting the different cellular functions to baseline levels after 

perturbations [10]. By contrast, the ability of a system to generate multiple internal states in 

response to external inputs is the fundamental requirement of a functional switch. Hence, though 

the knowledge about feedback mechanisms was initially focused on negative loops providing 

homeostasis, the increasing discovery of positive loops led to the ‘Demand theory’ based on the 

idea that high demand cell functions are under the influence of positive regulatory elements, 

whereas those in low demand are under the influence of negative ones [11, 12]. Both positive and 

negative feedback loops admit stability, but positive feedback loops are the only one who possess 

the ability of generating multistability. In prokaryotes many bistable behaviors have been identified. 

These include lactose use by Escherichia coli [13], bacterial cell competence [14], sporulation [15], 

phenotype differentiation [16], kinase activation [17], and metabolic responses to environmental 

stimuli [18]. In eukaryotes, positive feedback loops are at the basis of the dynamic regulation of 

aminoacid [9], and pyrimidine biosynthesis [19], gene transcription [20], and the activities of protein 

kinases [21, 22], membrane transporters [23], cell signaling [24], gene activation [25], cell cycle 

transitions [26], and cell fate decision [27]. 
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1.2. The Loopomics hypothesis and its consequences in pathophysiology 

 Based on the spreading knowledge about feedback loops as regulator mechanisms of living 

beings, a new hypothesis has been formulated, named ‘Loopomics’ [28]. This hypothesis could have 

deep implications in biomedical research, where many physiological processes remain puzzling, and 

consequently, many diseases remain obscure for what concerns etiology, thus hindering the 

possibilities of finding efficient treatments.  

 Living beings appear characterized by a high complexity and biodiversity. These features are 

serious obstacles for the advancement of knowledge in life science. Biomedical investigations need 

theoretical models and a new redefinition of pathophysiological processes, i.e. transitions from 

physiological to pathological conditions. The Loopomic hypothesis makes a generalization with the 

aim of proposing a more suitable approach to the study of physiological dynamics. The hypothesis 

starts from the assumption that any functional element of a biological system is influenced by at 

least one functional element upstream, and influences at least one functional element downstream, 

which entails that each functional element is involved in a closed chain of interactions, namely a 

feedback loop [28]. By considering the sign of the interaction, i.e. activatory or inhibitory, two kinds 

of loops can be distinguished, viz. negative loops, having an odd number of negative interactions, 

and positive loops, having no negative interactions or an even number of them. Negative feedback 

loops are known to maintain homeostasis, or to generate oscillations, depending on a short or long 

delay, respectively, of the response ensued by the interaction. In contrast, positive feedback loops 

can give rise to multistationary systems, acting as switches that give rise to changes or transitions, 

frequently permanent and irreversible [29].  

 It has been estimated that the human body consists of about 3.7·1013 cells and that each cell 

carries out about 1010 chemical reactions per second, making up a total of about 1023 chemical 

reactions per second in the whole body [30]. Despite such a huge number of processes, our body 

can maintain a metabolic steady state, and this is possible only if we assume that metabolic 

processes are strictly cross adjusted and regulated [28, 31]. This suggests that reciprocal control is 

a prerequisite of life processes and that biological control mechanisms must be analyzed accurately 

to understand the dynamics of life processes. Systems and Control Theory has been developed 

mostly in the engineering field to provide general principles for the analysis of dynamic systems 

consisting of negative or positive feedback loops [29]. However, the advent of Systems Biology has 

brought back these arguments to the analysis of living beings, by focusing on the interactions among 
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the functional elements of these systems, rather than on the myriad of objects that make up their 

biodiversity [32, 33].  

 The shift from the analysis of life objects to the analysis of life processes is an essential step for 

achieving the possibility of formulating general, unifying paradigms about physiological and 

pathological processes. A huge amount of data highlights the essential role of loops in living beings 

[31], supporting the idea that loop systems characterize the activity of all the functions of a 

biological system. According to this hypothesis, a living being can be conceptualized essentially as 

an interconnected array of loops. The classical objects of biological studies, namely macromolecule 

arrays, cells and intracellular organelles, tissues, organs, and individual living beings, are then 

considered epiphenomena emerging from the activity of loops [28]. The balance between positive 

and negative loops enables the integrity and development of living beings, including their most 

distinctive feature, namely reproduction. Hence, living beings need the spatiotemporal continuity 

of their constituents, but also the ability of carrying out changes, which are made possible by 

positive loops acting as multistable systems undergoing transitions between different equilibrium 

points [34].  

 As said above, several life processes have been modeled as positive feedback loops, including 

gene expression [35], cell cycle [36-38], cell division [39], cell migration [40], cell differentiation [41], 

and axon growth [42, 43]. Moreover, diseases can also be thought as changes occurring within the 

body, and therefore, at the basis of each disease there must be at least one multistable positive 

feedback loop that generates a transition toward an equilibrium point representing a pathological 

condition [44]. Accordingly, many diseases have been modeled as bistable switches, including 

cancer [45, 46], prion infections [47], immunological disorders [48], dermatitis [49], neurological 

problems [50],  neurodegenerative diseases [51-53], and microbial infections [48].  

 Up till now, the modeling of pathogenic processes as loop systems has been applied on a case-

by-case basis, without any attempt to build a general theory. However, the possibility of defining a 

general paradigm can be envisaged. First, diseases can be seen as changes occurring inside the body. 

Even genetic diseases can have an incubation period before producing detectable symptoms, thus 

showing that a certain threshold or turning point must be reached, which can be seen as a crucial 

change or transition. Second, despite various drawbacks and difficulties, diseases are classifiable 

(see e.g. https://www.who.int/standards/classifications/classification-of-diseases), showing that 

they constitute an ordered system. Consequently, biological changes giving rise to specific diseases 

must follow predictable pathways. Third, diseases are recurrent over time, continuing to appear 

https://www.who.int/standards/classifications/classification-of-diseases
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identical through generations, thus proving that pathophysiological transitions are the result of 

clonable metabolic pathways that have been fixed by natural selection. Stability is an essential 

prerequisite for the possibility that a biological element be selected. Hence, given that the starting 

point of a pathophysiological process can be considered a stable functional condition, and that also 

its ending point displays the same property, it is possible to conclude that the process giving rise to 

a pathological condition must depend on the activity of a multistable system.  

 Systems admitting different stable equilibrium points generate predictable changes, and so, the 

modeling of their dynamics appears to be the correct approach in order to study pathophysiological 

processes. Diseases could then be considered as the result of predictable dynamical transitions in 

multistationary loop systems, and this idea provides a possible unifying model that could be 

extremely powerful for the understanding of pathophysiological processes leading to the 

identification of critical therapeutic targets [28]. The reason for the suitability of loop systems in the 

analysis of therapeutic targets resides in the possibility of identifying bifurcation parameters, i.e. 

the factors that modulate the strengths of interactions and ultimately the system dynamics. 

Changes in the activity or amount of biological elements acting as bifurcation parameters can induce 

the system to transient from a monostable to a bistable (or multistable) condition, thus posing the 

basis for jumping from one to another equilibrium point upon the insurgence of specific external 

stimuli [54]. Hence, bifurcation parameters are the key elements that govern the dynamics of the 

system, and therefore, they are the ideal targets of pharmacological and non-pharmacological 

strategies. The targeting of the biological components that act as bifurcation parameters of the loop 

system is expected to allow the control of biological processes leading to diseases. Ideally, this 

would make it possible to prevent, reduce, or revert the disease development. The identification of 

bifurcation parameters is possible through the mathematical analysis of the loop system, while the 

physical correspondents of these elements can be single functional agents or pathways. 

 

1.3. Loopomic model of a pathophysiological process 

 The dynamical interaction between the functional agents involved in a pathophysiological 

process can be described mathematically by a system of differential equations yielding the rate of 

change of the functional agents involved. As a schematic example, a positive feedback loop can be 

represented by two functional agents, indicated by X and Y (Figure 1). Each functional agent evolves 

along time with time constant τ, and undergoes spontaneous inactivation. The elements considered 
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in the system may represent enzymes, signal molecules, cellular activities, or the number of cells. 

The schematic form of the system of differential equations is the following: 

τ𝑋𝑋̇ + 𝜃𝑋𝑋 = 𝑓(𝑌)                   (1) 

τ𝑌𝑌̇ + 𝜃𝑌𝑌 = 𝑓(𝑋)                     (2)   

Where 𝑋̇ and 𝑌̇ are the time derivative of 𝑋 and 𝑌, respectively,  is a coefficient representing the 

weight of the spontaneous inactivation element and τ is the time constant measuring the delay 

between the input received by the variable and the output produced by it. Different functions could 

appear in the differential equations. The most used function to model the input/output 

relationships between biological entities is the Hill function [46, 55]: 

𝑓(𝑥) =
α𝑥ℎ

1 + β𝑥ℎ
                    (3). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Top: Diagram of a loop system consisting of two mutually interacting agents represented by 

variables X and Y. Bottom: Bifurcation diagram showing the equilibrium values of X for different values of the 

bifurcation parameter b. A corresponding plot can be derived for Y. Continuous lines in the main plot 

represent stable equilibrium points while the dashed line represents unstable equilibrium points. Transition 

from monostability (one stable equilibrium point) to bistability (two stable equilibrium points and an 
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intermediate unstable equilibrium point) occurs at bifurcation points 𝑏̂1 and 𝑏̂2. Increasing values of b make 

the system jump from physiological to pathological steady state at 𝑏̂2. In addition, the system displays 

hysteresis, since after transition from physiological to pathological condition at 𝑏̂2, the reverse transition 

requires that b decreases down to 𝑏̂1. The insets of the bottom plots show phase portraits with the 

trajectories of the system and the basins of attraction of stable equilibrium points (full dots). Empty dot: 

unstable equilibrium point.  

 

1.4. Application of the loopomic approach to disease management 

 According to the loopomic hypothesis, each disease should have a pathophysiological starting 

point that could be analyzed through the following steps: 

- localization of the body region of disease onset; 

- identification of the essential biological factors involved in the disease insurgence; 

- detection of the positive loop responsible for the pathophysiological transition; 

- development of a mathematical model of the loop, in order to find out the bifurcation 

parameter(s) of the system; 

- in vitro/in vivo validation of the loopomic model of the disease and of the role of 

bifurcation factors. 

 Once the above steps have been successfully completed, the way is open to the development of 

precisely targeted therapeutic tools, followed by clinical trials. By following this procedure, the field 

of drug discovery would become completely renovated in its analytical approach. Current methods 

are based on large latin-square arrangements, involving the intersection of series of possible 

therapeutic molecules with series of hypothetical targets. The loopomic analysis of diseases would 

be more keenly oriented since the starting phases, leading to the identification of distinct 

biomolecular targets for the development of drug prototypes. 

 Possible drawbacks of this method could reside in the vast number of biological interactions 

possibly involved in a certain pathogenic process. However, theorems of the Systems and Control 

Theory hold that it is possible to simplify metabolic pathways by aggregating various elements 

within input/output monotone subsystems, thus allowing to combine different chain elements into 

a single element [56]. In addition, it has been shown that, if monotonicity is satisfied, conditions for 

bistability can be mathematically assessed in feedback loop systems of arbitrary order, thus allowing 

the analysis of systems having a complex topology, i.e. with numerous branches and different loops 

combined together [57]. Besides helping to solve pathological conditions, the loopomic approach 

could also be relevant in preventive healthcare. The understanding of the dynamics of multistable 
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systems could allow to predict the critical state in proximity to a bifurcation point, thus manipulating 

the biological factors involved in the loop dynamics to drive the system back to its physiological 

stable equilibrium [58, 59]. 
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2. AIMS OF THE STUDY 

 The aim of this PhD has been the formulation of theoretical models of pathogenesis for diseases 

of the Central Nervous System (CNS) having unclear etiology and lacking a resolutive cure. The 

development of these models has been inspired by the Loopomics theory, i.e. by trying to detect 

feedback loop systems with multistable dynamics able to drive a transition from a physiological to 

a pathological condition.  

 The activity has been divided into two steps: 

- formulation of theoretical models of pathophysiological processes; 

- development of in vitro models of brain networks allowing to characterize the essential 

elements of their electrophysiological activity. 

 The first step has allowed to realize pathogenesis models based on brain networks arranged to 

form loop systems. This part of the activity has been developed as follows: 

- identification of brain or endocrine systems forming positive feedback loops, putatively 

involved in the pathophysiological processes leading to the insurgence of the disease; 

- development of mathematical models of these loop system allowing to study their 

dynamics under different conditions; 

- identification of bifurcation parameters and of their corresponding biological elements; 

- validation of the model by using real data; 

- identification of possible treatments targeting the critical elements of the system.  

 The dynamics of brain networks are represented by the activities of neuron populations 

expressed as mean firing rates. This is a schematic representation of the activity of neural networks 

in the absence of more refined data. However, a detailed description of neural network activity 

could allow to develop models allowing a higher degree of prediction of the system behavior. To 

this aim, we have developed a second step of research activity as follows: 

- development of in vitro neural networks using cell cultures of primary neurons; 

- development of experimental systems for the electrophysiological recording of the 

network activity by using Micro-Electrode Arrays (MEA); 

- development of multi-network assemblies on MEA by subdividing the cultured neurons 

different interconnected clusters using removable plastic masks; 

- analysis of multi-channel recordings for the identification of functional features 

representing the essential elements of spontaneous neural network activity. 
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 The use of multiple, interconnected neuron clusters has allowed to record the 

electrophysiological pattern of each neural network as consisting of two components:  

- the spontaneous activity of a neuron cluster (single neural network);  

- the modulation of such activity by the inputs deriving from the other neuron clusters. 

 Hence, this experimental system represents a suitable model for the in vivo characterization of 

brain neural networks. 
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3. PATHOGENESIS MODEL OF FIBROMYALGIA AND FIRST ASSESSMENT WITH QUESTIONNAIRE 

DATA 

3.1. FM pathogenesis model: Background 

 Fibromyalgia (FM) is an idiopathic syndrome characterized by chronic, widespread pain and 

tender points [60, 61]. Non-pain symptoms are also present, including sleep problems, fatigue, and 

a series of comorbidities. FM has been now fully recognized as a central problem and classified 

among the group of syndromes collectively named “central sensitivity syndromes” (CSS) [62, 63]. It 

also belongs to a group of idiopathic pain disorders named Chronic Widespread Pain, whose 

classification and diagnosis are challenging [64]. FM prevalence is about 2-5% in the adult population 

worldwide. Women are more affected than men with a reportedly variable male to female ratio 

overall rating around 1:3 [65]. The marked female-biased sex ratio and perimenopause prevalence 

suggest a possible gonadal involvement that should be better investigated [66]. The mean age of 

onset is between 30 and 50 years of age [67].  

 FM diagnosis is especially difficult because of the lack of biomarkers, and the presence of 

secondary symptoms overlapping with other disorders. Several comorbidities of FM have also 

female prevalence, such as depression [68], migraine [69], and central vestibular disorders [70]. The 

occurrence of vestibular symptoms in FM patients, such as vertigo and dizziness [71-74], suggests 

that FM is a multi-sensory syndrome, or a dysfunction in sensory integration [75]. The American 

College of Rheumatology (ACR) and the American Pain Society have repeatedly updated diagnostic 

criteria in the past years [76, 77], by re-setting threshold values for a series of parameters (number 

and position of tender points, symptom duration, widespread pain index, symptom severity scale). 

Basically, FM diagnosis is usually given to individuals experiencing chronic widespread 

musculoskeletal pain that could not be associated to specific damage or inflammatory status [61, 

78]. 

 The management of FM patients is very difficult not only for the problematic diagnosis, but also 

for the lack of effective treatments [79]. The complex of clinical problems that characterize FM are 

doubtless linked to the disappointing absence of knowledge about the etiology of the disorder. 

Many hypotheses have been postulated on the pathophysiological processes at the basis of FM, but 

none of these has led to substantial clinical improvements [80].  

 The most important new paradigm about pathogenesis has been the revision of the initial site of 

FM onset, from peripheral musculoskeletal tissue to the central nervous system. Thanks to 

innovation in pain management, new genetic tests, experimental pain testing, and functional 
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neuroimaging, FM is now considered as a central disorder characterized by pain processing 

alteration [81]. Pain processing abnormalities result in chronic widespread pain generated from 

non-painful or mildly painful stimuli. Hyperalgesia, i.e. hypersensitivity in pain processing, and 

allodynia, i.e. pain processing of physiologically non-painful stimuli, are the main features of the 

central sensitization process [82]. These alterations are currently unsolved by canonical treatments, 

and therefore, FM patients are left without effective therapies resulting in poor wellbeing [83]. 

Therapeutic options are focused on improving symptoms, such as pain, quality of sleep, and physical 

functions [84]. 

 The lack of decisive treatments emphasizes the need for advancements in knowledge about the 

insurgence and development of the condition [85, 86]. The hypotheses that have been advanced 

over the years about FM pathogenesis fail to provide a comprehensive explanation of the complex 

of features that characterize the disorder. The ones more closely related with the hypothesis of a 

central problem concern imbalances of neurotransmitters such as norepinephrine, serotonin, 

glutamate, and substance P, or an abnormal functioning of the hypothalamic-pituitary adrenal axis 

[80]. Conversely, the idea of our work was to develop a hypothesis able to unify epidemiological, 

neuroimaging, and neurophysiological features of FM, thus providing a unifying paradigm. To do 

this, we underwent an analysis based on the principles of Systems and Control Theory [29], 

considering different data about FM [87], and the interplay among endocrine axes and 

neurotransmission [82, 88, 89]. To this aim, we focused on fundamental FM aspects, summarized 

as follows: 

- the consolidated idea of FM as a central disorder [90], suggesting that the dysregulation of 

some spinal and/or supraspinal network involving pain processing must be involved; 

- the significant female prevalence affecting FM patients, with a worldwide average 

female:male ratio of 3:1 and local prevalence of about 10:1 [90, 91], suggesting that the 

hypothalamus-pituitary-gonadal endocrine axis (HPG) must have a relevant role; 

- the evidence that FM is a stress-related disorder [92], suggesting that the HPA axis could be 

involved in the mechanism of pathogenesis. 

 In support of this latter hypothesis, hypothalamus–pituitary–adrenocortical (HPA) dysfunction 

has been observed in FM patients [93, 94], while there is also strong evidence that physical and 

psychological stressful events, including early life traumatic experience, are FM predisposing factors 

[95, 96]. 
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3.2. FM pathogenesis model: Methods 

3.2.1. Feedback loop model of FM pathogenesis 

3.2.1.1. Literature search for brain and endocrine loops involved in FM pathogenesis 

 We did an online literature search on the Pubmed database (https://pubmed.ncbi.nlm.nih.gov/), 

concerning pain processing, loop-arranged brain networks putatively involved in FM pathogenesis, 

and endocrine feedback loops putatively involved in the modulation of the above brain networks. 

Different search activities were performed considering a series of key words including “pain 

processing” and the names of the brain regions involved in the pain matrix network. In addition, we 

used the combination of “pain” and “fibromyalgia” terms with other terms such as “GABA”, 

“glutamate”, “glucocorticoids”, “gonadal hormones”, “androgens”, “estrogens”, “HPA axis”, and 

“HPG axis”. The search was conducted from the database inception to the end of 2020 for brain 

networks, and to the end of 2022 for endocrine feedback loops. 

 

3.2.1.2 Development of a mathematical model based on Systems and Control Theory 

3.2.1.2.1 Thalamocortical loop system involved in pain processing 

 Based on the above literature search, a feedback loop thalamocortical brain network was 

identified as being possibly responsible of FM pain. The dynamics of this network are described by 

a mathematical model representing functional interactions among the specific agents involved in 

the system:  

- somatosensory cortex (SC); 

- thalamic reticular nucleus (TRN);  

- thalamic ventroposterolateral nucleus (VPL) (Figure 2).  

 Differential equations were used to model both inhibitory and excitatory interactions, to 

represent the evolution of the activities of the different regions. These interactions were described 

by using specific Hill-type functions, which are commonly used to describe the input-output 

relationships among different neural population and intracellular signaling networks [46, 97]. Hill 

functions can model both increasing activation functions, denoted by f(x), and decreasing inhibition 

functions, denoted by g(x): 

𝑓(𝑥) =
𝛼𝑥ℎ

𝛽ℎ + 𝑥ℎ
                   (4)    

 𝑔(𝑥) =
𝛾

𝛿ℎ + 𝑥ℎ
               (5) 

https://pubmed.ncbi.nlm.nih.gov/
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where ℎ is the Hill coefficient, while , , , and , are positive real parameters.  

 In our model, each functional agent 𝑥 evolves along time with time constant , undergoing a 

spontaneous decreasing of its activity. So, the time derivative of 𝑥, denoted by 𝑥̇, measures the time 

evolution of the activity of the element. A system of differential equations was therefore built to 

describe the dynamics of the specific agents involved. First, the glutamatergic excitatory connection 

exerted by VPL on SC was modeled by an increasing Hill Function [55, 98, 99], 

𝜏𝑆̇ + 𝜃𝑆 = 𝑚1

𝑏𝑉ℎ

𝑒ℎ + 𝑏𝑉ℎ
                    (6)  

where S and V represent the mean firing rates of SC and VPL, respectively, the parameter e is the 

input firing rate obtaining half-maximal output firing rate, ℎ is the Hill coefficient, the parameter m1 

is the maximal output firing rate of SC,  is a coefficient measuring the weight of the spontaneous 

inactivation element, and 𝑏 is a coefficient measuring the strength of glutamatergic transmission 

and varying in the interval [0,1].  

 Second, the combination of the excitatory glutamatergic outputs arising from VPL and SC and 

acting on TRN were described by the following equation: 

𝜏𝑇̇ + 𝜃𝑇 = 𝑚2

(𝑏𝑉 + 𝑏𝑆)ℎ

𝑒ℎ + (𝑏𝑉 + 𝑏𝑆)ℎ
                   (7)  

where T is the mean firing rate of the GABAergic fibers of TRN, and m2 is their maximal firing rate. 

Other parameters as above. 

 Third, the combination of the opposite activities exerted by SC (excitatory, glutamatergic) and 

TRN (inhibitory, GABAergic) on VPL, was represented by using an increasing Hill function of variable 

S whose parameters m and e were expressed as Hill functions of variable T. Literature data reported 

the effects of GABAergic fibers on input-output responses to excitatory fibers with a reduction of 

the maximal output firing rate, or a decreased neural sensitivity to excitatory inputs resulting in a 

rightward shift of the input-output firing rate curve, or as a combination of these effects [55, 99]. 

We considered both effects in our model equation, in which increasing T values correspond to a 

reduction of the maximal output firing rate m, according to a decreasing Hill function, while they 

also correspond to an increased value of the parameter e, modeled by an increasing Hill function, 

starting from basal value e0. Moreover, the strength of the GABAergic interaction was also modeled, 

by multiplying the variable T by the coefficient 𝑎 varying in the interval [0,1]. The resulting 

differential equation is the following: 

𝜏𝑉̇ + 𝜃𝑉 =
𝑔(𝑎𝑇) ∙ 𝑆ℎ

𝑆ℎ + 𝑓(𝑎𝑇)ℎ
                     (8)  
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where:   𝑔(𝑎𝑇) =
𝑚1

1+(
𝑎𝑇

𝑒
)

ℎ  ;                              𝑓(𝑎𝑇) = 𝑒0 + 𝑚2  
(𝑎𝑇)ℎ

𝑒ℎ+(𝑎𝑇)ℎ . 

 The computational analysis of the model dynamics was conducted by using MATLAB (version 

R2021, MathWorks, Natick, MS, USA). The values of the parameters used in the differential 

equations were set according to literature reports, as reported in Table 1. 

 

Table 1. Nominal values of parameters used in equations (6), (7), and (8).  

Symbol Name Value Reference 

𝜏 Time constant  0.5 (sec) [100, 101] 

𝑚1 Excitatory fibers: max output firing rate  100 (Hz) [99, 102, 103] 

𝑚2 Inhibitory fibers: maximal output firing rate  80 (Hz) [55, 104] 

𝑒 Input corresponding to half-maximal output 20 (Hz) [102, 105, 106] 

ℎ Hill coefficient 2.5 [102, 105, 106] 

𝑎 GABAergic strength  [0,1]  

𝑏 glutamatergic strength [0,1]  

  self-limiting factor [0,1]  

Reproduced with permission from J Comput Neurosci [107], Creative Commons Attribution (CC BY) license 

(https://creativecommons.org/licenses/by/4.0/). 

 

3.2.1.2.2. Endocrine loop system involving the HPG and HPA axes 

 Based on the hypothesis that the HPG and HPA axes are involved in FM pathogenesis, we 

extended our literature search to the possible interactions between these two axes. We then 

identified an endocrine loop able to interact with brain networks due to the production of 

neurosteroids that modulate central neurotransmission. Evidence argues for the possibility that the 

HPG and HPA axes could become entangled to form a single system due to a reciprocal negative 

control on each other [108]. For this reason, a single simplified loop consisting of two elements was 

considered, in which each element represents one of the axes. On the mathematical side, each axis 

was considered as an aggregate of monotone subsystems and then embodied in a condensed 

element within the mathematical model of the dynamical system, still allowing the analysis of its 

behavior thanks to the presence of signed interactions [56]. In this model, two inhibitory arcs depart 

from each node. One represents the self-inhibition of the axis, i.e. its negative feedback loop. The 

other is the inhibition exerted by each axis on the other element.  

https://creativecommons.org/licenses/by/4.0/
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 The system dynamics were described mathematically by using two differential equations. These 

equations represent the time variations of percent endocrine axis activity ranging in the interval 

(0,100] (e.g. referring to the plasma concentration of cortisol for HPA, and of progesterone for HPG). 

The mathematical model describes the self-inhibition resulting from the negative feedback of each 

axis (self-limiting factor), and the reciprocal inhibition between the two axes (positive loop, double 

inhibitory), this latter emerging for wide variations of hormone plasma levels. The variation of axis 

activity was described by using two decreasing functions representing the inhibition of the other 

axis (mutual inhibition) and self-inhibition, respectively. Evidence argues for decreasing Hill 

functions being the best fit for endocrine effects (see below), and consequently, we used these 

functions for modeling these specific interactions.  

 The system of differential equations was defined as follows: 

 𝜏 ∙ 𝐻𝑎
̇ = 𝑓(𝐻𝑔)– 𝜉(𝐻𝑎) ∙ 𝐻𝑎                       (9) 

 𝜏 ∙ 𝐻𝑔
̇ = 𝑓(𝐻𝑎)– 𝜉(𝐻𝑔) ∙ 𝐻𝑔                    (10) 

where 𝐻𝑎 is the activity of the HPA axis, and 𝐻𝑔 is the activity of the HPG axis,  is the time constant, 

and 𝑥̇ represents the time derivative of x. The functions 𝑓(∙) are decreasing Hill functions with values 

ranging in the interval (0-100] and having these forms: 

𝑓(𝑥) =
100

1 + (
𝑥
𝑒𝑥

)
ℎ𝑥

                                       (11) 

where 𝑒𝑥 and ℎ𝑥 represent the Hill function parameters, as defined above. The self-limiting 

functions 𝜉(∙) are shifted decreasing Hill functions whose values belong to the interval (1,5]: 

𝜉(𝑥) = 1 +
4

1 + (
𝛼 ∙ 𝑥

𝑒𝜉
)

ℎ𝜉
                           (12) 

where 𝛼 ∈ (0,1) is a coefficient representing the modulation of the self-limiting effect.  

 

3.2.2. Realization of a questionnaire for FM patients  

3.2.2.1. Participant Recruitment and Ethical Approval 

 The recruitment of participants was realized thanks to an Italian association of fibromyalgic 

patients (Fibromialgia Comitato Assoutenti Liguria, http://fibromialgiaediritti.altervista.org, 

accessed on March 8, 2021). The association members received an information letter with the link 

to the survey and joined the survey anonymously and freely. Each participant had to be provided 

with a diagnosis of FM established by a qualified healthcare professional (symptoms for at least 3 

months) [77]. Participants had to fill a full informed consent to start the survey. In addition, to enter 
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the study, different exclusion criteria were adopted such as difficulty to speak and write the Italian 

language, breastfeeding or pregnancy, substance abuse and psychiatric alterations, including 

psychotic disorders and disturbances such as schizophrenia. Subjects were invited to respond to an 

extensive pre-enrollment questionnaire which was reviewed by our professional team to eventually 

exclude any ambiguity from the study. 

 The Ethics Committee of the University of Genova approved the study and FM recruitment 

(Assent N.2021/32) while the principles of the Helsinki Declaration were satisfied. The survey was 

opened from April to June 2021, accessible through a link on the Microsoft Office365 Platform of 

the University of Genova (Microsoft Forms®, https://www.office.com, Microsoft, Redmond WA, 

USA, accessed on February 22, 2021). Furthermore, to investigate the possible correlations between 

FM symptoms and vestibular disorders, data collected in a previous vestibular study were re-

analyzed in this context. This vestibular study was led by Drs. Viviana Mucci and Cherylea J. Browne 

and was conducted in 2019–2022 upon Western Sydney University Human Ethics Committee ethical 

approval (H11962). A total of 80 subjects recruited online from all over the world, out of the 197 

control respondents, provided informed consent for the use of their deidentified data in the current 

study.  

 

3.2.2.2. Questionnaires 

 A cross-sectional study was designed by using validated questionnaires. A total of 344 answers 

from previously diagnosed FM patients were collected. The first section of the survey concerned 

socio-demographic features such as gender, age, educational status, working and family status. 

Clinical data included age of disease onset, diagnostic delay, disease duration, and biometric 

parameters.  

 To evaluate pain, participants were asked to report their average global pain intensity on a 11-

point numerical rating scale (0 = “no pain”; 10 = “worst imaginable pain”) [109]. The specific kind of 

pain mostly experienced was evaluated on a scale from 1 to 5, including numbness, tingling, 

pressure pain, sudden pain, light contact, burning, and occasional pain. The prevalence of central 

pain was investigated by using the Italian translation of the painDETECT questionnaire (PD-Q). The 

PD-Q questionnaire allowed to classify pain perception into nociceptive or neuropathic/nociplastic 

pain [110]. A PD-Q score ≤ 12 indicates prevalence of nociceptive pain, a PD-Q score ≥ 19 indicates 

neuropathic or nociplastic pain, and values in between represent intermediate conditions.  
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 Secondary symptoms other than pain were also recorded, including migraine, fatigue, and sleep 

disturbances.  Self-perceived effectiveness of treatments was also investigated by recording (null, 

low, average, good, and excellent) pharmacological treatments (non-steroidal anti-inflammatory 

drugs, steroids, antidepressants, and analgesics) and non-pharmacological strategies 

(psychotherapy, relaxation therapy, non-invasive instrumental treatments, massage, acupuncture, 

and diet therapy). Childhood and adolescence were investigated by asking participants to define 

these periods of life on a scale from 1 to 5 (very bad, bad, average, good, excellent). Experienced 

traumatic events were also recorded.  

 A section of the survey aimed at the evaluation of cognitive and behavioral management, by 

using Italian translations of two questionnaires: the Self-Related Emotional Intelligence Scale (SREIS) 

[111], and the Cognitive Behavioral Assessment-Hospital (CBA-H) [112]. The SREIS test is used to 

investigate emotional intelligence, emotion perception, and management. The questionnaire is 

made up of specific questions organized on a 5-point Likert scale (ranging from 1 = ”not at all”, to 5 

= ”very much”). The CBA-H questionnaire is used to evaluate psychological distress, stable 

personality traits, fear, well-being, and anxiety. The CBA-H is composed of 3 parts (A, B, C) organized 

in true/false questions.  

 To specifically evaluate vestibular problems, a second section of the questionnaire was designed. 

A total of 277 FM patients out of 344 completed this section of the survey. Participants answered 

the validated Italian versions of the Dizziness Handicap Inventory (DHI) [113], and the Situational 

Vertigo Questionnaire (SVQ) [114]. The DHI is composed of 25 items with yes/no/sometimes 

questions, corresponding to 0, 2, and 4 score values, respectively. The following four cutoffs are 

defined based on total score: ≤14: no handicap, 16–34: mild handicap, 36–52: moderate handicap, 

and ≥54: severe handicap. The 25 items of the DHI are divided into three domains, regarding 

functional, emotional, and physical aspects of dizziness. The physical component contains questions 

regarding movements that increase patients’ symptoms, the emotional component concerns how 

the patient feels to be perceived by other people, and the functional component is focused on the 

ability of performing various activities and tasks. The SVQ consists of 19 items discriminating visual 

vertigo, with a score ranging from 0 (not at all) to 4 (very much) for each item. For control subjects, 

a 49-item questionnaire was distributed using the online survey platform Qualtrics 

(https://www.qualtrics.com/qualtrics/xm, Seattle, WA, USA, accessed on February 1, 2021). 
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3.2.2.3. Statistical Analyses 

 Clinical data and sociodemographic characterizations were analyzed by descriptive statistics. 

Inference and correlation analyses were conducted using the Pearson’s chi-squared and Wilcoxon 

rank sum tests for inference analysis, and the Spearman’s rank coefficient for correlations. These 

analyses were applied to PD-Q, CBA-H, and SREIS scores, and to the intensities of pain. Data 

distributions for semiquantitative scores were analyzed by the Mann-Whitney test, while the 

goodness of fit for categorical variables was assessed by the chi-squared test. Questionnaire scale 

reliability was assessed by the Cronbach’s alpha index (0-1). Computational analyses and statistics 

were performed by using MATLAB (see above) and R software (version 4.0.5, https://www.r-

project.org/, accessed on April 6, 2022). 

 

3.3. FM pathogenesis model: Results 

3.3.1. The thalamocortical loop 

3.3.1.1. Arrangement of the thalamocortical loop  

 As reported in section 3.2.1.2, by our literature search a loop network was identified involving 

thalamocortical regions, i.e. the thalamic ventroposterolateral nucleus (VPL), the primary 

somatosensory cortex (SC), and the thalamic reticular nucleus (TRN) [115]. These regions are 

connected with each other by different fibers, including: first order excitatory glutamatergic fibers 

projecting from VPL to TRN and to the SC, glutamatergic connections of SC projecting to first order 

neurons of VPL and to TRN, and inhibitory GABAergic projections connecting TRN to VPL [116]. SC 

is targeted on its layer 4 (L4)  by the VPL first order neurons, while SC glutamatergic connections 

from layer 6 project to both VPL and TRN [117]. However, it has been shown that L4 acts as a 

distributor of intracortical excitation thus making L4 and L6 excitatorily coupled [118]. Therefore, 

the SC can be considered as a single functional element in the loop system.  

 Considering the arrangement of this neural network, three loops can be identified, a positive 

one: VPL-SC-VPL, with excitatory steps only, and two negative ones: VPL-SC-TRN-VPL and VPL-TRN-

VPL, both having one inhibitory step (Figure 2). Depending on the kind of dominating loop, which 

depends on the strength of the various interactions, the system globally behaves as a candidate 

multistable system or as a candidate oscillator. When the negative loop prevails (GABAergic 

transmission), the system has a single stable equilibrium point (candidate oscillator), whereas if the 

positive loops dominate (glutamatergic transmission), the system behaves as a multistationary 

system with different stable equilibrium points [29]. 
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Figure 2. Schematic diagram representing the system of thalamocortical loops involved in the hypothetic 

pathophysiological mechanisms leading to FM. The loop system includes the primary somatosensory cortex 

(SC), and the reticular (TRN) and ventroposterolateral (VPL) nuclei of the thalamus. These different brain 

districts are connected by excitatory glutamatergic (glut) or inhibitory GABAergic (GABA) pathways. The 

system is of a positive loop: VPL-SC-VPL, including only excitatory steps, and two negative loops: VPL-SC-TRN-

VPL and VPL-TRN-VPL, both including one inhibitory step in their pathway. The dynamical behavior of the 

system is dominated by negative loops or by positive loops, depending on the relative strength of 

glutamatergic vs. GABAergic transmission.  Reproduced with permission from  J Comput Neurosci [107], 

Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). 

 

 An imbalance between the strengths of the GABAergic and glutamatergic transmissions would 

tend to abolish the negative loop influence, inducing the positive loop contribution to dominate the 

system and consequently causing the emergence of a multistable behavior. Multistationary systems 

are known to have at least two stable equilibrium points and the possibility of shifting between 

these two equilibria makes these systems of interest in pathogenesis [119]. So, the thalamocortical 

loop could shift from a healthy state condition to a pathological one by an inbalance in 

neurotransmission. 

 

3.3.1.2. Mathematical model of the thalamocortical loop  

 The thalamocortical network assumed to be involved in the FM pathogenesis can be described 

mathematically. In particular, the activities of the different neuron populations can be represented 

https://creativecommons.org/licenses/by/4.0/
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by differential equations describing their time evolution. Each differential equation was used to 

quantify the variation through time of the mean firing rate (i.e. the number of spikes per second) of 

neurons belonging to a specific area. As reported in the Methods (section 3.2.1.2.1) the following 

system of differential equations represent the time variation of the neuronal activity of SC, TRN, and 

VPL: 

 𝜏𝑆̇ + 𝑆 = 𝑓(𝑏𝑉)                        (6) 

 𝜏𝑇̇ + 𝑇 = 𝑓(𝑏𝑉 + 𝑏𝑆)             (7) 

 𝜏𝑉̇ + 𝑉 =
𝑔(𝑎𝑇) ∙ 𝑏𝑆ℎ

ℎ(𝑎𝑇)ℎ + 𝑏𝑆ℎ
        (8). 

 The variables S, T, and V denote the mean firing rate of neurons belonging to SC, TRN and VPL, 

respectively, 𝑆,̇  𝑇,̇  and 𝑉,̇  represent the time evolution of these variables, the coefficient 𝑎 

represents the strength of the GABAergic transmission, and the coefficient 𝑏 represents the strength 

of the glutamatergic transmission. All the functions have Hill-type expressions, with f(•) and h(•) 

representing increasing Hill functions, while g(•) represents a decreasing Hill function. As reported 

in section 3.2.1.2.1, Hill type functions are commonly used to model the input-output relationships 

between different neural populations [46, 55, 97]. 

 In our system, the effects of many neurons are replaced by a single overall characteristic, as a 

schematic representation of the biological phenomenon. From a mathematical standpoint, this 

simplification does not affect the conclusions, so far as the essence of the phenomenon is captured. 

The instability we are analyzing, leading to bistability, remains qualitatively unaffected if we 

consider a “lumped” effect instead of a cascade of individual effects. Simple models that capture 

the essential aspects of the phenomenon are useful because they are amenable for analysis and can 

provide explanations and insight into the functioning of the system. [56] 

 

3.3.1.3. Acquisition of bistability upon weakening of the inhibitory GABAergic transmission 

 The dynamics of the system described above have been analyzed by using the MATLAB software. 

A shift in the dynamics has been identified, revealing the emergence of a bistable behavior in the 

thalamocortical network. In loop systems, monostability is associated to the presence of a unique 

steady state. In our thalamocortical loop, this steady state is characterized by low firing rate for all 

the elements involved (Figure 3A-C). Such monostability is maintained so far as the strength of the 

inhibitory GABAergic transmission is sufficiently high. To explore the role of GABAergic transmission, 

we maintained a fixed value of 𝑏 = 1, while letting 𝑎 to assume different values. As reported in the 

phase portraits diagrams (Figure 3D-F), for values of 𝑎 close to 1, the system presents a single large 
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basin of attraction associated to the unique equilibrium point, so that all the system’s trajectories, 

induced by different kinds of excitation in each single element, end up converging to the steady 

state characterized by low firing rate. However, if the efficacy of the GABAergic fibers scales down, 

then for 𝑎 = 0.265 the system reaches a bifurcation point and acquires two different steady states: 

high- and low-firing-rate steady states. Such a value of 𝑎 represents a bifurcation point, i.e. the shift 

from a monostable to a bistable behavior. In the phase portraits (Figure 3D-F) two attraction basins 

are shown, representing the areas within which the system inevitably fall on either of the two stable 

equilibrium points. In addition, when the GABAergic transmission weakens (decreasing 𝑎 value), the 

attraction basin related to the high-firing-rate steady state enlarges. By this way, the probability for 

the system to converge to a high-firing-rate steady state becomes higher (Figure 3D). Considering 

the mean firing rates of the different regions: for values of 𝑎 immediately smaller than the 

bifurcation value, the variable V results relatively low (40 Hz) at the high equilibrium point, while 

the variable S results higher (about 80 Hz) (Figure 3A-C). Hence, for values of 𝑎 smaller than the 

bifurcation value, the threshold for the activation of VPL, e.g. by spinothalamic input, is very low, 

and sufficient for inducing SC to reach a permanent high-excitation status. This ultrasensitive 

behavior is a typical feature of biological bistable switches [27]. 

 The mathematical analysis shows that the system always admits the equilibrium at zero, which 

is always stable and corresponds in our model to baseline activity for all neuron populations. The 

system may overall admit an odd number of equilibria, which are always ordered and are typically 

three: the low-firing-rate stable equilibrium at zero, which corresponds to basal activity, the high-

firing-rate stable equilibrium, which can be related to a pathogenic pain processing activity, and an 

unstable equilibrium with intermediate neuron activity. If such a bistability pattern emerges for 𝑎 =

0, we show that it is preserved for values of 𝑎 below a certain threshold 𝑎∗, 0 < 𝑎 < 𝑎∗. We also 

prove that there exists a threshold value 𝑎̂ for 𝑎 (associated with the bifurcation value observed in 

our numerical simulations) such that, for all 𝑎 > 𝑎̂, the only admissible equilibrium is the one at zero 

(associated with basal activity), which is stable and hence has the whole state space as a basin of 

attraction. From a qualitative point of view, our model shows robust prediction of the system’s 

behavior, even considering different kinds of functions and parameters. For example, the 

substitution of one of the Hill functions appearing in equation (13) with a constant value, does not 

modify the behavior of the system, with the same transition from monostability to bistability, but 

shifted to a higher value for the bifurcation point. This corresponds to a higher tendency of the 

system to acquire bistability. Moreover, it is known that the GABAergic transmission can reverse its 
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activity from inhibitory to excitatory, if an inversion of the transmembrane chloride gradient occurs 

[120]. In this case, equation (12) would be modified as follows: 

τ𝑉̇ + 𝜃𝑉 = 𝑓(𝑏𝑆 + 𝑎𝑇)              (13). 

 The system behaves as a bistable system for any value of 𝑎 and is more likely to fall within the 

attraction basin of the high-firing-rate steady state [29]. The possibility for the system to shift among 

different stable equilibrium points is assumed to be an essential prerequisite for the development 

of FM. The GABAergic transmission is a key element whose reduction in strength induces the 

switching of the system from monostable to bistable. 

 

3.3.1.4. Variations of the thalamocortical loop dynamics by varying the strength of the interactions  

 The system monostability has been demonstrated for 𝑏 and for 𝑎 > 0.265 with the existence of 

a single attraction basin corresponding to the low-firing-rate steady state. We have shown the 

existence of a bifurcation point at 𝑎 = 0.265, meaning that when a decreases, the system acquires 

bistability with the possibility to shift to an additional steady state corresponding to high firing rate. 

The reduction of 𝑎 is correlated to the enlargement of the attraction basin of the high-firing-rate 

steady state. Under this condition the system results more prone to fall on the high-firing-rate 

steady state, which is representative of the chronic pain symptom reported by FM patients. The 

relationship between the bifurcation value of 𝑎, indicated as 𝑎̂, and 𝑏 was also analyzed, finding that 

for decreasing values of 𝑏, 𝑎̂ decreases according to a sigmoid curve (Figure 4). In addition, for 

changing values of  the above 𝑏/𝑎̂ relationship is maintained but the curve steepness lowers for 

decreasing values of .  
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Figure 3.  Thalamocortical loop: bifurcation diagrams and related phase portraits. (A, B, C) Bifurcation 

diagrams: curves showing the steady states of the three variables (S, T, V) plotted against the bifurcation 

parameter 𝑎, representing the strength of GABAergic inhibition. The variables are expressed as mean firing 

rate (Hz), and 𝑎 is a dimensionless parameter ranging in the interval [0,1].  Glutamatergic strength is set to 

the maximal value, 𝑏 = 1. Stable steady states (stable equilibrium points) are represented by curve branches 

in blue, while unstable ones are represented by curve branches in red.  For decreasing values of 𝑎 the system 

reaches a bifurcation point 𝑎̂ (dashed vertical lines) shifting to bistability and acquiring two stable equilibrium 

points and an unstable one. The steady state characterized by low firing rate represents the physiological 

condition, while the steady state associated with a high firing rate corresponds to the pathogenic condition. 

(D, E, F) Diagrams of phase portraits representing projections in the V/S plane of the system 3-dimensional 

phase portrait. The diagrams show, for different values of 𝑎 and for a fixed value of T = 80, the basins of 
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attraction of the stable equilibrium points indicated as black filled dots. In light blue is reported the basin of 

attraction related to the high-firing-rate steady state, while in light red the low-firing-rate steady state. 

Unstable equilibrium points are indicated as open dots. Panel E shows a condition in which 𝑎 is just below 𝑎̂, 

while its inset reports the whole 3-dimensional phase portrait in the S/T/V space [107]. Reproduced with 

permission from J Comput Neurosci [107], Creative Commons Attribution (CC BY) license 

(https://creativecommons.org/licenses/by/4.0/). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Positive, non-linear correlation between 𝑏, the coefficient measuring the glutamatergic 

transmission strength, and 𝑎̂, the bifurcation value of 𝑎, the coefficient measuring the GABAergic 

transmission strength.  

 

3.3.1.5. Effects of the endocrine axes on the dynamics of the thalamocortical loop  

 The thalamocortical loop model offers a possible explanation for FM chronic pain, but it does not 

account for the causes of GABAergic weakening. However, literature data argues for a role of the 

HPA and HPG axes in FM insurgence [121]. This body of evidence can be harmonized within our 

model because both endocrine axes are known to influence glutamatergic and GABAergic 

neurotransmissions in the brain. The HPA axis involves the hypothalamus, the anterior pituitary, and 

the adrenal glands, which are sequentially connected by specific interactions. By releasing 

corticosteroids into the plasma, HPA has a regulatory role concerning the responses to different 

stress conditions. HPA is relevant not only during acute stress conditions, but also under chronic 

stress conditions, producing consequent changes in response to persistent traumatic agents [122]. 

The HPG axis involves the hypothalamus, the anterior pituitary, and the gonads, with mutual 



 29 

interactions. HPG has a regulatory role in both male and female reproductive functions through the 

release of gonadal steroids into the plasma [123]. 

 

3.3.1.5.1. Influence of the HPG axis on the thalamocortical loop 

 Many studies have reported gonadal hormone modulatory effects on glutamatergic and 

GABAergic neurotransmissions. Also, progesterone and testosterone levels observed in female FM 

patients during the menstrual cycle have shown an inverse correlation with pain intensity [124]. 

Furthermore, testosterone has a role in the upregulation of the α2 subunit of the GABAA receptor 

in the rat cerebral cortex, inducing higher GABAergic ion currents [125]. Also, depressed women 

treated with testosterone have benefited of antidepressant and anxiolytic effects, possibly related 

to increased concentration of GABA in the posterior-cingulate cortex [126].  

 A series of steroids, known as neurosteroids, have been found to affect neurotransmission in the 

brain, in an exclusive, or more efficient mode with respect to gonadal hormones [127]. Among 

neurosteroids, the progesterone derivative allopregnanolone (3,5-tetrahydroprogesterone) 

(Allo), and androstanediol (5α-androstane-3α,17β-diol), which derives from testosterone and 

shares Allo structure, are known to act on GABAA receptors as positive allosteric modulators [128]. 

In relation to this kind of activity, these neurosteroids induce anxiolytic, antiepileptic, and sedative 

effects [129, 130]. Their brain level is the result of de novo synthesis and/or brain penetration by 

themselves or their precursors. Neurosteroid brain levels depend more closely on gonadal hormone 

blood levels for wide variations of these latter [131, 132].  

 To investigate the role of HPG in the modulation of the thalamocortical loop system in our model 

of FM pathogenesis, we firstly analyzed Allo effects, because of the wider fluctuations of female 

progesterone with respect to male testosterone along the reproductive cycle. To this aim, we 

derived a quantitative relationship between Allo brain levels and GABAergic strength. Allo and other 

neurosteroids exert their positive allosteric modulation on both synaptic, γ-type, and extra-synaptic, 

δ-type, GABAA receptors. By this way, they enhance both phasic and tonic GABAergic inhibition 

[133]. However, in our model based on a schematic description of neural network activity, we 

considered the total effect of neurosteroids on GABAergic transmission. We then derived, which, as 

shown above, is represented by the parameter 𝑎 in the differential equations of the thalamocortical 

model. We then derived brain and plasma levels of Allo at different woman reproductive phases 

from previous studies [120, 134], or alternatively, we estimated these values from the ratio between 

the known values of Allo brain and plasma levels at the luteal phase (Table 2). 
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Table 2. Gonadal steroid concentrations in the woman at different phases of the cycle and at 

pregnancy.  

 

Reproductive 
period 

Gonadal steroid Body district Level (ng/mL) 

Follicular phase 

Progesterone 
Plasma 1.5 

Brain tissue – 
   

Allopregnanolone 
Plasma 0.15 

Brain tissue 2.4* 

    

Luteal phase 

Progesterone 
Plasma 10 

Brain tissue 41 
   

Allopregnanolone 
Plasma 1.2 

Braintissue 20 

    

Late pregnancy 

Progesterone 
Plasma 204 

Brain tissue – 
   

Allopregnanolone 
Plasma 16 

Brain tissue 256* 
* = proportionally derived from the ratio of brain and plasma values at luteal phase 

 

 Thereafter, we derived from literature data the parameters of dose-response curves 

representing the effect of Allo on GABAA receptors. All the considered curves showed a good fit to 

Hill functions, allowing to obtain median values for the Hill function parameters (Table 3). A couple 

of studies also reported baseline values of the activity of GABAA  receptors, allowing to estimate the 

maximum possible increase of activity induced by Allo on these receptors, resulting to be 100% and 

200% of baseline, respectively [135, 136]. 

 

Table 3. Parameters of the Hill functions derived from the fitting of Allo modulatory effects on 

GABAA receptors.  

Experimental model N h1 
e2 

(ng/mL) 

e3 

(%) 

Threshold 

dose eliciting 

max effect 

(ng/mL) 

Refs. 

Bovine chromaffin cells 5 2 15 20 – [137] 
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Rat hippocampus/cortex 6 2 45 8 600 [135] 

Xenopus oocytes 6 2 300 2 1500 [138] 

Rat neurons 5 2 18 5 150 [139] 

Mouse L-tk cells 8 1.2 9 0.3 300 [140] 

Rat dentate granule cells 7 1.15 3.9 5 90 [136] 

Rat embryo hippocampus 7 2.8 300 4.8 900 [141] 

       
Median values  2 18 5 450  

1Value of the Hill coefficient. 2Value of the half-saturation constant of the Hill function, obtained from original 

data. 3Value of the half-saturation constant obtained by rescaling data on a [0,100] interval. The parameter 

e corresponds to the EC50, representing the Allo dose inducing a 50% effect.   

 

 Considering the above dataset, we quantify GABAA activity in response to Allo at different phases 

of the female reproductive cycle. The maximum activity of GABAA receptors was set at 𝑎 =  1, 

corresponding to the activity observed when allopregnanolone is at the highest pharmacological 

doses (possible range 90–1500 ng/mL, median value 450 ng/mL, Table 3). Conversely, the minimum 

effect of Allo was assumed to occur at its follicular brain levels of 2.4 ng/mL (Table 2).  At the 

follicular phase, the strength of GABAergic connections was assumed to be like the one in the 

absence of Allo (Table 3). Hence, assuming a maximum increase of 150% in the activity of the GABAA  

receptor, on average, the value of 𝑎 at the follicular phase (𝑎𝑓) was obtained from the equation 

𝑎𝑓 + 1.5𝑎𝑓 = 1, yielding 𝑎𝑓  = 0.4. Consequently, the EC50 of Allo, taken as the median value of the 

parameter e in Table 2 (18 ng/mL), should correspond to 𝑎 =  0.7, i.e. the midpoint of the interval 

[0.4,1]. The value of 𝑎 =  1 is never reached around the female cycle, since luteal Allo brain levels 

are around 20 ng/mL, i.e. definitely below the doses inducing maximum GABAA activation, as 

observed in experimental studies (Table 3). From the follicular to the luteal phase, Allo brain levels 

correspond to 𝑎 values that are always above the bifurcation point of our thalamocortical systems, 

i.e. 𝑎̂ = 0.265  for a maximum value of 𝑏 =  1.  

 However, a depressive effect on GABAA receptors due to very low Allo levels drives GABAergic 

strength below basal follicular levels. Progesterone fall at perimenstrual and post-partum phases 

has been found to induce a sharp reduction of the Allo in the brain, denoted as “Allo withdrawal”. 

This condition has been associated to premenstrual syndromes, such as seizure susceptibility and 

anxiety [142-144]. In a rat model of this kind of syndromes, very low Allo levels are correlated to an 

increase of the expression of the GABAA 4 subunit, inducing a reduction in GABAA activity [145]. 
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This effect has been shown to depend on the upregulation of the transcription factor early growth 

response factor-3 (Egr3), resulting in a 6-fold decrease in the GABAA current time constant [146]. 

Hence, a corresponding reduction of GABAA ion current can be calculated. This estimate has been 

derived by us from the ion current decay equation:  

𝐶 = 𝐶0 ∗ 𝑒
𝑡

𝑡𝑎𝑢                            (14) 

where C = current at time t, C0 = current at time t = 0 (set to C0 = 1), tau = time constant. Integrating 

for tau = 1 and tau = 1/6 as follows: 

𝐶𝑇𝑂𝑇 = 𝐶0 ∫ 𝑒–
𝑡

𝑡𝑎𝑢 𝑑𝑡          (15),
∞

0

 

an about 3-fold decrease of GABAA currents was inferred. Hence, by applying a 3-fold decrease to 

the previously derived follicular value of 𝑎 =  0.4, a value of 𝑎   0.13 was inferred for Allo 

withdrawal. We then derived Allo brain levels at withdrawal by considering an animal model of 

catamenial epilepsy obtained by exposure to the 5α-reductase inhibitor finasteride [147]. In female 

rats, finasteride has induced the decrease of Allo plasma concentration from 9 to 6 ng/mL. Hence, 

assuming a proportional reduction of brain Allo in the woman, and considering a brain follicular level 

of 2.4 ng/mL, we estimated Allo withdrawal at 1.6 ng/mL, that was put in correspondence with the 

above-derived value of 𝑎 =  0.13. To summarize, the Allo effect on GABAergic transmission was 

modeled by considering two independent actions:  

 - Allo ranging from follicular to luteal and pregnancy levels, inducing a dose-dependent increase 

of the GABAergic transmission in response to positive allosteric modulation on GABAA receptors; 

 - Allo sub-follicular, withdrawal levels reducing the strength of GABAergic transmission because 

of a rearrangement of the α subunits of GABAA receptors. 

 Mathematically, two increasing Hill functions are used to model such a combined effect: 

𝑎 = 𝑓𝑢(𝐴𝑙𝑙𝑜) + 𝑓𝑝(𝐴𝑙𝑙𝑜)                                 (16), 

where fw(A) is the withdrawal component: 

𝑓𝑢(𝐴𝑙𝑙𝑜) = 𝑎𝑓 ∗
𝐴𝑙𝑙𝑜ℎ𝑢

(𝑒𝑢
ℎ𝑢 + 𝐴𝑙𝑙𝑜ℎ𝑢)

                   (17), 

fp(A) is the positive allosteric component: 

𝑓𝑝(𝐴𝑙𝑙𝑜) = (1 − 𝑎𝑓) ∗
𝐴𝑙𝑙𝑜ℎ𝑝

(𝑒𝑝

ℎ𝑝 + 𝐴𝑙𝑙𝑜ℎ𝑝)
         (18),  

Allo is the brain concentration of the neurosteroid, 𝑎 is GABAergic strength, 𝑎𝑓 is the value of 𝑎 at 

the follicular value of Allo, 𝑒𝑢 and ℎ𝑢 are the EC50 and Hill coefficient for the genomic effect induced 
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by Allo withdrawal on the GABAA α subunit, and 𝑒𝑝 and ℎ𝑝 are the EC50 and Hill coefficient for the 

positive allosteric effect of Allo on GABAA. For computational analysis, we adopted 𝑒𝑝 and ℎ𝑝 values 

corresponding to the median values reported in Table 3. The parameters 𝑒𝑢 and ℎ𝑢are not available 

in the literature, except that steroid hormone genomic effects fit a Hill function. Therefore, 

considering that the withdrawal effect emerges at Allo sub-follicular levels, we used a Hill function 

with maximum at 𝑎 =  0.4, asymptotically approaching this value from a value of Allo  2.4, and 

admitting a solution for the above-reported values, Allo = 1.6, 𝑎 =  0.13. The derived values for the 

parameters of the (17) and (18) Hill functions are reported in Table 4. 

 

Table 4. Parameters of the Hill functions of equation (16). 

Type of Allo effect Range of Allo variation Function 
e 

(ng/mL) 
h 

𝑎𝑓 

(ng/mL) 

GABAA currents Follicular-to-luteal fp(A) 18 2 0.4 

Expression of the α4 subunit  Withdrawal-to-luteal fu(A) 1.8 6.5 0.4 

The symbols are as in Table 3. 

 

 The equation (16) describes the predominance of the withdrawal effect of Allo on GABAergic 

strength for subfollicular brain levels, i.e. concentrations ranging between 0 – 2.4 ng/mL, while the 

positive allosteric GABAA modulation is predominant for Allo concentrations above 2.4 ng/mL. As 

shown in Figure 5, Allo withdrawal drives the coefficient 𝑎 down to an estimated value of 0.13. To 

understand possible pathogenic consequences of such a decrease, this value must be related, on 

one side, to the bifurcation value 𝑎̂, as determined by our computational model, and on the other 

side to the strength of glutamatergic transmission. 

 

3.3.1.5.2. Influence of the HPA axis on the thalamocortical loop 

 Indirect data on N-methyl-D-aspartate receptor (NMDAR)-dependent cytosolic Ca2+ rise suggest 

that glutamate-induced excitotoxicity involves an about 100% increase of glutamatergic 

transmission [148], which can be assumed as maximum glutamatergic strength, corresponding to 

𝑏 =  1 in our model. Hence, we can assume that in our model a value of 𝑏 =  0.5 represents 

physiological glutamatergic strength. According to the 𝑏/𝑎̂ relationship depicted in Figure 2, 𝑏 =

 0.5 corresponds to 𝑎̂ = 0.116, i.e. a bifurcation point that is close to, but still below, the value of 

𝑎 =  0.13 appraised for Allo withdrawal. However, if 𝑏 reaches a value of 0.6, the bifurcation value 



 34 

becomes 𝑎̂ = 0.16. Hence, a 20% increase of glutamatergic strength would be sufficient to drive the 

bifurcation point above the reduction of GABAergic strength imposed by Allo withdrawal.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Plot of the variation of the coefficient 𝑎, representing GABAergic transmission strength, as a 

function of brain Allo levels, according to equation (16). The curve is the combination of two Hill functions 

representing two effects of Allo on GABAA receptors: in the lower Allo range an effect on the GABAA α subunit 

expression, while in the higher Allo range the positive allosteric effect on GABAA currents. The dashed 

horizontal line indicates the value of 𝑎 corresponding to the bifurcation point 𝑎̂ at the max glutamatergic 

strength (𝑎̂ = 0.265, 𝑏 =  1). The inset indicates the zone corresponding to Allo withdrawal, which includes 

the values assumed by 𝑎̂ for 𝑏 =  0.5 (𝑎̂ = 0.116,), and for 𝑏 =  0.6 (𝑎̂ = 0.16).  

 

 

 It should be noted that the numerical values of our analysis have been estimated from indirect 

data, and therefore, they are not expected to exactly quantify real pathophysiological processes. 

However, we can conclude that a combination of strong GABAergic reduction and mild 

glutamatergic rise are likely to create a pathogenic functional state in the thalamocortical loop 

system. We then explored possible causes of an increase of glutamatergic transmission able to 
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induce an FM pathogenic condition. Consistent with the correlation between FM and acute or 

chronic stress, these causes should be looked for in the activation of the HPA axis.  

 Various data indicate that activation of the HPA axis under stress response has repercussions on 

GABAergic transmission, being part of the homeostatic mechanisms that limit the impact of HPA on 

the body’s physiology [149]. Pituitary ACTH stimulates adrenals to release Allo and THDOC, both 

passing the brain barrier and acting as positive allosteric GABAA modulators [150]. 

Dehydroepiandrosterone (DHEA) and its sulphated derivative DHEA-S are also released by adrenals, 

acting as negative modulators of GABAA and positive modulators of NMDA glutamate receptors 

[150]. Hence, the panel of corticosteroids released upon HPA activation seems to induce a complex 

effect on central neurotransmission, in which the weights of the single components are difficult to 

evaluate due to the scarcity of quantitative data. However, it has been found that the first global 

effect of acute stress is a rapid decrease of GABAergic transmission together with an increase of 

glutamate transmission in brain areas involved in cognitive functions, such as prefrontal cortex and 

hippocampus [151, 152]. Moreover, chronic stress has a strong enhancing  impact on the 

glutamatergic function possibly leading to excitotoxicity and neurodegeneration [153]. Hence, 

despite the existence of different endocrine homeostatic mechanisms that limit in time or moderate 

the stress response, a central GABA/glutamate unbalance in favor of brain network excitability can 

be considered a distinctive consequence of HPA activation. Such an effect can also be exacerbated 

under specific conditions, as reported by studies about a mental stressor test on humans. These 

experiments showed that the homeostatic Allo response to HPA activation was absent in 

postpartum women [154], and was negatively correlated with baseline Allo levels in men [155], thus 

possibly exacerbating the GABA/glutamate unbalance. 

 

3.3.2. The endocrine loop 

3.3.2.1. Double-inhibitory interplay between the HPG and HPA axes 

 In the arguments above, HPG and HPA axes have been considered to operate as single units, each 

affecting neurotransmission independently. However, evidence argues for the possibility that under 

specific conditions these axes behave as a unique system characterized by reciprocal inhibition on 

each other [108]. The consideration of the two endocrine axes as a unique system should not be 

considered as a universally valid paradigm as confirmed by inter-age and inter-subject endocrine 

variations [156, 157]. Literature data reported weak correlations between these axes in circadian or 

follicular-to-luteal fluctuations, while conversely, significant negative correlations were observed 
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for higher hormones fluctuations under perimenstrual, pregnancy, and stress conditions, or after 

pharmacological treatments [158]. Such a mutual inhibition of the endocrine axes has been reported 

to be involved in physiological processes [159, 160], but under specific conditions it could trigger 

pathogenic processes. 

 The inhibition of HPA is mediated by gonadal hormone activities. Androgens, progesterone, 

estrogens, and their metabolites modulate neurons belonging to the hypothalamic periventricular 

and paraventricular nuclei and the anterior pituitary. On the other hand, HPG repression is mediated 

by inhibitory activities of corticosteroids exerted on hypothalamic kisspeptin neurons, 

gonadotropin-releasing-hormone (GnRH) neurons, the anterior pituitary, and the gonads [159]. By 

analyzing progesterone and cortisol circadian levels in cycling and postmenopausal women, absent 

or slight correlations have been observed [161, 162]. Conversely, the HPG-HPA inhibitory interplay 

has emerged in case of higher hormone fluctuations. In gilt pigs, treatments inducing elevated 

concentration of cortisol, but not acute elevation, have inhibited the luteinizing hormone (LH) surge, 

and consequently estrus and ovulation [163]. Experiments on female monkeys have revealed 

decreased progesterone availability to target organs after cortisol tissue infusion [164]. By 

considering progesterone variations in pregnant women, an inverse correlation with cortisol has 

been found [165, 166], while intravenous cortisol infusion has caused transient progesterone, 

estrogen, and androgen suppression [167]. Studies performed on eumenorrheic women treated 

with hydrocortisone at early follicular phases have shown a scaling down of the pulse frequency of 

hypothalamic gonadotropin-releasing hormone (GnRH) and pituitary LH [168]. Allo and cortisol 

levels have been investigated in the premenstrual dysphoric disorder (PMDD), finding higher Allo 

and lower cortisol nocturnal levels compared with healthy controls [169]. In an in vitro cell culture-

based study, cortisol has been found to cause pre-labor progesterone withdrawal in pregnant 

women, confirming its anti-progestinic effect [170]. The HPG-HPA interplay can also arise from an 

indirect mechanism due to the decreased availability in pregnenolone for progesterone synthesis 

during increased cortisol production [157]. 

 In mammal males, interactions between the two endocrine axes have also been observed. In 

rams and bulls, after treatment with synthetic dexamethasone, lowering effects on testosterone 

and circulating LH have been observed [171, 172]. Pharmacological treatment in human adult males 

inducing plasma cortisol rise has shown a reduction on circulating testosterone concentrations 

[173]. Similarly, in human males the cortisol increase due to endurance exercise has induced a 
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reduction of testosterone, whereas conversely, testosterone replacement has lowered the cortisol 

excursion induced by corticotropin-releasing hormone (CRH) stimulation tests [174]. 

 

3.3.2.2. Molecular mechanism involved in the double-inhibitory interaction between HPG-HPA  

 The HPG-HPA inverse correlation can be explained by different mechanisms. In vertebrate 

models, HPG axis repression is due to stress-induced glucocorticoids which act by stimulating 

gonadotropin-inhibitory hormone (GnIH) neurons or by inhibiting GnRH neurons [175-177]. In 

experiments on castrated male rats, the release of CRH has been found to inhibit the LH release 

following electroshock-induced stress [178]. On the other side, in pregnant women and female rats 

HPA inhibition has been shown to depend on GABAergic inhibition induced by high Allo levels [179-

181]. One of the widest hormones fluctuations in humans is plasma progesterone induced by LH 

surge at ovulation and during the luteal phase [182]. Pituitary LH secretion has been finely 

reconstructed in rodents [183, 184]. Two neural populations, one is located rostrally in the preoptic 

area (POA) and the other one more caudally in the arcuate nucleus (ARC), release the 

neurotransmitter kisspeptin which is known to activate GnRH neurons, thereby stimulating the 

pituitary [185]. The POA kisspeptin neurons induce the large GnRH and LH surge before ovulation 

and are modulated by a positive estradiol feedback [184]. The ARC kisspeptin neurons are 

responsible for the pulsatile, small GnRH and LH release and receive negative feedback by estradiol. 

Sexual dimorphism has been found in both neural populations in humans and sheep, while lower 

kisspeptin neurons were observed in male rodents in the rostral periventricular area of the third 

ventricle, possibly explaining male inability of mounting the estrogen-induced LH surge [186]. Even 

though gonadotropin release is modulated by estradiol, many GABA and glutamate receptors are 

expressed on GnRH and kisspeptin neurons, suggesting a relevant modulatory role for these 

neurotransmitters [187, 188]. GABA was reported to exert both excitatory and inhibitory effects on 

GnRH neurons [183, 189, 190], but only inhibitory effects on kisspeptin neurons [191, 192], while 

glutamate generally induces excitation on the same neurons [186, 193, 194]. However, the 

emerging effect is a GABAergic inhibition of LH surge [190, 195] and its stimulation by glutamate 

[103, 108]. The LH surge has also been found to occur concomitantly with a decline of GABAergic 

transmission, involving both GnRH neurons and POA kisspeptin neurons [193, 196]. 

 By considering the HPA axis, CRH neurons of the hypothalamic paraventricular nucleus belong to 

an intricate neural circuit involving limbic, cortical, and brainstem areas, which modulate the 

endocrine response to psychosocial and environmental inputs. In addition, regulation orchestrated 
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by glutamate, GABA, and norepinephrine, is required to guarantee proper CRH neuron activity [197-

199]. Glutamate exerts excitatory effects on CRH neurons, whereas GABA induces tonic and phasic 

inhibition by acting through extrasynaptic or synaptic receptors, respectively [200]. The CRH release 

is modulated by noradrenergic inputs which originate from the brainstem and act on peri- and 

paraventricular glutamatergic and GABAergic interneurons, respectively. Norepinephrine has been 

found to either suppress or enhance the GABAergic inhibitory activity, while the norepinephrine 

excitatory effect on the HPA axis mainly occurs via a glutamate release on CRH neurons [199].  

 The modulation of CRH neurons is the result of a complex polysynaptic route involving different 

brain regions that integrate social and psychogenic stressor stimuli. These pathways include the 

amygdala, prefrontal cortex, hippocampus, peri-paraventricular neurons, medial preoptic area, and 

the bed nucleus of the stria terminalis. The converging site of these routes is the GABAergic 

regulation of CRH neurons, which is stimulated by inputs deriving from the prefrontal cortex and 

the hippocampus (downregulating the stress response), and inhibited through the amygdala 

activation (stimulating the stress response) [201]. However, after acute and chronic stress, the 

GABAergic synapse shows different kinds of plasticity. For example, after norepinephrine increase 

due to stress conditions, the GABA synapse on CRH neurons becomes excitatory because of the 

disruption of the chloride gradient. This phenomenon attenuates the inhibition of GABA on the HPA 

axis [202]. 

 

3.3.2.3. Quantitative evidence of the double-inhibitory HPG-HPA interaction 

 To develop a mathematical model describing the interplay between HPG and HPA, we started by 

analyzing literature data about the correlation between plasma levels of gonadal hormones and 

glucocorticoids. As stated above, in studies on humans and animals, hormone measurements 

revealed positive correlations or weak correlations for hormone circadian oscillations [203-205]. On 

the other hand, significant negative correlations were shown by studies reporting the following 

data:  

 - glucocorticoid plasma concentrations after stress condition, together with the reciprocal 

gonadal hormone fluctuations 

 - gonadal hormone plasma concentrations induced by pharmacological treatments or by 

pregnancy, together with the reciprocal alterations of glucocorticoids (Table 5).  

 Dose-response relationships were obtained by using as input (independent) variable the 

plasmatic concentration of the hormone whose variations have been induced by reproductive, 
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environmental, or pharmacological effects, and as output (dependent) variable the values of the 

other hormone (Table 5). 

 

Table 5. Parameters of the Hill functions obtained from different matched samples of gonadal 

hormone plasma levels and the corresponding corticosteroid plasma levels. 

x1  y2 e3 h4 n5 p6 Species Refs. 

Corticosterone Progesterone 1 4.2 6 < 0.001 chicken  [206] 

Corticosterone Testosterone 5 3.9 4 < 0.001 chicken  [206] 

Cortisol Testosterone 28 5.2 6 < 0.001 rabbit  [207] 

Cortisol LH 28 2.4 13 < 0.001 swine  [163] 

Cortisol Progesterone 23 8 8 < 0.001 humans  [208] 

Cortisol Testosterone 22 6 10 < 0.001 men  [209] 

Cortisol Testosterone 48 2.4 71 < 0.001 men  [173] 

        

        

Progesterone Corticosterone 32 3.5 11 < 0.001 chicken  [210] 

Testosterone Cortisol 17 7.3 6 < 0.001 rabbit [207] 

Testosterone Cortisol 58 7.5 12 < 0.001 rabbit [207] 

LH Cortisol 50 7.5 6 < 0.001 rabbit [207] 

LH Cortisol 51 4.1 12 < 0.001 rabbit [207] 

Testosterone Cortisol 23 1.5 71 < 0.001 men [173] 

Progesterone Cortisol 64 3.8 23 < 0.001 women  [165] 

Progesterone Cortisol 65 8 6 < 0.001 women  [211] 

        

        

 287 4.27     

1Variable used as input (hormone plasma levels standardized according to a [0,100] interval); 2variable used 

as output (see input variable); 3half-saturation constant of the Hill function; 4Hill coefficient, 5number of 

observations; 6p-value of the correlation; 6median values of half-saturation constants and Hill coefficient.  

 

 By considering the median value of the Hill coefficient for the endocrine axis interplay ℎ =  4.2 

(Table 5), and the Hill coefficient representing the allopregnanolone genomic effect on GABAA, ℎ =

 6.5 (Table 4), it is worth noting that these values are higher than those belonging to the input-

output neuron firing rate relationship of our thalamocortical model ℎ =  2.5 [107], and the 

modulatory effect of allopregnanolone on GABAA, ℎ =  2 (Table 4). The Hill coefficient measures 
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the cooperativity between interacting systems [212]. Hence, the lower values of ℎ reported for 

neuron electrophysiology with respect to that described for endocrine axes interplay can be taken 

as a confirmation that the Hill function is a suitable fit for the herein analyzed interactions, 

consistent with the notion that the Hill function fits stimulus-response data in a wide set of biological 

systems [46, 97, 213-216]. 

 

3.3.2.4. Dynamical model of the HPG-HPA interaction 

 After the estimation of the parameter values to be used in the mathematical expression of the 

inhibitory interplay between the HPG and HPA axes, we developed a mathematical model of the 

dynamical system. As reported from literature data, the activation of HPA and HPG is due to 

hypothalamic neurons receiving various inputs from different brain regions which are modulated, 

among others, by HPA and HPG hormones or their brain derivatives. Due to the paucity of 

quantitative and qualitative data for this set of interactions, we considered a schematic model 

including two macroscopic effects:  

 - the self-inhibition of each axis due to negative feedback loop;  

 - the double-inhibitory interaction between the two axes (mutual inhibition) emerging during 

wide fluctuations of corticosteroid and/or gonadal hormones. 

 We therefore considered a loop system made up of two elements, each representing one of the 

axes, as described in section 3.2.1.2.2, and illustrated in Figure 6.  

 

 

 

 

 

 

 

Figure 6. Simplified schematic diagram representing the double inhibitory and self-inhibitory loop system 

formed by the HPA and HPG endocrine axes. Line ends are as in Figure 1.  

 

 The system dynamics were mathematically described by two differential equations with two 

state variables representing the axis activities on a (0–100] scale (see section 3.2.1.2.2): 

 𝜏 ∙ 𝐻𝑎
̇ = 𝑓(𝐻𝑔)– 𝜉(𝐻𝑎) ∙ 𝐻𝑎                       (9) 
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 𝜏 ∙ 𝐻𝑔
̇ = 𝑓(𝐻𝑎)– 𝜉(𝐻𝑔) ∙ 𝐻𝑔                    (10). 

 Such a mathematical model accounts for both the negative feedback of each axis (self-limiting 

factor) and the mutual inhibition between axes (double-inhibitory, positive loop).  For each axis, the 

variation of activity over time depends on the activity of the other axis (mutual inhibition), according 

to a decreasing Hill function, and on itself, including a multiplying factor consisting of another 

decreasing Hill function (self-limiting element). The self-limiting functions 𝜉(∙) are decreasing Hill 

functions that take values within the interval (1,5) (section 3.2.1.2.2). When 𝜉 → 5, the self-limiting 

effect of each axis becomes dominant over mutual inhibition and the two axes behave as 

independent systems modulated by their own self-inhibition. On the other hand, when 𝜉 → 1, the 

mutual inhibition between the axes emerges and the system behaves as a double-inhibitory positive 

loop admitting two stable equilibrium points represented alternatively by high 𝐻𝑎 and low 𝐻𝑔, or 

low 𝐻𝑎 and high 𝐻𝑔. In the differential equations describing mutual inhibition both axes share the 

same parameters, which were set equal to the median values of data shown in Table 5. The time 

constant 𝜏, representing the timescale of the response of each element, was set to 30 min, a 

common delay in endocrine responses. The parameters of the self-limiting Hill function were set so 

to obtain a system behavior consistent with the observed correlation pattern between HPA and HPG 

at different intensities of their activity. The parameter values are shown in Table 6. 

 

Table 6. Parameter values adopted in the system of differential equations representing the 

interactions between the endocrine axes (see Section 3.2.1.2.2).  

 

Interaction type Form of the Hill function Parameter 
value 

Dimension 

Double inhibitory 
interaction 

𝑓(𝑥) =
100

1 + (
𝑥
𝑒𝑥

)
ℎ𝑥

 
𝑒𝑥 = 28 ng/mL 

ℎ𝑥 = 4.2 dimensionless 

    

Limiting self-
interaction 

𝜉𝑥 = 1 +
4

1 + (
𝛼 ∙ 𝑥

𝑒𝜉
)

ℎ𝜉
 

𝑒𝜉  = 25.57 ng/mL 

ℎ𝜉  = 6.6 dimensionless 

 = 0.48 dimensionless 
 

 

 The computational analysis of the system dynamics revealed the existence of three different 

stable equilibrium points, as represented by the phase portrait of Figure 7. As for FM pathogenesis, 

it is worth to consider the system behavior for extreme values of the variables HPG and HPA. When 
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both variables assume high values (upper-right corner in the phase portrait), 𝜉 → 1 for each axis, 

mutual inhibition between axes is stronger, and a positive loop is then established, which should 

drive the system trajectories towards either of the steady states at the upper-left or lower-right 

corner of the phase portrait. However, the mutual inhibition initially induces the decrease of both 

variables, which makes the value of 𝜉 to increase, so that the self-limiting effect of each axis 

becomes stronger. Hence, the trajectories of the system end up converging to the steady state 

characterized by a low activity of both axes (lower-left corner in the phase portrait). More evidently, 

at low or medium activity of both axes the system falls on the same lower-left equilibrium point, 

having the widest basin of attraction (Figure 7).  

 Such a convergence of the system should not be a fixed point since endocrine axes undergo 

circadian fluctuations and never reach a constant level of activity. Hence the system trajectories 

should converge on a limit cycle having the form of a Lissajous figure, i.e. the combination of two 

independent cycles with different periods, describing the HPA and HPG circadian fluctuations. 

However, with the aim of building a pathogenesis model, these circadian fluctuations can be 

neglected because their range is confined with respect to the wide fluctuations expected to be 

relevant for FM pathogenesis.  

 On the other hand, when one variable is high and the other is low, the self-limiting loops do not 

dominate over the double-inhibition loop and the system tends to fall on either of the equilibrium 

points at the lower-right or upper-left corners of the phase portrait (Figure 7). The attraction basin 

of the lower-right equilibrium point is representative of a functional zone in which the HPG activity 

is very low, e.g. due to Allo withdrawal, whereas HPA has a high level of activity, e.g. due to stressful 

conditions.  
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Figure 7. Diagram of the phase portrait of the loop system describing the mutual interaction between HPG 

and HPA, as reported in Figure 6. The diagram shows the basins of attraction (black lines) of three stable 

equilibrium points (black dots), derived through computational analysis by using equations (9) and (10) with 

the data of Table 6. The equilibrium point leading to FM pathogenesis is the point of convergence of the basin 

of attraction at the bottom right, corresponding to high HPA and low HPG values.  

 

3.3.3. Comprehensive multistable model of FM pathogenesis 

 The HPA-HPG mutual inhibition gives rise to a positive loop and therefore, the dynamical system 

can be considered a candidate multistable system admitting multiple equilibrium points [29]. So, 

like the thalamocortical loop, the endocrine loop can behave as a switch giving rise to 

pathophysiological processes [44]. As previously reported, the switching of the endocrine loop to 

the steady state with high-HPA and low-HPG levels could induce sustained GABAergic weakening 

and glutamatergic strengthening in the thalamocortical loop involved in the pain processing 

pathway. These conditions increase the probability of the thalamocortical loop to cross the 

bifurcation point, with the result of a transition to bistability and an immediate tendency to fall on 

a steady state characterized by hyperexcitation, which is presumed to cause the development of 

FM (Figure 8). To conclude, the pathogenesis model that we have hypothesized, consisting of two 

dynamical systems interconnected with each other, explains the insurgence of FM by starting from 

the primary causes that perturbate the endocrine mechanisms. The resulting high-firing-rate activity 
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of the thalamocortical loop is assumed to induce disturbed pain processing accompanied by the 

insurgence of chronic pain. Moreover, cascade events depending on the pain processing disorder, 

or alternatively, a parallel occurrence of GABA/glutamate unbalance in other brain networks, could 

explain the set of symptoms that characterize, besides pain, the FM syndrome. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Schematic representation of the FM pathophysiological process based on the dynamics of our 

multistable model. If the endocrine dynamical system formed by the HPA-HPG mutual inhibitory interaction 

crosses the boundary of the basin of attraction with high HPA/ low HPG equilibrium point (top diagram, red 

area), then the GABAergic branch of the thalamocortical loop becomes weakened (left-bottom diagram). This 

functional state characterized by stress response corresponds to an increased value of b in the differential 

equations representing the thalamocortical system (see section 3.2.1.2), e.g. increasing from 𝑏 =  0.5 to 

𝑏 =  0.6. The functional state also involves a value of 𝑎 < 𝑎̂ in the same equations, e.g. 𝑎 =  0.13, 𝑎̂ =

0.16 (see section 3.3.1.5.2). Hence, the combination of GABAergic weakening and glutamatergic 

strengthening leads the thalamocortical system to cross a bifurcation point and to acquire bistability, with a 

tendency to jump to a high-firing-rate equilibrium point (right-bottom diagram). Top diagram: HPA and HPG 

are variables representing the percent activities of the HPA and HPG endocrine axes, e.g. cortisol (HPA) and 
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progesterone (HPG) plasma concentrations. Right-bottom diagram: bifurcation diagram showing curves 

reporting the steady states of variables S (primary somatosensory cortex) as a function of the bifurcation 

parameter 𝑎 (see Figure 3), and depicting the transition of the thalamocortical loop from low-firing-rate 

equilibrium to high-firing-rate equilibrium for decreasing values of 𝑎.  

 

3.3.4. First validation of the FM pathogenesis model by questionnaire data 

3.3.4.1. Sociodemographic characteristics 

 The questionnaire survey received a total of 352 answers by FM patients. Only 324 participants 

expressed about the gender and 88% of these respondents were females. The average age was 47.9 

years. Other main features were high education level (81% academic degree/upper secondary, PhD 

or equivalent), grey-collar or white-collar job (about 50%), and married or cohabitant (about 60%). 

Also, half of participants had children (Table 7). 

 

Table 7. Demographic data (percent distribution) in the population of questionnaire respondents (n 

= 352).  

Gender Female Male No answer    
 88.1 4.0 7.9    
       

Education Primary 
Lower 

secondary 
Upper 

secondary 
Academic 

degree 
PhD or 

equivalent 
No 

answer 
 1.4 17 55.7 18.5 7.1 0.3 
       

Marital status Single 
Married/ 

cohabitant 
Separated
/ divorced 

Widowed   

 22.2 59.9 15.6 2.3   
       

N. of sons 0 1 2 3 > 3  
 37.2 28.4 25.9 6.8 1.7  
       

Employment 
Grey-
collar 

White-
collar 

Blue-collar Shopkeeper Unemployed 
No 

answer 
 39.8 11.9 8.8 3.4 35 1.1 

Reproduced with permission from Healthcare [217], Creative Commons Attribution (CC BY) license 

(https://creativecommons.org/licenses/by/4.0/). 

 

3.3.4.2. Clinical features 

 Data showed diagnostic delay and age of onset consistent with statistics from similar studies. The 

obesity prevalence was confirmed by the body mass index (BMI > 30) (Table 8). FM participants 

reported symptoms other than pain and comorbidities as follows: brain fog, fatigue, sleep 

https://creativecommons.org/licenses/by/4.0/
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disturbance, dizziness, anxiety, headache, photophobia, irritable bowel, depression, and diplopia. 

These symptoms are shown in Figure 9 together with their relative frequencies. 

 

Table 8. Clinical characterization of participants (n = 352).  

 Min Q1 Median Mean  s.d. Q3 Max 

Height (cm) 147 160 163 164  6 168 193 

Weight (Kg) 39 57 65 67.9  15.4 76 125 

BMI 15.6 21.3 24.2 25.3  5.4 28.3 45.9 

Patient age 
(years) 

18 41 50 47.9  10.8 56 86 

Age-of-onset 
(years) 

13 36 44 42.3  10.1 50 83 

Disease 
duration (years) 

< 1 5 9 11.7  9.3 15 49 

Diagnostic 
delay (years) 

< 1 1 3 6.35  6 8 48 

Reproduced with permission from Healthcare [217], Creative Commons Attribution (CC BY) license 

(https://creativecommons.org/licenses/by/4.0/). 

 

  

 

 

 

 

 

 

 

 

 

Figure 9. Symptoms aside from pain reported by questionnaire respondents and expressed as percent 

relative frequencies. (n= 352).  Frequencies lower than 4% were not considered [217]. Reproduced with 
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permission from Healthcare [217], Creative Commons Attribution (CC BY) license 

(https://creativecommons.org/licenses/by/4.0/). 

 

3.3.4.3. Psychological profile 

 Concerning the psychological profile of the studied population, the clinical cutoffs of CBA-H scores 

showed the emergence of anxiety state, low mood, and excessive emotional involvement (Figure 

10). The SREIS test indicated a high probability of emotional instability due to the ability of perceiving 

emotions, but with a low capacity of self-managing them (Figure11). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. Boxplot of the CBA-H test score distribution, A, B and C sections. Scale legend, Part A: A = Anxiety 

state; HF = Fears associated with health-care routine; SD = Situational depression. Part B: PS = Psychophysical 

stress; PW = Perceived wellbeing; ED = Depression. Part C: HI = Haste and impatience; I = Irritability; H = 

Hostility; ID = Difficulties in interpersonal relationships, EI = Excessive emotional involvement; IV = State of 

introversion, IR = State of inability to relax; N = State of neuroticism; LC = leadership and competitiveness; SA 

= State of social anxiety (n = 352) [217]. Reproduced with permission from Healthcare [217], Creative 

Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). 

 

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
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Figure 11. Boxplot of the different scores of the SREIS test. Scale legend: PER = Ability of perceiving emotions; 

SMA = Ability of social management of emotions; USE = Use of emotions; MS = Ability of managing emotions 

“self”; UND = Ability of understanding emotions (n = 352) [217]. Reproduced with permission from Healthcare 

[217], Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). 

 

 

3.3.4.4. Evaluation of Pain 

 Participants reported an average pain intensity of 6.4 ±1.8, on a scale ranging from 0 to 10. This 

value refers to the week before the questionnaire compilation. A large portion of patients reported 

a pain level above 6, meaning moderate-to-severe pain. Among the values of the different types of 

pain, pressure pain emerged as the most frequent. In dendrogram analysis, pressure pain resulted 

the most uncorrelated from the other pain types, which in contrast formed correlated clusters 

(Figure 12). 
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Figure 12. Scores of each pain type reported by patients (n = 352). (Top) Boxplots of each pain type 

experienced by subjects during the last week before answering the questionnaire. (Bottom) Pain type cluster 

dendogram obtained by average linkage of pairwise correlations (distance = 1 – correlation coefficient). 

Legend: occas. pain = occasional pain, light cont. = light contact [217]. Reproduced with permission from 

Healthcare [217], Creative Commons Attribution (CC BY) license 

(https://creativecommons.org/licenses/by/4.0/). 

 

 

 The PD-Q test (Cronbach’s alpha= 0.78), characterizing peripheral or central pain, highlighted the 

prevalence of elevated scores, with a mean value of 21.48, a median of 22, and an interquartile 

ranging from 17 to 27. Participants were subdivided into three specific pain categories, defined by 

the test cutoffs: high, low, and intermediate levels (Figure 13). From this analysis, a marked 

prevalence of high scores emerged, meaning a prevalence of pain associated to central pain 

processing [110]. Such a result is consistent with the notion of nociplastic pain used to characterize 

FM painful symptoms [218]. 

https://creativecommons.org/licenses/by/4.0/
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Figure 13. PD-Q score cumulative frequency, including cut-offs (vertical lines) for pain categories indicating 

increasing likeliness for central pain (n = 344). Score classification into three groups according to pain 

categories revealed a significant divergence from uniform distribution (-squared test, p < 0.001) [217]. 

Reproduced with permission from Healthcare [217], Creative Commons Attribution (CC BY) license 

(https://creativecommons.org/licenses/by/4.0/). 

 

 A correlation analysis between PD-Q scores and CBA-H cut-offs showed that when CBA-H 

indicated a clinical concern in a specific category, the PD-Q score was higher (Figure14). Significantly 

higher PD-Q scores were found associated to health-care related fears, inability to relax, 

interpersonal difficulties, situational depression, impatience, and haste. Consistently, an opposite 

trend was found for psychophysical wellbeing. 

https://creativecommons.org/licenses/by/4.0/
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Figure 14. Correlations between CBA-H categories and PD-Q. For each CBA-H category, PD-Q scores were 

classified according to the related cut-off and the obtained two data groups were represented by boxplot 

diagrams. The two groups are indicated by the labels YES (altered condition), and NO (unaltered condition), 

except for Psychophysical wellbeing (PW) where YES represents the unaltered condition. The boxplots are 

relative to the categories for which significant differences were observed (p < 0.05. Mann Whitney). (A): HF 

= Fears related to health care; SD = State of situational depression; A = State of anxiety. (B) ED = State of 

depressive mood; PW = State of psychophysical wellbeing. (C) HI = State of haste and impatience; IR = State 

of inability to relax; ID = Difficulties in interpersonal relationships [217]. Reproduced with permission from  
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Healthcare [217], Creative Commons Attribution (CC BY) license 

(https://creativecommons.org/licenses/by/4.0/). 

 

3.3.4.5. Effectiveness of treatments 

 The effectiveness of therapies that was reported by participants showed prevalently a better 

response to non-pharmacological than to pharmacological treatments (Figure 15). Such a difference 

was confirmed by a dendrogram analysis that revealed the clustering of most non-pharmacological 

treatments (Figure 15). PD-Q test categories were used to further explore the patterns of the 

perceived therapy effectiveness. Each therapy was reported in terms of average effectiveness 

perceived by subjects who were classified as “high” or “low” in the PD-Q test. The related plot 

confirmed the higher efficacy of non-pharmacological treatments with respect to pharmacological 

ones, except for instrumental physical therapy and acupuncture. Also, subjects rating as “low” in the 

PD-Q test were associated to higher effectiveness for most therapies, suggesting a negative 

correlation between the degree of pain and the effectiveness of treatments (Figure 15). Statistical 

comparisons by the Wilcoxon test showed that non-pharmacological treatments were judged more 

effective than pharmacological ones by the whole population of patients (n = 344, p = 2.03e-11). 

The same result was obtained by analyzing separately “high” subjects (n = 233, p = 5e-08) or “low” 

subjects (n = 38, p = 0.018). Mind-body therapies were reported as the most effective in absolute.  
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Figure 15. Efficacy of therapies as classified by FM patients. (Top left chart) Bars indicate the sum of the 

relative frequencies of the 2 top ratings (namely ‘good’ and ‘excellent’) out of 5. The number above each bar 

indicates valid responses. Lighter bars: non-pharmacological therapies; darker bars: pharmacological 

therapies. (Top right chart) Average-linkage dendrogram based on pairwise correlations among therapies. 

Pharmacological therapies = blue; non-pharmacological therapies = red (see Figure 12). (Bottom charts) Plots 

of the averages of therapy efficacies calculated from the values reported by subjects classified as ‘low’ or 

‘high’ in the PD-Q test. In the left bottom chart, the perpendicular dotted lines intersect the axes at global 

average values. In the right bottom panel, the dotted line is the axes bisector. Non-pharmacological 

therapies: mass = treatment with massage; acup = treatment with acupuncture; psycho = treatment with 

psychotherapy; phys = treatment with physical therapy; diet = treatment with diet; relax = treatment with 

relaxation; instr = treatment with non-invasive instruments. Pharmacological therapies: NSAID = non-steroid 

anti-inflammatories; analg = analgesic drugs; antid = antidepressant drugs;  ster = steroid drugs. Reproduced 

with permission from Healthcare [217], Creative Commons Attribution (CC BY) license 

(https://creativecommons.org/licenses/by/4.0/). 
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 By considering the intensities of the different pain types, the higher effectiveness of non-

pharmacological therapies with respect to pharmacological ones was confirmed, even though 

increased pain severity was often associated to a reduction of non-pharmacological prevalence 

(Figure16). 

 The correlation between the perceived effectiveness of non-pharmacological and 

pharmacological treatments and the CBA-H clinical cutoffs showed that the efficacy of non-

pharmacological treatments could depend on the psychological profile of patients, with lower 

effectiveness perceived by patients with introversion, interpersonal difficulties, inability to relax, and 

emotional instability (Figure17). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 16. Efficacy of treatments classified by the intensity of pain types.  The delta between the average 

efficacies of non-pharmacological and pharmacological therapies is calculated for each pain type at different 
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levels of intensity. Reproduced with permission from Healthcare [217], Creative Commons Attribution (CC 

BY) license (https://creativecommons.org/licenses/by/4.0/). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17. Boxplots of the delta between the average efficacies of non-pharmacological and pharmacological 

treatments (see Figure 16) for different categories of the CBA-H test. The YES and NO conditions are based 

on the cutoffs of the CBA-H categories (see Figure 14). Only categories showing significant differences 

between YES and NO conditions are reported (Mann Whitney, p < 0.05). ED = State of depressive mood; ID = 

Difficulties in interpersonal relationships; SA = State of social anxiety; IV = State of introversion; IR = Inability 

to relax. Reproduced with permission from Healthcare [217], Creative Commons Attribution (CC BY) license 

(https://creativecommons.org/licenses/by/4.0/). 

 

3.3.4.6. Correlations between pain scores and vestibular symptoms 

 The statistical analysis of SVQ and DHI scores showed higher values in FM patients with respect 

to control subjects  (Figure 18). These differences were statistically significant (p < 0.01) according 

to the Wilcoxon rank sum test, revealing a higher incidence of vestibular symptoms in FM patients. 

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
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 In addition, the correlation between DHI and PD-Q scores was measured by  the Spearman’s rank 

correlation coefficient, finding a value of s = 0.443. The correlation between DHI scores and pain 

intensity in the last week showed a Spearman’s rank coefficient of about 0.346. Similarly, SVQ scores 

were correlated with pain intensity and the PD-Q test, with s = 0.253 and s = 0.349, respectively. 

These correlations revealed higher scores of DHI and SVQ are associated higher intensities of 

perceived pain. 

 

 

Figure18. Boxplot charts of the Dizziness Handicap Inventory (DHI) scores, and the Situational Vertigo 

Questionnaire (SVQ) scores recorded in control subjects and FM patients participating in the questionnaire. 

 

3.4. FM pathogenesis model: Discussion 

3.4.1. Consistency between the model and clinical data 

 We have explained a pathogenesis model of FM supported by experimental evidence reported 

in the literature. This model starts from previous studies from our laboratory, concerning a 

thalamocortical loop network system [107], and a literature review of FM during pregnancy [219]. 

The new model explains the link between FM brain network dysfunctions and constitutive or 

environmental conditions such as sex and stressful stimuli, which are strictly correlated to FM 

insurgence. The link between these elements consists in the modulation performed by the HPG and 

HPA axes on pain-processing pathways, possibly causing disorders also in other brain regions 

through cascade or parallel processes, and supposed to give rise to the wide cluster of FM 

symptoms.  

 Our model predicts that low HPG activity is an essential condition for the development of FM. 

This is supported by epidemiological data about the higher incidence of FM symptoms in women 

with suspected or proven infertility caused by gynecological disorders. Also, the model is based on 

the mutual inhibition between HPG and HPA, and this view is supported by evidence that some 

gynecological disorders, including ovarian dystrophy, ovarian cysts, uterine disorders, menstrual 
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alterations, miscarriage, and stillbirth, have been related to HPG depression caused by HPA 

hyperactivation [220]. Furthermore, our model is confirmed by data about the alleviating effect of 

progesterone and testosterone, but not estradiol, on FM pain severity [124].  

 The model also provides an explanation for FM female prevalence. In females, progesterone and 

Allo levels sharply decrease in prepartum and premenstrual phases, causing Allo withdrawal in the 

brain. Therefore, the possible combination of stress conditions, inducing HPA upregulation, with an 

abrupt neurosteroid fall is expected to amplify the unbalance between HPG and HPA activity, thus 

creating the thalamocortical hyperexcited state that is considered pathological according to our 

model. In males, Allo levels also undergo variations but with lower fluctuations [155], thus reducing 

the probability of FM insurgence. Female prevalence could also be explained by considering the 

positive modulation of estradiol on the NMDAR glutamate receptor [221], acting in antagonism to 

progestin positive modulation of GABAA. Moreover, in women the maximum efficacy of the HPA 

activator ACTH occurs between 30-60 years of age [222], corresponding to the age range of 

maximum FM incidence. Conversely, in men ACTH efficacy has been found to decrease in the same 

period [222]. Finally, a reduction of the negative feedback of HPA induced by cortisol has been 

observed in aging women [223].  

 The explanation of a new mechanism of FM pathogenesis by our model suggests the 

identification of new therapeutic targets. Neurosteroids are hypothesized to be the factors 

mediating the effects of HPG and HPA variations on the central nervous system. This prediction is 

supported by correlations between neurosteroids and neurological alterations including epilepsy, 

psychiatric disorders, anxiety, and post-partum depression [146, 224]. The most studied condition 

from this point of view is catamenial epilepsy, consisting in the exacerbation of perimenstrual 

seizure. The pathogenic mechanism of this disease involves the alteration of various steroids, such 

as THDOC, DHEA-S, cortisol [225], and/or premenstrual Allo withdrawal [226]. The above-cited 

PMDD is another example of disorder involving an increased sensitivity to stress during the late 

luteal phase caused by low Allo levels, involving a reduced GABA control of the HPA axis [227].  

 Even though the pathogenic mechanisms of these disorders have not been fully disclosed yet, 

neurosteroids seem to be unquestionably involved, suggesting the development of therapies based 

on these compounds or their synthetic analogues. Many neurosteroids acting as positive allosteric 

modulators of GABAA receptors have shown anticonvulsant effects in preclinical studies performed 

on catamenial epilepsy models in the rat [228]. Progesterone has been tested in preclinical studies, 

as well as its synthetic progestin norethisterone and the gonadotropin antagonist goserelin [144, 
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226]. Neurosteroids with positive GABAA modulation have both antidepressants and anxiolytic 

properties, while their targets include both γ-type and δ-type GABAA receptors, whereas 

benzodiazepines act only on γ-type ones, possibly explaining the absence of antidepressant effects 

of these latter [229]. The efficacy of neurosteroids has been confirmed in different psychiatric 

alterations, such as insomnia and essential tremor [229], in accordance with the hypothesis that 

these syndromes could share similar neural alterations [230]. Different neurosteroids have been 

already tested in clinical trials, among which brexanolone has been already approved by FDA for the 

treatment of post-partum depression. The administration of this drug is complicated by the need of 

infusion and by relevant side effects, including nausea, somnolence, and dizziness [231]. Zuranolone 

(SAGE-217), an analogous of brexanolone with good oral bioavailability and lower side effects, has 

been tested for severe depression conditions [232, 233], and has been approved by FDA for post-

partum depression [234]. 

 

3.4.2. Consistency between the model and questionnaire results 

 By using an online validated questionnaire, we aimed at obtaining information about FM 

patients, consistent with the idea of FM as a central, multisensorial syndrome. The analysis of the 

main clinical and sociodemographic features of participants confirmed the standard profile of FM 

patients. A significant female prevalence emerged, with symptoms generally starting at adult age 

prior to menopause. Aside from pain, other symptoms were reported by patients, in accordance 

with current FM diagnostic guidelines [61]. Difficulties in the clinical management of patients were 

confirmed by the diagnostic delay (mean = 6.35  6 years) and the poor outcome of pharmacological 

treatments, in most cases less efficient than body-mind applications. These drawbacks are possibly 

linked to poor knowledge of etiology and lack of clinical biomarkers. According to the EULAR 

recommendations (European League Against Rheumatism), a prompt diagnosis is fundamental to 

select the correct treatments and for a better patient management in terms of symptoms such as 

pain and also from the psychosocial point of view [235]. 

 Overall, the questionnaire data provide support to our model, suggesting the nature of FM as a 

central problem with sharp female prevalence. 

 

3.4.3. FM as a multisensory disorder 

 The known pattern of pain perceived by FM patients was confirmed by our data. Pressure pain 

resulted the dominant pain type, consistent with the diagnostically relevant presence of tender 
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points in the disease. The CBA-H test indicated the absence of true psychopathological disorders, 

but nevertheless, the significant presence of low mood, anxiety, and emotional discomfort related 

to pain. Hence, high pain scores could reflect an overestimation deriving from pain catastrophizing 

[236]. These results are consistent with the revised pain definition established in 2020 by the 

International Association for the study of Pain: “An unpleasant sensory and emotional experience 

associated with, or resembling that associated with, actual or potential tissue damage”, highlighting 

that pain is a personal experience influenced by physiological and psychosocial factors, and that 

individuals develop the concept of pain through their life experiences [237].  

 Aside from pain, other symptoms are consistent with typical FM patterns, while problems 

concerning vestibular perception, vision, and tinnitus suggest that a hypothesis of FM as a multi-

sensory disorder deserves to be considered [238]. The emergence of different sensory alterations 

suggests the possible relevant role of the thalamus in FM insurgence, also considering the 

similarities in the thalamocortical arrangement of visual and pain processing [115, 239]. In 

conclusion, our data confirmed the new idea of FM as a multisensory, central disorder, in contrast 

with the idea of chronic pain disorder, and more in line with that of a central sensitivity syndrome 

[240]. 

 

3.4.4. Better efficacy of non-pharmacological therapies compared to pharmacological ones 

 The higher scores recorded for the efficacy of non-pharmacological treatments with respect to 

pharmacological ones highlights that the FM central disorder also involves the emotional spheres 

[241]. The preference for non-pharmacological treatments could indicate that these therapies 

alleviate the side effects of drugs. However, the apparent higher efficacy of diet, relaxation, and 

psychotherapy suggests that these treatments could act closer to the factors responsible for the 

onset of the disease [242, 243]. By contrast, the drugs that at present obtain the greatest consensus 

among physicians, including the antidepressants duloxetine, minalcipran, and amitriptyline, and the 

gabapentinoids gabapentin and pregabalin, have scarce effects on FM critical targets [244]. 

 

3.5. FM pathogenesis model: Conclusions 

 As shown above, the management of FM is disappointing, as confirmed by the low efficacy of 

both pharmacological and non-pharmacological strategies  [217, 244-246]. According to our model, 

it is possible to envisage that neurosteroids could be a new pharmacological option because of their 

modulatory activity on GABAA receptors. Benzodiazepines share the same target of neurosteroids 
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but they have no effect in FM patients [247]. On the other hand, neurosteroids are characterized by 

different pharmacological properties on GABAA receptors. Moreover, they are suitable to contrast 

the endocrine conditions that according to our model would trigger the disease. Neurosteroids are 

known for the treatment of neuropathic pain [248], but they have never been considered as a 

therapeutic option for FM. Conversely, our model predicts that neurosteroids could have a role in 

reverting the process of FM pathogenesis, thus providing insight for a link between this disease and 

different central disorders that are also prevalent in females. Consequently, our analysis suggests 

the use of synthetic or natural GABAA-active neurosteroids, or compounds with similar targeting 

properties, as a possible new horizon for the treatment of FM. 
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4. DEVELOPMENT OF AN IN VITRO MODEL OF BRAIN NETWORK AND ANALYSIS OF ITS 

FUNCTIONAL FEATURES 

4.1. In vitro brain network: Background 

 Brain networks are the high-order units of the human brain, consisting of a system of neural 

networks, i.e. dense networks of synaptically interconnected neurons. Hence, the human brain is 

characterized by an enormous complexity both from the biochemical and the morphological points 

of view. This poses strong limits to the understanding of the basic processes that rule the functioning 

of our brain. Investigating and analyzing these processes is therefore fundamental to understand 

how brain networks can move from a state of good functioning to a state of altered functioning. Our 

goal is therefore to build unifying models able to explain and predict the development of these 

neural processes. 

 By following the Loopomics hypothesis [44], in neural network disorders the pathogenic process 

can be modeled as an alteration of brain or neural networks arranged as loop systems. Therefore, 

the pathophysiological events leading to the disease should be studied by analyzing the dynamics 

of suitable network loop models. However, the optimal modeling of these loop systems requires to 

achieve detailed knowledge of the pattern of signal transmission among different neurons in neural 

networks, and among different neuron populations in brain networks. Such a goal can be pursued 

experimentally by reconstructing in vitro a system of different, interconnected neuron populations 

simulating a brain network, and then studying its dynamics through MEA devices.  

 Neural and brain networks are made up of different cell types, but the electrophysiological 

signals of neurons are a preferential readout since they can be accurately measured at different 

time and space scales. Various signals of neurons, including spikes, bursts, and local field potentials, 

can be recorded and analyzed [249]. Moreover, at the level of area subdivision, there is functional 

segregation for different stimuli. These properties are fundamental to obtain the rapid extraction 

of information and the generation of correspondent brain states [250].  

 Studies on the architecture of structural and functional brain networks have revealed that brain 

areas are not randomly and completely interconnected with each other [251]. Specific 

interconnections are generated by following a rather organized order where network communities 

interlinked by hub regions mediate communications processes between modules [251]. Literature 

data revealed significant evidence for modularity in neural systems and this property is of particular 

interest because blocks or subnetworks that are densely connected often correspond to specialized 

functional components. The correspondence between the functioning of brain processes and the 
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underlying connectivity dynamics is crucial not only for a basic knowledge of physiological processes 

but also for a targeted intervention on these processes in case of dysfunction [252, 253]. 

 The MEA technology can be used to study neural networks and to map the propagation of the 

electrophysiological activity among different neural populations. This technique allows to explore 

the possible interplay between connectivity and patterns of spontaneous [254], and stimulus-

evoked activity [255]. Questions about brain circuitry, dynamical states, and their interactions can 

be satisfied thanks to these in vitro models representing an optimal compromise between real brain 

and theoretical models. We have developed an in vitro model of brain network, by growing a system 

of different neuron populations on a MEA device and recording the electrophysiological activity of 

the system at multiple sites. This experimental model has allowed to disclose the essential elements 

of the activity pattern of the brain network, which realize the characteristic nonrandom features of 

its functioning. 

 

4.2. In vitro brain network: Materials and methods 

4.2.1. Realization of polymeric devices to be used on Micro-Electrode Arrays  

 Multiple network systems were realized in vitro by shaping network connectivity with 

polydimethylsiloxane (PDMS) polymer constraints. Circle masks and cross-shaped masks were 

fabricated from a mixture of PDMS prepolymer and the curing agent (Syligard 184, Sigma Aldrich) 

at a 10:1 (w/w) ratio and polymerized in an oven at 80 °C for 20 min. Circle masks were used to 

prepare one-network systems (1N). Cross shaped masks were used to separate four different 

interconnected regions and consist of cross-shaped plastic separators able to realize four 

compartments, obtaining four-network systems (4N) (Figure 19). The cross arms were about 2 mm 

long, 0.6 mm wide, and 0.3 mm thick. Both PDMS masks were sterilized in 70% ethanol for 20 min 

before being positioned on the active area of MEAs in a reversibly and perfectly aligned way. 
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Figure 19. a) Position of the PDMS cross mask on the MEA device. Electrode positions are indicated by black 

dots and the reference electrode is indicated by the black trapezoid on the left. b) Immunofluorescence 

microscopy micrographs of rat embryo cortical neurons at 18 days in vitro (DIV 18), showing nuclei (DAPI, 

blue) and microtubule-associated proteins (MAP2, green). c, d, e) Immunofluorescence micrographs of a 4N 

assemblies at DIV 5, DIV 8, and DIV 18, showing axons extending between different clusters (Tau protein, 

red), and dendritic microtubule-associated protein (MAP2, green). The vertical white lines indicate the area 

previously occupied by the cross mask. Scale bars: 100 µm. Reproduced with permission from Scientific 

Reports [256], Creative Commons Attribution (CC BY) license 

(https://creativecommons.org/licenses/by/4.0/). 
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4.2.2. Use of animals  

 Pregnant female Sprague-Dawley rats (175–200 g in weight at the beginning of the protocol, 350–

450 g at the end) were housed two per cage with a 12/12 h light/dark schedule (lights on at 7 a.m.), 

free access to food and water, controlled humidity, and temperature of 22 ± 1 °C. After 18-19 days 

of embryo development, the animals were anesthetized and sacrificed by beheading. Brain cortex 

tissue was excised and used for obtaining dissociated cell cultures. Experiments involving animals 

were carried out according to the ARRIVE guidelines established by the European Council (EU 

Directive 114 2010/63/EU) [257], and the Italian D.L. n. 26/2014. Experiments were approved by the 

University of Genova Ethical Committee and by the Italian Ministry of Health (Project authorization 

No. 2018-75f11.N.POG, 512/2015-PR and 140/2014-B-DGSAF24898). All experiments were carried 

out by minimizing the number of animals and their suffering. 

 

4.2.3. In vitro culture of primary neurons from rat embryo cortex 

 Cerebral cortices of E18-19 rat embryos were used to prepare primary cultures of neurons. First, 

under a stereotaxic binocular (Nikon SMZ-2T), cerebral cortices were isolated from embryos, 

deprived from meninges, and putted into cold Hank’s balanced salt solution (HBSS, Sigma Aldrich, 

W/O calcium and magnesium). Aliquots of cortices from 3 embryos were pulled together and 

exposed to an enzymatic digestion in 0.125% trypsin (Gibco Invitrogen) and 0.05% DNAse (Sigma-

Aldrich) in Hanks’ solution, for 18-20 min, in a water bath at 37 °C. The enzymatic digestion was 

stopped with Neurobasal medium (Gibco Invitrogen) complemented with 10% fetal bovine serum 

(FBS, Sigma-Aldrich) for 5 min, and then the tissue pellet was finely dissociated with a fine-tipped 

Pasteur pipette, until a milky suspension of cells was apparent. The resulting cell suspension was 

diluted in Neurobasal medium supplemented with 2% B-27 Supplement (Gibco Invitrogen), 1% 

stable L-Glutamine (GlutaMAX 100x, Gibco Invitrogen) and 1% PenStrep (Penicillin-Streptomycin 

Solution, Gibco Invitrogen), without serum. Finally, cells were plated on 4Q-MEA devices (Multi 

Channel Systems, Reutlingen, Germany, MCS), pre-sterilized and precoated with poly-L-ornithine 

(100 µg/ml, Sigma Aldrich). Aliquots of 10 µl cell suspension were put in each sector defined by the 

cross-shaped masks (4N systems), and aliquots of 50 µl cell suspension in circle masks (1N systems), 

realizing a final density of 1500 cells/µL. After about 2.5 h, Neurobasal medium was added to MEA 

to favor cell adhesion to the substrate, reaching a final volume of 1500 µL. Proliferation of glia cells 

was not prevented with any drug, to allow for healthy development of neurons [258]. Cell cultures 
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were grown in incubator with 5% CO2 and 95% humidity, at 37 °C. The cross-shaped masks were 

removed after 5 days from cell plating to permit the extension of neural fibers among the four 

different sectors. Also, half volume of Neurobasal medium was replaced with BrainPhys medium 

(StemCell Technologies) supplemented with 1% GlutaMAX, 2% NeuroCult SM1 (StemCell 

Technologies), and 1% PenStrep solution. Thereafter, half of the medium was changed twice a week 

to allow the development of mature neural networks with respect to morphology and function (Fig. 

19b). 

 

4.2.4. Protocol of immunofluorescence staining 

 For immunofluorescence analysis, cells were grown on coverslips as described above. After 

obtaining mature neural networks, cells were washed twice with phosphate buffer solution (PBS, 

Sigma-Aldrich) and fixed with a solution of 4% paraformaldehyde (Sigma-Aldrich) in PBS, pH 7.4, for 

15 min at room temperature. Cells were then permeabilized with 0.1% Triton-X100 (Sigma-Aldrich) 

in PBS, for 15 min at room temperature, and blocked with blocking buffer solution (BBS) consisting 

of 3% FBS in PBS for 40 min at room temperature, to avoid non-specific binding of antibodies. 

Afterward, cells were incubated overnight with primary antibody diluted in BBS, in a humified 

atmosphere at 4 °C. The following primary antibodies were used: Tau (axon microtubule-associated 

protein, mouse monoclonal, 1:500, Synaptic System), MAP2 (dendritic microtubule-associated 

protein, rabbit polyclonal, 1:500, Synaptic System). In addition, fluorescent labeling of nuclei was 

obtained with DAPI (1:1000, Synaptic System). Finally, cells were rinsed three times with PBS, 

exposed for 40 min at room temperature to either of the secondary antibodies: Alexa Fluor 488 

(1:700, Invitrogen), Alexa Fluor 549 (1:1000, Invitrogen), goat anti-mouse or goat anti-rabbit, and 

images were acquired with a fluorescence microscope (Olympus BX-51), equipped with a CCD 

camera (Orca ER II, Hamamatsu), and digitized with Image ProPlus software (Media Cybernetic). 

 

4.2.5. Protocols of data recording 

 A total of 6 biological preparations allowed us to plate cell cultures on a total of n = 35 MEAs, 

obtaining both 1N and 4N network systems. All 4N and 1N assemblies were recorded at day in vitro 

DIV = 18. To characterize the spontaneous electrophysiological activity of neural networks, we 

recorded the activity of n = 16 4N systems, and n = 11 1N systems used as controls. 

 To analyze the role of hyperpolarization-activated cyclic nucleotide-gated (HCN) channels 

(section 4.3.3) the HCN inhibitor ivabradine (IVB) was used. A total of n = 3 1N systems were used 
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to derive IVB dose-response curves of mean firing rate (MFR) inhibition, thus finding the IC50 (section 

4.2.8.4) and obtaining the suitable IVB concentration to be used in experiments. In addition, n = 5 

1N systems were treated with IVB at the concentration of 15 µM, derived from dose-response 

curves, to investigate neural network responses (section. 4.3.3). The summary of the entire dataset 

is reported in Table 9. 

  

Table 9. Summary of the dataset used in the MEA experiments.  

Experiment DIV n of 
MEAs 

Session duration 

Spontaneous electrophysiological activity of 4N 18 16 20 min 

Spontaneous electrophysiological activity of 1N 18 11 20 min 

Ivabradine dose-response curves on 1N and IC50 18 3 1 h 

Ivabradine effects induced on 1N 18 5 

10 min baseline + 

10 min ivabradine + 

10 min washout 
Reproduced with permission from Scientific Reports [256], Creative Commons Attribution (CC BY) license 

(https://creativecommons.org/licenses/by/4.0/). 

 

4.2.6. Recording of electrophysiological activity 

 Recordings of the spontaneous electrophysiological activity of neural networks were performed 

outside the cell culture incubator and started 5 min after the positioning of MEAs on the heated (37 

°C) amplifier location, used to prevent cell cultures from mechanical and thermal stress. During 

recordings, MEA were maintained under constant slow flow of humified gas (5% CO2, 20% O2, 75% 

N2). All recordings were performed at the sampling frequency of 10 kHz, using a MEA 2100 system 

(MCS). Each session lasted 20 minutes. MC_Rack software (MCS) and MATLAB (see above) were 

used to acquire and analyze data, respectively. 

 

4.2.7. Protocol of in vitro culture treatments 

 The effect of ivabradine (IVB, Sigma-Aldrich) on the spontaneous network activity was evaluated 

by injecting directly into the culture medium increased concentrations of the drug. The derivation 

of the dose-response curves was performed by pipetting increasing concentrations of IVB solution 

into the culture medium and recording the neural networks activity for 10 min. A wide 

administration scale (300 nM – 30 µM), with logarithmic scale, was chosen to quantify IVB effects 

https://creativecommons.org/licenses/by/4.0/
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on the neuronal activity. The first 2 min of each phase were discarded to avoid bias due to drug 

diffusion into the medium. 

 

4.2.8. Data processing and statistical analysis 

4.2.8.1. Spike and burst detection 

 The Precision Time Spike Detection (PTSD) algorithm was used for the detection of spike 

occurrence [259]. To obtain this specific detection the following three parameters had to be set:  

 - specific threshold of electrodes, set at 8 times the standard deviation of signal noise; 

 - spike duration, set at 2 ms;  

 - period of refractoriness, set at 1 ms.  

 The sorting of spikes was not performed, since a bursting event can produce a fast sequence of 

spikes with overlapping shapes, which makes sorting difficult and unreliable [260]. After the 

identification of a spike train, burst detection was obtained with the string method [261], by setting:  

 - minimum number of spikes to define a burst event (set at 5); 

 - maximum time period occurring between two different spikes inside a burst event (set at 100 

ms). 

 

4.2.8.2. Detection of network burst activities 

 To detect the activity of the whole network, i.e. network burst (NB) events, a self-adaptive 

algorithm was employed [262]. The following parameters were set: 

 - maximum time interval between sequential burst events in a network burst; 

 - minimum percentage of active electrodes involved in the NB (set at 20%). 

 

4.2.8.3. Spiking and bursting statistics 

 The characterization of the network activity level was performed by computing firing and 

bursting statistics. First, the number of spikes per second, defined Mean Firing Rate (MFR), was 

evaluated together with the number of active electrodes in a MEA. MFR values lower than 0.1 

spikes/s were discarded from the analysis. Second, the bursting activity was analyzed in terms of 

Mean Bursting Rate (MBR) and Burst Duration (BD). Instantaneous firing rate (IFR) was used to 

analyze the activation sequences of each cluster involved in a network burst event. The IFR was 

obtained subdividing the number of revealed spikes by the bin width in a specific time frame of 100 

ms. By using a Gaussian kernel of width equal Δt, such a window was realized. The IFR of the whole 



 68 

network was obtained by calculating this parameter for each electrode, and then identifying the 

time of activation of a single cluster (i) for each NB (k) as the IFR time to reach the maximum value 

during the NB: 

𝑡𝑠𝑡𝑎𝑟𝑡(𝑖,𝑘) = 𝑡
max(𝐼𝐹𝑅𝑖(𝑡𝑠𝑡𝑎𝑟𝑡(𝑘)−𝑡𝑒𝑛𝑑(𝑘)))

                              (19), 

where tstart(k) and tend(k) are the starting and ending times of the k-th NB, respectively.  

 

4.2.8.4. Dose-response curve (IC50)  

 In experiments with increasing doses of IVB, to compare the MFR values of the different 

experiments, firstly the basal MFR was calculated based on the number of active electrodes during 

electrophysiological recordings without IVB. Then for each experiment MFR values were normalized 

considering the basal activity values. Normalized MFR values were fitted to a Hill curve as a function 

of the delivered IVB concentration (see equation 20). The Hill function is known to be the best model 

for the relationship between drugs concentration and consequent responses [263]: 

 

𝑀𝐹𝑅𝑛𝑜𝑟𝑚([𝐼𝑉𝐵]) = 𝑀𝐹𝑅𝑛𝑜𝑟𝑚
𝑚𝑎𝑥 +

𝑀𝐹𝑅𝑛𝑜𝑟𝑚
𝑚𝑖𝑛 − 𝑀𝐹𝑅𝑛𝑜𝑟𝑚

𝑚𝑎𝑥

1 + 10𝐻𝐶(log (𝐼𝐶50−log ([𝐼𝑉𝐵])
                  (20), 

 

where 𝑀𝐹𝑅𝑛𝑜𝑟𝑚
𝑚𝑖𝑛  and 𝑀𝐹𝑅𝑛𝑜𝑟𝑚

𝑚𝑎𝑥  are the highest and the lowest normalized MFR values, and [IVB] is 

the delivered concentration of ivabradine, respectively. HC is the Hill coefficient, which provides the 

largest absolute value of the curve slope. Finally, the IC50 is the half-maximal inhibitory 

concentration observed. 

 

4.2.8.5. Statistical analysis 

 The MATLAB platform was used for descriptive and inference analyses. In order to investigate 

significant differences among data, different statistic tests were used:  

 - ANOVA and Student’s t test, with Bonferroni’s correction for multiple pairwise comparisons, for 

mean comparisons of normalized (log conversion) or normal quantitative data; 

 - Chi-squared test to analyze the distribution frequency of qualitative classes; 

 - Kolmogorov Smirnov test to investigate cumulative frequency distributions; 

 - Wilcoxon Signed-Rank test for paired frequencies.  

 The diversity of cluster activation sequences was analyzed by using the Shannon diversity index 

[264], defined as: 
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𝐻 = −Σ𝑝𝑖 ∗ ln(𝑝𝑖)                         (21), 

 

where pi is the relative frequency of the ith type of activation sequence. The index H spans between 

a minimum of 0 (if there is only one type of activation sequence with a relative frequency equal to 

1), to a maximum of ln(N), where N is the number of different activation sequence types (if all types 

have the same frequency). The H values were then normalized by applying the Shannon equitability 

index [264]: 

𝐸 =
𝐻

ln 𝑁
                      (22), 

 

which transforms the Shannon index into a normalized value in a interval [0,1]. 

 All statistical tests were performed by applying a significant threshold of p = 0.05. The reported 

box plots represent the mean (square), the median (line), the standard deviation (whiskers) and the 

percentile interval 25-75 (box) values. 

 

4.3. In vitro brain network: Results 

 Interconnected sub-populations (4N) were investigated and characterized in terms of 

spontaneous activity resulting from the interactions among neuron clusters. This kind of assembly 

was then compared to simple cortical networks without modular connectivity (1N).  

 

4.3.1 Spiking and bursting features depend on the degree of modularity 

 Spontaneous electrophysiological activity was exhibited by both 1N and 4N networks. The 

activity showed the same main features, including spiking and bursting signals, and in addition global 

network activities indicated as network bursts (NB). These results indicated that both single [265], 

and multiple [254], neural networks share comparable spiking and bursting behavior when coupled 

to MEAs. However, the spiking and bursting activity patterns of 1N and 4N showed quantitative 

differences in terms of specific parameters. The values of MFR (Figure 20a), MBR (Figure 20b), and 

BD (Figure 20c) were significantly higher in 1N networks, while IBI was lower in 1N with respect to 

4N (Figure 20d). Table 10 reports the values of the mean, median, and standard error of the mean, 

as well as the first (Q1) and third (Q3) quartiles, detected on the complete datasets of 4N and 1N 

networks. To evaluate statistical differences between the two network assemblies, the Student’s t 
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test was applied to log-transformed data and the corresponding p values are shown in the last 

column of Table 10. 

 Comparing the two different kinds of assemblies, no significant differences were found 

considering the collective network activity, evaluated in terms of numbers of network burst (NB, 

Figure 20e) and network burst duration (NDB, Figure 20f).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 20. Electrophysiological activity of one-network assemblies (1N) and four-network assemblies (4N).  a) 

Values of Mean Firing Rate (MFR), b) Values of Mean Bursting Rate (MBR), c) Values of Burst Duration (BD), 

d) Values of Inter Burst Interval (IBI), e) Numbers of network burst occurrence (# Network Burst), f) Values of 

Network Burst Duration (NBD). ****: p < 0.0001, t test. Reproduced with permission from Scientific Reports 

[256], Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). 

 

Table 10. Summary statistics of basic measurements of neural network functioning.  

Par. Unit Assembly Q1 Median Q3 Mean S.E.M. p* 

MFR spikes/s 
1N 0.77 2.71 6.89 4.66 0.24 

7.3·10-13 
4N 0.48 1.43 3.78 2.63 0.14 

MBR 
bursts/ 

min 

1N 3.75 8.21 16.5 10.7 0.42 
1.6·10-10 

4N 2.23 5.23 9.36 7.44 0.37 

https://creativecommons.org/licenses/by/4.0/
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BD Ms 
1N 112 163 225 187 7.18 

1.9·10-10 
4N 81.4 122 173 147 5.61 

IBI s 
1N 3.29 6.79 14.2 13.8 0.93 

1.4·10-7 

4N 5.87 10.6 21.0 18.7 1.13 

NB NBs/min 
1N 15.2 28.4 67.4 41.0 39.4 

0.66 
4N 12.1 35.8 86.2 46.9 47.4 

NBD ms 
1N 392 521 646 524.5 52.6 

0.17 
4N 333 415 495 431.9 44.8 

*Student’s t-test. Reproduced with permission from Scientific Reports [256], Creative Commons Attribution 

(CC BY) license (https://creativecommons.org/licenses/by/4.0/). 

 

4.3.2. The rhythmic patterns of activity are shaped by the assembly of neuron clusters  

4.3.2.1. Patterns of activation sequence propagation 

 The activities of 1N and 4N networks showed the same macroscopic features, demonstrating that 

different topologies or structures do not influence the intrinsic network functioning (Figure 20e, 

20f). By contrast, the modes of propagation of network activation resulted to differ depending on 

the network topology. The activity propagation of the network was quantified by estimating the IFR 

(section 4.2.8.3). Considering only the active electrodes, the cumulative firing rate was determined 

for each cluster in both 4N and 1N experiments. In 4N experiments the study was performed by 

subdividing the electrodes into 4 groups, representing real neuron clusters defined by the cross-

shaped mask. In 1N experiments the electrodes were subdivided into 4 virtual clusters, topologically 

corresponding to the real clusters of 4N assemblies. Figure 21a shows an example of a 4N control 

network. The four colored traces are representative of the 4 virtual clusters used to study the 

activity of the network. The IFR profile and raster plot (Figure 21a) highlight a repetitive and 

rhythmic pattern of activity. The network burst in 4N starts from the purple cluster and then 

propagates sequentially to the cyan, green, and red cluster.  

 In the example concerning the 1N network (Figure 21b) a specific pattern of propagation does 

not emerge. The clusters involved in the network burst are less stereotyped and not predictable. 

The IFR profiles of three network bursts of 1N are represented (Figure 21b): the first one showed a 

propagation involving all 4 interconnected populations (cyan-purple-red-green), the second 

network burst involves only three clusters (cyan is missing), and the third one involves all the 

clusters in a random sequence. 

https://creativecommons.org/licenses/by/4.0/
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Figure 21. Raster plots of the electrophysiological activity recorded in 1N (a), and 4N systems (b), along 60-s 

periods. On the top, instantaneous firing rate profiles of 5-s time windows are visible, accompanied by color 

maps showing the sequential propagation (arrows) of activation sequences among virtual clusters (1N) or 

real clusters (4N). Reproduced with permission from Scientific Reports [256], Creative Commons Attribution 

(CC BY) license (https://creativecommons.org/licenses/by/4.0/). 

 

 To obtain quantitative evaluations of cluster activation, we firstly considered the number of 

clusters involved in each activation sequence. In both 1N and 4N, the sequences of 4 clusters are 

more frequent with respect to those consisting of 3 and 2 clusters, showing that all 4 clusters tend 

to be involved in the activation sequence. In 1N networks, the relative frequency of sequences of 4 

clusters was about 0.8 (Figure 22a), while the relative frequencies associated to sequences of 3 and 

2 clusters were 0.18 and 0.03, respectively. In 4N networks (Fig. 22a) the sequences of 4 clusters 

had a relative frequency of 0.58, while the relative frequencies of 3-clusters, 2-cluster, and 1-cluster 

activation sequences were 0.30, 0.15, and 0.05, respectively. Hence, by analyzing the relative 

frequencies of the number of recruited clusters during network bursts, we demonstrated a similar 

behavior for 1N and 4N, where the involvement of all the clusters in the activation sequences was 

the most likely occurrence. The lower frequency of 4-cluster activation sequences in 4N probably 

depended on the gaps among clusters allowing the extensions of inter-cluster connecting fibers in 

a wider range of directions. 

 

 

 

https://creativecommons.org/licenses/by/4.0/
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Figure 22. a) Frequencies of categories based on the number of clusters involved in a network burst (1, 2, 3, 

or 4 clusters), as derived from IFR profiles. b) Boxplots of the distributions of the numbers of observed circular 

activation sequences (Observed) compared with the numbers obtained from simulated samplings under 

randomness (Expected), having the same total number of activation sequences (in random conditions circular 

activation sequences are 1/3 of total).  Statistical analysis revealed significant difference for 4N, Wilcoxon 

Signed-Rank test, ** p < 0.01. Reproduced with permission from Scientific Reports [256], Creative Commons 

Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). 

 

 The 4N spatial organization could be relevant for the generation of the propagation pathways of 

network bursts among clusters. Different connectivity directions could be followed by the network 

bursts, including circular propagation paths (CP) that could be clockwise or counterclockwise, and 

cross-diagonal paths (DP). For a better understanding of these propagation phenomena, we 

considered the probability of CP and DP in the 4-cluster topology under aleatory condition (expected 

dataset), being respectively 1/3 and 2/3. For each experiment, the number of observed CPs, out of 

the total number of sequences (S), was considered, and it was compared to the number of the 

expected CPs, corresponding to S/3. By comparing the observed CPs with the expected CPs in 1N, 

no statistical difference was found according to the Wilcoxon Signed-Rank test. By contrast, for 4N 

the number of observed CPs resulted significantly higher than that of expected CPs (Figure 22b). 

 

4.3.2.2. Pacemaker activity: clusters acting as preferential initiators of activation sequences 

 The different propagation modes appeared to be associated with the emergence of dominant 

clusters from which network bursts arise and expand to the entire network. Both in silico and in 

vitro studies support the existence of leader neurons, firing at the beginning of a network burst 

more often than expected by chance [266, 267]. In our 1N and 4N experiments, the frequency of 

initiator clusters was unequally distributed among the 4 real or virtual clusters. To show this pattern, 

for each experiment the highest relative frequency of an initiator cluster was attributed to 

“frequency class 1”. This operation was repeated for the next most frequent initiator cluster, until 

https://creativecommons.org/licenses/by/4.0/
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each cluster was assigned to a specific frequency class (classes 2, 3, and 4). Next, the median value 

of each frequency class out of all experiments was found, obtaining four median values that were 

compared with those of a uniform distribution of clusters among the four frequency classes, 

corresponding to a value of 0.25 for each frequency class. A comparison with the Chi-squared test 

(p < 0.01) showed significant differences for both in 1N and 4N networks (Figure 23a). This result 

showed that both 1N (black line) and 4N (blue line) shared a similar behavior, with the emergence 

of a specific hierarchy among clusters involving the predominance of two initiator clusters, i.e. those 

with a frequency higher than the expected frequency under random distribution.  

 

4.3.2.3. Nonrandom composition and repetitive series of activation sequences 

 To better investigate the patterns of activation exhibited by 1N and 4N, the observed activation 

sequences in real experiments (Observed) were compared to Monte Carlo samples of activation 

sequences (Expected). For each experiment, a Monte Carlo sample of activation sequences, 

numerically equivalent to the sample of observed activation sequences, was obtained by drawing 

sequences of clusters from a uniform frequency distribution. Thereafter, the diversity of the 

activation sequences in the Observed and Expected experiments were measured by the Shannon 

equitability index. In this analysis, the index should approach the value of 𝐸 =  1 for datasets of 

random sequences (Expected), while it should be equal to 𝐸 =  1  in the presence of a unique 

sequence of activation (section. 4.2.8.5). Our analysis showed a significantly lower diversity in the 

Observed activation sequences with respect to the Expected ones, for both 1N (p = 3.6·10-7, 

Wilcoxon Signed-Rank Test) and 4N (p = 3.2·10-9, Wilcoxon Signed-Rank Test). These results showed 

a prevalent occurrence of specific activation sequences in contrast to a completely random 

occurrence (Figure 23b). 

 Besides the non-random diversity of activation sequences, the time series of identical 

consecutive activation sequences were also of interest. To quantify this pattern, the length of the 

series of identical consecutive sequences was considered. Moreover, a different weight was 

attributed to the series depending on their length: longer series have a higher impact than shorter 

ones of equal occurrence, while series that occur more frequently weight more than less frequent 

ones with the same length. For example, a series of 2 identical sequences that occurs 10 times will 

have a weighted absolute frequency of 2 x 10 = 20; a series of 4 sequences that occurs 5 times will 

have a weighted absolute frequency of 4 x 5 = 20. In this analysis, a different behavior was found 

between 4N and 1N, as highlighted by the cumulative distributions of relative frequencies derived 
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from weighted absolute frequencies. In 1N, the longer detected sequence consisted of 7 identical 

sequences with a relative frequency of 0.03. In 4N, the longer detected sequence consisted of 14 

repeated sequences, with a relative frequency of 0.01. Accordingly, a significant difference between 

the 1N and 4N frequency distributions was found with the Kolmogorov-Smirnov test (Figure 23c). 

Also, the 4N cumulative frequency distribution was significantly different from a dataset of repeated 

activation sequences generated by Monte Carlo sampling (p = 3.3·10-4, Kolmogorov-Smirnov test). 

 

 

 

 

 

 

 

 

 

Figure 23. a) Median values of the data sets obtained by considering the frequency of the most frequent 

starting cluster in each experiment (indicated as 1), the frequency of the second most frequent starting 

clusters in each experiment (indicated as 2), etc.  b) Box plots obtained from two couples (1N and 4N) of 

matched data sets. Each matched data set was obtained by calculating, for each experiment, the Shannon 

equitability index (section 4.2.8.5) of the recorded activation sequences (Observed), and of a Monte Carlo 

simulation with the same total number of activation sequences (Expected). Wilcoxon Signed-Rank Test, **** 

p < 0.001.  c) Cumulative frequency distributions of data sets obtained by considering the numbers of 

activation sequences forming series of identical consecutive elements, in 1N and 4N assemblies. By 

comparing the cumulative frequency distributions between 1N and 4N, significant differences were found. 

Kolmogorov-Smirnov test, p < 0.01. Reproduced with permission from Scientific Reports [256], Creative 

Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). 

 

4.3.3. The rhythmic activity involves HCN channels and glutamate-dependent excitability 

 HCN channels are known to generate rhythmic patterns of activity in excitable cells, with various 

examples reported in different regions of the central neuron system [268, 269]. Therefore, the 

spontaneous electrophysiological activity of 1N networks was analyzed in the presence and in the 

absence of the specific HCN channel inhibitor ivabradine (IVB) [270] (Figure 24a). 

 To perform this set of recordings, a concentration of 15uM IVB was used, that is close to the IC50 

value obtained by deriving dose-response curves for MFR in preliminary experiments (Figure 24b). 

https://creativecommons.org/licenses/by/4.0/
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Figure 24. Ivabradine (IVB) effect on the electrophysiological activity of 1N. a) Raster plots representing 60-s 

periods of representative samples. b) Dose dependency of mean firing rate inhibition by IVB, obtained by the 

injection of IVB concentrations ranging between 0.3–30 µM, Hill fitting curve (see Equation 20), and 

estimated IC50  (blue star and dotted vertical line). Reproduced with permission from Scientific Reports [256], 

Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). 

 

 The effect of IVB on the electrophysiological activity of neural networks was a marked decrease 

of global activity, as shown by the significant reduction of active electrodes (Figure 25a), as well as 

of MFR and MBR (Figure 25b, 25c). These effects were transient and disappeared after washout, 

with a return of MFR and MBR to basal values. The effect of IVB did not affect the BD but increased 

the IBI and its standard deviation (Figure 25d, 25e, 25f). In summary, IVB induced a global reduction 

of the network activity, reducing the number of bursts and increasing the delay between them. 

These data strongly suggest that HCN channels are essential for the rhythmic spontaneous activity 

of the network. 
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Figure 25. Inhibition of electrophysiological activity induced by exposure of 1N to 15 µM ivabradine (IVB). 

Recordings were performed at three different timepoints: before IVB injection (controls), during IVB 

diffusion, and after washout. a) Number of active electrodes; b) values of Mean Firing Rate (MFR); c) values 

of Mean Bursting Rate (MBR); d) values of Burst Duration (BD); e) values of Inter Burst Interval (IBI); f) values 

of IBI Standard Deviation (SDIBI). ANOVA, Bonferroni post-hoc test, ** p < 0.01. Reproduced with permission 

from Scientific Reports [256], Creative Commons Attribution (CC BY) license 

(https://creativecommons.org/licenses/by/4.0/). 

 

 We then considered the contribution of excitability to the spontaneous activity of the network. 

Glutamate is the main excitatory neurotransmitter in the CNS, and therefore, we used MK801, a 

known blocker of the glutamate NMDA receptor [271]. The drug administration protocol was 

identical to that described above for ivabradine, while a concentration of 15 µM MK801 was 

https://creativecommons.org/licenses/by/4.0/
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selected after a series of preliminary tests. Like the results obtained with IVB, the effect of MK801 

on 1N networks was a significant decrease of spontaneous activity (Figure 26a). We then compared 

the activation of the whole network in the presence of IVB and MK801, quantified as the total 

number of network bursts (NB) during each experimental session. Under both treatments, a 

significant reduction of NB was observed, but the treatment with ivabradine was followed by a 

significant recovery upon washout (Figure 26b). In experiments with MK801, even though a partial 

recovery of network activity was observed (Figure 26a), there was no statistical recovery for what 

concern NB (Figure 26c). The absence of recovery of global network activity upon MK801 treatment 

is consistent with electrophysiological and ligand binding studies showing that the blockade of 

NMDARs by MK-801 persist long after drug washout [272]. 

 The experiments with IVB and MK801 indicate that the spontaneous rhythmic activity observed 

in our experiments requires a combination of network excitability and pacemaker activity. These 

essential properties seem primarily due to the presence of HCN channels and ionotropic glutamate 

receptors. 
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Figure 26. Effect of the delivery of MK801 on the activity of 1N assemblies. a) Raster plots showing 180-

second intervals of electrophysiological activity in a representative cortical network before (basal), during 

(MK801), and after the delivery (washout) of 15 µM MK801. b) Boxplot showing the logarithm of total 

network burst recorded before, during, and after administration of 15 µM ivabradine (n = 7). c) Boxplot 

showing the logarithm of total network burst recorded before, during, and after administration of 15 µM 

MK801 (n = 6). ANOVA, Bonferroni post-hoc test, ** p < 0.01. 

 

4.4. In vitro brain network: Discussion  

 By using an in vitro experimental model consisting of reconstructed networks of cortical neurons, 

the electrophysiological activity patterns in different modular network organizations were 

investigated. To build the in vitro experimental set-up, MEA devices and physical polymeric 

constraints were used. Rhythmic bursts and isolated spikes are known to characterize the 

electrophysiological activity of in vitro dissociated cortical networks [260]. The characterization of 

these dynamics has been achieved by different routes, such as chaos theory, inferential statistics, 

or self-organized criticality, showing that similar activation patterns are displayed by different 

experimental systems. Different cell preparations, including human models derived from 

pluripotent stem cells [273], and rodent neuronal primary cultures [265], reproduce the same 

patterns of electrophysiological activity, sharing the main features of neural networks. These data 

are relevant to develop standard neural network models because they show that the 

electrophysiological spontaneous activity can be considered as a general reference system, not 

influenced by biological or experimental conditions. 

 Our experiments support these considerations since the main features of neural activity were 

maintained in both single-network systems and cultures engineered as interconnected neuronal 

networks. In both 1N and 4N assemblies, the activity of burst propagation in the whole network 

represented a distinctive feature and supported the idea of the existence of burst initiation points 

and consequent propagation [274]. In previous studies, burst initiation points have been associated 

to network inhomogeneities [274]. In contrast, our results revealed a non-random distribution of 

these initiation points due to the presence of dominant clusters. Independently from the modular 

topology, dominant clusters acted as starting points of activation sequences behaving as “network 

pacemakers”. Some sequences of spontaneous sequential cluster activation resulted more frequent 

with respect to a purely random set of sequences.  

 Moreover, departure from randomness of time series of identical sequences was observed in 4N 

assemblies. In these systems, longer series of identical activation sequences than under randomness 
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were found, suggesting that the 4N configuration realizes phenomena of synaptic plasticity. 

Literature data have reported in vitro synaptic plasticity both in hippocampus slices and in 

dissociated cortical networks [275], induced experimentally by high-frequency tetanic stimulation 

[276]. Interestingly, our results seem to reveal effects associated to neuroplasticity without 

electrical stimulation of the network system, but as an emergent property of spontaneous 

electrophysiological activity. As said above, such a behavior was stronger in the 4N configuration, 

which is more representative of the in vivo arrangement of brain networks. The 4N configuration 

was used to simulate the topological connectivity of complex patterns of activation. By contrast, the 

1N experimental model was not able to reproduce the dynamics of high-order patterns of 

spontaneous activity such as modularity [277], and small-worldness [278]. 

 The presence of network pacemakers was confirmed through the inhibition of hyperpolarization-

activated cyclic nucleotide-gated (HCN) channels [268]. In our experiments, IVB was used to inhibit 

HCN currents, obtaining a strong decrease of the electrophysiological activity such as the 

propagation and rhythmicity of network bursts, thus confirming pacemaker activity. Many 

neurophysiological processes are known to be characterized by an intrinsic pacemaker activity. 

These processes have different brain localizations, including thalamocortical neurons [279], the 

respiratory central pattern generator [280], locus coeruleus noradrenergic neurons [281], 

neocortical neurons [282], medial septal neurons [283], and substantia nigra dopamine neurons 

[284]. Moreover, in some of these cases the involvement of HCN channels has been demonstrated 

[285, 286]. 

 Overall, our in vitro experiments demonstrated that interconnected neural networks show 

spontaneous activity characterized by a rhythmic, synchronized pattern, depending on pacemaker 

elements. Also, specific network patterns become spatiotemporally consolidated, possibly due to 

neuroplasticity phenomena. Consolidated network patterns lasted on average from a few seconds 

up to a maximum of 20-25 seconds, suggesting a link to short-term synaptic plasticity [287]. Hence, 

the spatiotemporal consolidation of network activity in our experiments had features distinctly 

different from the neuroplasticity induced by tetanic stimulation [288]. Moreover, in our 

experiments the stronger consolidation of network activity, observed in 4N with respect to 1N 

assemblies, could be explained by signal channeling along distinct pathways. In repeated activation 

sequences, each neuron cluster is repetitively stimulated by the upstream cluster and operates 

similarly on the downstream cluster. In 4N, the interconnection between real neuron clusters is 
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more channeled, with fewer random side dispersions than in the virtual clusters of 1N assemblies. 

This accounts for the more consolidated, repeated activation sequences observed in 4N networks. 

 In conclusion, the key features of our in vitro neural networks are the presence of pacemaker 

centers, and the nonrandom repetition of distinct activation sequences along time, amenable to 

neuroplasticity. These activities have been observed also in vivo [282], thus possibly representing 

the basic elements of the electrophysiological activity of neural networks, both in vivo and in vitro. 

This seems also confirmed by computational simulations of cortical neural networks, in which 

optimized results have been achieved by combining together mathematical models of pacemaker 

activities and synaptic plasticity [289]. 

 

4.5. In vitro brain network: Conclusions 

 Our engineered experimental set-up consisting of multiple-neural networks was developed to 

simulate a brain network structure. Data suggest that pacemaker activity and synaptic plasticity are 

the key elements of the high-order activity of this system. These findings would be of interest for 

predicting the system behavior under different conditions by using computational simulations 

(Figure 27). Finally, the realization of in vitro neural network systems in different configurations, as 

well as the detection of their electrophysiological features, are the prerequisite for the development 

of brain network digital twins. This kind of strategy could lead to a better understanding and 

prediction of brain network dynamics, possibly allowing to improve the management of brain 

dysfunctions.  
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Figure 27. Future perspectives of MEA experiments. The first aim is to reproduce neural networks and their 

interconnections on Micro-Electrode Arrays (MEAs). Such an in vitro experimental model enables the 

extraction, examination, and quantitative analysis of neural network electrophysiological activities. This 

technique and analysis system could lead to the development of in silico models (digital twins) able to predict 

in vivo brain network dynamics. Computational simulations could help to understand the origin and 

development of neurological diseases. Reproduced with permission from Scientific Reports [256], Creative 

Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). 
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5. CONCLUSIONS 

5.1 Conclusions: Background 

 Progress in biomedical research is made difficult by the complexity of life, which obviously 

includes all aspects of human health and disease development. These drawbacks are made 

dramatically evident by the wide set of diseases that are still unclear for what concern causes, 

development, and treatments. Hence, disease management is frequently puzzling, while patient 

management is disappointing, involving heavy social and economics burdens. 

 The present study deepens its roots in a previously formulated idea that the above problems are 

primarily due to the unsuitability of current paradigms about the nature of living beings, and that a 

reconceptualization of the phenomenon of life is needed. Such a kind of hypothesis, named 

Loopomics, considers living beings essentially as a set of controls systems whose dynamics depends 

on the activity of loops, i.e. closed chains of interactions among functional elements [28]. Such 

hypothesis is still unproved, but it explains how living systems avoid the butterfly effect of chaotic 

systems, despite the enormous complexity of their processes. A non-chaotic behavior leading to 

predictable outcome is easily explained by loop dynamics characterized by equilibrium points, thus 

accounting for the two fundamental occurrences of living systems, on one side homeostasis 

(negative loops), and on the other side transformations (positive loops). The Loopomics hypothesis 

can be extended to the development of diseases, because these processes are themselves biological 

transformations, even though their progress involves dysfunction, damage, or degeneration [44]. 

 

5.2. Conclusions: FM pathogenesis model  

 Based on the above background, this study aims at developing models of neurological diseases 

consisting of loop systems, so to provide an explanation of pathogenesis and detect the critical 

therapeutic targets. We focused on the FM syndrome since it perfectly fits with the above 

considerations, urgently requiring to unveil the disease etiology and development by starting from 

the biological basis of pathophysiological mechanisms. Despite a wide set of biological and clinical 

studies, the body districts and triggering events involved in FM pathophysiology are still unknown, 

resulting in extremely difficult patient management and the absence of effective therapies. The 

neuroendocrine model of FM pathogenesis presented in this study provides an explanation of the 

disease from the primary causes up to the appearance of symptom. Our model could also be a guide 

for the development of pathogenesis models of other disorders potentially involving 

neuroendocrine mechanisms. The model is consistent with the following FM features: 
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 - the new definition of nociplastic pain, i.e. pain depending on central neural disorders [218]; 

 - accumulating evidence that FM involves multisensory alterations including vison and 

equilibrium sensory processing [107]; 

 - the female prevalence, which in our model is related to two main pathophysiological events: 

  - the downregulation of the HPG axis; 

  - the upregulation of the HPA axis. 

  The HPG downregulation is an aleatory event if we consider hormonal fluctuations in males, but 

it is a periodic event in females because of wide hormonal fluctuations in the cycle or during 

pregnancy. By contrast, the HPA upregulation of chronic or post-traumatic stress can be considered 

an aleatory event in both sexes. Therefore, the probability of developing FM would be given by the 

product of two probabilities, of which both are small in males (the probability of HPG 

downregulation and of HPA upregulation), whereas only one in females (the probability of HPA 

upregulation), resulting in a higher overall probability for females.  

 

5.3. Conclusions: In vitro brain network 

 In the FM model, brain network dynamics have been described by using differential equations 

whose variables represent mean firing rates of neuron populations. This method is generally used in 

the realization of dynamical systems of brain networks electrophysiological activities [290]. However, 

the firing rate is essentially a measure of neural network excitability and a model based only on this 

parameter could be an excessive schematization. Therefore, we designed experiments aimed to 

achieve a more complete characterization of the brain network electrophysiological activity. To do 

this, we chose to reconstruct in vitro a system of interconnected neural networks simulating a brain 

network under an experimental set allowing real-time recording. We therefore used MEA as the best 

technique for this kind of experiments, and realized, by using rat cortical neurons, in vitro neural 

network systems. The recorded data indicate that the electrophysiological activity of in vitro brain 

networks consist of three main components: excitability (mainly due to glutamatergic transmission, 

notably NMDAR), self-rhythmicity (mainly due to HCN channels), and possibly neuroplasticity. These 

functional components give rise to a spontaneous activity represented by rhythmic network bursts, 

with pathways of activation sequences that tend to persist along time. Similar to what occurs in 

engineered telecommunication systems [291], the spontaneous rhythmic activity of neural networks 

could represent some sort of “carrier wave” suitable to be modulated by input signals, so to provide 
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codified, predictable output signals. Such a behavior could represent the basis of brain network 

functioning, thus explaining the following: 

 - the fact that brain networks are permanently “on” and the functional meaning of this 

occurrence (realization of a carrier wave); 

 - the fact that brain networks realize a rhythmic activity as the best pattern to provide codified 

signals upon modulation; 

 - the prevalence of excitatory (glutamate) vs. inhibitory (GABA) neurotransmission in the brain 

according to the need of maintaining spontaneous activity in the absence of input. 

 These considerations suggest that the use of firing rate as the only system variable in brain 

network modeling could be a schematization sufficient to describe drastic pathophysiological 

changes, but insufficient for physiological transitions or disorders involving slighter modulations. The 

supplementary implementation of rhythmic activity and neuroplasticity could allow to realize more 

suitable digital twins of brain network electrical activities under both physiological and pathogenic 

conditions. 
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