
Runtime Verification of Hash Code in Mutable Classes
Davide Ancona
Angelo Ferrando
Viviana Mascardi

davide.ancona@unige.it
angelo.ferrando@unige.it
viviana.mascardi@unige.it

DIBRIS, Università di Genova
Italy

ABSTRACT
Most mainstream object-oriented languages provide a notion of
equality between objects which can be customized to be weaker
than reference equality, and which is coupled with the customizable
notion of object hash code. This feature is so pervasive in object-
oriented code that incorrect redefinition or use of equality and hash
code may have a serious impact on software reliability and safety.

Despite redefinition of equality and hash code in mutable classes
is unsafe, many widely used API libraries do that in Java and other
similar languages. When objects of such classes are used as keys in
hash tables, programs may exhibit unexpected and unpredictable
behavior. In this paper we propose a runtime verification solution
to avoid or at least mitigate this issue.

Our proposal uses RML, a rewriting-based domain specific lan-
guage for runtime verification which is independent from code
instrumentation and the programming language used to develop
the software to be verified.

CCS CONCEPTS
• Software and its engineering → Formal software verifica-
tion; Software testing and debugging.

KEYWORDS
object-oriented languages, hash code, mutable classes, runtime
verification
ACM Reference Format:
Davide Ancona, Angelo Ferrando, and Viviana Mascardi. 2023. Runtime
Verification of Hash Code in Mutable Classes. In Proceedings of the 25th ACM
International Workshop on Formal Techniques for Java-like Programs (FTfJP
’23), July 18, 2023, Seattle, WA, USA. ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/3605156.3606452

1 INTRODUCTION
Most mainstream object-oriented languages provide a notion of
equality between objects which can be customized to be weaker

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
FTfJP ’23, July 18, 2023, Seattle, WA, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0246-4/23/07. . . $15.00
https://doi.org/10.1145/3605156.3606452

than reference equality, and which is coupled with the customizable
notion of object hash code [6]. Such two notions are provided
through two corresponding methods defined in the predefined
class Object which is at the root of the inheritance hierarchy; hence,
they are inherited or can be redefined in any class, and are callable
on any type of object.

For this reason, they are pervasive in object-oriented code and
the correct functioning of some features in many libraries rely on
them; hence, their incorrect redefinition or use may have a serious
impact on software reliability and safety.

A classical example of useful redefinition of equality is for value
classes, where typically a notion of logical equality is needed which
differs from reference equality. Obeying the general contract for
equality is challenging, and equality redefinition invalidates the
general contract for computing object hash codes [6].

Indeed, implementations of hash tables typically use equality and
object hash codes, therefore a general contract has to be satisfied: if
two objects are equal, then the same hash code must be computed
for them.

If this requirement is not satisfied, then hash tables fail to behave
correctly. Indeed, to find an element in a hash table, its hash code is
computed to identify its bucket, then equality is used to test whether
the element is contained in such a bucket. If an equal element
is already contained in the hash table, but in a different bucket,
because the computed hash code is different, then the element
cannot be found.

While this problem is well known and there have been some
attempts to detect it with verification techniques [6, 23], hash code
redefinition for mutable classes has been overlooked. When objects
of such classes are used as keys in hash tables, programs may
exhibit unexpected and unpredictable behavior. Indeed, if an object
is modified while contained in a hash table, then most likely the
same object can no longer be found in the table even though no
operations have been performed on the hash table.

Redefinition of equality and hash code in mutable classes is
unsafe, as pointed out in the documentation for java.util.Set [22]
and, similarly, java.util.Map: “Great care must be exercised if mutable
objects are used as set elements. The behavior of a set is not specified
if the value of an object is changed in a manner that affects equals
comparisons while the object is an element in the set. A special case
of this prohibition is that it is not permissible for a set to contain itself
as an element.”

Despite this note, many widely used API libraries do that in
Java and other similar languages. Verifying that mutable objects
with redefined hash code are used correctly in hash tables is not

25

https://orcid.org/0000-0002-6297-201
https://orcid.org/0000-0002-8711-4670
https://orcid.org/0000-0002-2261-9926
https://doi.org/10.1145/3605156.3606452
https://doi.org/10.1145/3605156.3606452
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3605156.3606452&domain=pdf&date_stamp=2023-07-18

FTfJP ’23, July 18, 2023, Seattle, WA, USA Davide Ancona, Angelo Ferrando, and Viviana Mascardi

an easy task, because state modification needs to be tracked with a
certain precision and rather complex control-oriented properties
[1, 2] have to be ensured.

In this paper we present a solution based on Runtime Verification
(RV), a dynamic verification technique where a single execution
of the system under scrutiny (SUS) is abstracted by an event trace
which is checked by a monitor compiled from the formal specifica-
tion defining the correct behavior of the SUS.

Events are usually generated by instrumented code of the SUS,
and logged or directly sent to the monitor. Although specification of
properties and code instrumentation can be mixed together, decou-
pling the two activities favors abstraction, reuse and interoperability
of the generated monitors.

Monitors can be offline or online; in offline RV a trace is typically
generated by the instrumented SUS and stored into a log file and
then is analyzed by the monitor. In online RV traces are analyzed
real-time to allow error detection to trigger specific actions on
the SUS. Offline RV [10] is a useful solution to integrate other
approaches as debugging and testing; online RV can be employed
to allow error recovery in critical scenarios, providing that such
a choice is compatible with the overhead of code instrumentation
and of the monitor execution.

RV is complementary to formal verification and testing: as formal
verification, RV is based on a specification formalism; as happens
for software testing, it scales well to real systems and complex
properties, but cannot guarantee exhaustiveness. Differently from
testing, it is particularly useful to ensure control-oriented prop-
erties [1, 2] and detect errors due to non-deterministic behavior
[16, 26]. Furthermore, online monitoring allows runtime contract
enforcement, fault protection and automatic program repair. Finally,
several RV tools are based on abstract and intuitive specification
languages that can be easily mastered by the user and favor system
agnosticism, portability, reuse, and interoperability.

Our proposed solution is based on offline RV and uses RML1,
a rewriting-based Domain Specific Language (DSL) for RV which
allows definition of formal specifications independently of code
instrumentation and of the programming language used to develop
the software to be verified. The choice of RML makes our solu-
tion easily portable to different Java-like languages. Offline RV has
been preferred over online RV because the main aim is to detect
unsafe use of hash tables; this allows also a simpler solution which
minimize overhead.

The paper is structured as follows. Section 2 introduces the prob-
lem in detail and analyzes it in the context of several mainstream
object-oriented languages, Section 3 provides an introduction to
RML, Section 4 presents the proposed solution and discussed pos-
sible generalization, Section 5 is devoted to the related work and
conclusions.

2 HASH CODE AND MUTABLE CLASSES
Correctness issues concerned with the relationship between meth-
ods equals and hashCode are well-known in Java [6, 23] and other
object-oriented languages as C#, Kotlin, Scala, and Python support-
ing redefinition of object equality and hash code; however, less
attention has been devoted to the potentially dangerous effects of

1https://rmlatdibris.github.io/.

the redefinition of hashCode in mutable classes when their instances
are used in container objects implemented with hash tables.

In Java (and Kotlin and Scala as well) such a problem is more
serious because the widely used mutable classes of java.util imple-
menting interfaces as Collection and Map2 redefine method hashCode

as their instances where immutable (i.e. value objects).
Let us consider an example, where for simplicity a unique class

is used both for containers (which use a hash table) and container
elements since HashTable is a mutable class redefining hashCode() and
implementing Collection. Similar examples can be built with other
types of contained elements, for instance, linked lists.

1var sset = new HashSet <Set <Integer >>();

2var s = new HashSet <>(asList (1,2,3));

3sset.add(s); // sset is {{1,2,3}}

4assert sset.contains(s); // success

5s.remove (1);

6assert sset.contains(s); // failure

7s.add(1);

8assert sset.contains(s); // success

Two sets are created with class HashSet; in such a class, method
hashCode of the elements is used to identify the bucket where they
are stored in the hash table, and method equals to search them in
the bucket. After execution of the first three lines sset contains s as
stated by the successful assertion at line 4; in turn, s contains the
three elements of type Integer corresponding to 1, 2 and 3.

At line 5 element 1 is removed from s and at the next line the same
assertion is checked again; this time the assertion fails, although
no method has been invoked on sset and, hence, its state should be
the same as in the previous assertion.

This does not come to surprise once one looks at the documenta-
tion and discovers that methods equals and hashCode are overridden
in HashSet3 to depend on all the elements contained in the set. As
a consequence, the integer returned by s.hashCode() changes after
removing element 1 from s and, hence, the assertion at line 6 fails
because s is searched in the wrong bucket of the hash table of sset.
As a matter of fact, the assertions at line 4, 6, and 8 depend on the
state of both sset and s.

What is worst is that the outcome of the assertion at line 6 is
unpredictable; indeed, it is still possible, although unlikely, that
the searched bucket is the right one after removing the element
from s. In this case the assertion succeeds. Finally, considering
also that the general contract states that the hash code needs not
remain consistent from one execution of an application to another
execution of the same application, we can state that the behavior
of assertion at line 6 can be non-deterministic.

Once element 1 is inserted back in s, the computed hash code of
the object is again that at line 4, hence assertion at line 8 succeeds.

Putting it all together, the main source of the problem consists
in the fact that in the mutable classes implementing Collection the
receiver in the redefined methods equals and hashCode is considered
as an immutable object. This should be avoided for all mutable
classes whose objects may be used as keys in hash tables, because
the consequence is that the object should be “frozen” until is no
longer in the table to avoid misbehavior as described above. In case

2For brevity we refer to types in java.util with their simple names.
3Actually, in its direct abstract superclass AbstractSet.

26

https://rmlatdibris.github.io/

Runtime Verification of Hash Code in Mutable Classes FTfJP ’23, July 18, 2023, Seattle, WA, USA

an application does not follow this good practice, code should be
verified to detect issues that leads to inconsistencies in hash tables.

While in C# and Python it is still possible for the programmers
to define mutable classes where the corresponding methods for
equality and hash code are not well-behaved w.r.t. hash tables,
predefined mutable collections do not exhibit the problems of Java,
Kotlin and Scala.
var sset = new HashSet <ISet <int >>();
var s = new HashSet <int >(new int[] { 1, 2, 3 });

sset.Add(s);

Debug.Assert(sset.Contains(s)); // success

s.Remove (1);

Debug.Assert(sset.Contains(s)); // success

s.Add(1);

Debug.Assert(sset.Contains(s)); // success

In the C# code snippet above all assertions succeed simply because
methods Equals and GetHashCode are not redefined in mutable classes
implementing collections, but inherited from Object.

Interestingly, in Python for the predefined types set, list and
dict another strategy has been adopted: the objects are compared4
as immutable objects, but computing their hash code throws an
exception:
sset=set()

s1=set([1,2,3])

s2=set([1,2,3])

assert s1==s2 // success

sset.add(s1) # TypeError: unhashable type: 'set'

In this way it is not possible to use sets, lists and dictionaries as
hash table keys; this a drastic solution which prevents, for instance,
to easily manage sets of sets or lists.

Finally, JavaScript does not support redefinition of object equality
and hash code, hence does not exhibit the issue shown above.

3 RML
RML [4] is a rewriting-based DSL for RVwhich allows developers to
define formal specifications independently of code instrumentation.

It is based on the notion of event type (denoting a set of events)
and trace expression (denoting a set of event traces), and it is im-
plemented by a compiler, which generates monitors able to run
independently of the SUS and of its instrumentation.

In RML an event is any observation relevant for monitoring the
SUS. Events are represented in a general way with object literals
and consist of properties which identify the type of event and the
data associated with it. For instance,
{event:"func_post",targetId:9,name:"add",

res:true ,args :[1]}

represents the event ‘call tomethod add on target object with id 9 and
with argument 1 has returned value true’. Another type of events
which are often useful to monitor is 'func_pre', that is, entering a
constructor or method call; of course, in this case, no information
on the returned value can be provided. Depending on the features
of the instrumentation tool, other finer grained types, as reading or
updating a field, can be used, but at the cost of making specifications
more coupled with the specific application that needs to be verified,
and, hence, less reusable and portable.

4In Python object equality can be redefined through method __eq__ to change the
behavior of the == operator.

An RML specification defines the set of event traces expected
from correct runs of the SUS; the monitor automatically generated
from such a specification checks that the trace generated by a single
run of the SUS belongs to such a set.

The basic blocks which constitute an RML specification are pat-
terns built from event types defining sets of events.

Event types are defined with clauses:
add(hash_id ,elem_id) matches {event:'func_post ', targetId:hash_id ,

name:'add', argIds :[elem_id], res:true};

In this example addmatches events parametric in the ids hash_id and
elem_id of the target and argument of the call. While property args

is useful when arguments are primitive values, argIds is used when
arguments are objects, denoted by their unique id; similarly, for the
returned value the two properties res and resultId are available.

RML allows also the definition of event types derived from others:
not_add(hash_id) not matches add(hash_id ,_);

op(hash_id ,elem_id) matches {targetId:hash_id }|{ targetId:elem_id };

The event pattern not_add(hash_id) matches all events which do not
correspond to the return from method add called on target hash_id;
the wildcard _ is used when a value is not relevant for the definition
of the event type.

The event pattern op(hash_id,elem_id) matches all events match-
ing either {targetId:hash_id} or {targetId:elem_id}, that is, all calls on
target hash_id or elem_id.

The basic layer of RML are expressions that define sets of event
traces and built by combining together event patterns with primi-
tive and derived operators. The former kind of operators includes,
among others, the following binary operators on sets of event traces:
concatenation (denoted by juxtaposition), intersection /\, union \/

and shuffle |. Other useful derivable operators are available, includ-
ing the standard postfix operators ?, + and *, borrowed from regular
expressions, the constant all, which denotes the universe of all
traces, and the conditional filter operator _ >> _ : _.

The formal semantics of trace expressions is defined in terms of
a labeled transition system [4].

As a very simple example, the specification Main in Figure 1 de-
fines the set of event traces starting with a call to a constructor of
class HashSet returning the object id 42, followed by zero or more
calls to method add on target id 42 with returned value true and
ending with a call to method remove on the same target id with
returned value true.

new_hash(hash_id) matches {event:'func_post ', name:'HashSet ',

resultId:hash_id };

remove(hash_id) matches {event:'func_post ', targetId:hash_id , name

:'remove ', res:true};

add(hash_id) matches {event:'func_post ', targetId:hash_id , name:'

add', res:true};

Main = new_hash (42) add (42)* remove (42);

Figure 1: Example of specification.

The expression new_hash(42) add(42)* remove(42) is of very limited
use because it refers to a specific object id; however, RML provides
a let construct [3] for declaring existentially quantified variables.
With such an abstraction and the shuffle operator, it is possible to

27

FTfJP ’23, July 18, 2023, Seattle, WA, USA Davide Ancona, Angelo Ferrando, and Viviana Mascardi

write a parametric specification working for any instance of class
HashSet:
Main = {let hash_id; new_hash(hash_id) (add(hash_id)* remove(

hash_id) | Main)};

When the first event matches new_hash(hash_id), hash_id is bound to
the specific id returned by the constructor in the two occurences
on the left-hand-side of the shuffle. The binding does not affect the
recursive use of Main because its nested let declaration masks the
outer one, thus allowing to properly verify the specified property
for any new instance of the class.

It is worth noting that such a specification pattern where re-
cursion occurs on one side of shuffle (or intersection, as shown
in the next section) is quite useful for specifying several kinds of
properties [4] which cannot be specified with regular expressions
(and hence with LTL which is less expressive [27]). Indeed, while
regular expressions are closed w.r.t. shuffle, they are not w.r.t. iter-
ated shuffle [15]; intersection allows even more expressive power
since context-free languages are not closed w.r.t. such an operation
[4].

RML provides a further abstract layer with generic specifica-
tions, to enhance modularity and reuse and increase its expressive
power [4]. With the generic Spec<hash_id>, the specification above
can be generalized as follows to make it more readable and possibly
reusable:
Spec <hash_id > = add(hash_id)* remove(hash_id);

Main = {let hash_id; new_hash(hash_id) (Spec <hash_id > | Main)};

4 A SPECIFICATION OF SAFE USE OF
COLLECTIONS IN HASH SETS

In this section we show how it is possible to define a specification in
RML for dynamically verifying that hash sets and their elements of
type Collection are managed correctly to avoid the issue highlighted
by the examples in Section 2.

The only methods of Collection<E> that can modify the state of
a collection are add(E) and remove(E); other methods, as addAll and
removeAll, are defined in terms of the primitive ones add and remove,
hence the specification we consider here covers also them. How-
ever, there are additional methods contained in subtypes of collec-
tion, consider for instance method add(int,E) and remove(int) of List,
which cannot be monitored through add(E) and remove(E). Possible
generalization of the solution presented here are discussed in the
last part of this section.

4.1 Events and Event Types
Since the specification has to verify hash sets, creation of instances
of HashTable is a relevant event to be monitored.
new_hash(hash_id) matches {event:'func_post ', name:'HashSet ',

resultId:hash_id };

Interestingly enough, creation of the elements inserted in the sets
need not to be monitored, unless they are hash sets themselves; as
seen in the examples in Section 2, the main point is to trace addition
to new elements in sets.

An interesting feature of add and remove of Collection is that they
both return true if and only if the operation modifies the collection,
hence modifications can be easily monitored at runtime, and it

is possible to write a specification based only on events of type
'func_post'.
add(hash_id ,elem_id) matches {event:'func_post ', targetId:hash_id ,

name:'add', argIds :[elem_id], res:true};

remove(hash_id ,elem_id) matches {event:'func_post ', targetId:

hash_id , name:'remove ', argIds :[elem_id], res:true};

After an event matches add(hash_id,elem_id), the specification
needs to verify that element elem_id, which has just been inserted
in the hash set hash_id, is not modified until the element is removed
from the set, that is, an event matching remove(hash_id,elem_id) oc-
curs. The fact that event type add(hash_id,elem_id) requires the re-
turned value to be true is important to avoid useless checks on
elements that are already contained in the set. The same constraint
for remove(hash_id,elem_id) is less important here because, by con-
struction (see the specification below), the first event matching
remove(hash_id,elem_id)must necessarily be for a call returning value
true, assuming correct the implementation of remove.

The returned value true in the definition of add(hash_id,elem_id
) and remove(hash_id,elem_id) is important to avoid false positives
when checking that elements in a hash set are not modified. Indeed,
the only harmful calls to add and remove are those that effectively
change the state of elements and, hence, their hash codes.
modify(targ_id) matches add(targ_id ,_) | remove(targ_id ,_);

There still might be some false positive in (the quite unlikely) case
a modification of the element does not change the bucket of the
hash table where it should be contained, as already observed in
Section 2. However, this would be hard to be checked and the policy
to ban any attempt at modifying elements in a hash set is safer. One
might also adopt the stricter policy of prohibiting any call to add

and remove by omitting the requirement res:true in the definition of
add(hash_id,elem_id) and remove(hash_id,elem_id).

4.2 Specification
The whole specification of safe use of collections in hash sets can
be found in Figure 2.

The first part of the specification contains the definitions of all
needed event types. The main types have been already introduced,
but there are also some auxiliary types, most of them derived.

The definition of themain specification Main is recursive, similarly
as shown in the example of parametric specification in Section 2,
but the intersection operation is used instead of the shuffle. This is
necessary because several hash sets may coexist andmodification of
a collection has to be checked for all of them, since such a collection
could be contained in any of them.

Before a new hash set is created (new_hash(hash_id)), several other
events relevant for SafeHashTable or SafeHashElem may occur (trace
expression not_new_hash*). After a new hash table is created with id
hash_id, the specification SafeHashTable checks the correct behavior
of the newly created set and Main manages creation of new hash
sets (trace expression SafeHashTable<hash_id> /\ Main).

For instance, after creation of two hash sets with id 5 and 9, the
specification defined by Main is rewritten into
(SafeHashTable <5> /\ (SafeHashTable <9> /\ Main)?)?;

Such a specification represents the current state of the monitor
generated from Main.

28

Runtime Verification of Hash Code in Mutable Classes FTfJP ’23, July 18, 2023, Seattle, WA, USA

new_hash(hash_id) matches

{event:'func_post ', name:'HashSet ', resultId:hash_id };

not_new_hash not matches new_hash(_);

add(hash_id ,elem_id) matches

{event:'func_post ', targetId:hash_id , name:'add',

argIds :[elem_id], res:true};

not_add(hash_id) not matches add(hash_id ,_);

remove(hash_id ,elem_id) matches

{event:'func_post ', targetId:hash_id , name:'remove ',

argIds :[elem_id], res:true};

modify(targ_id) matches add(targ_id ,_) | remove(targ_id ,_);

not_modify_remove(hash_id ,elem_id) not matches

modify(elem_id) | remove(hash_id ,elem_id);

op(hash_id ,elem_id) matches

{targetId:hash_id} | {targetId:elem_id };

Main = not_new_hash*

{let hash_id;new_hash(hash_id)

(SafeHashTable <hash_id > /\ Main)

}?;

SafeHashTable <hash_id > = not_add(hash_id)*

{let elem_id;add(hash_id ,elem_id)

(SafeHashElem <hash_id ,elem_id > /\ SafeHashTable <hash_id >)

}?;

SafeHashElem <hash_id ,elem_id > =

not_modify_remove(hash_id ,elem_id)* (remove(hash_id ,elem_id) all

)?;

Figure 2: Specification of safe hash sets.

The regular expression operator ? (optionality) is used to cover
cases where a specific run of the SUS does not create any hash table.

The definition of SafeHashTable follows the same pattern as Main.
Before a new element is added to the hash set hash_id (event pattern
add(hash_id,elem_id)), several other events relevant for the generic
specification SafeHashTable may occur (not_add(hash_id)*).

After a new element with id elem_id is added, the specification
SafeHashElem checks that elem_id is not modified until it is removed
from hash_id and SafeHashTable manages addition of new elements
to the hash sets (trace expression SafeHashElem<hash_id,elem_id> /\

SafeHashTable<hash_id>).
SafeHashElem<hash_id,elem_id> is defined by the trace expression

not_modify_remove(hash_id ,elem_id)* (remove(hash_id ,

elem_id) all)?

It defines the set of traces where modifications on elem_id are not
allowed before an event matching remove(hash_id,elem_id) occurs.
The pattern not_modify_remove(hash_id,elem_id) matches all events
that do not match modify(elem_id) and remove(hash_id,elem_id). The
latter constraint is needed to ensure that removal of elem_id is
checked only once, that is, the corresponding event matches pattern
remove(hash_id,elem_id). The predefined constant all (the universe of
all traces) specifies that no further checks are needed once elem_id

has been removed from hash_id. The use of the optional operator in
(remove(hash_id,elem_id) all)? reflects the fact that the specification
is used to monitor a safety property: removing elem_id from hash_id

is a necessary condition for considering safe all those operations
that modify elem_id, but execution can safely terminate even though
elem_id has not been removed, if no modification of elem_id occurred
after its insertion in hash_id.

Reconsidering the rewriting example above, after creation of
two hash sets with id 5 and 9, and insertion of the set with id 9 into
the set with id 5, the specification defined by Main is rewritten into

((SafeHashElem <5,9> /\ SafeHashTable <5>)? /\ (SafeHashTable <9> /\

Main)?)?;

4.3 Possible Generalization of the Specification
The specification above deals exclusivelywith objects of type HashSet
for what concerns classes based on hash tables, and objects of type
Collection for what concerns objects of mutable classes that redefine
hashCode.

4.3.1 Classes Based on Hash Tables. HashMap is a widely used class
of the Java API. To consider also this class, some event types, as
new_hash or add, need to be generalized.

new_hash(hash_id) matches {event:'func_post ', name:'HashSet ' | '

HashMap ', resultId:hash_id };

add(hash_id ,elem_id) matches // addition to a set

{event:'func_post ', targetId:hash_id , name:'add',

argIds :[elem_id], res:true}

| // addition to a map

{event:'func_post ', targetId:hash_id , name:'put',

argIds :[elem_id ,_], res:null};

Differently from HashSet, for some methods it is more challenging
to keep exact track of the keys contained in a map, because null

values are allowed. For instance, put(key,value) returns the previous
value associated with key (which may include null) or null if there
was no mapping for key. Hence, if we require the result to be null as
done above, then in some cases checking that a key is not modified
can be duplicated. This can be more problematic when hash maps
are elements of a hash set (see below).

4.3.2 Mutable Classes Redefining hashCode. Package java.util pro-
vides a number of mutable classes where hashCode is redefined.

The specification above does not take into account that several
classes implement subinterfaces of Collection, such as List. For in-
stance, a stack can be modified with methods pop and push and the
target object is always modified when the method is called.

In most cases the required extension to the specification does
not pose any challenge. However, there are some methods, as set

(index,elem) of List, for which it is not easy to test whether the
target object has been really modified. For instance, the method
may replace an element in a list with the same object, or an equal
object. In that case, the verification detects a false positive.

In java.util there are also mutable classes redefining hashCode and
implementing interfaces different from Collection. We have already
considered class HashMap which implements Map. In a scenario where
a hash set contains a hash map, modifications on the hash map
should be avoided while it is contained in the set. The put method
above has similar problems as method set, hence the verification
may be less accurate in this case.

4.3.3 Preliminary Experiments. We have conducted preliminary
experiments to test the correctness of the specification with the
offline monitor generated from it by the RML compiler. The monitor
has been run on event traces that simulate the execution of simple
Java programs, as shown below, and that have been stored in log
files.

29

FTfJP ’23, July 18, 2023, Seattle, WA, USA Davide Ancona, Angelo Ferrando, and Viviana Mascardi

1var sset = new HashSet <Set <Integer >>();

2var s1 = new HashSet <Integer >();

3var s2 = new HashSet <Integer >();

4s1.add(1);

5s2.add(2);

6sset.add(s1);

7s1.contains (1);

8s1.add(1);

9sset.add(s2);

10sset.remove(s1);

11//s2.remove (2);

12s1.remove (1);

13s2.remove (1);

14sset.remove(s2);

15s1.add(1);

16s2.add(2);

The only critical instruction has been commented. Indeed, at line
11 an element of s2 is removed, while s2 is in the hash set sset.

With line 11 commented, the corresponding trace is accepted by
the monitor, as expected. In particular, the monitor recognizes that
the two methods contains and add called on s1 while contained in
sset (lines 7 and 8) are safe because do not change the state of s1.
Similarly, line 13 for s2.

Line 12 is safe, although s1.remove(1) changes the state of the
object, because s1 no longer belongs to sset; the same consideration
for s1 applies to line 15 and line 16 for s2.

If the comment at line 13 is removed, then the corresponding
trace is rejected.

5 RELATEDWORK AND CONCLUSIONS
Although in previous work [22] experiments have been conducted
on real Java programs to understand to what extent mutable objects
with redefined hash code are used correctly in hash tables, we are
not aware of papers where such a property has been formalized
so that it can be dynamically verified on programs for all those
object-oriented languages for which the issue may manifest.

In the preliminary conducted experiments traces have been gen-
erated by a simple script and not through Java code instrumentation.
A simple solution to analyze real Java code is exploiting the Java
Logging API offered by module java.logging.

Other more sophisticated tools have been proposed in literature.
Early attempts to visualize Java programs date back to the end

of the millennium. They were initially motivated by teaching rea-
sons [14], and became soon a fundamental engineering step for
developing correct and safe Java applications [25, 28]. The Java
visualization research strand is still active [18, 24] but since – in
order to visualize a program behavior – it is necessary to trace it
[21], most efforts are currently oriented towards the more general
problem of Java tracing.

JavaMop [9] is a tool based on AspectJ which allows users to
specify and monitor properties in Java programs.

Different approaches to tracing exist, mainly depending onwhich
part of the Java architecture, the bytecode, the source code, the JVM,
is modified or instrumented to make the tracing possible.

In a work dating back 2001 [5], Bechini and Prete present a
solution for tracing and replaying Java concurrent applications
based on the automatic instrumentation of the original source code.

A less invasive approach is MuTT [19] that works on top of
JPDA (the Java Platform Debugger Architecture, available for old

JDKs) and exploits JPDA features to collect the run-time informa-
tion of multi-threaded Java programs without source code or JVM
instrumentation.

More recently, JBInsTrace [8] computes complex dynamic met-
rics used to categorize programs according to dynamic metrics
related to program size and structure, use of data structures, use
of polymorphism, memory footprint and concurrency. To this aim,
JBInsTrace instruments and traces Java bytecode. It does not alter
the JVM and does not statically modify class files.

When tracing takes place while the program is running, the
effect of tracing is indeed a runtime monitoring of the program’s
behavior or, using the terminology adopted in this paper, its runtime
verification.

Indeed, runtime verification of Java programs started to be ad-
dressed in 2001, when the Java PathExplorer was developed [17].
Java PathExplorer tested the execution traces of the Java program
against high level specifications expressed as temporal logic formu-
lae. An initial prototype of the tool was applied to the executive
module of the planetary Rover K9, developed at NASA Ames.

JASSDA [7] was developed one year after Java PathExplorer. It is
a RV framework for Java programs based on CSP-like specifications
and implemented in Java. JASSDA is very simple and does not
support concatenation; parametricity is obtained through slicing.

PQL [20] is an expressive language supporting RV of open-source
Java applications that allows specifications of properties covering
the closure of context-free languages combined with intersection;
however, it does not support shuffle, and parametricity. Its imple-
mentation is based on Java, Python and DataLog.

LARVA [12] is a RV tool expressly designed for checking real-
time properties of Java programs. Properties are specified in DATEs
[11] based on an extension of timed automata; in particular, it sup-
ports symbolic states to guard transitions, replication of automata,
and CCS-like communication between automata. LARVA is imple-
mented in Java and code instrumentation is based on AspectJ.

SAGA [13] is another framework for RV of Java programs based
on attribute grammars. With attribute grammars it is possible to
support parametricity and to mix specifications with code instru-
mentation by exploring the full computational power of Java. Its
implementation exploits Java, ANTLR and Rascal.

Differently to the other tools, RML allows generic specifications
fully independent from Java. The specification provided in Section 4
can be reused for other Java-like languages, except for some renam-
ing and adjustment in the definition of event types, needed because
of the different method signatures used in the libraries.

For what concerns future work, once traces can be generated
from real Java programs with a specific instrumentation tool, two
challenges should be investigated: benchmarks with traces gen-
erated from real programs have to be considered, to understand
whether the approach scales; experiments with Java programs ex-
tensively using hash tables should be conducted to understand
how many true and false positives can be detected to assess the
effectiveness of the approach.

ACKNOWLEDGMENTS
This work was partially funded by the MUR project “T-LADIES”
(PRIN 2020TL3X8X).

30

Runtime Verification of Hash Code in Mutable Classes FTfJP ’23, July 18, 2023, Seattle, WA, USA

REFERENCES
[1] Wolfgang Ahrendt, JesúsMauricio Chimento, Gordon J. Pace, and Gerardo Schnei-

der. 2017. Verifying data- and control-oriented properties combining static and
runtime verification: theory and tools. Formal Methods in System Design 51, 1
(2017), 200–265.

[2] Davide Ancona, Francesco Dagnino, and Luca Franceschini. 2018. A formal-
ism for specification of Java API interfaces. In Companion Proceedings for the
ISSTA/ECOOP 2018 Workshops, ISSTA 2018, Amsterdam, Netherlands, July 16-21,
2018. 24–26. https://doi.org/10.1145/3236454.3236476

[3] Davide Ancona, Angelo Ferrando, and Viviana Mascardi. 2017. Parametric
Runtime Verification of Multiagent Systems. In Proceedings of the 16th Conference
on Autonomous Agents and MultiAgent Systems, AAMAS 2017, São Paulo, Brazil,
May 8-12, 2017. 1457–1459.

[4] Davide Ancona, Luca Franceschini, Angelo Ferrando, and Viviana Mascardi. 2021.
RML: Theory and practice of a domain specific language for runtime verification.
Science of Computer Programming 205 (2021), 102610. https://doi.org/10.1016/j.
scico.2021.102610

[5] Alessio Bechini and Cosimo Antonio Prete. 2001. Behavior investigation of
concurrent Java programs: an approach based on source-code instrumentation.
Future Gener. Comput. Syst. 18, 2 (2001), 307–316. https://doi.org/10.1016/S0167-
739X(00)00095-9

[6] Joshua Bloch. 2018. Effective Java (3 ed.). Addison-Wesley.
[7] Mark Brörkens andMichael Möller. 2002. Dynamic Event Generation for Runtime

Checking using the JDI. Electr. Notes Theor. Comput. Sci. 70, 4 (2002), 21–35.
[8] Pierre Caserta and Olivier Zendra. 2014. JBInsTrace: A tracer of Java and JRE

classes at basic-block granularity by dynamically instrumenting bytecode. Sci.
Comput. Program. 79 (2014), 116–125. https://doi.org/10.1016/j.scico.2012.02.004

[9] Feng Chen, Marcelo d’Amorim, and Grigore Roşu. 2006. Checking and Correcting
Behaviors of Java Programs at Runtime with Java-MOP. Electronic Notes in
Theoretical Computer Science 144, 4 (2006), 3–20. https://doi.org/10.1016/j.entcs.
2006.02.002 Proceedings of the Fifth Workshop on Runtime Verification (RV
2005).

[10] Christian Colombo and Gordon J. Pace. 2022. Offline Runtime Verification.
Springer International Publishing, 155–163. https://doi.org/10.1007/978-3-031-
09268-8_12

[11] Christian Colombo, Gordon J. Pace, and Gerardo Schneider. 2008. Dynamic
Event-Based Runtime Monitoring of Real-Time and Contextual Properties. In
Formal Methods for Industrial Critical Systems, 13th International Workshop, FMICS
2008, L’Aquila, Italy, September 15-16, 2008, Revised Selected Papers. 135–149.

[12] Christian Colombo, Gordon J. Pace, and Gerardo Schneider. 2009. LARVA – Safer
Monitoring of Real-Time Java Programs. In SEFM 2009. 33–37.

[13] Frank S. de Boer and Stijn de Gouw. 2014. Combining Monitoring with Run-Time
Assertion Checking. In SFM 2014. 217–262.

[14] Herbert L Dershem, Daisy Erin Parker, and Rebecca Weinhold. 1999. A Java
function visualizer. Journal of Computing in Small Colleges 15, 1 (1999), 220–230.

[15] Nils Erik Flick and Manfred Kudlek. 2012. On a Hierarchy of Languages with
Catenation and Shuffle. In Developments in Language Theory - 16th International
Conference, DLT 2012, Taipei, Taiwan, August 14-17, 2012. Proceedings (Lecture

Notes in Computer Science, Vol. 7410), Hsu-Chun Yen and Oscar H. Ibarra (Eds.).
Springer, 452–458. https://doi.org/10.1007/978-3-642-31653-1_40

[16] Klaus Havelund and Grigore Roşu. 2004. An overview of the runtime verification
tool Java PathExplorer. Formal methods in system design 24, 2 (2004), 189–215.

[17] Klaus Havelund, Grigore Rosu, and Daniel Clancy. 2001. Java pathexplorer: A
runtime verification tool. In International Space Conference.

[18] Swaminathan Jayaraman, Bharat Jayaraman, and Demian Lessa. 2017. Compact
visualization of Java program execution. Softw. Pract. Exp. 47, 2 (2017), 163–191.
https://doi.org/10.1002/spe.2411

[19] Dapeng Liu and Shaochun Xu. 2009. MuTT: A Multi-Threaded Tracer for Java
Programs. In 8th IEEE/ACIS International Conference on Computer and Information
Science, IEEE/ACIS ICIS 2009, June 1-3, 2009, Shanghai, China, Huaikou Miao and
Gongzhu Hu (Eds.). IEEE Computer Society, 949–954. https://doi.org/10.1109/
ICIS.2009.159

[20] Michael Martin, Benjamin Livshits, and Monica S. Lam. 2005. Finding application
errors and security flaws using PQL: a program query language. In OOPSLA 2005.
365–383.

[21] Katharina Mehner. 2001. JaVis: A UML-Based Visualization and Debugging Envi-
ronment for Concurrent Java Programs. In Software Visualization, International
Seminar Dagstuhl Castle, Germany, May 20-25, 2001, Revised Lectures (Lecture
Notes in Computer Science, Vol. 2269), Stephan Diehl (Ed.). Springer, 163–175.
https://doi.org/10.1007/3-540-45875-1_13

[22] Stephen Nelson, David J. Pearce, and James Noble. 2010. Understanding the Im-
pact of Collection Contracts on Design. In Objects, Models, Components, Patterns,
Jan Vitek (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 61–78.

[23] Kozo Okano, Satoshi Harauchi, Toshifusa Sekizawa, Shinpei Ogata, and Shin
Nakajima. 2019. Consistency Checking between Java Equals and hashCode
Methods Using Software Analysis Workbench. IEICE Trans. Inf. Syst. 102-D, 8
(2019), 1498–1505. https://doi.org/10.1587/transinf.2018EDP7254

[24] Jevitha K. P., Swaminathan Jayaraman, Bharat Jayaraman, andM. Sethumadhavan.
2021. Finite-statemodel extraction and visualization from Java program execution.
Softw. Pract. Exp. 51, 2 (2021), 409–437. https://doi.org/10.1002/spe.2910

[25] Wim De Pauw, Erik Jensen, Nick Mitchell, Gary Sevitsky, John M. Vlissides,
and Jeaha Yang. 2001. Visualizing the Execution of Java Programs. In Software
Visualization, International Seminar Dagstuhl Castle, Germany, May 20-25, 2001,
Revised Lectures (Lecture Notes in Computer Science, Vol. 2269), Stephan Diehl
(Ed.). Springer, 151–162. https://doi.org/10.1007/3-540-45875-1_12

[26] Subodh Sharma, Ganesh Gopalakrishnan, Eric Mercer, and Jim Holt. 2009. MCC:
A runtime verification tool for MCAPI user applications. In 2009 Formal Methods
in Computer-Aided Design. IEEE, 41–44.

[27] Jan Strejček. 2004. Linear Temporal Logic: Expressiveness and Model Checking.
Ph. D. Dissertation. Masaryk University Brno.

[28] Tarja Systä. 2000. Understanding the Behavior of Java Programs. In Proceedings
of the Seventh Working Conference on Reverse Engineering, WCRE’00, Brisbane,
Australia, November 23-25, 2000. IEEE Computer Society, 214–223. https://doi.
org/10.1109/WCRE.2000.891472

Received 2023-05-26; accepted 2023-06-23

31

https://doi.org/10.1145/3236454.3236476
https://doi.org/10.1016/j.scico.2021.102610
https://doi.org/10.1016/j.scico.2021.102610
https://doi.org/10.1016/S0167-739X(00)00095-9
https://doi.org/10.1016/S0167-739X(00)00095-9
https://doi.org/10.1016/j.scico.2012.02.004
https://doi.org/10.1016/j.entcs.2006.02.002
https://doi.org/10.1016/j.entcs.2006.02.002
https://doi.org/10.1007/978-3-031-09268-8_12
https://doi.org/10.1007/978-3-031-09268-8_12
https://doi.org/10.1007/978-3-642-31653-1_40
https://doi.org/10.1002/spe.2411
https://doi.org/10.1109/ICIS.2009.159
https://doi.org/10.1109/ICIS.2009.159
https://doi.org/10.1007/3-540-45875-1_13
https://doi.org/10.1587/transinf.2018EDP7254
https://doi.org/10.1002/spe.2910
https://doi.org/10.1007/3-540-45875-1_12
https://doi.org/10.1109/WCRE.2000.891472
https://doi.org/10.1109/WCRE.2000.891472

	Abstract
	1 Introduction
	2 Hash code and mutable classes
	3 RML
	4 A specification of safe use of collections in hash sets
	4.1 Events and Event Types
	4.2 Specification
	4.3 Possible Generalization of the Specification

	5 Related Work and Conclusions
	Acknowledgments
	References

