XLIX Congress of the Physical Chemistry Division of the Società Chimica Italiana

Physical Chemistry: a fresh glimpse into the microscopic world

Torino 4-7 September 2023

Local Organizing Committee

V. Crocellà

S. Bordiga

- P. Ugliengo Chair
- A. Damin
- F. Bonino
- S. Casassa B. Civalleri
- A. M. Ferrari E. Groppo
- L. Maschio L. Mino
- G. Ricchiardi D. Scarano

- **G.** Berlier E. Borfecchia

M. Corno

- A. Erba
- G. Magnacca
- S. Morandi
- **M. Signorile**

Scientific Committee

M. Meneghetti - Chair S. Brutti **M. Ferretti** G. Marletta L. Petraccone A. Polo F. Ridi M. L. Saladino P. Ugliengo **F. Zerbetto**

https://www.cdcf49.unito.it

Collane@unito.it Università degli Studi di Torino

ISBN: 9788875902704

This work is licensed under <u>CC BY-SA 4.0</u> CO

Publication date: 25-08-2023

GENERAL **INFORMATION**

Venue	University of Turin UniTO Dept. of Molecular Biotechnology and Health Sciences Via Nizza 52, 10126 Torino
Wifi	Participants can access the wi-fi infrastructure by using the personal Eduroam account. Please check the service has been activated on your devices.
	SOCIAL PROGRAMME
Welcome Party	Monday 4 September, 2023 – h 18:30 University of Turin UniTO Dept. of Molecular Biotechnology and Health Sciences Via Nizza 52, 10126 Torino
Public Engagement	Tuesday 5 September, 2023 – h 18:00 Clima ed energia: quali scelte per il futuro? Cavallerizza Reale Via Giuseppe Verdi 9, 10124 Torino
Social Dinner	Wednesday 6 September, 2023 – h 20;00 Esperia Restaurant Corso Moncalieri 2, 10131 Torino (Only with reservation)

Techinical Secretariat

EVENTually Meetings & Events EVENT ually MEETINGS & EVENTS Info@rvrntuallyevents.it www.eventuallyevents.it

POSTERS

T1. PHYSICAL CHEMISTRY OF MATERIALS

Zero-dimensional model for a planar Solid Oxide Electrolyser Cell (SOEC) at different working temperatures

 <u>I. Polloni</u>^{1*}, D. Grilli¹, M. Pani^{1,2}, C. Artini^{1,3}, M. Viviani⁴, S. Presto⁴, A. M. Asensio⁵, A. Barbucci⁵, P. Costamagna¹
¹DCCI, University of Genova, Via Dodecaneso 31, 16146 Genova Italy; ²CNR-SPIN, Corso Perrone 24, 16152 Genova, Italy;
³CNR-ICMATE, Via De Marini 6, 16149 Genova, Italy; ⁴ CNR-ICMATE, c/o DICCA-UNIGE, Via all'Opera Pia 15, 16145 Genova, Italy; ⁵DICCA, University of Genoa, Via All'Opera Pia 5, I-16145, Genova, Italy
*irepolloni@gmail.com

The demand for sustainable and environmentally friendly processes of producing syngas has led to the development of high-temperature co-electrolysis of carbon dioxide and steam. In an electrolyser, molecular hydrogen and oxygen are produced by water, respectively at the cathodic and anodic side, thanks to an external electrical power supply. In the same way, CO_2 can be converted into CO and oxygen in a reaction named carbon dioxide electrolysis. CO₂ and H₂O electrolysis can be paired together (co-electrolysis) to obtain H₂ and CO, which is known as syngas, a widely used intermediate gas mixture in synthesis processes. Performing the process at high rather than low temperatures has the advantage of requiring less electrical energy. This is explained by the decrease of the ΔG of the reactions with increasing temperature¹. Therefore, solid oxide electrolyser cells (SOECs) are currently at the cutting edge of research. Since the output syngas ratio is a key factor, it is crucial to understand the effects related to the functioning of the electrolyser. These can be estimated through a model, aiming at evaluating the current-voltage (j-V) SOEC curves and the composition of the syngas produced in different operating conditions. In this framework, a zerodimensional model is developed. The chemical part of the model includes the calculation of the outlet cathode gas composition, considering that the water gas shift reaction occurs and reaches thermodynamic equilibrium:

$$CO + H_2 O \rightleftharpoons CO_2 + H_2 \tag{1}$$

The electrochemical part of the model is based on the calculation of the Nernst reversible voltage U_N . Then, the operating voltage U is obtained by subtracting all the voltage losses, which include ohmic, concentration and activation losses:

$$U = U_N + \eta_{ohm} + \eta_{conc} + \eta_{act}$$
(2)

The theoretical equations have been implemented in Matlab. The simulation results show that the $CO_2:H_2O$ ratio in the cathode inlet gas strongly influences the slope of the *j*-V curves.

This work is developed with the fundings of the National Recovery and Resilience Plan (NRRP), Mission 4 Component 2 Investment 1.3 - Call for tender No. 1561 of 11.10.2022 of Ministero dell'Università e della Ricerca (MUR); funded by the European Union – NextGenerationEU- : Project code PE0000021, Concession Decree No. 1561 of 11.10.2022 adopted by Ministero dell'Università e della Ricerca (MUR), CUP - D33C22001330002, Project title "Network 4 Energy Sustainable Transition – NEST".

1. Ebbesen, S. D., Jensen, S. H., Hauch, A. & Mogensen, M. B. High Temperature Electrolysis in Alkaline Cells, Solid Proton Conducting Cells, and Solid Oxide Cells. *Chem. Rev.* **114**, 10697–10734 (2014).