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ABSTRACT

The free-stream turbulence induced transition occurring under typical low-pressure turbine flow conditions is investigated by comparing lin-
ear stability theory with wind tunnel measurements acquired over a flat plate subjected to high turbulence intensity. The analysis was carried
out, accounting for three different Reynolds numbers and four different adverse pressure gradients. First, a non-similarity-based boundary
layer (BL) solver was used to compute base flows and validated against pressure taps and particle image velocimetry (PIV) measurements.
Successively, the optimal disturbances and their spatial transient growth were calculated by coupling classical linear stability theory and a
direct-adjoint optimization procedure on all flow conditions considered. Linear stability results were compared with experimental particle
image velocimetry measurements on both wall-normal and wall-parallel planes. Finally, the sensitivity of the disturbance spatial transient
growth to the spanwise wavenumber of perturbations, the receptivity position, and the location where disturbance energy is maximized were
investigated via the built numerical model. Overall, the optimal perturbations computed by linear stability theory show good agreement with
the streaky structures surveyed in experiments. Interestingly, the energy growth of disturbances was found to be maximum for all the flow
conditions examined, when perturbations entered the boundary layer close to the position where minimum pressure occurs.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0188024

I. INTRODUCTION

Boundary layer (BL) transition always had major attention in
aeronautics and turbomachinery research, where lots of efforts are
paid by the scientific community to get further insight into the mecha-
nisms governing boundary layer stability and its transition routes. In
the case of an attached laminar boundary layer (BL), depending on the
free-stream turbulence (FST) intensity, both the ordinary (i.e., natural
transition) and the FST induced—formerly bypass—transition mecha-
nisms may occur.1 Specifically, the natural transition caused by the
amplification of Tollmien–Schlichting waves occurs at low free-stream
turbulence intensity levels Tu < 1%, whereas the FST induced route
dominates flow conditions characterized by larger Tu. Given the quite
high turbulence intensity characterizing the flow around turbine and
compressor blades, traditionally the focus on transition in the

turbomachinery field is posed mainly on the bypass route. Indeed, fully
understanding and foreseeing this transition phenomenon has become
a fundamental requirement to manufacture lightweight and aerody-
namically efficient low-pressure turbines for modern aircraft engines.2

In this case, the transition breakdown is triggered by the instability of
streamwise oriented, elongated vortical filaments called streaks, which
were first observed by Klebanoff et al.3 and Klebanoff.4 Streaky struc-
tures appear as low-frequency perturbations of the streamwise veloc-
ity, whose unstable evolution and consequent breakup prompt/
initiate the formation of turbulent spots.5–7 When the flow is still lam-
inar, low-frequency disturbances embedded within the free stream
penetrate into the boundary layer, in a receptivity process termed
shear-sheltering,8,9 thus generating streaks. As streaks evolve along the
streamwise direction, their amplitude grows and their spanwise size
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approximately matches the boundary layer thickness. When streaky
disturbances are sufficiently strong, they become unstable and
breakup via secondary instability mechanisms.10,11

Differently from the natural transition, the bypass route relies on
the non-modal transient growth of disturbance energy, up to trigger
secondary instabilities and turbulence breakdown (see, e.g., Hoepffner
et al.5 Schlatter et al.12). For this reason, asymptotic analyses are inca-
pable of capturing the FST induced boundary layer transition, whereas
linear stability theory coupled with a direct-adjoint optimization pro-
cedure is typically adopted to evaluate the shape and transient growth
of optimal disturbances.13 Previous studies explored the potential of
this technique for relatively simple flows, such as Blasius’s13–16 or
Falkner–Skan–Cooke’s (FSC)17,18 boundary layer similarity solutions.
Despite considering relatively simple flow conditions, most of the cur-
rent literature successfully analyzed the impact of crucial parameters
on the FST-induced transition. In particular, Andersson et al.13

showed that increasing the Reynolds number Re causes higher energy
amplification for the streaky disturbances, with perturbation growth G
scaling linearly with Re for Re > 105. Additionally, for a Zero Pressure
Gradient (ZPG) boundary layer, Andersson et al.13 found that, when
G is maximized with respect to the initial (xi) and final (xf) positions of
the disturbance evolution along the flow path, the energy gain shows a
maximum against xf itself, where turbulent breakdown is expected to
occur. Successively, Levin and Henningson16 observed a maximum
trend of G with respect to the receptivity location xi, i.e., the position at
which the disturbance enters the boundary layer, with higher amplifi-
cation of disturbances achieved introducing perturbations downstream
of the flt plate leading edge. Finally, by investigating the influence of
pressure gradients on perturbation growth in FSC boundary layers,
Andersson et al.7 showed that increasing adverse pressure gradients
(APGs) determines higher values for G. Nevertheless, the well-known
numerical instability of the FSC similarity solutions for specific values
of the Hartree’s parameter constrained the analysis on weak APGs.

However, few attempts have been made in the literature toward
the application of linear stability theory and direct-adjoint optimiza-
tion to complex, non-similarity-based boundary layer flows, such as
those occurring over wing airfoils or turbomachinery blades.19–21 Most
noticeably, Mao et al.22 applied linear stability theory to find out opti-
mal perturbations for boundary layer developing over a NACA 65 air-
foil, typically used for compressor blades. The present work aims to
add knowledge to the current scenario and investigate the free-stream
turbulence induced transition in boundary layer flows typically occur-
ring over highly-loaded low-pressure turbine (LPT) blades of modern
aeroengines.23–25 The analysis is carried out by means of a numerical
model employing linear stability theory and wind tunnel experimental
data. More specifically, a completely general (i.e., non-similarity-based)
boundary layer solver has been used to solve for base flows, which are
characterized by strong APGs following the channel throat. Different
Reynolds number and APG flow conditions were reproduced by the
boundary layer solver and validated against wall-normal particle image
velocimetry (PIV) measurements, thus demonstrating the accuracy of
the numerical procedure. Successively, linear stability theory was
applied to calculate optimal disturbances through direct-adjoint opti-
mization approach. The method employed was proven in the litera-
ture13,16 as a capable mean of simulation, despite its simplicity. While a
direct numerical simulation (DNS) would have provided a full descrip-
tion of the flow field, the employed method can achieve meaningful

results in significantly less time and effort, making it still affordable for
the scientific community at all levels. Results were again compared
with experimental data, this time against wall-parallel PIV measure-
ments. Overall, the analysis provides useful insight into the transition
mechanisms occurring in complex, turbomachinery boundary layer
flows. The next Sec. II introduces the experimental setup and measure-
ment techniques adopted in this work, whereas insights into the
numerical procedure used are reported in Sec. III. In Sec. IVA, the
numerical base flows are validated against PIV experimental data for a
wide number of APG conditions and streamwise positions. Finally, in
Secs. IVB and IVC, results regarding the optimal disturbances pro-
vided by linear stability theory are compared with experimental evi-
dence by numerically varying critical parameters (xi, xf, Re, APG,…),
which influence the spatial transient growth of a streaky structure.
Overall, the results of the present manuscript can significantly contrib-
ute to the understanding of the physical mechanisms underlying the
bypass transition and to the formulation of simple but accurate
approaches for its investigation, which should provide significant ben-
efits for the aerodynamic sector, especially for aeroengine technology.

II. EXPERIMENTAL SETUP AND MEASUREMENTS
A. Test section and examined flow conditions

The experimental campaign was carried out in the low-speed
open-loop wind tunnel of the Aerodynamics and Turbomachinery
Laboratory at the University of Genoa. The test section comprises a
20mm thick, 300mm long, and 300mm wide flat plate, ensuring 2D
time-mean flow at mid-span with negligible end effects.23 The flat plate
has a 4:1 elliptic nose, designed to prevent leading edge separation.
The following fore portion of the test section has a fixed converging
geometry up to the geometrical throat of the channel (positioned at
x=L ¼ 0:20, L being the plate length), whereas two adjustable end-
walls provide prescribed APGs over the flat plate (see Fig. 1). Three
optical accesses to the flat plate are granted through plexiglass panels
on the sides and on the top surface of the test section. A tripwire
installed on the top and the bottom end-walls at the channel throat is
used to prevent uncontrolled boundary layer laminar separation along
these surfaces, hence ensuring that the correct Diffusion Rate (DR) is
imposed to the flat plate boundary layer.

FIG. 1. Depiction of the test section and PIV instrumentation layout. Wall-parallel
and wall-normal measuring planes are highlighted in green; the geometric throat in
red. The adjustable end-walls above and below the flat plate are shown at a 5�
opening angle: here, trip wires are placed near the throat.
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The setting and control of the proper angle of attack for the dif-
ferent conditions can be surveyed by 17 pressure taps symmetrically
distributed on the top and bottom sides of the leading edge curved sur-
faces—a first measurement tap is placed on the foremost point of the
nose. Additionally, 51 equally spaced pressure taps installed on the
horizontal section of the plate were used to characterize the pressure
gradient imposed in this region by different end wall settings. The
achieved pressure gradient is quantified by the diffusion rate DR
defined in Eq. (1), with Uth being the peak velocity in the throat, L
being the plate length, and DU=Dx being evaluated in the diffusing
region of the test section—i.e., the part of the test section dealing with
adjustable, diverging end-walls,

DR ¼ DU
Dx

����

����
L
Uth

: (1)

By employing definition (1) ReL—based on the flat plate length—and
APG can be effectively considered as independent variables in setting
up the test matrix of flow conditions analyzed in this work. Top end-
wall opening angles of 1�, 5�, 9�, and 12� have been adopted in the
experimental campaign, corresponding to DR of 0.00, 1.30, 2.10, and
2.30. FST is controlled using a turbulence generator, positioned
500mm upstream of the flat plate, which ensures a turbulence inten-
sity of 5% at its leading edge. The desired turbulence intensity level is
obtained using a grid of squared bars, having a mesh size of 10mm
and a bar width of 10mm and therefore a porosity parameter
bP ¼ 0. Further details on the dependence of Tu levels on the geo-
metric features of turbulence generating grids can be found in
Verdoya et al.26 Thanks to the described setup, the free-stream turbu-
lence intensity, the Reynolds number, and the aerodynamic load dis-
tribution in the test reproduce those of an LPT blade, as the
boundary layer is subjected to pressure gradients and turbulence
intensity typically occurring in low-pressure turbine flows. All combi-
nations of three Reynolds numbers—based on the plate length and
the free-stream velocity at the plate leading edge, ReL¼ 70 k, 150 k,
220k—and the four aforementioned diffusion rates were tested in the
present work. Twelve flow conditions were examined in total, at fixed
Tu ¼ 5%.

B. Measurement techniques

Experimental data were collected utilizing a Dantec time-
resolved PIV system. The instrumentation consists of a dual-cavity
Nd:YLF pulsed laser Litron LDY 300 (energy 30 mJ per pulse at
1000Hz repetition rate, 527 nm wavelength). The optics generate a
light sheet of 1mm thickness. The laser light is scattered by Vaseline
oil droplets with a mean diameter of 1.5lm, and it is captured by a
high-sensitive SpeedSense M340 digital camera with a cooled 2560 �
1600 pixels CMOS matrix. This setting results in a particle image
diameter of the order of three pixels, with a seeding concentration of
around four to five particles for the investigation area. Given the con-
siderably small diameter of the Vaseline droplets, it is safe to assume
that the particles remain suspended indefinitely during the experi-
ment. The adaptive cross correlation with a peak validation algorithm
was used over an interrogation area of 16� 16 pixels with a 50%
overlap, resulting in a vector spacing of less than 0.5mm and an esti-
mated error on velocity measurements lower than 3%, as verified in
the error estimation for a similar setup by Dellacasagrande et al.27 A

formal description of the computation of the accuracy of the PIV
measurement system can be found in the analyses of Sciacchitano
et al.28 and Wieneke.29

PIV measurements were acquired independently on a wall-
normal and on a wall-parallel plane, embedded in the boundary layer
at around y=d99 � 0:5, at x=L ¼ x�0 . The location and the magnifica-
tion factor of both PIV measurement planes were determined by
acquiring the images of a calibrated target before each acquisition. At
this stage, minor uncertainty sources such as plexiglass refraction of
light and relative placement of cameras and test section were addressed
and showed to have negligible impact on results. The PIV frame in the
wall-normal plane extends from x=L ¼ 0:27 to x=L ¼ 0:81 in the
streamwise direction, focusing from the plate surface up to y=L ¼ 0:04
in the free-stream region—L being the flat plate length. The field of
view allows us to capture the boundary layer evolution in the stream-
wise direction, and thus, the overall characterization of the transition
process depending on the flow conditions. Eight independent data sets
of 2000 PIV snapshots were acquired at a sampling rate of 2 kHz in
this plane, providing a good convergence of the boundary layer statisti-
cal quantities for each of the flow conditions tested. The PIV field of
view of the wall-parallel plane covers the region from x=L ¼ 0:33 to
x=L ¼ 0:83, spanning 1/3 of the flat plate width and centered at the
mid-section. This allows the visualization of the population of alternat-
ing high- and low-speed streaks developing in the transitional bound-
ary layer and the characterization of their spanwise wavelength,
ultimately providing an evaluation of the experimental disturbance, as
demonstrated in Verdoya et al.30

III. MATHEMATICAL PROCEDURE

Free-stream turbulence induced transition is investigated by
applying linear stability theory to a boundary layer numerical solution.
To this end, the incompressible, steady-state Navier–Stokes equations
are decomposed by a superposition of a 2D boundary layer mean flow
ðU ;V; 0Þ ¼ ðUðx; yÞ;Vðx; yÞ; 0Þ and 3D disturbances ðu; v;w; pÞ
¼ ðuðx; y; zÞ; vðx; y; zÞ;wðx; y; zÞ; pðx; y; zÞÞ. According to Levin and
Henningson,16 perturbations have been assumed of the form
ðu; v;w; pÞ ¼ ðûðx; yÞ; v̂ðx; yÞ; ŵðx; yÞ; p̂ðx; yÞÞeibz , i.e., with zero
time frequency, periodic in the spanwise direction z and amplifying
along the streamwise and wall-normal directions x and y. Following
the formulation of Andersson et al.,13 an appropriate scaling for alge-
braically growing disturbances and base flows is adopted, as summa-
rized in Table I. In detail, Lref measures the distance ranging from the
leading edge of the flat plate to the throat position; hence, the Reynolds
number is consequently defined as Re ¼ Uref � Lref =�; d represents the
boundary layer thickness and b is the spanwise wavenumber of pertur-
bations. Provided the scalings reported in Table I, the non-
dimensional linearized Navier–Stokes equations for the disturbances
can be expressed as

TABLE I. Base flow and disturbance scalings. The subscript ref refers to the mini-
mum cross-flow area of the test section (i.e., the geometrical throat).

x y,z t U ; û V ;W; v̂; ŵ P; p̂ b

Lref d Lref =Uref Uref Uref � d=Lref q � ðUref � d=Lref Þ2 d�1
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ûx þ v̂y þ ibŵ ¼ 0;

Uxû þ Uûx þ Vûy þ Uyv̂ þ p̂x
Re2d

¼ ûyy � b2û;

Vyv̂ þ Uv̂x þ Vxû þ Vv̂y þ p̂y ¼ v̂yy � b2v̂;

Uŵx þ Vŵy þ ibp̂ ¼ ŵyy � b2ŵ;

(2)

where Red ¼ Uref d=� and higher order terms (i.e., Oð1=Re2dÞ) have
been neglected. The boundary conditions for this problem are no-slip
and vanishing disturbances in the wall-normal direction at y¼ 0 and
y ¼ ymax, respectively,

y ¼ 0 : ðû; v̂ ; ŵ; p̂Þ ¼ ð0; 0; 0; 0Þ;
y ¼ ymax : ðû; v̂ ; ŵ; p̂Þ ! ð0; 0; 0; 0Þ: (3)

Furthermore, since the complex geometry of the test section does not
allow for similarity flow conditions, the 2D mean flow ðU;V ; 0Þ in
Eq. (2) has been obtained numerically by solving boundary layer equa-
tions for generic flows, without introducing similarity hypotheses.31

The main purpose of the boundary layer solver is to provide high-
fidelity numerical results next to the leading edge of the flat plate, i.e.,
outside the PIV measurement domain, and to accurately match the
experimental data where directly available. It must be remarked here
that the boundary layer solver neglects the turbulent momentum
transfer from the free-stream and only relies on laminar flow equa-
tions; thus, incipient flow separation may be detected by it in the case
of adverse pressure gradient, even though the actual non-zero turbu-
lence level present in experiments keeps the flow attached. By adopting
a second order finite difference and Chebyshev discretization schemes
along x and y, respectively, the matrix form of the parabolized stability
equations (PSEs) (2) has been derived:31

qf ¼ L qi; (4)

whereL is the non-dimensional linearized Navier–Stokes operator pro-
viding the disturbance evolution along x, whereas qi ¼ ðû; v̂; ŵ; p̂Þjxi
and qf ¼ ðû; v̂; ŵ; p̂Þjxf are the disturbance amplitudes at xi and xf for
the perturbation evolution, respectively. In Eq. (4), no-slip condition at
y¼ 0 and vanishing disturbance at y ¼ ymax have been implemented in
thematrix form. Therefore, once a general disturbance shape is provided
at xi, Eq. (4) computes its evolution step-by-step along the streamwise
direction from xi to xf. Hence, to identify the optimal disturbance, i.e.,
the disturbance introduced at xi whose energy is maximized at a certain
xf, the following optimization problem needs to be solved:31

Gmax ¼ max
qi

kqf k2
kqik2

¼ max
qi

kûf k2
kqik2

; (5)

where G ¼ kqf k2=kqik2 represents the spatial transient growth of the
perturbation evolving from xi to xf. In Eq. (5), the wall-normal and
spanwise components of qf are neglected and the squared norm is
defined as kqk2 ¼ Ð ymax

0 ðRejuj2 þ jvj2 þ jwj2Þdy. To solve the optimi-
zation problem (5), an iterative adjoint optimization procedure has
been set up, according to previous works in the literature.16,32 By defi-
nition, the adjointL � of an operatorL satisfies

ha;L di ¼ hL �a; di; (6)

where d ¼ dðx; yÞ and a ¼ aðx; yÞ are the direct and adjoint variables,
respectively, whereas h�; �i denotes an inner product. In the present

work, this is defined as hd; ai ¼ Ð
x

Ð
yd

Tadydx, where the apex T
denotes the conjugate transpose. Based on the definition of the
adjoint operator, the following system for the adjoint perturbation
q� ¼ ðp�; u�; v�;w�Þ is derived:

�v�y þ ibw� ¼ 0;

�Uu�x � Vyu� � Vu�y þ Vxv� � p�x ¼ uyy� � b2u�;

�Uv�x � Uxv� � Vv�y þ Uyu� � p�y ¼ vyy� � b2v�;

�Uw�
x � Vw�

y þ ibp� ¼ wyy� � b2w�;

(7)

or, in the matrix form,

q�i ¼ L �q�f : (8)

Equation (8) is obtained by adopting the same discretization schemes
along x and y used for Eq. (4). Due to the negative sign of the x deriva-
tive, the adjoint problem (7) is to be solved marching from xf to xi and
adopting q�f ¼ ðûf ; 0; 0; 0Þ as the initial condition at xf.

16,31 Overall, by
introducing the definition of the adjoint operator, the optimization
problem (5) becomes

max
qi

hL �L qi; qii
hqi; qii ; (9)

whose solution has been obtained by means of power iterations,

qjþ1 ¼ L �L qj: (10)

Here, qj and qjþ1 represent the optimal disturbances at the j-th and
jþ 1-th iteration steps, respectively, which are updated by sequentially
solving the direct and adjoint systems. Iterations continue until
Gjþ1�Gj

Gj < e, where e is an arbitrary infinitesimal threshold. More details
on the numerical procedures used in this work can be found in the
Appendix, whereas a complete treatment is available in Hanifi et al.31

IV. RESULTS

In this section, numerical results are presented against experi-
mental data, employing a different non-dimensional scaling to the
boundary layer solver one reported in Table I. In the following, the flat
plate extent L and the free-stream velocity Uth, measured at the geo-
metric throat (i.e., x=L ¼ 0:20), will be used as the length and velocity
scales, aiming to a more compliant comparison between numerical
and experimental works. The updated scaling is summarized in Table
II, where d� and h indicate the boundary layer displacement and
momentum thickness, respectively. All the quantities shown in the dia-
grams included in the following sections are made non-dimensional
through the scaling reported in Table II.

A. Base flow comparison

A comparison of the boundary layer solver results against mea-
surements is performed first to validate its accuracy in reproducing

TABLE II. Scalings used for reporting results in non-dimensional form.

x, y, z t Ue;U; û, u0 d�; h b

L L=Uth Uth L 1=L
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experimental data. Free-stream velocity, boundary layer profiles, and
integral parameters are presented for each DR at the lowest Reynolds
number in the analysis—i.e., 70k. For each combination of DR and
ReL, the distribution of the pressure coefficient Cp ¼ 2ðp� p1Þ=
ðqU2

1Þ—with U1 being the free-stream velocity measured far
upstream the leading edge—was surveyed via pressure taps. The result-
ing free-stream velocity distributions UeðxÞ=Uth are summarized in
Fig. 2 for each DR. Experimental data are shown only for the case
ReL ¼ 70 k for the sake of conciseness. Markers show the reference
free-stream velocity evolution gathered from Cp measurements, while
continuous curves denote the numerical fitting of experimental data,
which has been set as a free-stream boundary condition in the BL
solver (see Sec. III). Using interpolated data instead of the experimental
ones allows the numerical solver to accurately determine boundary
layer profiles and ultimately provide a second-order-differentiable
pressure distribution along the streamwise direction. Figure 2 high-
lights how variable DR does not affect the forepart of the free-stream
flow since the geometry is fixed up to the geometrical throat—outlined
in Sec. II. On the other hand, the adverse pressure gradient effect sub-
stantially reduces the free-stream velocity downstream of x=L ¼ 0:20.
Imposing a 1� end-wall opening angle determines a nearly constant
UeðxÞ downstream of the throat, compensating for the weak flow
acceleration in the free stream caused by the boundary layer growth
along the flat plate. All the curves show the attached flow, even at the
strongest DR, thanks to the high inlet FST intensity level (Tu ¼ 5%)
imposed in the experiments, which helps in preventing separation in
all the surveyed configurations.

Figure 3 shows the experimental measurement and numerical
boundary layer profiles from the BL solver. The comparison is carried
out at three different streamwise locations for variable DR, ReL ¼ 70 k.
Higher Reynolds numbers—ReL ¼ 150 k and ReL ¼ 220 k—provided
essentially the same level of agreement and are not reported here for
brevity—please refer to Kubacki et al.33 and Dellacasagrande et al.27

for details over the Reynolds range on the flow field employed also in
this study. Experimental and numerical BL profiles for the ZPG flow

nearly coincide up to x=L ¼ 0:45. Downstream of this position, the
experimental boundary layers become transitional, especially over
x=L ¼ 0:55. Progressively higher DR¼ 1.30, 2.10, and 2.30 show that
the numerical boundary layers start differing from the experimental
ones earlier—downstream of x=L ¼ 0.45, 0.40, and 0.35, respectively.
This discrepancy at high streamwise coordinates is due to the bound-
ary layer solver, neglecting the turbulent momentum transfer from the
free-stream (see Sec. III). Hence, it detects incipient flow separation if
significant APGs are imposed. Interestingly, the predicted separation
location moves upstream as DR increases, coherently with the expected
flow physics and further proving the reliability of the solver. Instead,
the experimental profiles remain attached and show transitional fea-
tures at the same streamwise position x. However, it is well known
from the literature that the receptivity for algebraically growing distur-
bances occurs at earlier streamwise locations in the BL (see, e.g.,
Hammerton and Kerschen34 and Lin et al.35); thus, the boundary layer
comparison holds with good agreement in the flow regions where
streak formation and amplification occur. As such, in Sec. IVC, stabil-
ity analysis for the spatial transient growth of perturbations will focus
on x=L � 0:40, i.e., where good agreement is achieved for base flows.
Numerical profiles in this region were used to calculate optimal distur-
bances to benefit from better resolution compared to experimental
results.

Figure 4 reports the perturbation profiles computed by the
adjoint optimization and the experimental rms of streamwise velocity
fluctuations from PIV measurements on the wall-normal plane. The
comparison is performed on the same flow conditions and streamwise
locations reported in Fig. 3. Both numerical and experimental profiles
are normalized by their respective maximum in the wall-normal direc-
tion. Indeed, it has been shown via different independent experimental
studies in the literature over time36–39 that the rms fluctuations of
velocity tend to similar profile shapes almost independently of the
free-stream turbulence intensity applied. Overall, a remarkable corre-
spondence between the shape of numerical and experimental profiles
is observed, especially concerning the cases at low DR and near the
throat. However, it should be noted that beyond the BL edge (i.e.,
within the free-stream flow), the numerical profiles significantly differ
(20–50% gap) from the experimental ones. This is a direct conse-
quence of the vanishing disturbance boundary conditions imple-
mented at y ! 1 in the linear stability model, according to Dotto
et al.40 Instead, vortices in the actual free-stream result in non-null per-
turbation amplitudes outside of the boundary layer, as captured by the
experimental measurements. Finally, a few discrepancies in the rms
profile shape arise at higher streamwise coordinates (blue lines) in the
case of nonzero APG. Specifically, experimental results show that
increasing DR pushes the maximum of rms closer to the wall, com-
pared to the numerical prediction.

However, the observed discrepancies are in line with other works
from the literature.7,38,41 Thus, the few differences in Fig. 4 for the non-
zero DR conditions were deemed reasonable. The momentum (h) and
displacement (d�) thicknesses calculated from the BL solver are shown
in Fig. 5 together with experimental measurements under the sameDR
and ReL of Fig. 3. Experimental integral parameters are provided with
error bars representing the PIV measurement uncertainty, as reported
in detail in Dellacasagrande et al.27 The numerical solver integral
parameters fall within the experimental accuracy for DR¼ 0.00 and
x/L up to 0.60. Interestingly, the numerical d� and h at DR 	 1:30

FIG. 2. Dimensionless free-stream velocity distributions obtained by means of pres-
sure taps (markers)—using a 1:3 skip for graphical readability—and fitted distribu-
tion (solid lines) for varying DR at fixed ReL¼ 70 k. The reported non-dimensional
plots follow the scaling indicated in Table II.
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cope well with experimental data in the forepart of the PIV domain
(i.e., x=L � 0:38), despite the high Tu level characterizing the mea-
surements. However, in all cases, the displacement thickness grows
faster for the velocity profiles established from the BL solver against
the experimental testing toward the end of the computational domain
(i.e., x=L 	 0:38) and even more pronounced downstream to where
the numerical boundary layers become inflectional. As expected,
numerical results for all the investigated DRs start detaching from
experimental data in a location close to where the boundary layer pro-
files begin to differ (see Fig. 3). Nevertheless, this further stresses the
reliability of the solver in the former part of the domain, where streaky
structures are expected to be generated and amplified. The present
comparison of the base flow properties shows that the boundary layer
solver reproduces low-pressure turbine boundary layers accurately for
variable DRs and ReL, especially upstream of the position where the
non-linearities related to transitional flow take place.

B. Spanwise wavelength and energy growth of the
experimentally surveyed perturbations

A qualitative view of the experimentally surveyed disturbances is
given in Fig. 6, which depicts PIV snapshots sampled on a wall parallel
plane embedded within the boundary layer. Snapshots are reported for
three successive time instants: t0, t1 ¼ t0 þ Dt and t2 ¼ t0 þ 2Dt. The
time interval Dt differs among all the three rows according to the phys-
ical timescale of streak evolution, which is influenced by both ReL and
DR. The contour plot of streamwise velocity fluctuations is superim-
posed on the perturbation velocity vectors to highlight the occurrence
of streaky structures and vorticity nuclei in the reported snapshots.
Depending on inflow conditions, the field of view is centered at differ-
ent streamwise coordinates to better appreciate the wavelength charac-
terizing the structures captured by each acquisition. Focusing on the
snapshots concerning DR¼ 0.00 and ReL ¼ 70k, Fig. 6 (top row)
shows a population of streamwise elongated structures, consisting of

FIG. 3. Boundary layer streamwise velocity profiles obtained by means of time-average PIV measurements (markers) and by the boundary layer solver (solid lines). Curves for
ReL¼ 70 k, (a) DR¼ 0.00, (b) 1.30, (c) 2.10, and (d) 2.30. The reported non-dimensional plots follow the scaling indicated in Table II.
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positive (red) and negative (blue) velocity fluctuations alternating in
the spanwise direction z. A low-speed streak undergoing a regular
oscillation during its downstream evolution is detected around
z=L ¼ 0:02 over all the three successive time instants t0, t1, and t2 sam-
pled for the DR¼ 0.00 and ReL ¼ 70k flow condition. The third frame
also shows two high-speed streaks (red), which start to interact and
form a localized turbulent region around x=L ¼ 0:60. Increasing the
flow Reynolds number under fixed pressure gradient %—i.e., compar-
ing the top and mid-row plots—leads to significantly smaller streaky
structures, which appear thinner and characterized by a less regular
motion along the streamwise direction. Moreover, the streak breakup
is captured slightly upstream (x=L ¼ 0:55; t ¼ t2). The effect of flow
deceleration at a fixed low Reynolds number can be assessed by com-
paring the top and bottom rows (ReL ¼ 70k, DR¼ 2.10) of Fig. 6.
Specifically, streaky structures characterized by the larger spanwise
wavelength are observed, since x=L ¼ 0:33. Aiming to provide a

quantitative characterization of the spanwise wavelength for the sur-
veyed structures, spanwise autocorrelation functions of instantaneous
flow fields have been computed on the wall-parallel plane at stream-
wise locations embedded within the transitional region. Results are
shown in Fig. 7(a), focusing on the same flow conditions reported in
Fig. 6, for conciseness. As well established in the literature,39 the spac-
ing between adjacent, opposite sign streaks is identified by the mini-
mum of autocorrelation functions. Its accuracy directly relates to the
measurement grid of the PIV system and corresponds to about
Dz=L ¼ 0:0014. The corresponding spanwise wavenumbers
b ¼ 2p=Dz computed by autocorrelations are summarized in Fig. 7(b)
for all the DR and ReL investigated in this work. The PIV resolution on
the wall parallel plane provides an overall uncertainty of the non-
dimensional wave number Db ¼ 15. As can be noticed, the streak
spanwise wave number increases with ReL. This is mainly due to the
corresponding reduction of the boundary layer thickness, which alters

FIG. 4. Non-dimensional boundary layer streamwise perturbations profiles obtained by means of rms of the streamwise velocity fluctuation from PIV measurements (markers)
and by the boundary layer solver disturbance energy (solid lines). Curves for ReL¼ 70 k, (a) DR¼ 0.00, (b) 1.30, (c) 2.10, and (d) 2.30. The reported plots follow the scaling
indicated in Table II.
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the boundary layer receptivity properties.26 It is also shown that
increasing DR reduces b, as illustrated in Fig. 7, and this effect tends
to decline as ReL rises, since the spanwise wavenumber settles close
to 300 for both ReL ¼ 150 k and ReL ¼ 220 k. Figures 7(c) and 7(d)
report the peak of rms of the optimal perturbation streamwise veloc-
ity component u alongside the akin rms value from PIV measure-
ments against the x coordinate for ReL ¼ 70 k and varying DRs.
Error bars accounting for uncertainty on the PIV rms measurements
are introduced, according to Kubacki et al.33 The numerical inlet per-
turbation spanwise wavelength has been set from Fig. 7(b), thus
ensuring comparability in terms of amplification. Similarly, the theo-
retical and experimental data are matched at the first experimental
station to get detailed insight into the spatial growth of disturbances
along x, regardless of the initial perturbation energy. Finally, the

streamwise evolution of numerical disturbances has been computed
from the leading edge of the flat plate13,15 up to the x positions
where nonlinearities and turbulent breakdown start (see Sec. IVA).
Overall, Figs. 7(c) and 7(d) shows good agreement between the
amplification rates provided by linear stability theory and experi-
ments, especially for DR¼ 0.0 and DR¼ 1.3. Nevertheless, the ficti-
tious boundary layer separation detected by the numerical solver for
nonzero DRs limits the x range where such comparison is
achieved—especially for DR¼ 2.10 and DR¼ 2.30. The computed
perturbations start to differ from the experimental data just upstream
of the laminar boundary layer separation detected by the solver.
Overall, the disturbance spatial growth agrees well with the evolution
of the root mean square of the streamwise fluctuating velocity in the
explored flow conditions.

FIG. 5. Boundary layer integral parameters obtained by means of PIV measurements (markers) and by the boundary layer solver (solid lines). Curves for ReL¼ 70 k and (a)
DR¼ 0.00, (b) 1.30, (c) 2.10, and (d) 2.30.The reported non-dimensional plots follow the scaling indicated in Table II.
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C. Optimal disturbances and comparison with
experiments

In the following, the outcome of a Design Of Experiment per-
formed over a domain of variables composed of the spanwise wave-
number b, the inlet position xi, and the final position xf is described.
The analysis is carried out for all the ReL and DR flow conditions avail-
able from the experimental campaign. The dependence of the maxi-
mum transient growth G on the spanwise wave number is assessed in
Fig. 8: the disturbance is introduced in the boundary layer near the flat
plate leading edge, and its energy is maximized at the final position
xf =L ¼ 0:40. The initial and final positions of the disturbance evolu-
tion are kept constant for all the different DRs, following the analysis
of Sec. IVA. This allows us to avoid influences of the streamwise
extension of the domain on the growth rate, as well as to perform
computations within the laminar pre-transitional region of the flow.
Figure 8 shows that all the curves detect a maximum G against b, as
already observed for similarity-based boundary layer flows.13,15,16

Furthermore, disturbance gain increases with APG, since higher pres-
sure gradients destabilize the boundary layer and anticipate transition
breakdown.42 The effect of DR appears to be remarkably stronger for
values 	 2:00, with little influence at high ReL number flows. Indeed,
for ReL ¼ 150 k and 220 k, the optimal b—i.e., the spanwise wave-
number maximizing G—tends to converge to a value between 200 and
300, interestingly in line with the experimental findings summarized
in Figs. 7(a) and 7(b). In Fig. 8, it is also shown that a DR increase
tends to slightly reduce the optimal b: this appears to be caused by the

boundary layer thickening at high APGs, which allows the receptivity
of perturbations characterized by larger spanwise wavelengths.43,44

Additionally, the destabilizing effect of ReL on the perturbation spatial
growth is shown in all plots, as the disturbance gain increases with ReL.
Perturbations characterized by large spanwise wavenumbers were also
observed to grow faster in the streamwise direction for increasingly
higher ReL. Tendency curves were added to Fig. 8 for optimal pertur-
bations obtained by linear stability theory (red dashed lines) and the
experimentally surveyed streaks (yellow dashed lines). Additionally,
the trend shown for the optimal bs and experimental data is similar
for DR¼ 0.00 and DR¼ 1.30, despite showing different trend slopes
with ReL. Moreover, it is shown that optimal bs from linear stability
theory and experimental values come closer at high DR for all ReL—
not observed otherwise, especially at DR¼ 0.00. Specifically, the opti-
mal b values at DR¼ 0.00 are significantly lower than the correspond-
ing experimental bs for all ReL. The highlighted discrepancy may be
due to the shear sheltering phenomenon acting on a real receptivity
process to the free-stream turbulence.43,44 Dellacasagrande et al.45

showed in a previous work on the same database that the spanwise
wavenumber of streaky structures approximately matches the bound-
ary layer thickness (i.e., Dz=d� � d99), independently of the DR con-
sidered. On the contrary, the calculated optimal bs reported in Fig. 8
for DR¼ 0.00 correspond to streamwise disturbances exceeding the
boundary layer thickness (e.g., Dz � 3:6d99 for ReL ¼ 70 k;
x=L ¼ 0:40). Thus, these perturbations were probably filtered out in
the receptivity process taking place in the experiments.43 On the other

FIG. 6. Contour plots of the streamwise fluctuating component u0 collected in the boundary layer wall parallel plane for ReL¼ 70 k, DR¼ 0.00 (top row), ReL¼ 220 k,
DR¼ 0.00 (mid row), and ReL¼ 70 k, DR¼ 2.10 (bottom row). Three snapshots are shown for each condition at progressive time steps. Fluctuating velocity vectors are super-
imposed to the contour plots of the streamwise fluctuating component u0 . The reported non-dimensional plots follow the scaling indicated in Table II.
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hand, the receptivity process at non-zero DR appears to resemble the
optimal one since good agreement exists between numerical and
experimental results. Finally, the comparison against increasing DR is
also affected by the boundary layer thicknesses themselves: at higher
APG, thicker boundary layers allow for an overall better resolution
than the lower or zero pressure gradient ones. Given all of the above,
the optimal disturbances from linear stability theory are not detected
consistently throughout all the flow conditions experimentally tested.
Hence, the optimization of the inlet and final locations of the distur-
bance evolution performed in the following paragraph employs b val-
ues from experiments.

The effect of the final position xf on the disturbance growth rate
is reported in Fig. 9 for ReL ¼ 70 k and variable DR, with xf ranging
between x=L ¼ 0:17 and 0.40. All the curves lie close to each other up
to xf =L ¼ 0:25, approximately in the fixed fore accelerating part of the
test section (see Sec. II). Instead, the adverse pressure gradient imposed

just downstream of the geometric throat (x=L 	 0:20) by the diverging
end-walls influences the boundary layer, causing G to increase. The
effect is more prominent at higher DRs: all the curves differ signifi-
cantly when x=L > 0:25. Additionally, it must be noticed that all the
curves found are monotonic with xf in the explored range, in contrast
with previous findings from Andersson et al.13 This discrepancy
directly follows from the complex nature of the flows considered in the
present work. Indeed, even the flow condition with DR¼ 0.00 differs
from the Blasius similarity solution due to the accelerating boundary
layer developing for x=L < 0:20, i.e., it is not a ZPG flow condition. In
Figs. 10(a)–10(c), the dependency of the maximum spatial transient
growth on the inlet position xi—where the disturbance is introduced—
is investigated againstDR and ReL. Gain is computed along the stream-
wise direction for different evolution lengths by varying the inlet loca-
tion xi up to x=L ¼ 0:33, while the final optimization position is kept
constant at x=L ¼ 0:40. Interestingly, Figs. 10(a)–10(c) show that the

FIG. 7. (a) Spanwise autocorrelation functions of the streamwise velocity Ruu ¼ hu0ðz0Þu0ðz0 þ zÞi=hu02i highlighting the ReL and the DR effect on the disturbance spanwise
wavelength, (b) experimental spanwise wavenumber b obtained from the autocorrelations of PIV measurements, (c)–(d) evolution of numerical and experimental perturbation
amplitude û along x-coordinate at fixed ReL¼ 70 k and varying DR. The reported non-dimensional plots follow the scaling indicated in Table II.

Physics of Fluids ARTICLE pubs.aip.org/aip/pof

Phys. Fluids 36, 034116 (2024); doi: 10.1063/5.0188024 36, 034116-10

Published under an exclusive license by AIP Publishing

 15 M
arch 2024 08:41:24

pubs.aip.org/aip/phf


maximum spatial transient growth occurs when the disturbances pene-
trate the boundary layer slightly upstream of the geometric throat,
with negligible influence from the DR.

Finally, the effect of xi on the disturbance energy growth is
depicted in Fig. 10(d) for DR¼ 0.00 and 2.30, and varying ReL. As it
can be seen, the optimal inlet position for the perturbations occurs
approximately at the geometric throat at all the ReL numbers
accounted for. Therefore, the analysis of the inlet position xi suggests
that the maximum transient growth in the case of turbomachinery
flows occurs for disturbances entering the boundary layer next to the
geometric throat, almost independently of diffusion rates and
Reynolds numbers.

V. CONCLUSIONS

The free-stream turbulence induced transition occurring under
typical low-pressure turbine flow conditions has been investigated
employing linear stability theory and compared to experimental data.

FIG. 8. Effect of b on gain for varying ReL. Circular and cross markers locate experimental b and optimal disturbances, respectively. Tendencies for optimal perturbations (red
dashed lines) and experimentally surveyed streaks (yellow dashed lines) are also shown.

FIG. 9. Effect of the final position xf on gain for varying DR. Results for ReL¼ 70 k.
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The analysis accounted for three different Reynolds numbers and four
adverse pressure gradients.

First, a non-similarity-based boundary layer solver was used to
compute base flows and validated against experimental data. The com-
parison showed good agreement within the laminar pre-transitional
region in terms of free-stream velocity as well as boundary layer and
rms profiles. Second, linear stability theory coupled with a direct-
adjoint optimization procedure was applied to find optimal disturban-
ces and their spatial transient growth for all the flow conditions consid-
ered. The sensitivity of the disturbance spatial transient growth to the
spanwise wavenumber of perturbations, the receptivity position, and
the location where disturbance energy is maximized were explored
numerically.

Overall, the comparison against experimental particle image
velocimetry measurements showed good agreement with the optimal
perturbations computed by linear stability theory. More precisely, the

disturbance spatial evolution obtained from numerical optimization
was shown to approximate the one surveyed in experiments—espe-
cially for low DRs. Furthermore, the spanwise wavenumber of optimal
disturbances was found to reduce for increasing DR, with weaker effect
played at higher ReL numbers, for both the numerical and experimen-
tal data. Interestingly, the spatial transient growth of optimal distur-
bances appeared to increase only monotonically with xf and DR, due
to the complex, non-similarity-based nature of the flow. Finally, the
maximum energy growth of disturbances has been shown to occur for
perturbations entering the boundary layer close to the geometrical
throat position, almost independently of diffusion rates and ReL
numbers.
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NOMENCLATURE

Cp pressure coefficient (-)
G spatial transient growth (-)
i imaginary unit
L flat plate length (m)

Lref reference length (m)
p pressure disturbance (-)
P pressure (-)
q disturbance vector (-)

ReL Reynolds number (-)
t time (s)

Tu turbulence intensity (%)
u, v, w disturbance components (-)

U, V,W base flow velocity components (-)
x, y, z streamwise, wall-normal, and spanwise directions (-)

b streaks spanwise wavenumber (-)
bP porosity parameter (-)
d� boundary-layer displacement thickness (-)
h boundary-layer momentum thickness (-)
� kinematic viscosity (m2/s)
q density (kg/m3)

Subscripts/Superscripts

e external (free-stream)
f final position
i initial position
L flat plate length
th throat position
T conjugate transpose

x, y, z partial derivatives
� adjoint
^ magnitude

Abbreviations

APG adverse pressure gradient
BL boundary layer

DNS direct numerical simulation
DR diffusion rate
FSC Falkner–Skan–Cooke
FST free-stream turbulence
LDV laser doppler velocimetry
LPT low-pressure turbine
PG pressure gradient
PIV particle image velocimetry
PSE parabolized stability equations
ZPG zero pressure gradient

APPENDIX: NUMERICAL PROCEDURE

The 2D steady boundary layer problem solved in the present
work for the base flow ðU;V ; 0Þ computation relies on the govern-
ing equations reported in the following:

@U
@x

þ @V
@y

¼ 0;

U
@U
@x

þ V
@U
@y

¼ � dP
dx

þ 1
Re

@2U
@y2

:
(A1)

Since the boundary layer profile near the leading of the flat plate
was not available from experimental data because outside the PIV
measurement domain, a Falkner–Skan similarity profile
Ue ¼ xm has been assumed as the inlet condition in Eq. (A1) to start
computation. Specifically, the geometry of the flat plate leading edge
has been used to estimate the local pressure gradient, i.e., the expo-
nent m. Thus, this mathematical procedure overall solves laminar
boundary layer equations without using the hypothesis of BL simi-
larity since the free-stream evolution over the entire flat plate is
complex and cannot be represented as Ue ¼ xm. However, a Falkner–
Skan profile is used as the inlet condition in the leading region to
ensure simplicity and reliability of the procedure, as it does not rely
on DNS data, which is not within everyone’s reach. A second-order
backward finite difference scheme has been used to discretize Eq.
(A1) along x for an overall amount of 200 discretization points over
the entire flat plate length. Instead, a standard Chebyshev numerical
scheme is adopted for the wall-normal direction following Hanifi
et al.31 Specifically, the authors considered the Chebyshev expansion

/ðgÞ ¼
XN

n¼0

/̂nTnðgÞ ¼
XN

n¼0

/̂n cos ðn cos�1ðgÞÞ; (A2)

where TkðgÞ is the Chebyshev polynomial of degree k defined
over g 2 ½�1; 1
 and discretized it over collocation points gj
¼ cosðpj=NÞ for j ¼ 0; 1;…;N . Successively, the conformal map-
ping introduced by Hanifi et al.31 was used to transform the interval
½�1; 1
 into the computational domain y 2 ½0; ymax
. Overall, 150
Chebyshev nodes were used along the wall-normal direction, as this
value ensured to reach convergence on the Blasius boundary layer
profile and the related optimal disturbances reported in Andersson
et al.13 The discretized equations are then integrated, imposing no-
slip on the plate and local free-stream velocity UeðxÞ as boundary
conditions, at y¼ 0 and y ¼ ymax, respectively. At each streamwise
position, convergence is checked by employing the continuity equa-
tion: settings provide a 10�8 accuracy for the base flow numerical
profiles.
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The same discretization schemes have been used to solve direct
(2) and adjoint (7) problems.

REFERENCES
1P. Durbin, “Perspectives on the phenomenology and modeling of boundary
layer transition,” Flow. Turbul. Combust. 99, 1–23 (2017).
2H. P. Hodson and R. J. Howell, “The role of transition in high-lift low-pressure
turbines for aeroengines,” Prog. Aerosp. Sci. 41, 419–454 (2005).

3P. S. Klebanoff, K. Tidstrom, and L. Sargent, “The three-dimensional nature of
boundary-layer instability,” J. Fluid Mech. 12, 1–34 (1962).

4P. S. Klebanoff, “Effect of free-stream turbulence on the laminar boundary
layer,” Bull. Am. Phys. Soc. 10, 1323 (1971).

5J. Hoepffner, L. Brandt, and D. S. Henningson, “Transient growth on boundary
layer streaks,” J. Fluid Mech. 537, 91–100 (2005).

6H. W. Emmons, “The laminar-turbulent transition in a boundary layer-part I,”
J. Aeronaut. Sci. 18, 490–498 (1951).

7P. Andersson, L. Brandt, A. Bottaro, and D. S. Henningson, “On the breakdown
of boundary layers streaks,” J. Fluid Mech. 428, 29–60 (2001).

8J. Hunt and P. Durbin, “Perturbed vortical layers and shear sheltering,” Fluid
Dyn. Res. 24, 375 (1999).

9T. A. Zaki and S. Saha, “On shear sheltering and the structure of vortical modes
in single-and two-fluid boundary layers,” J. Fluid Mech. 626, 111–147 (2009).

10L. Brandt, F. Schlatter, and D. S. Henningson, “Transition in boundary layers
subject to free-stream turbulence,” J. Fluid Mech. 517, 167–198 (2004).

11M. J. P. Hack and T. Zaki, “Data-enabled prediction of streak breakdown in
pressure-gradient boundary layers,” J. Fluid Mech. 801, 43–64 (2016).

12P. Schlatter, L. Brandt, H. De Lange, and D. S. Henningson, “On streak break-
down in bypass transition,” Phys. Fluids 20, 101505 (2008).

13P. Andersson, M. Berggren, and D. Henningson, “Optimal disturbances and
bypass transition in boundary layers,” Phys. Fluids 11, 134–150 (1999).

14F. Bertolotti, “Response of the blasius boundary layer to free-stream vorticity,”
Phys. Fluids 9, 2286–2299 (1997).

15P. Luchini, “Reynolds-number independent instability of the boundary layer
over a flat surface,” J. Fluid Mech. 404, 289–309 (2000).

16O. Levin and D. Henningson, “Exponential vs algebraic growth and transition
prediction in boundary layer flow,” Flow, Turbul. Combust. 70, 183–210 (2003).

17E. R. V. Driest and C. Blumer, “Boundary layer transition: Freestream turbu-
lence and pressure gradient effects,” AIAA J. 1, 1303–1306 (1963).

18P. V. Corbett and A. Bottaro, “Optimal perturbations for boundary layers sub-
ject to stream-wise pressure gradient,” Phys. Fluids 12, 120–130 (2000).

19J. O. Pralits and A. Hanifi, “Optimization of steady suction for disturbance con-
trol on infinite swept wings,” Phys. Fluids 15, 2756–2772 (2003).

20N. Abdessemed, S. Sherwin, and V. Theofilis, “Linear instability analysis of
low-pressure turbine flows,” J. Fluid Mech. 628, 57–83 (2009).

21M. Zauner, N. D. Sandham, A. P. S. Wheeler, and R. D. Sandberg, “Linear sta-
bility prediction of vortex structures on high pressure turbine blades,” Int. J.
Torbomach. Propul. Power 2, 8 (2017).

22X. Mao, T. Zaki, S. J. Sherwin, and H. Blackburn, “Transition induced by linear
and nonlinear perturbation growth in flow past a compressor blade,” J. Fluid
Mech. 820, 604–632 (2017).

23D. Simoni, D. Lengani, M. Dellacasagrande, S. Kubacki, and E. Dick, “An accu-
rate data base on laminar-to-turbulent transition in variable pressure gradient
flows,” Int. J. Heat Fluid Flow 77, 84–97 (2019).

24M. Dellacasagrande, J. Verdoya, D. Barsi, D. Lengani, and D. Simoni,
“Dynamic mode decomposition analysis of separated boundary layers under
variable reynolds number and free-stream turbulence,” in ASME Turbo Expo
2020: Turbomachinery Technical Conference and Exposition, 21–25 September
2020 (ASME, 2020).

25M. Berrino, D. Simoni, M. Ubaldi, P. Zunino, and F. Bertini, “Off-design per-
formance of a highly loaded LP turbine cascade under steady and unsteady

incoming flow conditions,” in ASME Turbo Expo 2014: Turbine Technical
Conference and Exposition, D€usseldorf, Germany, 16–20 June 2014 (ASME,
2014).

26J. Verdoya, M. Dellacasagrande, D. Barsi, D. Lengani, and D. Simoni,
“Identification of free-stream and boundary layer correlating events in free-
stream turbulence induced transition,” Phys. Fluids 34, 014109 (2022).

27M. Dellacasagrande, D. Barsi, D. Lengani, D. Simoni, and J. Verdoya,
“Response of a flat plate laminar separation bubble to Reynolds number, free-
stream turbulence and adverse pressure gradient variation,” Exp. Fluids 61, 128
(2020).

28A. Sciacchitano, D. R. Neal, B. L. Smith, S. O. Warner, P. P. Vlachos, B.
Wieneke, and F. Scarano, “Collaborative framework for piv uncertainty quanti-
fication: Comparative assessment of methods,” Meas. Sci. Technol. 26, 074004
(2015).

29B. Wieneke, “PIV uncertainty quantification from correlation statistics,” Meas.
Sci. Technol. 26, 074002 (2015).

30J. Verdoya, M. Dellacasagrande, D. Lengani, D. Simoni, and M. Ubaldi,
“Inspection of structures interaction in laminar separation bubbles with
extended proper orthogonal decomposition applied to multi-plane particle
image velocimetry data,” Phys. Fluids 33, 043607 (2021).

31A. Hanifi, P. Schmid, and D. Henningson, “Transient growth in compressible
boundary layer flow,” Phys. Fluids 8, 826–837 (1996).

32L. Brandt and D. S. Henningson, “Transition of streamwise streaks in zero-
pressure gradient boundary layers,” J. Fluid Mech. 472, 229–261 (2002).

33S. Kubacki, D. Simoni, D. Lengani, M. Dellacasagrande, and E. Dick,
“Extension of an algebraic intermittency model for better prediction of transi-
tion in separated layers under strong free-stream turbulence,” Int. J. Heat Fluid
Flow 92, 108860 (2021).

34P. Hammerton and E. Kerschen, “Boundary-layer receptivity for a parabolic
leading edge,” J. Fluid Mech. 310, 243–267 (1996).

35N. Lin, H. Reed, and W. Saric, “Effect of leading-edge geometry on boundary-
layer receptivity to freestream sound,” in Instability, Transition and Turbulence
(Springer, New York, 1992), pp. 421–440.

36J. M. Kendall, “Experimental study of disturbances produced in a pre-
transitional laminar boundary layer by weak freestream turbulence,” in 18th
Fluid Dynamics and Plasmadynamics and Lasers Conference (AIAA, 1985).

37J. M. Kendall, “Boundary layer receptivity to freestream turbulence,” in 21st
Fluid Dynamics, Plasma Dynamics and Lasers Conference (AIAA, 1990).

38K. J. A. Westin, A. V. Boiko, B. G. B. Klingmann, V. V. Kozlov, and P. H.
Alfredsson, “Experiments in a boundary layer subjected to free stream turbu-
lence. part 1. boundary layer structure and receptivity,” J. Fluid Mech. 281,
193–218 (1994).

39M. Matsubara and P. H. Alfredsson, “Disturbance growth in boundary
layers subjected to free-stream turbulence,” J. Fluid Mech. 430, 149–168
(2001).

40A. Dotto, D. Barsi, D. Lengani, and D. Simoni, “A data-driven optimal distur-
bance procedure for free-stream turbulence induced transition,” Phys. Fluids
34, 124108 (2022).

41G. B. Schubauer and H. K. Skramstad, “Laminar-boundary-layer oscillations
and transition on a flat plate,” J. Res. Natl. Bur. Stand. 38, 251 (1947).

42K. P. Nolan and T. A. Zaki, “Conditional sampling of transitional boundary
layers in pressure gradients,” J. Fluid Mech. 728, 306–339 (2013).

43T. A. Zaki and P. A. Durbin, “Mode interaction and the bypass route to transi-
tion,” J. Fluid Mech. 531, 85–111 (2005).

44D. Hernon, E. Walsh, and D. Mc. Eligot, “Experimental investigation into the
routes to bypass transition and the shear-sheltering phenomenon,” J. Fluid
Mech. 591, 461–479 (2007).

45M. Dellacasagrande, D. Lengani, D. Simoni, J. O. Pralits, K. Durovich, A.
Hanifi, and D. S. Henningson, “Statistical characterization of free-stream turbu-
lence induced transition under variable reynolds number, free-stream turbu-
lence, and pressure gradient,” Phys. Fluids 33, 094115 (2021).

Physics of Fluids ARTICLE pubs.aip.org/aip/pof

Phys. Fluids 36, 034116 (2024); doi: 10.1063/5.0188024 36, 034116-14

Published under an exclusive license by AIP Publishing

 15 M
arch 2024 08:41:24

https://doi.org/10.1007/s10494-017-9819-9
https://doi.org/10.1016/j.paerosci.2005.08.001
https://doi.org/10.1017/S0022112062000014
https://doi.org/10.1017/S0022112005005203
https://doi.org/10.2514/8.2010
https://doi.org/10.1017/S0022112000002421
https://doi.org/10.1016/S0169-5983(99)00009-X
https://doi.org/10.1016/S0169-5983(99)00009-X
https://doi.org/10.1017/S0022112008005648
https://doi.org/10.1017/S0022112004000941
https://doi.org/10.1017/jfm.2016.441
https://doi.org/10.1063/1.3005836
https://doi.org/10.1063/1.869908
https://doi.org/10.1063/1.869350
https://doi.org/10.1017/S0022112099007259
https://doi.org/10.1023/B:APPL.0000004918.05683.46
https://doi.org/10.2514/3.1784
https://doi.org/10.1063/1.870287
https://doi.org/10.1063/1.1597684
https://doi.org/10.1017/S0022112009006272
https://doi.org/10.3390/ijtpp2020008
https://doi.org/10.3390/ijtpp2020008
https://doi.org/10.1017/jfm.2017.240
https://doi.org/10.1017/jfm.2017.240
https://doi.org/10.1016/j.ijheatfluidflow.2019.02.008
https://doi.org/10.1115/GT2020-16322
https://doi.org/10.1115/GT2020-16322
https://doi.org/10.1115/GT2020-16322
https://doi.org/10.1115/GT2014-25396
https://doi.org/10.1115/GT2014-25396
https://doi.org/10.1115/GT2014-25396
https://doi.org/10.1063/5.0079658
https://doi.org/10.1007/s00348-020-02958-y
https://doi.org/10.1088/0957-0233/26/7/074004
https://doi.org/10.1088/0957-0233/26/7/074002
https://doi.org/10.1088/0957-0233/26/7/074002
https://doi.org/10.1063/5.0047347
https://doi.org/10.1063/1.868864
https://doi.org/10.1017/S0022112002002331
https://doi.org/10.1016/j.ijheatfluidflow.2021.108860
https://doi.org/10.1016/j.ijheatfluidflow.2021.108860
https://doi.org/10.1017/S0022112096001796
https://doi.org/10.1007/978-1-4612-2956-8_42
https://doi.org/10.2514/6.1985-1695
https://doi.org/10.2514/6.1985-1695
https://doi.org/10.1017/S0022112094003083
https://doi.org/10.1017/S0022112000002810
https://doi.org/10.1063/5.0124491
https://doi.org/10.6028/jres.038.013
https://doi.org/10.1017/jfm.2013.287
https://doi.org/10.1017/S0022112005003800
https://doi.org/10.1017/S0022112007008336
https://doi.org/10.1017/S0022112007008336
https://doi.org/10.1063/5.0063948
pubs.aip.org/aip/phf

