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Abstract. The use of virtual simulators in training has been gaining attention in recent 

years. From this perspective, advances and cost reductions in technology make 
immersive virtual reality a more engaging platform to experiment with the activities 
to be learned, facilitating concepts and operation learning. Anyhow, to guarantee 

that the virtual experience can be transferred to real-world activities, it is necessary 
that the training system ensures a realistic behavior in terms of reaction to the 

learner's actions; this can only be achieved through a faithful simulation of the 
phenomena and of the functioning of the equipment suitably integrated with the 
Virtual Reality environment. To this aim, this paper describes a methodology for the 

integration of a dynamic model of industrial equipment with an immersive Virtual 
Reality simulator for the training of operators.  
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1 INTRODUCTION 

The ability to represent and emulate real operations of different processes in real-time is becoming 
of utmost importance in Virtual Reality (VR) applications. At first, VR environments were exploited 

basically to visualize 3D digital content in a more immersive manner, where the user was just a 
watcher with limited interactions. Now, with the ongoing technological improvement, the use of VR 
environments aims to improve the user experience, making the user an active subject in 

applications. For this reason, innovative interaction methods and novel simulation solutions are 
finding a large room for applications in medicine [10], education [12], industry [20], and cultural 

heritage [4]. Considering the industrial domain, VR applications are often used for training purposes 
providing a replica of the real world and mimicking real interactions [3] [8] [2].  

In recent years, the interest in the development and use of Virtual Reality simulators for training 

purposes in industrial contexts has increased due to the possibility of experimenting with potentially 
dangerous situations in safe and controlled conditions [18]. To be effective, such training systems 
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should provide realistic and immersive environments where learners can experience activities in an 
engaging way; gesture naturalism makes their use easy even for novices, and the digital equipment 

behavior reflects the real one, thus ensuring the transfer of the learnt concepts to the real-world 
activities [5]. Such a realist equipment behavior can be achieved only through the use of suitable 

dynamic models simulating the equipment functioning according to the operator actions integrated 
with the virtual environment.  

The capabilities offered by simulation tools make possible to also consider the impact of users’ 

actions in the VR environment from a physical point of view; thanks to these technologies, the 
trainees can interact naturally within a simulated environment as they do in reality. Pinheiro et al. 
in [21] offer a first example of such an integration, developing a 3D mechanical maintenance training 

simulator for F-16 aircraft engines by using the OpenSimulator open-source platform that allows to 
create virtual environments supporting both the creation of 3D contents and some simple physical 

simulations in real-time such as collision computation and vehicles velocity. In this case, the physical 
emulations are limited to simply action-reaction, and a more interesting approach expects the 
combination of VR applications with more complete existing simulation tools whose capability of 

modeling the reality and predicting real physical behaviors is already well established. Indeed, tools 
as Matlab-Simulink or Modelica are able to model cyber-physical systems whose evolution over time 
is determined by mathematical equations that need to be solved in real-time to get the status of the 

system. 

In this context, this paper proposes a framework to facilitate the integration of the most recent 

VR technologies with simulation tools in order to develop immersive simulators. In particular, we 
focus on the definition and implementation of an architecture for the communication between two 
models, a Matlab-Simulink model and a virtual environment model. Thanks to this connection, a 

change of state derived by user actions on virtual elements is given as input to the Matlab-Simulink 
model, which, once the data has been processed, provides information about the physical change 
that has occurred. These changes will be consequently displayed in the virtual environment providing 

the users with feedback on the effect of their actions and thus improving their virtual experience. 

The rest of this paper is organized as follows. Section 2 reports some related works adopting 

different modalities for data exchange. Section 3 proposes a method for implementing a 
communication between processes and, in particular, it focuses on the requirements of the virtual 
environment to track user’s actions and display their feedback, and then on the data streaming flow. 

Finally, a use case is illustrated in section 4. 

2 RELATED WORKS 

There exist several ways to implement communication between processes [1], typically the most 
used methods foreseen the use of IP sockets or shared memory. 

The first method uses the network for the communication, in this way it allows to work locally 

as well remotely, i.e. the two applications can run on different computers and communicate across 
the network. Differently, the shared memory allows to create segments of memory to be accessed 
by multiple processes, but it limits the communication to applications that run on the same computer. 

Therefore, the first solution seems more flexible. In this perspective, the User Datagram Protocol 
(UDP) is used in several applications with different purposes (e.g., training, simulation, or virtual 

prototyping) for data transmission, where typically users play in the VR environment interacting with 
different components and the result of their actions is sent to an external system that is responsible 
of analyzing users’ behavior and actions and foreseeing physical behavior of the environment even 

in complex configurations. 

Yamaura et al. [26] propose a simulation-based solution by using OpenMETA to integrate 
Simulink, Modelica and Unity. This necessity is raised by the fact that Matlab-Simulink and Modelica 

are currently the state-of-the-art tools for analyzing automotive models and simulating vehicle 
dynamics, while Unity3D is suitable for modeling complex environmental conditions. 
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With the aim of predicting and correcting speed-tracking errors, Wang et al. [24] model driver 
behaviors feeding a neural network. In their framework, Unity3D has been used to create a traffic 

scenario where the user (the driver) can interact by sending multiple inputs through UDP sockets to 
the neural network, which computes the predicted speed error and sends the prediction back through 

the UDP socket. 

A building energy simulation has been realized as an immersive interactive experience in VR 
[17], where Unity3D and the Modelica building model exchange information in real-time. The user 

interactions in the VR environment are sent as input to the thermal building model, which computes 
the simulation and sends back the results as serialized data via UDP.  

An immersive simulated experience where the user can perceive the indoor climate of a room 

has been proposed by Nytsch-Geusen et al. [18]. In this application, the user interacts in a 3D virtual 
room through a VR headset, and their actions are sent via UDP to a Modelica room model that 

computes its internal temperature. Differently from the previously discussed applications, the 
authors also connect the Modelica room model to a real climate chamber that is able to reproduce 
in real time the temperature variations simulated by the room model and make it possible for the 

user to actually perceive them. 

In a different scenario but still exploiting UDP communication protocol, Munoz et al. [16] 
integrate physiological signals measured through wearable devices (such as heart rate, 

electroencephalography, and electromyography signals) in mobile VR applications. In their 
framework, physiological sensors are connected to a smartphone, and communication with external 

client applications is done via UDP.  UDP communications are also exploited to monitor robots’ 
actions in industrial processes by linking a 3D virtual representation of robots and the workpieces 
involved in their processes with a Robot Operating System that allows hardware communications for 

robots or sensors. An example is proposed by Sita et al. [23] that aims at simulating the monitoring 
strategy with an industrial robot for heavy welding and grinding tasks. To guarantee to receive in 
real-time the welding robot configuration also, in this case, the communication is achieved through 

UDP protocol. 

Another implementation using a different communication protocol is proposed by Chaos et al. 

[6]; in this paper, authors define a system to allow users working from their home, tele-operating a 
real robot exchanging information by using FTP and TCP protocols to communicate. 

Finally, Andaluz et al. [1] propose a real-time communication between Unity3D and Matlab 

software by exploiting the shared memory between these software. As already mentioned, this kind 
of approach assumes that both the applications (the virtual reality application and the Matlab 

simulator) work on the same computer, assumption that in some cases can represent a huge 
limitation. 

The final goal of the proposed approach is to enhance the training experience by integrating a 

dynamic model into the virtual world. In particular, this paper aims at providing a sort of  guiding 
framework for the creation of such an integrated environment where user’s actions performed in the 
virtual environment result not only into 3D model changes but also into input parameters for the 

dynamic model execution whose outcomes become input for the user also by transforming 3D model 
elements, in terms of position and visual attributes, giving the users the feeling of  a truly realistic 

interaction. 

In the following section they will be introduced together with the methodology that has been 
applied for the development of the immersive simulator for the training of operators and verifiers of 

industrial equipment. 
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3 METHODOLOGY 

To facilitate the inclusion of simulation tools in VR applications, in this section, we illustrate the 

requirements and the creation process of the two single applications (the VR application and the 
MatLab simulator) such that a proper integration and an efficient exchange of information are 

possible. In particular, we focus on the creation of the two involved models, i.e. the 3D digital model 
and the simulated physical model, and on the data streaming by using a homogeneous structure 
that encodes the states of the various elements present in both the applications.   

3.1 Virtualization  

As previously said, for some specific applications, it is important that the layout and behavior of the 
3D virtual environment strongly reflect the real-world physical counterpart. Virtualizing a real 

environment for VR applications is a process that includes the 3D shape reconstruction of the 
environment and of some relevant objects as well as the identification of the interaction modalities 
and of the outcomes of the user’s actions.  

     Here the focus is on the creation of 3D digital objects included in VR applications on which users 
can interact. Modelers usually create digital content for VR applications directly by using authoring 

software for computer animation and 3D rendering, such as 3DS Max. Independent of the adopted 
methods for content creation, it is crucial to know which elements a user can interact with so that 
these components are modeled as single elements of the 3D scene. With the aim of facilitating the 

creation of training applications in VR environments, limiting the intervention of game designers, 
here we report a workflow for the creation of 3D digital elements suitable for VR applications based 

on models obtained by using engineering CAD (Computer-Aided Design) systems adopted in 
industrial contexts, such as SolidWorks or CATIA to name some. Indeed, it is expected that there 
exist digital copies in CAD formats of most of the standard equipment used for the training on 

industrial applications and, in case they are not available, it is reasonable that they can be developed 
easier than other specific formats.  

Figure 1 shows the workflow to obtain 3D models suitable for VR applications, starting from CAD 

assembly models. To allow the replicability of the workflow independently from the adopted CAD 
software, it involves non-proprietary file formats for the file exchange. In a first phase, with the help 

of a CAD software, 3D assembly models representing real/realistic objects are defined. During this 
design phase, in addition to create CAD models with the same measures of the physical counterparts, 
the elements on which users can interact are modelled as single components of the assembly. This 

operation is necessary to implement the response of these elements once users perform some 
actions on them. In the first block of Figure 1 an example is reported where buttons, handles and 
switches are single objects in the hierarchy of the model. Finally, in this phase, materials and colors 

are added to the model to achieve a realistic representation. 

Independently from the system used, the representation adopted in CAD software (boundary 

representation) is not suitable for VR applications that require tessellated models. Thus, it is 
necessary to process these models in order to obtain a tessellation of the boundary surfaces of the 
single parts present in the assembly model. This operation is possible by exporting all the parts 

involved in the CAD assembly model in a STL format keeping their original position in the global 
reference frame of the CAD system. This ensures the correct position relative to each other of all 
affected parts, avoiding further adjustments in the VR application. The STL format, conceived for 3D 

printing, is the standard supported by all engineering CAD systems but, even if it represents parts 
as triangles, it is not accepted by VR applications. Therefore, 3D parts in STL format must be 

converted to an accepted VR format, such as the OBJ format, to be included in the VR application 
and, if necessary, simplified in vertex number to improve rendering performance. Both of these 
operations can be accomplished using modeling libraries such as the CinoLib library [14], which 

allows the processing of polygonal meshes in C++ applications, or open-source systems such as 
MeshLab [9] which provides a set of tools for editing and converting meshes via a GUI or batch 

script. 
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Figure 1: Workflow for the creation of 3D interactable elements in VR environments. 

 

Finally, the created parts can be imported in a game engine, such as Unity3D, where the interaction 
behaviors are defined, i.e. how the user can interact with that particular component and how it 
reacts. To reduce repetitive behavior specification on 3D instances of same functional elements (e.g. 

buttons), in literature some proposals have been presented exploiting the semantics of the parts 
[22], [7], [24], [11]. In particular, in [11] authors introduce a methodology for the automatic 
association of interaction behavior to 3D shapes based on their type. Namely, the concepts of 

actuators and control elements have been introduced. On the one hand, actuators correspond to 
those components of an equipment on which the operator is acting to command the equipment. On 

the other hand, control elements are those components which communicate to the operator the 
status of indicators that are significant for the functioning of the equipment. Examples of actuators 
are switches and buttons, while alarm led or gauges are types of control elements. A hierarchical 

classification of these types of components has been defined facilitating the reuse of characteristics 
and behavior. This also includes the specification of the gestures for acting on them and the object 
changes, in terms of appearance and position, resulting from the user's action. To each element a 

status is associated that reflects the element actual condition. The automatic association of 3D 
elements to the corresponding class simply requires the specification of the correspondence class 

with some salient parameters.  

Concerning the simulated physical model development, Matlab-Simulink has been chosen, being 
a software widely used in academia and industry that allows structuring complex dynamic models in 

a simple and intuitive way, thanks to a block display of the various functions used. The dynamic 
model should include all the elements with which the operator can interact, i.e. the actuators, as 
input variables as well as the output indicators (i.e. the control elements), present in the real system. 

When the dynamic model is connected to the VR environment, all the results of the actions of the 
users on the actuators, e.g. a specific valve is opened/closed, are sent to Matlab-Simulink, while the 
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control logic of the system is always reproduced inside the dynamic model. At any time, based on 
these inputs, the dynamic model simulates the operation of the system and sends to the VR 

environment all the data necessary to provide feedback to the operator. The exchange of information 
between the dynamic model and the VR environment is carried out by means of UDP blocks as 

described in the next subsection. 

3.2 Data Streaming  

In designing the communication between the two environments, it was taken into consideration that: 

• the two applications can run on different computers, so their communication must take place 
via the network; 

• the sharing of information between the two applications must have latency times low enough 

to ensure interaction in the virtual environment as realistic as possible. 

Based on these considerations, the two systems exchange data within an IP network where the User 
Datagram Protocol (UDP) was chosen for the transmission of data between the two applications. In 

fact, the UDP protocol is very fast as it does not manage the reordering of packets or the 
retransmission of lost ones, a feature that makes it interesting for the transmission of audio-video 

content in real-time or for online multiplayer games. A priori, the UDP protocol does not guarantee 
either message delivery or message ordering; this problem is not affecting the overall user 
experience considering that 3D components not updated with the latest values in a few frames are 

anyhow corrected the frame after. For this reason, we decided to favor the faster transmission 
approach (to guarantee real-time data streaming). 

To allow communication between the two systems, a server needs to be configured to host the 
Matlab-Simulink application. In addition, the dynamic model needs to be enriched with two blocks, 
one to receive and the other to send the data, as depicted in Figure 2. The receiving data block (see 

Figure 2 (a)) reads two messages at two different ports, a message corresponding to the status of 
the operable components structured in JSON (JavaScript Object Notation) format [13] and the length 
of the message representing the number of bytes of the sent string. This last operation was 

necessary due to the rigidity of Simulink in the management of variable length inputs, while the 
JSON structure has been chosen to guarantee a certain flexibility in case of variation or addition of 

information. 

In the transmission of the data, it is important to notice that the input data of the message read 
by the Simulink UDP block is encoded in ASCII format; thus, to process the content of the message, 

it is necessary to convert the ASCII input in characters data type. Once the message is converted 
into text format, it presents a set of nodes representing the operable components, where each of 
them can be characterized by several attributes (an example of a case study is illustrated in the next 

section).   

These nodes are then used as input of the dynamic model to compute physical simulations of 

the system. In the sending data block (see Figure 2(b)), the set of outputs is encoded in JSON with 
the Matlab JSONencode function, converted to string format and sent by a Simulink UDP send block.  

From the VR application side, each time the operator acts on an interactable component, the 

datagram corresponding to the JSON (more precisely a text string in ASCII format) is sent to the 
network node running the Matlab-Simulink application. The reverse process is asynchronously 
performed: the VR application collects the received datagrams in a queue on the main thread, then, 

at each frame, the VR environment is updated using the last received datagram. In this way, the 
receiving module does not need to wait for the complete delivery of the data, avoiding the 

interruption of the VR application, thus ensuring a real-time updating of the VR environment with 
the dynamic model results.  
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(a) Receiving data block 

 

 

(b) Sending data block 

 

Figure 2: Architecture of the Matlab-Simulink model for receiving (a) and sending data (b). 

4 CASE STUDY 

The above-described communication system between a 3D VR environment and a dynamic model 

[15] has been applied in the proposed immersive system for the training of conductors and verifiers 
of industrial equipment. As use cases, steam generators are considered. In particular, the electrical 
steam generator available at the Savona campus of the University of Genova has been reconstructed 

in terms of 3D layout and dynamic model to realistically reproduce its behavior.   
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    Figure 3 illustrates two views of the real steam generator at the Savona campus used as case 
study and its digital representation embedded in a virtual environment achieved through the 

workflow discussed in the previous section. In particular, Figure 3(a) and 3(b) depict the control 
panel of the generator, while Figure 3(c) and 3(d) represent a pressure gauge (blue square) and a 

water measure level (green rectangle) with additional components (valves in red and yellow squares) 
installed on the generator. Through the visible control panel, the user can (i) change the generator 
pressure set-point; (ii) set the pump operating mode (manual, off, automatic); (iii) activate or 

deactivate the four groups of electric heaters individually; (iv) connect or disconnect the system 
power supply; and (v) press the reset and emergency buttons. The pressure gauge and the water 
measure level represent two components where the operator can read measures of the system to 

understand its behavior. In addition, the operator can interact with the various valves for the water 
management. All these components are examples of interactable elements whose status feeds the 

dynamic model. The integrated dynamic model is based on a mixed physics-based data-driven 
approach, which supports the resolution of physical equations (e.g., mass and energy balances), the 
use of semi-empirical correlations and performance maps. 

Moreover, the physical properties of the water are calculated by integrating Matlab-Simulink 
with the instrument opensource CoolProp. In this way, the model updates the properties of the 
internal water and of the outgoing steam by considering the heat supplied by the resistances, the 

pressure, the temperature, and the latent heat of the water, as well as the internal level of the liquid 
phase. These kinds of computations are hardly encodable in VR applications by simply using a game 

engine. Therefore, the integration with dedicated dynamic simulation tools allows us to achieve a 
more realistic training experience. 

 

       
              (a) Real view                           (b) Digital view            (c) Real view       (d) Digital view 
 
Figure 3: Real and digital reconstructed views of the control panel - (a) and (b) - of the steam 

generator used as case study and of the pressure gauge - (c) and (d) – component. 

 

Figure 4 shows a portion of the more complex dynamic model developed for this case study. The 
represented elements simulate the steam generator, the optical level meter with its exclusion and 
discharge valves, the liquid and vapor discharge valve, and the lamination valve. The lamination 

valve is the last component of the plant, and its opening influences the amount of steam delivered 
through the pipes. The optical level meter computes the measurement of internal liquid level that is 

communicated to the VR application as feedback to the learner, while the statuses of the valves are 
inputs of the dynamic model which depend on the learner’s actions in the virtual environment.  

The development of the VR environment is based on the game engine Unity 3D, and the user 

can access the virtual world by wearing a HTC Vive viewer and interact in the VR environment by 
using their bare hands that are tracked by a Leap Motion Controller. These actions are used as inputs 
of the dynamic model to simulate the response of the system, after which the results of the model 

are sent to the VR environment. These results include information on the operation of the generator, 
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such as pressure and water level, which the operator can read on the appropriate measuring 
instruments installed on the system.  

Considering this application scenario, the learners can act on the system actuators (buttons, 
switches, etc.) with bare hand gestures within the VR environment. Once they act on any interactable 

component, the state of the concerned actuator is modified accordingly, and the value is 
communicated to the Matlab-Simulink dynamic model changing the related input values. The 
dynamic model is then updated, and the result of the simulation is returned to the VR application 

that updates the status and consequently their visual appearance of the control elements. In this 
way, it is possible to faithfully simulate the response of the physical system to the various actions 
performed by the operators, who can experience the consequences of their maneuvers as if they 

were acting on the real equipment. This is fundamental in understanding their mistakes in 
accomplishing the assigned task in a safe environment. Thus, dynamic simulation allows to overcome 

the limits of traditional training methodologies that are hardly sufficient to instruct the operators for 
seldom-occurring perilous situations [18].  

 

 
 

Figure 4: Portion of the dynamic model of the steam generator developed in Matlab-Simulink. 

 

In this case study, the input/output components are characterized by three fields:  
• Name identifies a component of the generator. 

• Status encodes the status of a component in numerical format, which can be a discrete value 0-1 
(e.g. for a group of resistors representing the off-on status) or continuous (e.g. the pressure 
setpoint set by the user). 

• Block represents additional information in numerical format. For example, if a group of resistors is 
activated by the user but is blocked by the control logics, the value will be 0, otherwise it will be 1 
(default value). 

Figure 5 shows a portion of the text message in JSON format used for the information encoding that 
will be converted in ASCII format for the data transmission. 
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Figure 5: Portion of the datagram used for the data transmission in JSON format. 

 

To confirm the correctness of the applied methodology for the integration of the dynamic model in 

the virtual environment, the VR application was finally validated, comparing its results with the ones 
provided by the Matlab-Simulink application performing different actions on the system. For this 
purpose, the developed dynamic model can be used also in standalone modality where it is possible 

to define the status of the input components directly within Simulink. In particular, the tests 
considered the steam generator activation and the block of the system. In the first case, it is 
necessary to close the drain valves (the water drain valve, the water supply tank drain valve and 

the optical level drain valve), open the valves to pump water inside the generator (the optical level 
valves, the pump suction shut-off valve, the water supply shut-off valve and the water interception 

valve), turn the generator on by rotating the power line lever, select a certain pressure set-point (in 
a range between 5 and 10 bar) and set the pump operation mode to automatic. Finally, it is 
necessary to turn on some of the resistances from the control panel. In this way, the resistances 

heat the water and eventually start the steam production. The number of activated resistances 
influences the time necessary to heat up the water and generate steam.  During all these user’s 
activities, the behavior of the virtual generator has been compared with the data simulated by the 

dynamic model to verify the correctness of the data streaming. In the second tested case, after the 
generator is activated and a stable working activity is achieved, the drain valves are opened to 

empty the generator of water. When the water level is too low the resistances are blocked by the 
emergency control logics of the generator. Also, this behavior is simulated by the dynamic model, 
which sets the "block" attribute associated with the resistors to 0 in the returned JSON data. When 

this condition happens, the lights of the resistances in the VR application are turned off to indicate 
their shutdown. If the water level is brought back to an acceptable value, the system can be restored 
pressing the “reset” button present in the control panel. During the validation process, the pressure 

trend was in line with the expected one simulated by the dynamic model. In both the tested cases, 
the data conveyed in the VR environment are updated with the ones in the dynamic model 

immediately providing the user no sense of delay in the interaction. This aspect has been evaluated 

[ 
  { 
    "status": 70, 
    "block": -1, 
    "name": "Optical level meter" 
  }, 
  { 
    "status": 903093.59253524442, 
    "block": -1, 
    "name": "Steam pressure gauge" 
  }, 
  { 
    "status": 33, 
    "block": -1, 
    "name": "Tank water level" 
  }, 
  { 
    "status": 0, 
    "block": 1, 
    "name": "Pump ignition mod" 
  }, 
… 
] 
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qualitatively by engineers who regularly use the real generator, and they have found that the virtual 
generator faithfully replicates the behavior of the real one. This ensures that, in this context, the 

instability in the UDP protocol with respect to other protocols like the TCP, for example, does not 
require mitigation actions at this level. 

Finally, Figure 6 shows an example of the pressure gauge updating after receiving the dynamic 
model data.  In this example, it is possible to read part of the JSON received in the Unity editor 
console (bottom left red square), where the name and status of a control element appear. 

Subsequently, the status of the component associated with that command element is updated, as 
can be observed from the inspection panel on the right, and the pointer of the pressure gauge in the 
VR environment displays the information received.  

 

 

 

Figure 6: Example of a control element updating, where the measure shown by the pressure gauge 
component is determined by the dynamic model. Once the system receives the data structured in 
JSON format, the relative components are updated accordingly. 

 

5 CONCLUSIONS 

This paper described a methodology applied to integrate a dynamic model simulating the functional 

behavior of industrial equipment created in a Virtual Reality scene, where the user’s actions are used 
as inputs of the simulation. The article described the main issues and solutions adopted for the 

development of a training system for conductors and verifiers of steam generators. Integrating VR 
simulators with dynamic models is of utmost importance for creating systems that provide a sense 
of realism that can overcome traditional training methodologies. It can allow the learners to 

experience operations by getting equipment behavior closer to that of the real world but in a safe 
environment. Clearly, this strongly depends not only on the ability of both the dynamic model and 
the VR effects to simulate real physical behavior but also on the ability to make the two environments 

communicate in real-time. 

The qualitative evaluation of this case study shows the possibility of transmitting data via UDP 

in real-time between a virtual environment and a simulation tool developed in Simulink, while the 
flexibility of the transmission structure provided by the JSON format guarantees that it can be applied 
to other similar simulators. To this aim, the application and testing of this methodology to a more 

complex steam generator are in progress. The new case study is the auxiliary steam generator for 
the Savona thermoelectric plant: its dynamic model and virtualization of the plant are currently 

under development.  
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In addition, from our evaluation, this implementation does not require to manage data fragmentation 
since the exchanged messages’ size (less than 4500 bytes in the worst case) is quite far from the 

UDP limit. 

Finally, the usage of different networks can be further investigated. Indeed, the conducted tests 

access the net by cable. It would be interesting to test the system with wireless connections such 
as a 5G or WI-FI networks. 
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