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Abstract

Deep Learning has demonstrated remarkable progress in various Computer Vision tasks.
However, its effectiveness often relies on the availability of large, well-annotated datasets.
In many practical scenarios, there is often limited availability of such data. Furthermore,
collecting or labeling more samples that align with the post-deployment environment can
sometimes be challenging or impossible, resulting in reduced and sub-optimal performance.
Transfer Learning (TL) emerges as a promising solution in these contexts, offering methods
to leverage the knowledge acquired by a Deep Neural Network (DNN) on one task to enhance
its performance on another, especially when data is scarce, or labels are absent. The main
objective of this project is to study and analyze TL methodologies in depth, providing novel
perspectives, suggesting new directions both for real-world applications and future research
in data-efficient Deep Learning. To achieve this, we present a comprehensive analysis of
prevalent TL pipelines, particularly focusing on the fine-tuning of DNNs weights from
pre-trained models in real-world scenarios. We also conduct an extensive experimental
study on Domain Adaptation techniques, assessing numerous datasets, a wide range of
DNN architectures and pre-training strategies to determine which are the most important
design choices for a successful transferability. Furthermore, we develop new algorithms
aimed at enhancing data-efficiency and adaptability (like Object Detection in robotics). We
also introduce a new Domain Adaptation technique for Image Classification, characterized
by its straightforward design, which favorably competes with state-of-the-art approaches.
Our exploration extends to validate Domain Adaptation methodologies in a Sim-to-Real
application for robotics, focusing on surface recognition using vision-based tactile sensors.
The result of this work is a comprehensive overview of Transfer Learning, emphasizing
data and label efficiency, with new solutions to many challenges, addressing both specific
real-world applications and more general algorithmic paradigms. From a broader perspective,
the algorithms, analyses, and discoveries presented in this research study have substantial
implications for the expansive field of data-efficient Deep Learning. In applications such
as robotics, autonomous vehicles, industrial automation and healthcare, the refined TL
techniques that we introduce can play a crucial role. Enhancing data efficiency allows for
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reductions in computational costs and training times, facilitating faster and more precise
model deployments. Our methodologies emphasize adaptability, offering great value in
situations where models face varied and dynamic environments. Furthermore, our findings
serve as a robust foundation for subsequent research, allowing for exploration into deeper
domain-specific adaptations or integration with emerging AI methodologies.
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Chapter 1

Introduction

1.1 Overview

Humans possess the distinctive feature of efficiently acquiring new skills and seamlessly
applying their existing knowledge to improve various competencies and comprehend diverse
concepts across different contexts. This capacity to deeply understand concepts, relation-
ships, and create abstractions is a distinctive feature of human intelligence, which remains
challenging, if not impossible, to replicate artificially.

Recent advancements in the development of intelligent machines are predominantly driven
by the field of Deep Learning (DL) [1]. DL represents a subset of Machine Learning that aims
to extract valuable latent representations from data, employing complex models known as
Deep (Artificial) Neural Networks (DNNs). Despite the theoretical complexities surrounding
DL, it has demonstrated remarkable empirical success across numerous Computer Vision
(CV) [2] and Natural Language Processing (NLP) [3] tasks. These tasks include Image
Classification, Image Segmentation, Object Detection, Action Recognition, Pose Estimation,
Monocular Depth Estimation, Image-to-Text Generation, Image Captioning, Text Generation,
Human-like Text-based Conversations, Sentiment Analysis and many others.

The progress in DL is supported by the continuous research and development of novel
architectures and algorithms. However, undeniably, two crucial factors have driven its
achievements: the introduction of high-performance hardware accelerators (such as GPUs,
TPUs and many others [4]), and the collection of extensive, large-scale datasets (e.g., Ima-
geNet [5]). These two elements have significantly influenced the effectiveness of DNNs, as
increased data quantity and the availability of hardware specific accelerators have enabled
the expansion of model sizes, resulting in increasingly improved task performance.
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Numerous studies, such as [6, 7, 8, 9], have rigorously examined the scaling character-
istics of DNNs by focusing on the number of parameters within the model, the size of the
dataset utilized, and the extent of computational resources employed. A significant finding
from these investigations is the emergence of power laws that appear to dictate the scaling
behavior of DNNs. For instance, when considering a model with substantial parameters
and adequate computational resources, the final error or loss (E) on a dataset comprising
N samples can be approximated by E ≈ N−γ [10]. The exponent γ , typically close to zero,
is suggested to be influenced by the dimension of the data manifold from which training
samples are uniformly extracted, as indicated by some theoretical studies [11, 12].

In practical applications, achieving noticeable enhancements in model performance often
requires exponentially more data points. Furthermore, it is crucial to recognize that the
aforementioned data power law does not apply if there is no scaling in both the model size
and computational resources that can lead to sub-optimal performance outcomes, deviating
from the optimal Pareto frontier (refer to Fig. 2 in [7]). These observations underscore
the inherent limitations within DL methodologies, despite their remarkable achievements
in various fields: GPUs (and most of other accelerators) are cost-intensive and consume
substantial energy, with consequential environmental implications. Moreover, gathering and
annotating data is an arduous, impractical, and error-prone task. For instance, in Semantic
Segmentation, the manual pixel-level annotation of images of some tasks can consume hours
per image and necessitate professional expertise [13]. This challenge is further worsened
when considering domains such as medicine or biology, where data acquisition is constrained
by practical limitations.

Another noteworthy shortcoming of DNNs is their task specificity. Unlike humans, when
optimally trained for one task, DNNs lack the innate capacity to transfer their knowledge
seamlessly to other tasks [14]. Minor discrepancies between the training data and the real-
world data encountered during inference can result in substantial performance degradation.
Practical applications often face the unavailability of task-specific training data, device
variations, environmental fluctuations, and dataset biases, all of which can cause well-trained
DNNs to relevant performance degradation.

In this dissertation, we will focus on CV tasks and investigate techniques aimed at
enhancing the data efficiency of DNNs through knowledge transferability. Specifically, we
will rigorously examine a highly successful and widely adopted technique known as fine-
tuning [16]. This involves training a DNN on a large-scale dataset and subsequently adjusting
its weights using a smaller dataset specific to the desired task. This approach simplifies data
requirements for the target task, allowing a general-purpose large-scale dataset to serve as
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(a) VisDA Dataset (b) Plankton Images (c) Vision-based tactile sensor

Figure 1.1 Three examples of images from different domains. (a) Images from VisDA
[15] dataset: synthetic (top) and real (bottom). (b) Plankton images acquired with different
microscopes. (c) Simulated (top) and real (bottom) images of a vision-based tactile sensor.

pre-training for diverse and unrelated tasks. Additionally, we will explore Domain Adaptation
(DA), where two domains exist: a labeled source domain with abundant data and a target
domain with potentially limited data and absent labels. While both domains correspond to
the same task, stylistic differences may exist in the images (some examples are reported in
Figure 1.1). DA algorithms aim to leverage information from the source domain to enhance
performance and achieve robust results in the target domain.

In summary, this dissertation comprehensively addresses some relevant aspects of DL in
the context of CV tasks, offering insights into techniques to enhance the data efficiency of
DNNs through knowledge transferability and reusability.

1.2 Contributions

The scope of this thesis is centered around two primary areas of interest. Firstly, we undertake
a comprehensive analysis and exploration of Transfer Learning through a series of controlled
empirical experiments. Our objective is to gain valuable insights that will benefit both future
researchers in the field and practitioners tasked with making informed decisions regarding
algorithm implementations. Secondly, we present specific applications and practical solutions
for real-world CV problems related to Transfer Learning.

1.2.1 Analysis of Transfer Learning

In our research, a significant Transfer Learning setting is Unsupervised Domain Adaptation
(UDA) [17], where two domains are considered: the source domain and the target domain,
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each characterized by a distinct data distribution. In the context of this study, we assume
that images from these domains exhibit stylistic differences while sharing identical semantic
information. This divergence between the domains is commonly referred to as domain shift

and it proves to be a prevalent issue in practical applications. For instance, when images
are captured using different cameras, microscopes, or devices, they often exhibit significant
variations. Additionally, data collection frequently occurs in controlled environments that
differ substantially from the real-world conditions the model will encounter during inference.
In some cases, simulated images are used (or incorporated) during training to build the source
dataset (e.g., [15]) even if these synthetic images typically exhibit a substantial domain shift
compared to real data.

The UDA framework assumes the availability of labeled images from the source domain
and unlabeled images from the target domain during training, with the goal of achieving high
performance on the target domain. The absence of labels in the target domain makes this
setting both challenging and valuable.

Taking a step beyond standard UDA, we explore a relatively recent variant known
as Source-Free Unsupervised Domain Adaptation (SF-UDA). In SF-UDA, an additional
constraint is introduced: the source data is not accessible during adaptation. Consequently,
the training process for the model is divided into two phases: (i) utilizing labeled source data
to update the model’s weights and (ii) leveraging unlabeled target data (without access to
source data) to adapt the model to the new domain in an unsupervised manner. We focus
on this specific setting due to its recognized utility in various applications, particularly in
scenarios where privacy concerns, intellectual property restrictions, or memory/computational
constrains limit the access to source data, leaving only a source-trained model at disposal.

The sequential nature of this setting enables us to analyze the effects of each phase during
model training in detail, evaluating the efficacy of pre-training, fine-tuning on the source
domain, and the adaptation algorithm on the target domain. Chapter 3 of this thesis presents
an extensive empirical analysis that thoroughly examines each component.

Furthermore, given that many state-of-the-art (SOTA) SF-UDA algorithms tend to intro-
duce complexity to enhance target performance on specific benchmark datasets and using
specific DNN architectures, we introduce a novel, simple yet highly effective SF-UDA
algorithm, referred to as Trust And Balance (TAB) Adaptation, in Chapter 4. Chapter 5
introduces an additional analysis on the role of architecture, pre-training, and fine-tuning in
the context of image classification. We use a real-world problem involving plankton image
classification to conduct controlled experiments, highlighting the importance and advantages
of fine-tuning. Interestingly, we also demonstrate that in certain scenarios (such as the one
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considered), pre-training DNN on a large-scale natural images dataset (e.g., ImageNet), char-
acterized by a substantial number of classes and high variability, outperforms pre-training on
a large-scale In-Domain dataset containing the same type of images (plankton images in our
study) that the model will encounter during fine-tuning.

1.2.2 Applications of Transfer Learning

We explore two real-world robotic applications where knowledge transferability and data-
efficient pipelines are of great importance. Firstly, we address the challenge of surface
classification using vision-based tactile sensors in Chapter 6. Here, we leverage a simulator
to generate images corresponding to various surface types. In particular, first we sample a
point cloud from some 3D objects, then we use a simulator to obtain a synthetic image of
sensor contact for each point. Subsequently, we devise an algorithm that, based on point
cloud information, can automatically categorize synthetic images into different surface types.
We finally introduce a dedicated sim-to-real transfer learning pipeline to bridge the gap
between the two domains, which incorporates real sensor-acquired images (without any
label) to train a classifier capable of accurately predicting surface types on real sensors.

In Chapter 7, we present a Weakly-Supervised approach to Transfer Learning for
Online Object Detection. Our method employs a simple policy for dynamic, unsupervised
model adaptation, supplemented by a small set of annotations provided by the user as needed,
within an Active Learning framework [18]. Specifically, we focus on adapting a model from
a domain where objects are physically held by the user (enabling easy automated labeling) to
a domain where objects are situated freely on a surface, such as a tabletop.

1.3 Publications

In the following section, we provide a detailed account of the publications that we discuss in
this dissertation, along with the works currently under review.

• Andrea Maracani, Raffaello Camoriano, Elisa Maiettini, Davide Talon, Lorenzo
Rosasco, and Lorenzo Natale. Key Design Choices in SF-UDA: An In-depth Empirical

Analysis. Under review at IJCV (Chapter 3).

• Andrea Maracani, Lorenzo Rosasco and Lorenzo Natale. Trust And Balance: Few

Trusted Samples Pseudo-Labeling and Temperature Scaled Loss for Effective Source-

Free Unsupervised Domain Adaptation. Under review at ECCV 2024 (Chapter 4).
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• Andrea Maracani*, Vito Paolo Pastore*, Lorenzo Natale, Lorenzo Rosasco, and
Francesca Odone. In-domain versus out-of-domain transfer learning in plankton image

classification. Scientific Reports 2023 (Chapter 5).

• Gabriele M. Caddeo*, Andrea Maracani*, Paolo D. Alfano*, Nicola A. Piga, Lorenzo
Rosasco, and Lorenzo Natale. Sim2Real Bilevel Adaptation for Object Surface Classi-

fication using Vision-Based Tactile Sensors. ICRA 2024 (Chapter 6).

• Elisa Maiettini*, Andrea Maracani*, Raffaello Camoriano, Giulia Pasquale, Vadim
Tikhanoff, Lorenzo Rosasco, and Lorenzo Natale. From Handheld to Unconstrained

Object Detection: a Weakly-supervised On-line Learning Approach. RO-MAN 2022
(Chapter 7).

1.4 Organization of the dissertation

This dissertation is organized to clearly explain our research. The first two chapters (including
this) introduce the motivations and basic ideas. After that, we discuss our specific research
contributions in detail. The dissertation ends with a chapter that talks about the overall
importance of our work and suggests ideas for future research.

Overview and Background

In Chapter 2, we establish the foundational concepts and review pertinent literature in the
field. This chapter serves to connect the broader topics with our specific contributions, setting
the stage for the in-depth discussions that follow.

Detailed Contributions

The core of the dissertation is divided into distinct chapters, each dedicated to a unique
contribution. These contributions are primarily based on our published works.

• In Chapter 3, we conduct a comprehensive empirical study on key design choices for
SF-UDA, providing insights into their impact, efficacy and limitations.

• Chapter 4 introduces Trust and Balance Adaptation, our novel approach for SF-UDA
in image classification.
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• In Chapter 5, we analyze the pre-training and fine-tuning processes of DNNs, focusing
on the real-world application of plankton recognition.

• Chapter 6 describes the development of an UDA pipeline aimed at bridging the gap
between simulated and real-world data in vision-based tactile sensing for robotics.

• In Chapter 7, we propose a weakly supervised algorithm that integrates Active Learning
for domain adaptation in online object detection.

Conclusions and Future Work

Chapter 8 presents the concluding remarks of this dissertation. Here, we discuss the limita-
tions of our work and propose potential directions for future research and investigation.

Note for the reader. The next chapter provides a high-level overview of the key topics and a
general discussion of related works. Each contribution chapter, from Chapter 3 to Chapter 7,
is designed to be self-contained, mirroring the structure of the original publications. They
include specific motivations, introductions, and reviews of related literature. Furthermore,
each chapter begins with a Context section, placing the contribution within the broader scope
of this work. This structure allows readers the flexibility to read each contribution in any
order, without losing the overall context and coherence of the dissertation.



Chapter 2

Background

2.1 Supervised Learning

In this section, we delineate the framework of supervised learning, specifically focusing
on image classification. Let X ∈ RH×W×3 denote the space of RGB images, where H and
W represent the height and width of the images, respectively. The label set Y = {c}C

c=1

encompasses all possible C ∈ N categories.
We postulate an underlying probability distribution D over the data space V = X ×Y

that cannot be observed directly. Instead, we are provided with a dataset comprising N

i.i.d. samples from this distribution, denoted as Dtrain = {vi = (xi,yi)}N
i=1 ∼DN . In image

classification, we typically focus a specific complex nonlinear function, defined by a DNN
architecture. This network is parameterized by weights θ and it is designed to map an input
image to a corresponding prediction from the label set: fθ : X →Y .

We define the loss as a measurable function that quantifies the prediction error for a given
data sample (x,y) = v ∈ V , in relation to the function’s parameters θ :

ℓ : V ×Θ → R+ (2.1)

(v,θ) 7→ ℓ(v,θ) = ℓ′( fθ (x),y) (2.2)

Here, Θ signifies the parameter space, and ℓ′ is a function measuring the discrepancy
between the predicted output fθ (x) and the actual label y for the input sample (x,y). The
objective is to identify parameters θ ∗ that minimize the expected error over the data distribu-
tion. In other words, we seek parameters such that when new data points are sampled from



2.1 Supervised Learning 10

D, the function fθ∗ demonstrates minimal error. Assuming that a unique solution exists, this
is formally expressed as:

θ
∗ = argmin

θ∈Θ
Ev∼D[ℓ(v,θ)] (2.3)

where E denotes the expected value. Due to the unavailability of direct access to D, we
address a proxy problem in practice: minimizing the loss function over the training dataset
Dtrain through Empirical Risk Minimization [19], aspiring to approximate a solution θ̂ with
comparable performance to θ ∗:

θ̂ = ERM(Dtrain) = argmin
θ∈Θ

1
N

N

∑
i=1

ℓ(vi,θ) (2.4)

Considering the intricate nature of DNNs, their over-parametrization, and the non-convex
optimization problem presented in Equation 2.4, there currently exists a disparity between
theoretical understanding (both in terms of optimal solution identification on training data
and generalization on new data from D) and empirical observations in practice [20].

Given the current boundaries of DL theory, the design of the DNN architectures, the
optimization procedures [21] and the training strategies (e.g., using regularization [22], data
augmentations [23], etc.) are mostly lead by heuristics and practical experimentation. In
particular it is common practice to partition the dataset into two subsets: the training set Dtrain

and the test set Dtest. The training set is exclusively used for optimizing the loss function and
determining the parameters of the DNN, whereas the test set is reserved for evaluating the
model’s performance and capabilities with statistical validity, under the assumption that the
distribution of future data remains consistent. We refer to the model’s ability to perform well
on unseen data as (In-Domain) Generalization (IDG). For a DNN with parameters θ̂ , this
is quantified as:

IDG = Ev∼D[ℓ(v, θ̂)] (2.5)

Empirically, we estimate this generalization using the test set:‘IDG =
1

|Dtest| ∑
v∈Dtest

ℓ(v, θ̂) (2.6)

Notably, the loss function ℓ is tailored to achieve the desired task, but it may not directly
reflect the specific metric of interest. In image classification, the focus often lies on classifi-
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Figure 2.1 After a DNN backbone has been chosen, it is (pre-) trained on a large scale
dataset, such as ImageNet. Then the weights are used as initialization for a subsequent
training (fine-tuning) on specific task of interest.

cation accuracy. Therefore, in such scenarios, we might redefine IDG in terms of average
accuracy on the test set, even if it is a slight deviation from the standard notation:‘IDG(accuracy) =

1
|Dtest| ∑

(x,y)∈Dtest

1( f
θ̂
(x) = y) (2.7)

where 1(·) represents the indicator function.
Another crucial aspect is the model’s performance when the underlying data distribution D
shifts. Suppose we introduce an additional distribution D′ that differs from D but retains some
similarities. For instance, both distributions might contain semantically identical images but
vary in style. We define Out-Of-Distribution Generalization (ODG) [24] as the model’s
effectiveness when trained on data from D and evaluated on data from D′. Practically, this
is assessed using a test set from D′, applying equations 2.6 and 2.7 to measure the model’s
performance.

2.2 Fine-tuning

The significant progress in DL has been greatly aided by the availability of large datasets.
However, when confronted with a limited dataset, training a DNN from scratch often yields
sub-optimal results. Moreover, in scenarios with scarce data, large models may not provide
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an advantage over smaller ones due to the risk of overfitting. In response to these challenges,
fine-tuning has emerged as a prevalent and effective strategy. Fine-tuning refers to the
process of training a DNN on a specific dataset, beginning not with randomly initialized
weights, but rather with weights that have been pre-trained on a different dataset (and/or
task). This process typically involves the following steps (summarized in Figure 2.1):

1. Selection of a DNN architecture and the initialization of its weights with random values
( fθ ).

2. Training of the DNN using a large-scale dataset, such as ImageNet [5], to acquire
pre-trained (PT) weights (θ → θPT ).

3. Refinement of the pre-trained weights using the dataset pertinent to the target task to
obtain the fine-tuned (FT) weights (θPT → θFT ).

This approach offers two key advantages. Firstly, even with limited task-specific data,
fine-tuning can still yield robust performance. Secondly, the resource-intensive pre-training
phase, which equips the model with the capability to recognize relevant features in images,
needs to be conducted only once. The acquired pre-trained weights can then serve as a
starting point for various fine-tuning tasks. Typically, pre-training is executed in the context
of image classification, followed by fine-tuning for different classification tasks or other
applications like object detection or semantic segmentation.

2.2.1 Related Works and Contributions

Fine-tuning

The importance of the fine-tuning technique in DL has been explored in numerous studies.
These works typically focus on proposing new heuristics and guidelines to enhance the
adjustment of model weights or to identify optimal hyperparameters. Additionally, they
examine the fine-tuning process, highlighting its benefits and limitations in specific contexts.

Kolesnikov et al. [25] present an efficient method for fine-tuning DNNs for visual tasks.
Their work underscores the advantages of extensive pre-training and a refined fine-tuning
process that adapts effectively to various dataset sizes. The approach significantly boosts the
adaptability and performance of DNNs in diverse visual applications.

Huh et al. [26] explore the critical factors that contribute to the effectiveness of ImageNet
in transfer learning. The research explores whether the dataset’s size, the number of classes,
or a balance of these elements most significantly impacts the successful transfer of learned
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features to new tasks. Insights into optimizing datasets for effective pre-training in DL are
provided, with a focus on balancing dataset size, class diversity, and granularity.

Studer et al. [27] assess the impact of pre-training DNNs on ImageNet for historical
document analysis. Their study evaluates the effectiveness of this technique across various
tasks, such as character recognition, style classification, and manuscript dating. Results
indicate that while ImageNet pre-training generally enhances performance in classification
and image retrieval, its influence on semantic segmentation is mixed, suggesting a need for
task-specific considerations in transfer learning.

Ding et al. [28] investigate efficient strategies for fine-tuning large pre-trained language
models. Their study introduces delta-tuning, a technique that updates only a small subset
of the model’s parameters, thereby notably reducing computational and storage demands.
The paper examines a range of delta-tuning methods, demonstrating their effectiveness and
practicality in adapting large pre-trained language models to a variety of applications.

Yosinski et al. [29] examine the transferability of features in DNNs, particularly focusing
on which layers transfer effectively and the influencing factors. Their research identifies that
transferability decreases with increasing differences between tasks and highlights two main
challenges: higher-layer specialization to specific tasks and optimization difficulties when
separating co-adapted layers.

Chu et al. [30] concentrate on fine-tuning visual classifiers for new domains. They
systematically explore and recommend strategies based on the visual similarity to the pre-
training dataset and the quantity of available training data. Their study concludes that utilizing
as many layers as possible from a pre-trained network and then fine-tuning based on the
visual proximity to the source yields the best results.

Pre-training

The current trend of scaling up DNNs for improved performance, along with the power
scaling laws identified in recent research, has given interest in even larger datasets than
ImageNet, such as JFT-300M [31]. Furthermore, the introduction of attention-based [32]
architectures in Computer Vision, notably Vision Transformers (ViTs) [33], has further
underscored the need for large-scale datasets for pre-training. Given the time and the
computational power required to collect data and pre-train models on such extensive datasets,
alternative pre-training techniques beyond standard supervised learning have been proposed.

For example, Steiner et al. [34] conduct an in-depth study on training Vision Transformers.
Their work emphasizes the interplay between data augmentation, model regularization, and
training data size in optimizing ViTs. A key finding is that careful application of data
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augmentation and model regularization can offset the limitations of smaller datasets, proving
particularly effective for medium-sized datasets like ImageNet. The study also investigates
how dataset size affects model generalizability, showing that models trained on larger datasets
such as ImageNet21k exhibit more versatile features, beneficial for various tasks.

Ridnik et al. [35] introduce a novel pre-training approach using the ImageNet21k dataset.
This method involves a pre-processing technique that transforms ImageNet21k into an
efficient and high-quality pre-training dataset. The study contrasts single-label and multi-
label pre-training methods, developing a new semantic softmax scheme that takes advantage
of ImageNet21k’s hierarchical structure. The approach is shown to enhance performance on
various downstream tasks across a range of architectures, including those oriented towards
mobile devices.

In another direction, Self-Supervised Learning (SSL) is emerging as a powerful strategy
to train DNNs in the absence of labeled data. SSL algorithms leverage large amounts of
unlabeled data by designing pretext learning tasks in which the data inherently offers its own
supervision. In particular, these approaches extract a supervisory signal from the intrinsic
structure of the data enabling models to learn useful features in an unsupervised fashion. Gui
et al. [36] provide a comprehensive overview of SSL’s development, its diverse algorithms,
and its applications in fields like Computer Vision and Natural Language Processing. SSL
is particularly notable for its potential in contexts where labeled data is scarce or costly,
offering a viable alternative to conventional supervised learning methods. Relevant methods
include MOCO v1 [37], MOCO v2 [38], Masked Autoencoders [39], BeIT [40], DINO [41],
and DINO v2 [42].

Our contributions

In Chapter 3, we present an analysis across numerous datasets and DNN architectures. We
compare the performance of classifiers trained on features from pre-trained, fixed models
against those fine-tuned on the same datasets. This comprehensive comparison underscores
the effectiveness of fine-tuning in enhancing model performance.

Moreover, in Chapter 5, our research shows the impact of pre-training on datasets
like ImageNet and ImageNet21k for enhancing image classification tasks, particularly in a
specialized domain. We focus on classifying microscopic plankton images which are very
different from ImageNet’s natural images. Our results reveal that pre-training on ImageNet,
coupled with fine-tuning, outperforms training exclusively on extensive plankton datasets.
This finding emphasizes the value of broad pre-training encompassing various classes and
diversities.
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Figure 2.2 In UDA, a labeled source domain and an unlabeled target domain are used
concurrently with the goal of training a DNN backbone and obtaining enhanced performance
on the target domain.

2.3 Unsupervised Domain Adaptation

In Section 2.1 we introduced ODG, where a model is trained on data from one distribution and
tested on data sampled from another. We now introduce Unsupervised Domain Adaptation
(UDA), presenting approaches to specifically bridge the gap between training and test. In
this context (as in ODG) we consider two different distributions within the data space V : the
source domain DS and the target domain DT . These domains are usually related to similar
problems but show some differences, such as varying image styles. The source domain
typically is more accessible and a (potentially large scale) labeled dataset sampled from it is
available. For instance, simulators might be used to generate and label images automatically.
On the other hand, the target domain is our main area of interest where we aim to achieve
good performance. However, in the UDA setting, we only have access to unlabeled images
from this domain.
The rationale behind UDA is that labeling images can be expensive and time-consuming,
while acquiring unlabeled images is generally easier. Therefore, UDA algorithms use data
from the source and unlabeled data from the target to improve performance on the target
domain.
In general, in UDA two separate datasets are available during the training process (see
Figure 2.2):
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• Source dataset: DS ∼DN
S , N ∈ N

• Target dataset: DT ∼DT (X )M, M ∈ N

Here, DT (X ) is the marginal distribution of the target domain over the input space, as we
do not have access to the labels in this domain. UDA algorithms use both datasets to adjust
the weights of a DNN with the goal of obtaining improved performance on the target domain.
While using source data is straightforward (as labels are available for model tuning), the key
challenge is to use unlabeled target data effectively during training. This setting is similar
to semi-supervised learning [43], where algorithms try to improve DNN performance using
both labeled and unlabeled data. However, UDA is distinct as it uses unlabeled data from a
different domain. Various UDA algorithms combine a supervised objective (calculated with
source domain labels) with an unsupervised objective (based on the unlabeled images of the
target domain).

Evaluation. UDA methods can be evaluated based on two different methods: the inductive
setting and the transductive setting. In the inductive setting, there are two datasets from
the target domain: one unlabeled for training and another labeled only for testing. The
transductive setting evaluates the algorithm using the labels of the same target images seen
during training. This second approach is more common in benchmarks and studies related to
image classification.

2.3.1 Related Works and Contributions

Foundation Theory

The fundamental principles of UDA have been extensively examined, presenting a combi-
nation of algorithmic strategies and theoretical guarantees. This substantial research has
formed the foundation for UDA, influencing numerous modern and innovative DL adaptation
methods. These advancements are primarily derived from theoretical knowledge.

Mansour et al. [44] present a detailed theoretical and algorithmic examination of domain
adaptation. This work introduces the discrepancy distance concept, a novel metric for com-
paring domain distributions across various loss functions. The authors establish Rademacher
complexity bounds for this measure and propose new generalization bounds for domain
adaptation. They extend their analysis to regularization-based algorithms like SVMs and
kernel ridge regression, emphasizing empirical discrepancy. Their study concludes with
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the development of discrepancy minimization algorithms and initial experimental results,
underscoring their utility in domain adaptation scenarios.

In their work, Ben-David et al. [45] tackle fundamental questions in UDA. They propose
a framework to predict when a classifier trained on a source domain will be effective in a
target domain. A key innovation is their H-divergence measure, derived from unlabeled data,
which, alongside empirical source error, predicts classifier performance on the target domain.
Their research also investigates the combination of labeled source data with limited labeled
target data, offering a learning bound for such situations. This work balances theoretical
insights with practical applications in domain adaptation.

For a comprehensive overview of UDA theory, we reference the survey by Redko et
al. [46]. This survey offers an extensive theoretical analysis of domain adaptation, encom-
passing learning bounds, divergence-based learning bounds, hardness results, and bounds
involving integral probability metrics. It also considers PAC-Bayesian theory and algorithm-
centric domain adaptation, presenting a thorough summary of theoretical progress in this
field.

Algorithms for UDA in Computer Vision

In Computer Vision, numerous algorithms have been proposed to mitigate domain shifts
utilizing DNNs. We highlight a few notable contributions.

Ganin et al. [47] present Domain Adversarial Training of Neural Networks (DANN).
DANN’s core principle is to minimize the ability of a domain classifier to differentiate
between source and target domain, thereby promoting domain-agnostic features. This is
achieved via an architecture with a gradient reversal layer that aligns feature distributions
during training: the proposed procedure involves an adversarial game between the feature
extractor and the domain classifier. The method’s effectiveness is shown in various tasks, in-
cluding sentiment analysis and image classification, demonstrating its potential in enhancing
domain adaptation in DL.

Kang et al. [48] introduce Contrastive Adaptation Network (CAN), which tackles domain
discrepancy in UDA. CAN optimizes a novel metric that accounts for both intra-class and
inter-class domain discrepancies. Through an alternating update strategy, CAN achieves
improved performance on several image classification benchmarks.

Zhang et al. [49] propose an approach that merges theoretical and algorithmic aspects of
domain adaptation. They introduce Margin Disparity Discrepancy (MDD), a new divergence
concept that incorporates margin theory to establish margin-aware generalization bounds.
This leads to an adversarial learning algorithm that effectively unites theoretical concepts
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with practical applications. Their empirical studies demonstrate its superiority in many
domain adaptation tasks.

Jaemin Na et al. [50] develop FixBi, an UDA method addressing large domain shifts.
FixBi generates multiple intermediate domains between source and target using a fixed
ratio-based Mixup [51], and trains complementary source-dominant and target-dominant
models. Employing confidence-based learning strategies, including bidirectional matching
and self-penalization, FixBi efficiently transfers domain knowledge. Its effectiveness is
confirmed through comprehensive experiments and ablation studies on standard benchmarks.

For an exhaustive review of UDA methods, we refer to the survey by Wilson et al. [17].
UDA has also been extensively explored in other CV tasks like Object Detection [52] and
Semantic Segmentation [53].

Our Contributions

In Chapter 6, we develop a pipeline leveraging Denoising Diffusion Probabilistic (DDP) [54]
models and DANN to bridge the gap between simulated and real images of vision-based
tactile sensors. Our goal is to recognize surface types upon contact. We introduce a bilevel
adaptation process, initially training a state-of-the-art DDP model for denoising real images.
Simulated images are then injected with controlled Gaussian noise, partially altering their
style while preserving essential information. These images, post-DDP denoising, resemble
real images, retaining the original simulated contact information. Automatic annotations are
applied based on the contact surface type, derived from simulator point cloud data. These
images, along with unlabeled real images, are then used to train a classifier with DANN to
recognize surface types.

In Chapter 7, we explore a novel approach for object detection in robotics, focusing on
weakly-supervised learning (WSL) to enhance models initially trained on handheld objects.
Our research addresses domain adaptation challenges when transitioning from constrained
(handheld) to unconstrained (tabletop) environments. We present a comprehensive analysis
of various Active Learning (AL) and Self-Supervised Learning techniques, highlighting their
efficacy in reducing manual annotation needs while maintaining high detection accuracy.

2.4 Source-Free Unsupervised Domain Adaptation

Similar to UDA, Source-Free Unsupervised Domain Adaptation (SF-UDA) involves a
labeled source domain and an unlabeled target domain. The objective is to achieve strong



2.4 Source-Free Unsupervised Domain Adaptation 19

performance on the target domain. However, SF-UDA introduces the additional constraint of
not utilizing the source domain data during adaptation. This constraint is crucial in situations
where intellectual property, privacy, or memory limitations restrict the use of source data,
but access to a source-trained model is available. SF-UDA training consists of two main
sequential stages:

1. Source Training: a DNN, often pre-trained on a large-scale dataset, is further trained
with labeled data from the source domain. Subsequently, the final model is retained,
but access to the source data is no longer allowed.

2. Target Adaptation: the DNN model from the first phase, along with the target domain
dataset, are used for unsupervised adaptation. The aim is to enhance the model’s
performance on the target domain.

While standard UDA algorithms typically focus on reducing discrepancy measures
between the two domains, this method is not applicable in SF-UDA due to the absence of
source domain data during the adaptation phase. This constraint poses a greater challenge
compared to UDA but it makes the setting appealing since, in real-world scenarios, one might
only have access to a model and not the data on which it was trained. In such cases, SF-UDA
becomes particularly relevant. Additionally, SF-UDA offers an efficiency advantage: the
requirement of only target domain data for adaptation often results in SF-UDA algorithms
being faster than their UDA counterparts.

2.4.1 Related Works and Contributions

A pioneering theoretical work of SF-UDA has been presented by Ilja Kuzborskij and
Francesco Orabona [55], where they analyze the theoretical aspects of Hypothesis Transfer
Learning (HTL). HTL leverages source hypotheses trained on a source domain, rather than
directly utilizing source data during the adaptation process. The paper emphasizes the role of
algorithmic stability in the context of Regularized Least Squares with biased regularization
and addresses the challenge of negative transfer in unrelated domains. It ensures that perfor-
mance is at least as good as algorithms that do not use source domain information, which
is crucial in situations with limited training data. This research contributes significantly
to the understanding of incorporating prior knowledge into algorithmic stability and its
implications for HTL, offering a new perspective on domain adaptation strategies. Later, the
field of SF-UDA have gained popularity with Source HypOthesis Transfer (SHOT) [56] that
introduced a simple and effective algorithm using an unsupervised objective (the Information
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Maximization loss), together with a pseudo-labeling procedure in order to adapt DNNs in the
task of image classification. The paper has been followed by a multitude of novel algorithms
and techniques for SF-UDA in CV like AAD [57], NRC [58], A2Net [59], 3C-GAN [60]
and many others. For a comprehensive survey we refer to [61] that provides an in-depth
analysis of SF-UDA. In particular, it categorizes SF-UDA methods into two primary types:
data-based and model-based. The data-based methods focus on reconstructing domains or
extracting information from images, while the model-based methods leverage self-training
techniques such as pseudo-labeling, entropy minimization, and contrastive learning. The
survey comprehensively compares many SF-UDA methods and explores their applications,
offering insights into potential future research directions in this field.

Our Contributions

In Chapter 3 we provide a large scale empirical study on SF-UDA. We analyze the main
design choices including pre-training, how to deal with the source fine-tuning phase and the
adaptation method to be used. We highlight both some strengths and weaknesses of SF-UDA
approaches and we systematically study their robustness. In Chapter 4 we present a novel
SF-UDA adaptation method for image classification with a simple and effective design. We
incorporate some findings from our study in the design of this algorithm that, despite being
simpler than other methods, it favourably compare with state-of-the-art methods on different
benchmarks.



Part II

Contributions



Chapter 3

Key Design Choices in SF-UDA: An
In-depth Empirical Analysis

3.1 Context

In this contribution we provide a comprehensive benchmark framework for Source-Free
Unsupervised Domain Adaptation (SF-UDA) in image classification, aiming to clarify the
complex relationships among various design factors within SF-UDA. The study rigorously
evaluates pre-training datasets and strategies, particularly focusing on both Supervised and
Self-Supervised methods, as well as the impact of source fine-tuning. It further examines di-
verse SF-UDA adaptation techniques, assessing their consistency across datasets, dependence
on specific hyperparameters, and applicability across different architectural types. The study
highlights gaps in existing benchmark practises, guiding SF-UDA research towards more
effective and detailed approaches. It emphasizes the importance of backbone architecture
and pre-training dataset selection on SF-UDA performance, serving as an essential reference
and providing key insights for future research in this field.

3.2 Introduction

Deep Learning has established itself as the leading approach to tackle most computer vision
tasks. However, the performance of DNNs is largely dependent on the availability of large-
scale annotated datasets, which may be costly to acquire and also challenging for specialized
tasks. To address this issue, the prevalent strategy is to initially pre-train model weights on
extensive datasets and then fine-tune them for specific tasks using a smaller set of labeled
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examples [26, 29, 30]. This approach adheres to the transfer learning [62] paradigm: expertise
acquired on one task can subsequently enhance learning performance in related, yet distinct
downstream tasks.
Additionally, DNNs exhibit strong performance only when the training and test datasets
are drawn from the same distribution. However, in practical applications several factors,
such as environmental variations or dataset biases, lead to a domain shift between training
(source domain) and test data (target domain), potentially causing a significant performance
degradation.

To bridge the gap between source and target domains, Unsupervised Domain Adapta-
tion (UDA) jointly employs labeled data from the source domain and unlabeled data from the
target domain to improve model adaptation [17]. In particular, in this study we focus on the
more challenging Source-Free Unsupervised Domain Adaptation (SF-UDA) setting [56].
SF-UDA presents more constraints than UDA, involving a two-stage training, here referred
as double transfer: (i) a pre-trained model is first fine-tuned on a labeled source domain, and
(ii) it is subsequently adapted by employing only the unlabeled data from the target domain
with no further access to any source data. This setting is especially useful in applications
where access to source data is constrained due to privacy, communication, and storage issues.
[63] conducted a rigorous study on strategies commonly adopted in UDA. In particular design
choices like architecture and pre-training strategy have been explored in the context of UDA.
Their findings indicate that some recent methodologies may be tailored to excel on specific
benchmarks: when certain modifications are applied (e.g., the architecture is changed),
such methods under-perform compared to earlier approaches. Motivated by these analyses
for UDA, our research centers on the SF-UDA setting, with a focus on understanding the
contribution of each phase in its characteristic double transfer. Our analysis extends beyond
standard benchmark assessments, providing an in-depth characterization of multiple design
components, ranging from pre-training methods and adaptation strategies to hyper-parameter
sensitivity, and evaluating the effectiveness of fine-tuning on the source domain. Through
our analysis, we provide a novel perspective into the strengths and limitations of SF-UDA
pipelines, setting a foundation for future progress in the field. The main contributions of this
work are the following:

• We propose a benchmark framework to evaluate SF-UDA methods focusing on their
general applicability in different experimental settings, their reproducibility, robustness,
and failure rates.
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• We analyze the influence of the backbone and pre-training dataset choices on the final
SF-UDA performance. Our results show a high correlation between the ImageNet
top-1 accuracy, Out-of-Distribution Generalization (ODG), and SF-UDA performance
across hundreds of architectures, including Convolutional Neural Networks and Vision
Transformers. Furthermore, we analyze the performance of Self-Supervised pre-
training strategies, which are gaining momentum in the current literature.

• While fine-tuning the backbone on the source domain is common practice in SF-
UDA, we show that in some scenarios this leads to severe performance degradation.
Additionally, we highlight the marked effect of normalization layer selection on SF-
UDA perfomance. Architectures with Layer Normalization consistently outpace those
employing Batch Normalization (Sec. 3.8).

The following sections discuss related work (Sec. 3.3), detail our benchmark approach
(Sec. 3.4 and 3.5), present experimental results (Sec. 3.6, 3.7 and 3.8), and conclude with
insights on findings and directions for future research (Sec. 3.9 and 3.10).

3.3 Related Work

Unsupervised Domain Adaptation (UDA). DNNs and other Machine Learning models
typically operate under the assumption that their training and test datasets are drawn from
the same distribution [17]. This assumption, however, often does not hold in practical appli-
cations, leading to significant performance drops. To address these challenges, Unsupervised
Domain Adaptation (UDA) has been proposed. UDA leverages a labeled source domain
alongside an unlabeled target domain, aiming to optimize model performance on the latter.
Early theoretical works [64, 45, 44] formed the foundation for a variety of UDA algorithms,
applicable across fields such as time series data analysis [65], Natural Language Process-
ing [66], Sentiment Analysis [67], and Computer Vision tasks such as video analysis [68],
image classification [69], object detection [52], and semantic segmentation [53].
Specifically, UDA has been extensively studied in image classification. Proposed techniques
include Adversarial Training [47], Maximum Mean Discrepancy Minimization [48], Bi-
directional Matching [50], Margin Disparity Discrepancy [49] and Contrastive Learning [70].
These methods proved successful at enabling DNNs to bridge the gap between source and
target domains, thereby enhancing their adaptability and accuracy in diverse and changing
environments.
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Source-Free Unsupervised Domain Adaptation (SF-UDA). Our study specifically focuses
on SF-UDA, a more constrained subset of UDA where there is no granted access to source
data during adaptation. SF-UDA emerges as a suitable setting in scenarios where, due to
concerns such as intellectual property, privacy, or memory limitations, the labeled source
domain is not available during the adaptation phase.

The foundation of SF-UDA is Hypothesis Transfer Learning [55], which inspired the first
SF-UDA methods to adapt DNNs in image classification tasks, such as SHOT [56]. These
early methods showed competitive performance compared to UDA approaches. Further
works introduced a variety of SF-UDA algorithms. These include generative modeling [60],
techniques focusing on entropy minimization, transferring Batch Normalization statistics [71],
creating surrogate source domains during adaptation [72], employing self-distillation tech-
niques [73], and leveraging the latent structure of source-trained models for adaptation [57,
58]. Contrastive learning has also been employed in this context [74]. A comprehensive
review of contemporary SF-UDA methods is available in [75], and the specific methods
explored in our study are detailed in Section 3.4.2.
Experimental Studies. The challenges surrounding DNNs training, given their computa-
tional, time, and data-intensive requirements, have prompted significant research efforts.
Their main goals have been to extract representations suitable for effective transfer to new
tasks and to identify the key components enabling more efficient architectures and training
methods. Past efforts have explored many aspects of Transfer Learning, as shown in works by
Chu et al. [30], Huh et al. [26], and Kornblith et al. [76]. In the UDA setting, [77] explores
model selection based on ImageNet performance, while [63] analyzes various pre-training
techniques for Domain Generalization [78] and UDA.
Conversely, this work focuses on the potentials and limitations of SF-UDA, a setting gaining
traction for its ability to rival traditional UDA in performance while enforcing stricter data
constraints. Our comprehensive analysis decouples and studies in depth the properties of each
phase in the double transfer process: transitioning from pre-training to the source domain
and, then, from the source to the target domain. This level of modular decomposition of
the SF-UFA pipeline is inherently unfeasible in traditional UDA where the adaptation is
performed using the source and target domains, concurrently, in a single phase. Finally,
along with our results, we release the experimental framework code, which is a valuable to
facilitate future research. In particular, the code 1 not only enables the replication of our
results, but it also serves as a foundation for further empirical investigation, as it can be
effortlessly expanded with novel methods, architectures, and datasets.

1The code will be released at https://www.github.com/andreamaracani/SFUDA_KDC/

https://www.github.com/andreamaracani/SFUDA_KDC/
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3.4 Methods

This section describes the high-level SF-UDA pipeline and introduces the SF-UDA ap-
proaches included in our study.

3.4.1 SF-UDA pipeline

In SF-UDA, two data distributions (domains) are defined: the source domain and the target
domain. Under the Closed-set assumption, images from different domains may differ in
style, yet share the same label set.

Model training is divided into different phases based on the data availability. In particular,
the full process can be summarized in three main stages:

1. A model (a DNN backbone) is initially pre-trained on a large dataset, e.g., ImageNet
or Imagenet21k [5];

2. First transfer: the model weights can potentially be fine-tuned (FT) using the labeled
source dataset;

3. Second transfer: unlabeled images from the target domain are employed for model
adaptation to the new domain. Note that no access to the source data is available at
this stage.

The outlined modular pipeline is illustrated in Fig. 3.1. This structure facilitates a methodical
evaluation of its individual components: the strategy for unsupervised adaptation using
target images (Sec. 3.6), the criteria for selecting the pre-training dataset and methodology
(Sec. 3.7), and the effectiveness and issues related to fine-tuning the model’s weights on the
source domain (Sec. 3.8). This work includes a sequence of controlled experiments designed
to isolate and evaluate the impact of each individual component on the final outcomes.

3.4.2 SF-UDA methods

To quantitatively assess the performance of SF-UDA techniques across a wide range of
configurations, we conduct a detailed software re-implementation guided by the original
research papers and their associated code. Importantly, we add the options to employ many
different backbones and perform distributed training. In particular, for our analyses we
select a set of representative SF-UDA methods: SCA (Sec. 3.4.2), SHOT [56] (Sec. 3.4.2),
NRC [58] (Sec. 3.4.2), AAD [57] (Sec. 3.4.2) and PCSR [79] (Sec. 3.4.2).
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Figure 3.1 SF-UDA pipeline. In this work, we meticulously analyze the SF-UDA pipeline.
The process begins pre-training a backbone (along with its classifier, CPT ) on a large dataset,
e.g., ImageNet (see Sec. 3.7). This is followed by the first transfer phase, where labeled
source data is used to refine the backbone and, possibly, train a classifier for the new task
(see Sec. 3.8). Then, the second transfer phase happens, leveraging unlabeled target data to
adapt the model to the target domain (see Sec. 3.6).

Several other SF-UDA approaches exist in the literature [75]. Still, we focus on the
aforementioned methods for the following reasons:

• Despite our meticulous implementation process, it was not possible to replicate the
results of some methods as presented in their original papers, indicating a sensitivity to
particular experimental configurations.

• Some methods were excluded because their official source code was unavailable (e.g.,
[59, 80]) or their corresponding papers lacked comprehensive training or implementa-
tion details.

• We omitted certain methods designed for specific architectures (e.g., [71, 81]) or those
requiring unique architectural modifications or additions (e.g., [82, 60]) or external
data/resources (e.g., methods designed for multi-source SF-UDA as [83]). These
methods were not pertinent to our wide-ranging architectural evaluation.

In the next paragraphs, we briefly describe each SF-UDA method used in our study.
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Simple Class Alignment

Simple Class Alignment (SCA) is a simple yet effective method, often employed as a part of
other domain adaptation algorithms, such as CAN [48] and SHOT [56]. However, its use
as a standalone method has not been explored in the literature, and its specific role within
multistage algorithms still requires close examination. Furthermore, despite its simplicity,
we observe that in some settings it reaches state-of-the-art results (see Sec. 3.6.5). For these
reasons, we included it in our study. The main algorithmic steps of SCA are:

1. Prototype Creation: generate a representative vector (prototype) for each class in the
source domain (for example by averaging the feature vectors of samples in that class).

2. K-Means Initialization: use the source prototypes as starting centroids for K-Means
clustering on the unlabeled data from the target domain.

3. Prototype Adaptation and Classification: apply spherical K-Means [84] to fit proto-
types to target domain feature vectors. The final prototypes are then employed by a
1-Nearest Neighbor classifier: each target sample is assigned the class of the closest
prototype, employing the cosine similarity as metric.

SCA’s distinguishing feature is its capability to provide a classifier for the target domain by
aligning source prototypes with the target latent vectors distribution. This enables its use
with feature representations from a pre-trained model with no additional refinement. Hence,
SCA emerges as a resource-efficient SF-UDA method, rivaling even the most advanced ones
in terms of performance.

Source HypOthesis Transfer

Source HypOthesis Transfer [56] (SHOT) has become a prominent reference in the field of
SF-UDA. Its efficacy has set a baseline for newer methodologies in the field. The adaptation
in SHOT is characterized by a sequence of epochs, each consisting of two phases:

1. Generation of pseudo-labels for the target samples through source-trained model.

2. Tuning of the feature extractor weights optimizing an objective composed of two terms:
the unsupervised Information Maximization loss and a standard Cross-Entropy
loss based on the previously computed pseudo-labels. Notably, the classifier weights
remain unaltered in this phase.
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For pseudo-labels computation, SHOT employs a modified version of SCA. Utilizing the
feature extractor f (·) and the fixed source classifier, the algorithm determines class output
probabilities for each target sample x(i) ∈ XTGT as p(i) = (p(i)1 , . . . , p(i)C ), where C is the total
number of classes. The initial prototype for a generic class c ∈ {1, . . . ,C}, i.e., kc, is obtained
as a weighted average of target domain features, according to the following equation:

kc =
∑i p(i)c · f (x(i))

∑i p(i)c

, (3.1)

Where i indexes all the samples of the target domain XTGT. The obtained prototypes {kc}C
c=1

serve as the initialization for the spherical K-Means steps of SCA. This leads to a 1-NN
classifier generating the pseudo-labels for the target dataset.

Neighborhood Reciprocity Clustering

Neighborhood Reciprocity Clustering [58] (NRC) leverages the intrinsic latent structure
of target data by focusing on neighborhood information. Specifically, the training aims to
bring similar samples closer while distancing dissimilar ones. The Neighborhood Affinity
is a pivotal concept, distinguishing neighbors by their potential use for accurate supervision.
Neighbors are categorized as either reciprocal (RNN) or non-reciprocal (nRNN). RNNs are
neighbors that mutually identify each other as nearest neighbors. NRC assumes, supported
by empirical evidence, that RNNs offer greater potential for providing valuable adaptation
information. Consequently, they are assigned more importance in the overall objective.
This perspective is further extended by the Expanded Neighborhood Affinity, which
considers second-order neighbors (i.e., neighbors of neighbors). NRC devises an objective
by integrating these components, ensuring a balanced consideration of both immediate and
extended neighborhoods. This is complemented by a Self-Regularization term, which
employs current predictions as a guide to mitigate the influence of potentially unreliable
neighbors.

Attracting and Dispersing

Attracting and Dispersing [57] (AAD) bears similarities to NRC, but introduces a simpler
methodology and objective. For every target feature vector, two distinct sets are determined:
the Close Neighbor Set, which encompasses the nearest or most similar representations,
and the Background Set, consisting of feature vectors unrelated or distant from the current
one (often from different classes). The method employs the principles of Attracting and



3.5 Benchmarking Framework 30

Dispersing. In Attracting, the Close Neighbor Set’s representations are guided to produce
consistent predictions. Conversely, in Dispersing, predictions from the Background Set are
kept as distant as possible from the ones obtained with the current representations. The
model’s parameters are optimized with a simple objective to achieve a balance between
attraction and dispersion, iteratively refining the process until the model adapts to the target
domain.

Polycentric Clustering and Structural Regularization

Polycentric Clustering and Structural Regularization [79] (PCSR) is similar to SHOT since
it employs the Information Maximization loss and a pseudo-labeling procedure. However,
PCSR refines the pseudo-labeling through Polycentric Clustering. Leveraging on the
K-Means algorithm, it computes multiple centers for each class, enhancing pseudo-label
accuracy. PCSR introduces also the use of MixUp [85, 86, 87] to provide additional
regularization during the adaptation. The result is a composite loss function integrating all
the aforementioned objectives for the unsupervised model optimization on the target domain.

3.5 Benchmarking Framework

A significant contribution of this work is the introduction of an open-source benchmarking
framework enabling the execution of a systematic large-scale experimental analysis of SF-
UDA. Our framework facilitates the construction, training, and testing of SF-UDA methods.
Thanks to the integration with state-of-the-art libraries, e.g., timm [88], it enables comparisons
between more than 500 backbones. Furthermore, it allows to test SF-UDA methods on several
datasets, ranging from widely used benchmarks, such as Office 31 [89] and Office-Home [90],
to other more recent datasets, such as DomainNet [91].
Importantly, the proposed framework also allows to modify and assess individual components
of distinct methods in a flexible way. This enables three primary outcomes:

1. A deeper understanding of the SF-UDA setting, which is currently understudied;

2. The establishment of a systematic protocol for the comparison of different SF-UDA
methods;

3. Guidance in making key choices during the design of SF-UDA approaches.
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In the following, we present the datasets (Sec. 3.5.1) and the backbones (Sec. 3.5.2)
considered in our study. Furthermore, we give details on the benchmark protocol (Sec. 3.5.3)
and on the experimental setup (Sec. 3.5.4).

3.5.1 Datasets

We now introduce all datasets considered in our study, distinguishing between those used for
pre-training and for domain adaptation.

Pre-training datasets. For the first transfer, we consider two datasets: ImageNet, composed
of 1.2 M images for 1000 mutually exclusive classes, and the superset ImageNet21k [5],
composed of 14 M images for 21841 not mutually exclusive classes. Specifically, we either
consider models pre-trained (i) on ImageNet (IN), or (ii) on ImageNet21k and consequently
fine-tuned on the 1000 classes of ImageNet (IN21k). It is important to note that the additional
fine-tuning step on ImageNet for models pre-trained on ImageNet21k does not significantly
impact their performance on downstream tasks. This fine-tuning process has become a widely
accepted standard in pre-training protocols, with numerous models being readily available
following this method. Models solely pre-trained on ImageNet21k were not included in our
analysis due to their limited availability. However, we did evaluate a select few to verify that
their performance closely aligns with that of their counterparts that underwent fine-tuning,
reinforcing the consistency of our pre-training approach.

Domain adaptation image datasets. These image classification datasets include two or
more subsets corresponding to different domains with distinct visual styles and sharing the
same classes. In our experiments, we consider: DomainNet [91], ImageClef-DA [92], Office-

31 [89], Modern Office-31 [93], Visda-2017 [15], Office-Home [90], and Adaptiope [93]. An
overview of all datasets is illustrated in Tab. 3.1.

Datasets choice rationale. For pre-training, we include ImageNet and ImageNet21k, as
they are open datasets frequently employed in the literature. Consequently, many DNNs pre-
trained on these datasets are available. Instead, for domain adaptation, we select 7 datasets.
These include popular benchmark datasets (Office31, Office-Home, and Visda) and also other
datasets less often used in SF-UDA research (like DomainNet, Adaptiope, Modern Office-
31, and ImageClef-DA). The goal of this diverse selection is to ensure a comprehensive
evaluation across different scenarios, supporting our findings regarding SF-UDA. To evaluate
different SF-UDA methods (Sec. 3.6), we select Office31 and Office-Home, as they are
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Table 3.1 Domain Adaptation datasets considered in this study. Checkmarks in the final
two columns show which datasets are used in the SF-UDA methods evaluation and which in
the pre-training and fine-tuning (PT/FT) experiments.

Dataset Images Domains Classes SF-UDA Eval PT/FT Exp.

DomainNet 596006 6 345 ✓
Visda-2017 280000 2 12 ✓
Adaptiope 36900 3 123 ✓ ✓
Office-Home 15588 4 65 ✓ ✓
Modern Office-31 7210 4 31 ✓
Office-31 4110 3 31 ✓
ImageClef-DA 2400 4 12 ✓ ✓

used as benchmarks in the original papers, and Adaptiope and ImageClef-DA, which are not
considered in those studies. This allows to determine if the methods can generalize to new
datasets or if their performance strongly depends on the dataset choice. For the experiments
on pre-training and fine-tuning (Sec. 3.7 and 3.8), we employ all the domain adaptation
datasets mentioned above with the exception of Office31 to avoid possible biases due to
its similarity to Modern Office-31. This results in a total of 23 domains and 74 domain
pairs (source-target). Notably, for Visda-2017, unlike the usual benchmark, we consider
both synthetic-to-real and real-to-synthetic experiments. We consider domain-pair-averages

across this work as summary metric: we run an experiment for each domain pair (a source
and target domain) and we average the accuracy across all the experiments. The same
conclusions can be drawn even if dataset-averages are considered instead (i.e., by computing
the averages for each dataset individually first and, then, across datasets).

3.5.2 Backbone selection and integration

Before any SF-UDA pipeline, the backbone should be chosen (see Sec. 3.4.1): in most of our
experiments we rely on the PyTorch Image Models Python library (timm) [88] that provides
access to a remarkably large number of different architectures and pre-trained weights.
Specifically, to analyze the pre-training phase, in Sec. 3.7 we evaluate SCA and the baselines
(presented in Sec. 3.5.3) on more than 500 models selected among more than 25 different
families of architectures (e.g., VGG [94], ResNet [95], EfficientNet [96], ConvNext [97],
ViT [33], SWIN [98], Deit [99] and XCiT [100]). Moreover, to evaluate the impact of the
fine-tuning step on the source domain (Sec. 3.8 and some experiments of Sec. 3.7), we
sample a subset of 59 models, taken from more than 12 families of architectures. Instead, to
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benchmark SF-UDA methods and test their robustness (Sec. 3.6), we consider two commonly
used backbones, namely the convolution-based Resnet50 [95] (that we initialized with
TorchVision2 weights for consistency with original papers) and the Attention-based Vision
Transformer Large (ViT-Large) [33]. Finally, for experiments involving Self-Supervised
pre-trained networks (Sec. 3.7.2), we use the weights released by the authors of different
methods if not available on TorchVision Hub [101]. Notably, our analysis comprises both
modern Vision Transfomers and CNNs (like ConvNext) and more traditional architectures.

3.5.3 Evaluation protocol

Our experimental framework is designed to serve as a toolkit for the in-depth analysis of
SF-UDA and it enables the evaluation of each individual component of the SF-UDA pipeline.
Additionally, our evaluation protocol is standardized across datasets and architectures in
order to provide reliable and reproducible assessments.

SF-UDA protocol. For every pre-trained backbone, the final linear layer (i.e., the ImageNet
classifier) is removed. Then, we introduce a newly initialized bottleneck, followed by a final
linear classification layer tailored to the number of classes of the given task. The bottleneck
includes a linear layer which projects the backbone’s features to 256 dimensions followed
by a normalization layer and a ReLU (or GELU) activation function. Notably, the type of
normalization adopted for the bottleneck is contingent on the backbone’s architecture, opting
for Batch Normalization if present in the backbone or Layer Normalization otherwise (and
the same holds for the type of activation function). If the training on the source domain

is performed with fine-tuning (FT), backbone weights are adjusted and the bottleneck and
classifier weights are learnt from scratch. Instead, experiments without FT keep the backbone
weights fixed and train the bottleneck and the classifier only. Finally, the adaptation on the
target domain is performed with the selected SF-UDA technique.

Experimental baselines. We also implement four baselines serving as upper and lower
reference bounds for SF-UDA methods. For these baselines, we consider the following two
data settings:

• In-Domain Generalization (IDG). This represents the standard “generalization"
typically considered in supervised learning. In this context, the network is trained and
tested on a single labeled domain that, for consistency, we call target. Images from

2https://pytorch.org/hub/

https://pytorch.org/hub/
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this domain are randomly partitioned into a training set (80%) and a test set (20%). We
regard IDG as the upper bound for SF-UDA.

• Out-of-Domain Generalization (ODG). In this setting, the pre-trained network is
trained on the (labeled) source domain and tested on the target domain. Given that no
adaptation takes place, we consider this as the lower bound for SF-UDA.

Moreover, we consider the following two baseline training strategies.

• Linear Probing (LP). The pre-trained backbone weights are kept frozen and only a
linear classifier is trained.

• Fine-Tuning (FT). We stack a bottleneck and a new linear classifier on top of the
backbone and we fine-tune end-to-end the entire model.

As a result, we end up with four baselines: LP-IDG and LP-ODG for in-domain and out-
of-domain generalization with linear probing and FT-IDG and FT-ODG for in-domain and
out-of-domain generalization with fine-tuning. See Tab. 3.2 for a comparative summary of
the baselines and the considered SF-UDA settings.

In our study, we adhere to the transductive setting [102]: the final target accuracy is
evaluated using the same images that were used during the unsupervised adaptation process,
aligning with standard practices in UDA and SF-UDA. We evaluate the performance of
various methodologies based on classification accuracy and failure rate on the target domain.
In particular, we consider a SF-UDA method to fail an experiment if the final target accuracy
is lower than the LP-ODG baseline. Detailed insights on accuracy variations of the considered
methods can be found in Sec. 3.8.

3.5.4 Experimental setup

The accompanying code of this benchmark is developed following the modular sequential
pipeline of Fig. 3.1, and each component can be changed and individually evaluated. To
ensure fast and consistent reproducibility, the codebase features instructions for downloading
and formatting datasets, a large variety of supported model architectures and many adaptation
algorithms with distributed training implemented. Such features enable a large-scale and
in-depth investigation of the SF-UDA setting. For all experiments, we used Python with the
PyTorch framework. Based on the computational requirements of different experiments, we
allocate from 1 to 16 GPUs; in particular, we empoyed Nvidia V100 16GB and Nvidia A100
80GB GPUs.
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Table 3.2 Evaluation baselines and SF-UDA settings considered in this work. In the first
section on the left the data of supervised training is specified together with the training strat-
egy: optimize only the weight of a classifier or fine-tune also the whole model. The following
columns indicate the adaptation data available for the adaptation (second transfer) and the
domain employed to test the performance. IDG baselines are considered generalization
upper-bounds for the given domain, while ODG baselines are considered lower-bounds fore
the given domain pair. SF-UDA can be any of the adaptation methods considered.

Task First Transfer (supervised) Second Transfer
Domain

Test
DomainDomain Optimization

LP-IDG Target (w/ labels) Classifier only None Target
FT-IDG Target (w/ labels) Backbone+Classifier None Target

LP-ODG Source (w/ labels) Classifier only None Target
FT-ODG Source (w/ labels) Backbone+Classifier None Target

SF-UDA Source (w/ labels) Classifier only Target (w/o labels) Target
FT-SF-UDA Source (w/ labels) Backbone+Classifier Target (w/o labels) Target

3.6 Analysis of SF-UDA methods

In this section we experiment with SCA, SHOT, NRC, AAD, and PCSR, as motivated in
section 3.4.2, highlighting both the strengths and weaknesses of each method across different
settings. Our evaluation centers on the following research questions.

Reproducibility. Can the selected SF-UDA methods be consistently reproduced in more
general experimental settings with respect to those presented in their original evaluations?

Distributed training. SF-UDA methods are often tested on small and medium size datasets
using backbones such as ResNet50 (not computationally demanding). However, it is impor-
tant to study their ability to distribute computation across GPUs, especially when large-scale
datasets are used or when modern, more computationally demanding backbones (e.g., Vision
Transformers and ConvNext) are adopted.

Generalization across datasets. Can SF-UDA methods generalize to datasets not originally
mentioned in their respective papers? This aspect helps identifying potential biases or
“dataset cherry-picking” in original reports.
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Backbone independence. While the original papers show how these methods can be
beneficial on ResNet50 (or ResNet101), can they be used to provide performance gains also
to more recent and better performing architectures (like Vision Transformers)?

Hyperparameter sensitivity. How sensitive are these methods to hyperparameters? As,
in SF-UDA, target domain labels are absent during adaptation, hyperparameter selection
becomes challenging. This may lead to fundamental issues like data leakage (selecting
hyperparameters based on target test accuracy after trial and error), which can misrepresent
performance metrics. Assessing robustness to hyperparameter changes can shed light on a
method’s real-world applicability.

3.6.1 Reproducibility

In this work, we look for methods maintaining consistent performance across diverse settings
and robust to variations in the random seed and software version. To verify this, we set up a
unique testing environment, distinct from those used in the original papers code. We conduct
the experiments using five different random seeds, a departure from the prevalent practice in
UDA and SF-UDA literature, which typically reports results from a single run. As evidenced
in Tab. 3.3, most methods demonstrate robustness to our testing environment, though AAD
and NRC, on average, perform marginally below the cited results. Importantly, the standard
deviation from our findings casts doubt on the widespread practise of reporting single run
performance on benchmark tables. Using these results to rank methods is questionable, as
the disparities between methods are often smaller than the standard deviations we observed.
Thus, relying solely on results from a single run fails to provide a significant evaluation. SCA
is not included in the table, since we are the first presenting and studying it as a stand-alone
SF-UDA method.

3.6.2 Distributed Training

While distributed training enables computational scalability, its potential remains largely
unexplored in SF-UDA research. This can be attributed to the prevalent practice of bench-
marking methods using architectures such as ResNet50 and ResNet101, which are not
computational demanding according to current standards. However, as we discuss in section
3.7, the choice of architecture and pre-training strategy can profoundly influence outcomes.
In fact, moving from ResNet50 to recent architectures, such as ViT or ConvNext, might offer
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Table 3.3 Accuracy comparison between paper results and our findings on Office31 and
Office-Home datasets. We report the mean accuracy and the standard deviation of 5 runs.

OFFICE31 OFFICE-HOME

Reported Ours Reported Ours

AAD 89.9 88.8±0.5 72.7 71.4±0.3

NRC 89.4 88.4±0.6 72.2 70.8±0.1

SHOT 88.6 88.5±0.3 71.8 72.1±0.2

PCSR 89.5 89.4±0.5 72.8 72.7±0.3

significant enhancements to target accuracy. This underscores the importance of effective
distributed training.
SCA is not affected by the distribution of the computation. Indeed, adapting the classifier only
with K-Means (i.e., no Network optimization) facilitates the distribution. Feature extraction
can be done with a batch size of one, while the K-Means stages can be optimized across
multiple GPUs. Instead, most SF-UDA methods (including all the the others considered
in this work) incorporate a diversity term [57] in their objective, whose computation may
require the entirety of the target dataset at once [56]. In practice, the diversity term is often
approximated using the current batch. When this batch is split across multiple GPUs and the
gradients are averaged (a common practice in distributed training), it often results in a less
accurate approximation than if the entire batch was processed in a centralized way. Hence, a
performance degradation may happen when SF-UDA methods training is distributed.
We empirically analyze this aspect in Tab. 3.4, showing the methods performance with the
standard global batch size of 64 distributed across 1, 2, 4, 8, and 16 GPUs. The tables show
different results for different methods. Specifically, the diversity terms in SHOT and PCSR
exhibit robustness, allowing for efficient parallelization. Conversely, the diversity terms in
AAD and NRC are more sensitive, necessitating larger batch sizes for effective performance.
Smaller batch sizes can, at times, entirely undermine their efficacy, especially with ResNet50
where the performance drop is up to 55%. We observe the same behaviour across all datasets.

3.6.3 Dataset and architecture independence

Datasets frequently employed in SF-UDA experimental analyses typically fall within small
to medium sizes or they contain just few domains. This can lead to involuntary data leakage
and unreliable performance evaluations of the algorithms. For instance, iterative design
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Table 3.4 Evaluation of SF-UDA methods with ResNet50 and ViT-Large on Office31, Office-
Home, Adaptiope and Image-CLEF datasets (for each experiment mean and standard
deviation are evaluated over 5 runs). The global batch size is fixed to 64. Different rows
represent different distributed setting (#GPUs × local batch size).

ResNet50 ViT-Large

SCA AAD NRC SHOT PCSR SCA AAD NRC SHOT PCSR

O
FF

IC
E

31

1x64

84.5
± 0.4

88.8
± 0.5

88.4
± 0.6

88.5
± 0.3

89.4
± 0.5

94.9
± 0.2

94.4
± 0.5

94.9
± 0.2

94.3
± 0.4

94.1
± 1.8

2x32
86.8
± 0.7

87.4
± 0.5

88.5
± 0.6

89.4
± 0.5

94.2
± 0.5

93.4
± 1.2

94.2
± 0.3

94.3
± 0.7

4x16
83.0
± 0.9

84.4
± 0.4

88.4
± 0.4

89.3
± 0.4

93.0
± 0.9

90.1
± 3.0

94.4
± 0.2

94.7
± 0.3

8x8
76.8
± 1.1

77.1
± 0.3

87.6
± 0.2

89.1
± 0.5

91.8
± 0.5

75.5
± 0.8

94.5
± 0.3

93.9
± 1.7

16x4
57.9
± 3.0

62.4
± 1.5

86.8
± 0.4

88.1
± 0.7

86.4
± 5.6

52.9
± 1.3

94.4
± 0.2

94.0
± 1.7

O
FF

IC
E

-H
O

M
E 1x64

66.1
± 0.1

71.4
± 0.3

70.8
± 0.1

72.1
± 0.2

72.7
± 0.3

87.2
± 0.2

80.9
± 4.4

81.0
± 2.4

88.0
± 0.9

85.1
± 3.9

2x32
67.4
± 0.3

67.7
± 0.2

71.9
± 0.2

72.3
± 0.6

80.8
± 5.3

77.8
± 5.4

86.5
± 3.1

84.6
± 2.6

4x16
60.5
± 0.5

51.9
± 0.4

71.7
± 0.2

72.6
± 0.2

75.0
± 7.2

68.7
± 2.2

87.7
± 0.7

85.3
± 3.2

8x8
49.1
± 0.4

22.4
± 0.5

71.1
± 0.2

72.0
± 0.2

76.0
± 5.6

56.4
± 2.4

86.3
± 3.6

81.9
± 5.8

16x4
22.8
± 0.7

31.7
± 0.6

68.9
± 0.3

70.2
± 0.1

70.2
± 12.2

46.9
± 1.6

86.5
± 1.3

85.9
± 3.8

A
D

A
PT

IO
PE

1x64

42.1
± 0.7

59.9
± 1.5

64.9
± 0.6

65.0
± 0.9

71.8
± 0.9

86.4
± 0.2

49.2
± 6.1

72.6
± 9.1

84.6
± 8.0

89.2
± 6.8

2x32
46.6
± 1.2

26.6
± 0.3

62.2
± 1.0

70.8
± 0.9

49.2
± 4.0

65.6
± 1.8

86.3
± 6.7

92.3
± 0.7

4x16
32.3
± 0.8

10.1
± 0.6

59.5
± 1.0

69.6
± 0.9

38.6
± 4.0

55.9
± 3.8

88.3
± 1.4

87.3
± 6.9

8x8
21.6
± 1.2

10.2
± 0.5

55.9
± 1.6

67.9
± 0.9

35.0
± 4.1

51.5
± 3.4

87.1
± 1.4

76.4
± 21.1

16x4
4.9
± 1.2

18.9
± 0.7

51.9
± 2.3

66.0
± 1.2

24.2
± 9.1

42.8
± 7.4

84.9
± 6.9

82.4
± 11.0

IM
A

G
E

C
L

E
F

1x64

81.1
± 0.2

83.2
± 0.2

83.3
± 0.1

82.9
± 0.2

83.0
± 0.3

87.5
± 0.0

87.8
± 1.1

88.4
± 0.2

87.8
± 0.3

87.7
± 0.2

2x32
82.8
± 0.2

82.9
± 0.2

82.7
± 0.2

82.8
± 0.3

88.2
± 0.2

88.4
± 0.1

87.6
± 0.5

86.2
± 3.2

4x16
82.5
± 0.4

82.7
± 0.2

82.7
± 0.1

82.7
± 0.1

87.1
± 1.7

88.0
± 0.2

87.6
± 0.4

87.4
± 0.6

8x8
79.8
± 1.6

81.4
± 0.2

82.7
± 0.2

82.5
± 0.1

87.3
± 0.8

87.2
± 0.2

87.5
± 0.3

86.6
± 1.9

16x4
67.3
± 2.0

77.1
± 0.7

81.8
± 0.1

81.5
± 0.2

86.2
± 0.9

73.8
± 2.1

87.4
± 0.2

87.2
± 0.4
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choices and hyperparameter tuning, guided by observations of target accuracy (trial and error
procedure), can inadvertently cause an algorithm to specialize excessively to a particular
benchmark dataset with the given backbone. This can mislead researchers into perceiving
an algorithm as universally effective when it might be excessively tailored (“overfitted") to
specific datasets. Furthermore the architecture choice can influence SF-UDA performance
and, even though ResNets are the standard choice in experimental evaluations, it is crucial to
discern whether the methods are robust to backbone changes.

To address these questions, our experimental framework includes two datasets not com-
monly featured in SF-UDA papers (i.e. Adaptiope and Image-CLEF) together with two
datasets that, instead, are normally considered (i.e., Office31 and Office-Home). Moreover,
we use ViT-Large to evaluate the methods beyond their well-studied experimental settings
with the ResNet backbones. The selection of ViT-Large is driven by these factors: it offers
a distinct inductive bias compared to ResNets, characterized by its structure as a Vision
Transformer incorporating Self-Attention and Layer Normalization, unlike the Convolutional
Neural Network with Batch Normalization Layers seen in ResNets. Additionally, ViT has
demonstrated enhanced generalization capabilities in ImageNet and various other Computer
Vision tasks. Note that, the aim of this experiment is to test the robustness of the different SF-
UDA methods while a comprehensive study on the impact of the backbone and pre-training
choices is reported in Sec. 3.7.

We report our results in Tab. 3.4 and Tab 3.8. In summary, SHOT and PCSR demonstrate
robustness across different architectures and datasets. NRC exhibits competitive performance
with different datasets when ResNet50 is employed but it shows sub-optimal performance
with ViT. Moreover, AAD performance is negatively affected with changes in either the
dataset, architecture, or both. It is worth noting that while a higher accuracy is attainable with
ViT, all methods display larger standard deviations, due to possible failures or sub-optimal
adaptation. Finally, SCA shows strong performance when ViT is used, while it obtains
sub-optimal performance with ResNet50. As we will see in Sec. 3.8 this is due to the failure
in some domain-pairs caused by Batch Normalization Layers: since SCA aligns just the
classifier without optimizing the backbone weights, large differences in the BN statistics can
cause the algorithm to fail in some scenarios.

Remark. The under-performance of NRC and AAD on ViT-Large, even falling below the
FT-ODG baseline (i.e., fine-tuning without any adaptation), despite ViT’s superior inductive
bias and stronger out-of-distribution generalization (as indicated in Table 3.8), suggests
that while these methods might be effective on architectures different from ResNets, they
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likely require modifications to be compatible with more advanced architectures like Vision
Transformers.

Table 3.5 Hyperparamter test for
AAD with ResNet50 (mean accuracy
on Office31, Office Home, Adaptiope
and Image-Clef datasets).

AAD K=3 K=5

β = 0 75.70 73.16

β = 0.75 76.34 73.28

β = 1 76.20 73.03

β = 2 75.36 71.83

β = 5 73.28 69.52

Table 3.6 Hyperparamter test for NRC
on ResNet50 (mean accuracy on Of-
fice31, Office Home, Adaptiope and
Image-Clef datasets).

NRC K=2 K=3 K=4 K=5

KK=2 75.37 77.03 77.39 77.28

KK=3 76.87 77.45 77.19 76.56

KK=4 77.31 77.31 76.47 75.52

KK=5 77.40 76.78 75.57 74.33

3.6.4 Hyperparameter Sensitivity

The focus of this work is on hyperparameter-free SF-UDA methods. The reason is that in
practical situations, determining the optimal hyperparameters can be challenging without
data leakage. While unsupervised hyperparameter selection techniques might represent a
solution [103], their practical effectiveness is yet to be studied, especially concerning their
resilience against variations in architecture and dataset. Parameters such as the number of
training epochs and the learning rate are considered non-problematic, as they can be adjusted
observing how the unsupervised objective is optimized during adaptation. Indeed, most
SF-UDA methods adopt by default the same learning rate, learning rate schedule, weight
decay, optimizer, etc.

While SCA is hyperparameter-free, methods like SHOT and PCSR present some hy-
perparameters, described in their original papers, that are never changed and we treat them
as universal constants. Even if these parameters have been probably derived for specific
datasets, their successful use in different settings confirms the low sensitivity of those meth-
ods to hyperparameters variations. In contrast, AAD and NRC come with dataset-specific
hyperparameters. Our analysis focuses on K and β for AAD (the number of considered
neighbours and a loss scheduling parameter, respectively) and K and KK for NRC (the
number of neighbours and the number of second order neighbours, respectively). For details
on these hyperparameters, we recommend consulting the original publications and code.
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Tab. 3.5 and 3.6 present average accuracy values across four datasets (i.e., Office31,
Office-Home, Adaptiope and Image-CLEF). These tables consider a range of hyperparameters
as specified in their respective papers. We observe that AAD’s average performance lags
behind that of NRC, which exhibits performance more in line with SHOT and PCSR (with
average accuracy of 76.34 and 77.45, respectively, on ResNet50). A notable challenge
with NRC arises when considering its high accuracy on the VisDA dataset with ResNet101
(achieving a macro-averaged accuracy of 85.9) using K = 5 and KK = 5. This setting, as
demonstrated in our tables, do not yield good performance on the datasets included in our
experiments.

Table 3.7 Results summary of the methods evaluation performed in Sec. 3.6 based on Office31,
Office-Home, Adaptiope and Image-CLEF datasets and ResNet50 and ViT-Large Backbones.

Methods SCA SHOT NRC AAD PCSR

Reprod. ✓ ✓ ✓ ✓ ✓
Parallelism ✓ ✓ ✗ ✗ ✓
Dataset Flex. ✓ ✓ ✓ ✗ ✓
Backbone Flex. ✗ ✓ ✗ ✗ ✓
Hparam-free ✓ ✓ ✗ ✗ ✓

Table 3.8 Average accuracy of different methods on Office31, Office-Home, Image-
Clef, and Adaptiope. Each experiment (defined by a domain-pair of a dataset) is
given equal importance in the average computation. The first row includes the
baseline of Fine-Tuning without any adaptation. For each architecture best results
are in bold, while other high and comparable results are underlined.

ResNet50 ViT-Large

FT-ODG 65.52 85.95

SHOT 77.26 88.40
NRC 77.45 84.28
AAD 76.34 80.16
PCSR 78.77 88.12
SCA 71.74 88.42

3.6.5 Final Remarks

Results discussed in previous sections brought insights on the reproducibility, possibility
of distributed training, dataset, backbone and hyperparameter variations robustness on the
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Figure 3.2 Left to right: LP-IDG accuracy (upper bound) averaged over 23 domains, LP-
ODG (lower bound), SCA, and FT-SHOT accuracy (averaged over 74 domain pairs). Each
marker indicates an architecture, with the x-axis denoting the ImageNet top1 accuracy.
Markers color and shape signify the respective pre-training datasets.

considered SF-UDA methods. We summarize our findings in Tab. 3.7 and 3.8. In the next
sections we chose to focus on SCA and SHOT. We exclude AAD and NRC due to previously
discussed limitations. Although PCSR performs similarly to SHOT and shares many design
choices, we exclude it. Despite some accuracy improvements in specific benchmarks, we
gave importance to the intrinsic simplicity of SHOT for our studies. Finally, we also consider
the complementary of SHOT and SCA: while SHOT, during adaptation, modifies the weights
of the backbone keeping the classifier fixed, SCA only adapts the classifier without tuning the
backbone weights. The issues of SCA with ResNet50 are discussed and analyzed in Sec. 3.8,
where we will see that they are caused by BN layers.

3.7 Impact of pre-training and backbone selection

This section aims to analyze the impact of strategic choices during pre-training on the final
SF-UDA accuracy. To this purpose, we start with a comprehensive study considering over
500 backbones and the ImageNet and ImageNet21K datasets, to evaluate the importance of
the backbone and dataset choices during the pre-training (Sec. 3.7.1). Note that, we narrow
down the analysis to a subset of 59 models for more computationally intensive evaluations,
i.e., when fine-tuning (FT) is involved. Finally, we study some Self-Supervised methods for
pre-training and their effects on the SF-UDA (Sec. 3.7.2).
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3.7.1 Statistical analysis

Fig. 3.2 reports the found correlation between the ImageNet top-1 accuracy and the final
accuracy on the task at hand of the two considered SF-UDA methods (SCA and FT-SHOT)
and of their upper and lower bounds (LP-IDG and LP-ODG, respectively). Each different
point represents a different backbone and we compare models trained on ImageNet (blue) with
those trained on ImageNet21K (red). The data shows high correlation among the variables:
models that achieve higher top-1 accuracy on ImageNet tend to generalize better across
other tasks. While this connection had been previously noted for UDA [76], our findings
further stress its significance in the context of ODG and SF-UDA. However, ImageNet top-1
accuracy, though indicative, is not the sole predictor of performance. A distinct phenomenon
was observed with models pre-trained on the larger ImageNet21k dataset and subsequently
fine-tuned on ImageNet. These models not only enhanced their ImageNet performance but
also exhibited an additional improvement in tasks like SF-UDA, not solely explained by their
top-1 ImageNet accuracy gain.

To quantify the significance of observed correlations, we present a statistical analysis,
identifying two predominant variables that can affect the final performance: the ImageNet top-
1 accuracy and the choice of pre-training dataset. If we ignore the effect of the pre-training,
the relationship for each backbone B can be formalized as:

accuracy(B) = m · top1(B)+q+ ε, (3.2)

where m and q represent task-specific coefficients, and ε is the residual variance not captured
by the model. The choice of pre-training dataset is an important additional explanatory
variable. In our experiments, the pre-training dataset, denoted as pretrain(B), could be either
0 for ImageNet or 1 for ImageNet21k. To account for the influence of the pre-training dataset
in our model, we propose a multi-linear model:

accuracy(B) = [m+∆m ·pretrain(B)] · top1(B)+q+∆q ·pretrain(B)+ ε, (3.3)

where ∆m and ∆q are the additional coefficients. A comparison of both statistical models is
illustrated in Tab. 3.9, where it is possible to see a large increase of adjusted R̄2 values when
considering multi-linear models. Finally, Tab. 3.9 shows that our findings are valid in all
considered settings, with and without the fine-tuning.
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Table 3.9 Comparison of adjusted R̄2 values between linear (considering top-1 accuracy only)
and multi-linear models (with both top-1 accuracy and pre-training). Results are shown for
the upper bounds (LP-IDG and FT-IDG), the lower bounds (LP-ODG and FT-ODG) and for
the considered SF-UDA methods, SCA and SHOT, with and without fine-tuning (FT).

LP-IDG LP-ODG SCA SHOT

Linear 0.736 0.810 0.731 0.792
Multi-Linear 0.851 0.935 0.902 0.890

FT-IDG FT-ODG FT-SCA FT-SHOT

Linear 0.803 0.698 0.668 0.838
Multi-Linear 0.878 0.822 0.792 0.932

Table 3.10 ImageNet vs ImageNet21k pre-training for different backbone sizes. The accuracy
reported are the average of 74 domain shifts.

LP-ODG SCA FT-SHOT

Backbone (params) IN IN21k IN IN21k IN IN21k

VGG19 (143.7M) 45.2 47.6 49.4 53.1 56.0 55.7
ResNet50 (25.6M) 47.2 51.3 49.8 58.2 55.9 62.0

W-ResNet50 (68.9M) 50.5 52.5 53.3 58.2 62.1 64.0
DenseNet161 (28.7M) 48.0 52.2 52.7 58.2 61.6 65.3
ConvNext B (88.6M) 54.4 65.2 58.4 68.5 65.1 72.7

Influence of backbones size. Some studies, like [25], suggest that larger models, due to their
expansive parameter set, would primarily benefit from the pre-training on larger datasets like
ImageNet21k, while small models can obtain no or negative benefit from very large scale
pre-trainings. However, our investigation challenges this evidence in the context of SF-UDA.
In Tab. 3.10, we demonstrate that not only larger architectures, but even small and medium
size backbones can significantly benefit from an ImageNet21k pre-training.

3.7.2 Self-Supervised pre-training

Recently, self-supervised pre-training has gained popularity due to its demonstrated effective-
ness in many studies [36]. In this section, we examine some state-of-the-art Self-Supervised
Learning (SSL) pre-training methods within the SF-UDA context, comparing them to tradi-
tional supervised pre-training. Our focus is on two widely-used architectures: ResNet50 and
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ViT-Base. We choose these architectures since they are frequently evaluated in SSL studies,
and their pre-trained weights are available online.

SSL with ResNet50. For the analysis with ResNet50, we evaluate DINO [104], MOCO
v1 [37], and MOCO v2 [38] approaches. As shown in Tab. 3.11, when considering FT-ODG
and FT-SCA, both MOCO v2 and supervised pre-training on ImageNet (1k) exhibit similar
results, while other methods perform worse. However, when applying SHOT after the
fine-tuning (FT-SHOT), supervised pre-training clearly outperforms all SSL pre-training
methods, including MOCO v2. A detailed analysis of why FT-SCA does not perform as
well as FT-SHOT in this context is presented in Sec. 3.8. Thus, for ResNet50, supervised
pre-training is more effective than the considered SSL methods.

Table 3.11 Target accuracy (%) using different SSL initialization weights of ResNet50 after
performing the following experiments: fine-tuning on the source domain (FT-ODG), FT-SCA
and FT-SHOT.

Exp. Pre-train MO31 Visda O.Home Adapt. I-CLEF D.Net Avg

FT-ODG

DINO 42.7 45.6 45.7 30.9 71.3 19.7 42.7
MOCO v1 38.5 44.6 41.7 28.6 66.2 20.1 40.0
MOCO v2 54.7 54.2 55.1 39.5 76.9 25.5 51.0
Supervised (IN1k) 56.4 49.6 55.5 43.3 75.9 21.6 50.4

FT-SCA

DINO 50.8 54.5 49.8 35.9 75.0 21.9 48.0
MOCO v1 49.5 52.3 43.9 34.3 70.4 23.9 45.7
MOCO v2 63.4 56.9 55.8 45.3 79.5 28.0 54.8
Supervised (IN1k) 62.7 55.5 59.4 49.6 79.3 23.6 55.0

FT-SHOT

DINO 71.8 67.3 58.0 55.4 77.5 24.1 59.0
MOCO v1 56.6 58.3 52.9 37.5 71.7 19.2 49.4
MOCO v2 73.2 65.7 66.9 51.9 81.0 26.2 60.8
Supervised (IN1k) 80.6 71.6 68.9 66.6 81.6 27.3 66.1

SSL with ViT. For ViT-Base backbone we consider Masked Autoencoder (MAE) [39],
DINO [104] and DINO v2 [42] as SSL pre-training strategies. The results are presented in
Tab. 3.12.
Despite recognizing the effectiveness of MAE as SSL pre-training technique, our results
show that, without a subsequent supervised ImageNet fine-tuning, it does not provide a strong
foundation for SF-UDA and ODG tasks. Nevertheless, DINO shows stronger performance
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Table 3.12 Target accuracy (%) for VIT-Base we report results for the lower bounds (LP-ODG
and FT-ODG) and for the considered SF-UDA methods (SCA and SHOT) with and without
fine-tuning (FT). DINO v2 and MAE need distinct FT strategies (indicated with †) and their
backbones were frozen during SHOT adaptation (indicated with an *). Best results for each
dataset and setting are highlighted in bold, with the top overall results underlined.

Experiment Pre-train O31 MO31 Visda O.Home

LP-ODG

MAE 44.2 30.0 45.6 37.8
DINO 81.5 71.6 65.7 59.8
DINO v2 89.4 89.8 72.6 79.3
Supervised (IN21k) 89.4 85.1 69.4 78.2

FT-ODG

MAE† 52.9 39.0 53.4 51.0
DINO 80.7 72.4 65.4 63.6
DINO v2† 89.8 87.7 58.5 76.8
Supervised (IN21k) 89.7 86.9 77.9 79.9

SCA

MAE 16.4 15.6 17.6 5.4
DINO 86.6 84.4 74.2 61.1
DINO v2 94.1 96.5 81.7 83.0
Supervised (IN21k) 92.7 91.8 69.1 78.5

FT-SCA

MAE† 34.9 28.7 49.8 32.0
DINO 85.2 81.1 73.6 67.9
DINO v2† 93.8 95.0 62.8 79.8
Supervised (IN21k) 92.7 91.9 82.6 82.5

SHOT

MAE* 8.4 12.4 62.2 18.1
DINO 89.4 86.5 79.2 68.3
DINO v2* 94.0 96.8 80.6 84.7
Supervised (IN21k) 95.3 93.9 88.5 86.5

FT-SHOT

MAE†* 38.0 39.0 67.1 55.7
DINO 87.5 75.8 56.9 74.2
DINO v2†* 93.3 95.5 68.4 81.2
Supervised (IN21k) 93.7 93.9 87.5 84.4
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than MAE on all the examined tasks, even if it is still outperformed by supervised pre-training
in every setting.
Finally, for DINO v2 evaluation, we faced two main challenges. The first is related to its
fine-tuning on the source domain, caused by gradients of high magnitude in the initial training
phase that hardly alter the weights of the model reducing the inherent benefits of DINO v2
initialization. To mitigate this, we proposed to adopt a two-phase fine-tuning strategy: (i)
we freeze the backbone, training only the newly introduced bottleneck and classifier on the
source domain and (ii) we continue the whole network fine-tuning using gradient clipping.
The second challenge is related to the model adaptation to the target domain with SHOT.
SHOT adaptation fails with DINO v2 when the whole network is optimized with the un-
supervised objective. In our pipeline, to solve this problem we completely freeze DINO
v2 weights and we optimize just the bottleneck with SHOT objective. Applying FT-SHOT
on DINO v2 without our approach leads to bad performance on all datasets. For instance,
on Office31, the accuracy is 5.6% without our method, while it is 93.3% when we apply
it. Analogous patterns are evident on Modern Office31 (improving from 7.0% to 95.5%),
VisDA (from 14.9% to 68.4%), and Office-Home (from 3.5% to 81.4%). In general, if our
approach is used on DINO v2, it obtains similar performance to supervised pre-training, even
surpassing it in some settings.
Note that, we applied the same strategies presented for DINO v2 to MAE. This yielded
marginal improvements but even with these enhancements, the performance remains sub-
optimal, rendering MAE less competitive than the other methods.

3.8 Analysis of the impact of fine-tuning

In SF-UDA, the backbones are typically fine-tuned on the source domain during the first
transfer. Given the importance of this step, we analyze its impact in the overall SF-UDA
performance. For this, we study the accuracy variation happening when fine-tuning (FT) is
applied with respect to cases without it. We report the results of this analysis in Fig. 3.3. Each
marker represents a backbone, sorted on the X-axis by their top-1 accuracy on ImageNet (just
a subset of backbones considered is shown for visualization constrains). The arrows represent
the accuracy variation happening for that model. In the top row, we report the accuracy
difference between LP-IDG and FT-IDG (left) and LP-ODG and FT-ODG (right), being our
upper and lower bounds, respectively. The plots in the other rows represent the accuracy
difference between the lower bound (LP-ODG) and the considered SF-UDA methods (i.e.,
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Figure 3.3 Impact on final accuracy of source fine-tuning. Each marker is a backbone.
Variations on the final accuracy is reported as arrows. In the top row, we report the accuracy
difference between LP-IDG and FT-IDG (left) and LP-ODG and FT-ODG (right), being our
upper and lower bounds, respectively. All other plots represent accuracy difference between
LP-ODG with the considered SF-UDA method (i.e., SHOT, FT-SHOT, SCA and FT-SCA).
Models with BN and LN are represented with dark and white markers, respectively.
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Table 3.13 Average accuracy variation and failure rates with respect to LP-ODG (lower
bound). These are averaged over 74 domain shifts. Each column represents a normalization
layer type. The parenthesis shows the number of considered backbones.

∆ Accuracy Failure Rate

Tasks All BN (32) LN (27) All BN (32) LN (27)

FT-ODG 0.46 ±3.71 −2.21 ±2.75 3.62 ±1.57 40.82 ±16.14 51.52 ±11.42 28.13 ±10.85
SCA 4.21 ±1.39 4.08 ±1.55 4.36 ±1.19 21.05 ±11.92 27.24 ±11.64 13.71 ±7.25
SHOT 6.97 ±2.24 6.21 ±2.39 7.88 ±1.68 11.18 ±8.75 14.82 ±9.32 6.86 ±5.61
FT-SCA 4.90 ±3.86 2.16 ±2.94 8.14 ±1.66 19.08 ±14.57 29.77 ±11.05 6.41 ±4.52
FT-SHOT 9.66 ±1.83 9.68 ±1.96 9.63 ±1.69 4.47 ±3.61 5.83 ±3.77 2.85 ±2.69

SHOT, FT-SHOT, SCA and FT-SCA). Thus, comparing the two columns in the second and
third rows, we can visualize the impact of the fine-tuning for the SF-UDA methods.
As shown in Fig. 3.3 and reported in Table 3.13 (left side), SHOT combined with fine-tuning
(FT-SHOT) consistently enhances performance across different backbones. Instead, for SCA,
the benefit of the fine-tuning (FT-SCA) is particularly evident for LN models with an average
increase of 8.14%, while the boost for BN models is modest (2.16%). A similar pattern
is identified for the lower bound FT-ODG, where the accuracy increases of 0.46% across
all architectures for all the experiments. However, backbones with Batch Normalization
(BN) and with Layer Normalization (LN) show different behaviors. For the first ones, the
final accuracy declines of 2.21%, while for the second ones, it improves of 3.62%. Finally,
the upper bound (FT-IDG) does not show the same pattern. This is due to the fact that
the FT impact in the same domain is beneficial for both BN and LN models, as already
well-established [76].

3.8.1 Layer or Batch Normalization?

In this section, we analyze the failure rate for each backbone after the fine-tuning on the
source. We define a failure to be a performance degradation, with respect to the LP-ODG
lower bound, when a method is applied.
Starting from the insights previously presented, in this section we compare backbones with
LN and backbones with BN. We report our results in Tab. 3.13. In particular, from the right
side of the table, it is evident that models with BN consistently show higher failure rates
compared to those with LN. For instance, for FT-SCA, models with BN have a failure rate of
29.77% while models with LN have 6.41% .
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Interestingly, even without source fine-tuning, SHOT, which adjusts BN statistics and back-
bone’s weights during adaptation, registers a BN failure rate of 14.82%. In contrast, SCA
achieves a failure rate of 27.24% for BN models. However, LN models failure rates signifi-
cantly decrease for both SHOT and SCA, registering 6.86% and 13.71%, respectively. This
large improvement underscores BN’s instability in the presence of domain shifts, in contrast
with LN models robustness.

Figure 3.4 Example of fine-tuning impact for Modern Office31 dataset (Synthetic → DSLR
in the first row and DSLR → Synthetic in the second row). Each marker is a backbone.
Fine-tuning effect on the final accuracy is reported as arrows. In the first column, we report
the accuracy variation between LP-ODG and FT-ODG (lower bound). Then, we report the
accuracy difference with FT-ODG for the case when ADABN is applied (second column)
and for FT-SCA and FT-SHOT (third and fourth columns).

However, the literature presents techniques to mitigate BN limitations, such as ADABN [105].
Our findings reveal that, while these techniques can, in some cases, retrieve a portion of
the lost accuracy, they remain inconsistent. We show our findings in Fig. 3.4, reporting
results for the DSLR and Synthetic domain pair in Modern Office 31 dataset, taken as an
example. ADABN occasionally falls short of complete recovery. Additionally, as depicted
in the figure’s second row, in some situations (i.e. particular source-target pairs), ADABN
amplifies the degradation, raising questions about the scenarios in which such techniques
might be beneficial.
Therefore, while various techniques can sometimes enhance BN models performance, their
unpredictability across different domains often makes them less appealing for SF-UDA. LN
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models, on the contrary, demonstrate better stability reducing failure rates, making them a
more reasonable choice for domain adaptation tasks.

3.9 Discussion

Figure 3.5 We report the relation between the ImageNet top-1 accuracy and target accuracy
of SCA across 74 domain pairs, for over 500 different backbones. Different colors of the
markers represent different pre-training dataset, while the shade intensity signifies the SCA
accuracy improvement with respect to the lower bound LP-ODG.

Our work proposes an open-source benchmark framework that enables the execution of a
systematic large-scale experimental analysis of SF-UDA. We believe that this framework
might put the basis for future work, being a useful tool for structured SF-UDA evaluation.
Moreover, we present a detailed study of current SF-UDA state-of-the-art, highlighting
relevant insights. Firstly, in Sec. 3.6, we pointed to limitations in prevalent and common
benchmark standards. We study the reproducibility, possibility to execute distributed train-
ing, dependence from datasets and backbones and hyperparameters sensitivity of SF-UDA
methods. In this perspective, we believe that the method design and hyperparameter selection
should not be driven by test accuracy after trial and error experiments. Otherwise, SF-UDA
methods effectiveness and generality might be potentially overestimated.

Then, in Sec. 3.7, we analyze the impact of pre-training strategy and backbone choice
for SF-UDA. Architectures that perform well on ImageNet, also present improved SF-UDA
accuracy and pre-training on larger datasets, such as ImageNet21k, amplifies this outcome.
Although certain Self-Supervised Learning methods might not match supervised training’s



3.10 Conclusion 52

efficacy in general, techniques, like DINO v2, obtain competitive results (Sec. 3.7.2). How-
ever, an important question is still open: as the architectural backbones get larger and with
improved ImageNet performance, is there a diminishing return on the advantages conferred
by SF-UDA? Preliminary observations, captured in Fig. 3.5, suggest that this might be the
case, since best ImageNet21k models often see less enhancements provided by SF-UDA.
Finally, in Sec. 3.8, we provide an analysis on the advantages and disadvantage of fine-tuning
the backbone weights on the source domain during the first transfer. While it is often benefi-
cial, there are scenarios, particularly involving backbones with Batch Normalization layers,
where it can lead to hard failures.
Limitations. Although extensive, our study did not encompass the entire spectrum of SF-
UDA methodologies. We chose a subset, emphasizing those that we found reproducible and
applicable to different datasets and backbones. Some important aspects like the evaluation of
normalization free networks [106] or with alternative normalization layers, the pre-training
on different, larger, datasets and unsupervised hyperparameter selection for SF-UDA remain
avenues for future exploration.

3.10 Conclusion

In our investigation, we have shown many critical aspects of the SF-UDA landscape, offering
an analysis on current practices and directions for forthcoming research. In particular we
have highlighted the weaknesses and strengths of some SF-UDA methodologies, the role
of the first transfer, the importance of architectural choices and pre-training strategies, that
undeniably have a significant impact on SF-UDA outcomes. In essence, this work represents
a pivotal reference for researchers in SF-UDA and practitioners aiming to apply SF-UDA in
real-world applications.



Chapter 4

Trust And Balance: A novel SF-UDA
approach

4.1 Context

Most of the new SF-UDA methods presented in the literature tend to lean towards complexity.
In this contribution we introduce a novel and simple SF-UDA approach for image classi-
fication marked by two key contributions: Few Trusted Samples Pseudo-labeling (FTSP)
and Temperature Scaled Adaptive Loss (TSAL). FTSP employs a limited subset of trusted
samples from the target data to construct a classifier to infer pseudo-labels for the entire
domain, showing simplicity and improved accuracy. Simultaneously, TSAL, designed with a
unique dual temperature scheduling, adeptly balance diversity, discriminability, and the incor-
poration of pseudo-labels in the unsupervised adaptation objective. Our methodology, that
we name Trust And Balance (TAB) adaptation, is rigorously evaluated on standard datasets
like Office31 and Office-Home, and on less common benchmarks such as ImageCLEF-DA
and Adaptiope, employing both ResNet50 and ViT-Large architectures. Our results com-
pare favorably with, and in most cases surpass, contemporary state-of-the-art techniques,
underscoring the effectiveness of our methodology in the SF-UDA landscape.

4.2 Introduction

DNNs have made significant advancements in computer vision tasks, including image classi-
fication, detection, and semantic segmentation [107]. However, they often face challenges
when the distribution of the test data, or the target domain, differs from the training data,
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Figure 4.1 SF-UDA Pipeline (our contributions in red). In the upper section (a), the source
model is trained on the source domain through a conventional supervised method (indicated
by the blue arrow). In the lower section (b), adaptation to the target domain is conducted
using our proposed pseudo-labeling method (FTSP) and objective function (TSAL), as shown
by the yellow arrows. Consistent with the method of [56], the classifier γ remains unchanged
during the adaptation phase, while the backbone (in green) is adapted.

known as the source domain. Such domain discrepancies, stemming from environmental
changes, device variations or different image styles, limit the effectiveness of DNNs in
real-world applications.

Unsupervised Domain Adaptation (UDA) aims to apply knowledge from a labeled source
domain to an unlabeled target domain [17]. While conventional UDA strategies demand
access to both domains to mitigate the domain shift, there exist scenarios, especially in
sensitive sectors like healthcare, where accessing the source data is constrained due to
privacy or storage issues. This led to the advent of Source-Free Unsupervised Domain
Adaptation (SF-UDA) in image classification [56], building upon ideas from Hypothesis
Transfer Learning [55]. Essentially, SF-UDA leverages a model trained on the source, without
a direct access to source data. Contemporary advances in SF-UDA encompass methodologies
like entropy-minimization, generative modeling, class prototyping, self-training and many
others [75]. As we will see in Sec. 4.3, our approach shares some parallels with pseudo-label
denoising and entropy-minimization techniques.

In particular, we present a novel pseudo-labeling paradigm, Few Trusted Samples
Pseudo-labeling (FTSP), which accentuates simplicity and the quality of pseudo-labels.
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Unlike conventional, more complex, pseudo-labeling techniques, our method centers on
creating a training set using a restricted subset of trusted samples (i.e. with high likelihood to
be correctly labeled by the source classifier) from the target domain (limited up to 3 samples
per class). While our framework is agnostic to the choice of classifier, for simplicity, we
adopted Multinomial Logistic Regression (MLR) in our main experiments and we present an
ablation study with different classifiers in App. A.2. Despite potential overfitting concerns
with MLR on this limited dataset, it empirically demonstrates proficient generalization
capabilities across the broader target domain, effectively inferring high-quality pseudo-labels.
We also propose a pseudo-label refinement phase, including a deletion mechanism based on
classifier uncertainty and a pseudo-label completion step via Label Spreading [108].

The analysis of Yang et al. [57] emphasized that most SF-UDA methods revolve around
an objective involving two core components: a diversity term for prediction variability and
a discriminability term to enhance target samples differentiation. Inspired by Information
Maximization objective of SHOT [56] we propose the Temperature Scaled Adaptive Loss
(TSAL): a novel and advanced objective to guide the adaptation process. In particular
TSAL is specifically designed to use a dual temperature scheduling to dinamically balance
the discriminability, diversity and the incorporation of pseudo-labels and their significance
throughout the whole adaptation phase, showing improved performance in SF-UDA.

In summary, our key contributions are:

• Few-Trusted Samples Pseudo-labeling (FTSP): an effective pseudo-labeling tech-
nique involving the training of a classifier employing a curated very-limited subset of
trusted samples from the target domain. We further propose incorporating pseudo-label
deletion and completion steps (with Label Spreading) for additional refinement.

• Temperature Scaled Adaptive Loss (TSAL): our advanced balance strategy to effec-
tively calibrate the equilibrium between diversity, discriminability, and pseudo-label
significance in the objective, resulting in enhanced SF-UDA results.

• Robust Benchmarking and Analysis: our method undergoes rigorous evaluations on
standard datasets like Office31 and Office-Home, and on emerging benchmarks such
as ImageCLEF-DA and Adaptiope, using both ResNet50 and ViT-Large. Beyond tradi-
tional single-seed evaluations, we present a multi-seed robustness analysis (5 seeds)
and recreate some selected state-of-the-art techniques for a thorough comparative
insight.

The structure of this paper is as follows: Sec. 4.3 provides an overview of pertinent literature.
The SF-UDA setting is presented in Sec. 4.4. The proposed methodology is delineated
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in Sec. 4.5. Experimental procedures and results are detailed in Sec. 4.6. Concluding
remarks are presented in Sec. 4.7. Additional details and ablation studies are presented in the
supplementary material, while the code will be released at https://github.com/andreamaracani/
TAB_SFUDA.

4.3 Related Work

Unsupervised Domain Adaptation (UDA). UDA aims to adapt models from a source do-
main (where labels are available) to an unlabeled target domain. The foundational principles
of UDA are rooted in the theoretical works by Mansour et al. [44] and Ben-David et al. [45].
Early methods include sample selection [109] and feature projection [110], followed by
techniques designed to adapt DNNs, such as adversarial training [47], Maximum Mean
Discrepancy [48], Bi-directional Matching [50], Margin Disparity Discrepancy [49] and
many others [17]. Though initially centered on image classification, UDA has expanded to
include tasks like object detection [52] and semantic segmentation [53]. A notable challenge
in UDA is the need for simultaneous access to both source and target data during training,
which may be a nuisance or even impracticable in some contexts, e.g. due to intellectual
property or privacy issues.

Source-Free UDA (SF-UDA). As a subdomain of UDA, SF-UDA negates the direct access
to source domain data during adaptation. The field gained traction following Liang et al. [56].
Thereafter, a multitude of methods emerged, achieving interesting results on common UDA
benchmarks. Noteworthy SF-UDA techniques include generative model-driven methods
like 3C-GAN [60], algorithms based on the feature space’s neighborhood structure (e.g.,
NRC [58] and AAD [57]), methods transferring Batch Normalization statistics [111, 71],
strategies constructing surrogate source domains during adaptation [112, 72], techniques
utilizing knowledge distillation within a mean-teacher [113] paradigm [73, 114, 82], and those
incorporating Contrastive learning [114, 74, 115]. A comprehensive review of contemporary
SF-UDA approaches can be found in [75].

Learning with pseudo-labels. SF-UDA methods often necessitates the creation of target
pseudo-labels for improved training. However, the potential presence of errors in these
pseudo-labels parallels training with noisy labels. Numerous methods aim to contrast the
potential noise-fitting caused by these inaccuracies. Notable approaches encompass the
utilization of reliable labels through co-teaching dual networks [116], Negative Learning

https://github.com/andreamaracani/TAB_SFUDA
https://github.com/andreamaracani/TAB_SFUDA
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(NL) implementation [117], and the adoption of noise-resistant loss functions [118]. In the
SF-UDA setting, Zhang et al. [119] advanced a technique that refines noise rate estimation
and emphasizes early-stage sample retention. Luo et al. [120] presented a method to rectify
pseudo-label errors using negative learning, tailored for semantic segmentation. Yang et
al. [121] fused pseudo-label denoising with self-supervised knowledge distillation. Litrico et
al. [122] integrated insights from nearest neighbors and entropy-based uncertainty estimation,
further augmented by a temporal queue mechanism and self-learning methodologies.

Many contemporary techniques lean toward complexity, but our methodology distin-
guishes itself through its efficiency and effectiveness. While we might optionally utilize
the well-established Label Spreading to alleviate label noise, the essence of our method lies
in generating inherently accurate pseudo-labels with a classifier trained on a meticulously
selected set of a very limited number of trusted target samples. Additionally, the harmonious
integration of discriminability and diversity in our TSAL objective further enhances the
method’s robustness against pseudo-label noise. As detailed in Sec. 4.6, our approach consis-
tently aligns with or even surpasses state-of-the-art (SOTA) performance across benchmarks,
asserting the robustness of our loss function to pseudo-label noise.

4.4 Problem Definition

Before presenting our proposed approach, we set the foundation for SF-UDA in the context
of image classification. Let X ∈RH×W×3 denote the space of RGB images with height H and
width W . The label space, covering C distinct categories, is represented by Y = {c}C

c=1. We
postulate two distinct distributions over X ×Y : the source domain DS and the target domain
DT . We consider the Close-set assumption: the label space remains consistent between these
domains, guaranteeing that each category possesses a non-zero probability of manifestation
in both.

Consider fθ : X → Y , a function parametrized by θ , which maps each input image
to its associated label in Y . The main objective in both UDA and SF-UDA is to identify
this function along with its optimal parameters, ensuring accurate target domain predictions.
While DNNs are the prevalent choice for this function, data restrictions depend on the specific
adaptation setting. Specifically, the SF-UDA framework consists of two stages (see Fig. 4.1):

1. A labeled dataset from the source distribution, represented as DS = {(x(i)S ,y(i)S )}N
i=1 ∼

DN
S , is employed to determine the function parameters θ S such that the function

performs optimally on the source domain.
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2. The source dataset becomes inaccessible, though the parameters θ S remain available
together with an unlabeled dataset from the target domain (marginal) distribution,
represented as DT = {x(i)T }M

i=1 ∼ DM
T (X ). This is employed to adjust the model

parameters to θ T , with the goal of obtaining an improved performance on the target
domain.

4.4.1 Architecture

In alignment with the conventions established in earlier studies, the function f (we omit
parameters θ for notation simplicity) is articulated as an composition of multiple functions,
as illustrated in Fig. 4.1:

f (x) 7→ argmax
c∈Y

{δ (γ(φ(x)))c}= ŷ (4.1)

where function φ : X →Z ⊂ Rd is the backbone and it operates as a feature extractor
mapping images into the d-dimensional feature space Z . γ : Z → RC is as a classifier that
maps features into the C-dimensional space of logits. Lastly, δ : RC → ∆C−1 denotes the
Softmax function, which translates logits into the C−1 simplex that signifies classification
probabilities for each class. The ultimate prediction class ŷ is extracted using the argmax
operation on these probability values.

4.5 Method

A fundamental guiding principle in our method design is ensuring backbone independence.
While specialized architectural modifications, such as adapting Batch Normalization layers,
freezing some specific layers, or introducing specific additional modules, can offer advantages
in certain benchmarks (e.g., with ResNet50), we deliberately avoid them. This decision is
rooted in our understanding that in scenarios extending beyond typical benchmarks, more
advanced models could be employed within the SF-UDA framework. Therefore, our ambition
is to devise a universally applicable solution. We present an overview of our proposed method
and in the next sections we will give a detailed description of the algorithm.
Stage 1: source fine-tuning. We initiate training using a pre-trained (e.g., on ImageNet)
feature extractor and we adopt an end-to-end fine-tuning approach, adjusting the backbone’s
weights with the labeled source dataset in alignment with previous SF-UDA algorithms,
leveraging insights from [123] that highlight the benefits of such source fine-tuning.
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Stage 2: target adaptation. When unlabeled target data becomes available the model
undergoes unsupervised self-training. At the beginning of each epoch, pseudo-labels for the
entire target domain are reassessed using our FTSP methodology (Sec. 4.5.1), then our TSAL
objective is minimized to balance diversity, discriminability and pseudo-labels significance
with a dual temperature scaling (Sec. 4.5.2). During this adaptation phase, the weights of the
backbone φ(·) are updated while the classifier, γ(·), remains unchanged in consistency with
[56].

4.5.1 Pseudo-labeling through few trusted samples

Our algorithm’s development was heavily influenced by a clear insight: the selection of an
extremely limited number of high-quality target domain samples can lay a foundation for
constructing a classifier that surpasses the performance of the original source classifier γ .
This perspective deviates from traditional methods that often rely on large sample sizes or
intricate techniques. By identifying a restricted set of K trusted samples (TS) for each class
(i.e. samples that are very likely to be correctly classified), we build a classifier using the
combined dataset with K ×C samples, providing a strong basis for predictions across the
target domain.

Trusted samples training set. In our quest for a simplified methodology, for each class
c ∈ Y , we choose the K feature samples with the top predicted probabilities according to the
source classifier δ (γ(·)):

TSc := {z(1)c , . . . ,z(K)
c }= argmaxK

z∈ZT
{δ (γ(z))c} (4.2)

To clarify, the notation argmaxK denotes the function returning the K arguments with the
greatest values. ZT represents the set of all target features (evaluated with backbone φ ), and
δ (γ(z))c indicates the predicted probability of the feature z being categorized into class c by
the source classifier. Repeating this for each class produces a few-trusted-samples training
set with known labels (that are likely to be correct).

Trusted samples classifier. Considering this dataset, we first normalize the features
vectors and then we train a simple classifier from scratch, subsequently deploying it to
infer pseudo-labels for the entire target domain. Our method is independent of the chosen
classifier; however, in our experiments, we consistently employed by default Multinomial
Logistic Regression (MLR). While the results highlight the efficacy of MLR (as elaborated
in Sec. 4.6.2), we acknowledge its potential limitations. To further explore these aspects,
a post hoc ablation study is provided in the appendix considering different classifiers and
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hyperparameters (Sec. A.2). This study indicates that Linear Discriminant Analysis (LDA)
may offer additional advantages to our approach.

Figure 4.2 Pseudo-labeling with Few Trusted Samples: (a) Classifier trained on the source
domain demonstrates robust performance within the same domain. (b) The same classifier
underperforms on the unlabeled target domain (represented by grey dots). A minimal
set of trusted target samples (indicated by colored dots with white outlines) is selected,
being deemed most likely to be correctly classified. (c) Using these few trusted samples, a
Multinomial Logistic Regression (MLR) classifier is trained, leading to decision boundaries
that align more closely with the target domain and subsequently providing pseudo-labels for
the entire target domain. (d) A fraction of uncertain pseudo-labels is eliminated prior to the
application of Label Spreading, finalizing the Few Trusted Samples Pseudo-labeling (FTSP)
process.

Pseudo-label refinement. For improved pseudo-label quality, we propose an additional
refinement phase in our algorithm. Specifically, we introduce a pseudo-label deletion
step, which entails removing a certain percentage (per class) of the least certain pseudo-
labels, based on the MLR classifier output probabilities. This is followed by a pseudo-label
completion step using the established semi-supervised learning method of Label Spreading
[108]. These procedures are useful to reassess and enhance the overall label consistency.
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Their advantages are explored in the ablation study in Sec. 4.6.3 and in the supplementary
material (Sec. A.2).

We refer to our distinctive pseudo-labeling technique as Few Trusted Samples Pseudo-
labeling (FTSP), illustrated in Fig. 4.2.

4.5.2 Temperature scaled loss for adaptive training

Intuition and motivation. The analysis in [57] shows that most SF-UDA objectives can
be delineated into two primary goals. The first is to enhance prediction distinction (dis-
criminability term, dis), and the second is to diversify these predictions (diversity term,
div).

lossSF-UDA = dis+div (4.3)

In particular, the Information Maximization (IM) objective of SHOT [56] has exhibited
consistent performance across diverse architectures and datasets [123]. Such robustness is not
universally observed among all state-of-the-art UDA and SF-UDA methods, as highlighted
in Kim et al.’s study [63]. Nevertheless, we have observed some limitations and weaknesses
of the SHOT objective:

• The discriminability component uses both the model’s current predictions (to minimize
the entropy) and some pseudo-labels pre-computed through clustering. But as training
moves forward, the model becomes more sure of its own predictions. This increased
(over-)confidence can make it harder to adjust predictions based on pseudo-labels (see
Fig. 4.3a).

• The diversity term is represented by the negative entropy of the average output prob-
abilities. Early in the adaptation process, under common domain shifts, the network
often lacks confidence in its predictions, resulting in an already high average entropy
(so a very low negative entropy). This can cause the discriminability term to be overly
emphasized in the initial stages.

To address these challenges we design a new objective that incorporates a dual-temperature
scaling approach to balance discriminability, diversitity and pseudo-label significance across
the whole adaptation process. At the start, we use a standard temperature value (= 1) for the
discriminability term. As the model becomes more confident, we increase the temperature
(> 1) to moderate the model’s growing certainty. Conversely, for the diversity term, we adopt
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a lower temperature (< 1) to refine predictions early in training, transitioning to a standard
temperature (= 1) towards the training’s conclusion. We now present the designed objective
encapsulating these insights.

Temperature Scaled objective. For a batch comprising B images, denoted as B =

{x(i)}B
i=1, the model discerns the output logit vectors L̂= {l̂(i)}B

i=1. Further, one-hot pseudo-
labels are computed through our FTSP to yield Ŷ = {ŷ(i)}B

i=1. An initial step entails the
softening of pseudo-labels to mitigate erroneous pseudo-label impacts, resulting in the
smooth pseudo-label set ŶS. Specifically, we utilize conventional label smoothing with a
default factor S of 0.1:

ŷ(i)S = ŷ(i) · (1−S)+1C ·S/C (4.4)

where 1C is a C-dimensional vector containing 1s. We now construct an objective target
distribution for a generic target sample xi as a mixture of temperature scaled predicted
probability and the pseudo-label:

q̂(i)(t) = δ

Ç
l̂(i)

τdis(t)

å
+α · ŷ(i)S (4.5)

Where α is a constant set to 0.3 and τdis(·) is the temperature function in order to scale
the predicted probabilities and make them softer at the end of the training. The t variable,
in our schedule (that we will discuss shortly) is an integer corresponding to the number of
epoch. The integration of both the predictions of the network (self-regularization) and the
pseudo-labels in the objective distribution enables the competition between model predictions
and pseudo-labels computed with FTSP. The loss’s discriminability term is hence:

dis(L̂, ŶS; t) :=
1
B

B

∑
i=1

H(q̂(i)(t),δ (l̂(i))) (4.6)

where H(·, ·) is the Cross-entropy function. For diversity, a temperature scaled variant of
[56] is employed. Let define the output average (scaled) probability as:

p̄(t) :=
1
B

B

∑
i=1

δ

Ç
l̂(i)

τdiv(t)

å
(4.7)

Where τdiv(·) is the second temperature schedule function in order to scale the predicted
probabilities and make them sharpen at the beginning of the adaptation procedure. Then the
diversity term is:
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(a) Temperature scaling in the discrima-
bility term.

(b) Temperature schedules.

Figure 4.3 (a) the temperature scaling in our discrimability term enables a fair competition
between model predictions and the pseudo-labels at the end of the training when the network
becomes overconfident. (b) our schedules τdis(·) and τdiv(·) respectively for the discrimanbil-
ity and diversity term.

div(L̂; t) :=−H(p̄(t)) (4.8)

where H(·) is the entropy function.
The overall objective, that we refer to as Temperature Scaled Adaptive Loss (TSAL)

is:

lossTSAL(L̂, ŶS; t) := dis(L̂, ŶS; t)+div(L̂; t) (4.9)

Temperature Scaling schedule. As shown in Fig. 4.3b the functions τdis(·) and τdiv(·)
undergo adjustments every epoch. While τdis(·) gradually enhances prediction softness,
τdiv(·) initially sharpens predictions, only to soften them towards the training’s closure. The
essence of these functions is rooted in the preliminary motivations. Specifically, τdis(·)
transitions linearly from 1 to 1.5, whereas τdiv(·) moves from 0.5 to 1 (with 1 signifying no
temperature modulation).
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4.6 Experimental results

We evaluate the proposed approach, that we name Trust And Balance (TAB), and compare
it with SOTA methods for SF-UDA on image classification.

4.6.1 Setup

Datasets. For our evaluation, we chose a combination of widely-recognized datasets (Of-
fice31 and Office-Home), as well as datasets that are slightly less prevalent in typical
benchmarks (Adaptiope and ImageCLEF-DA). This selection underscores the versatility of
our method. Office-31 [89]: this dataset features 4110 images and includes three domains:
Amazon (A), DSLR (D), and Webcam (W). Office-Home [90]: a medium-scale dataset that
comprises 15500 images, partitioned into 65 categories and spread across 4 domains: Art
(A), Clip Art (C), Product (P), and Real World (R). Adaptiope [93]: a large-scale dataset
containing 36900 images. It is categorized into 123 classes and spans three domains: Product
(P), Real Life (R), and Synthetic (S). ImageCLEF-DA [92]: a small dataset including 2400
images. It is divided into 12 classes and 4 domains: Bing (B), Caltech (C), ImageNet (I), and
Pascal (P).
Backbones. For a fair comparison with a wide range of other popular SOTA methods we
adopted ResNet50 [124] (pre-trained on ImageNet [5]) for our experiments and the typical
single-run results. To evaluate the robustness of our approach we further investigate multi-run
results (we use 5 seeds in the robustness analysis) and we adopted also a better performing
architecture to prove the versatility of our approach, namely ViT-Large [33] (pre-trained
on ImageNet21k). To have a comparison we selected 3 popular SOTA SF-UDA methods
that we recognize as easily reproducible and we run them through our robustness analysis:
SHOT [56], AAD [57] and NRC [58].
Implementation Details. Our method is developed using the PyTorch [125] framework
and adheres to the standard guidelines and hyperparameters found in the SF-UDA literature,
such as [56], [58], and [57]. We employ the SGD optimizer for training, configured with a
momentum of 0.9, weight decay of 10−3, batch size of 64, and an input image dimension of
224×224. The pre-trained backbone is enriched by a newly initialized bottleneck layer that
maps features to 256 dimensions and the final classifier. The initial learning rates are set to
10−3 for the backbone and ten times higher for both the bottleneck and classifier. These rates
then follow exponential scheduling throughout training. Notably, the classifier’s weights are
frozen during the adaptation phase. Additionally, we incorporate MixUp regularization [51]
throughout the training process. For FTSP we use a value of K = 3 for ResNet50 and K = 7
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for ViT-L (accounting for the more precise predictions of this advanced architecture) and a
Multinomial Regression Classifier. In the label deletion step we delete, for each class, the
20% of less confident pseudo-labels, and then we apply Label Spreading. Depending on the
computational needs of various experiments, we utilized either Nvidia V100 16GB or Nvidia
A100 80GB GPUs. Comprehensive details can be found in the appendix (Sec. A.1).

Table 4.1 Performance comparison of various SOTA methods on the Office31 dataset using
both ResNet50 and ViT-Large backbones. Each column represents an experiment SRC )TGT,
while the rightmost column provides the average accuracy. The top results are highlighted in
bold, while the runners-up are underlined. All ViT-L outcomes were independently obtained
by us.

Method A )D A )W D )A D )W W )A W )D Avg

ResNet50 [124] 68.9 68.4 62.5 96.7 60.7 99.3 76.1
3C-GANR50 [60] 92.7 93.7 75.3 98.5 77.8 99.8 89.6
BNM-SR50 [126] 93.0 92.9 75.4 98.2 75.0 99.9 89.1
SHOTR50 [56] 94.0 90.1 74.7 98.4 74.3 99.9 88.6
AADR50 [57] 96.4 92.1 75.0 99.1 76.5 100.0 89.9
NRCR50 [58] 96.0 90.8 75.3 99.0 75.0 100.0 89.4
DIPER50 [80] 96.6 93.1 75.5 98.4 77.2 99.6 90.1
A2NetR50 [59] 94.5 94.0 76.7 99.2 76.1 100.0 90.1
TABR50 94.4 94.7 76.9 97.4 76.0 99.8 89.9

ViT-L [33] 91.8 94.1 80.5 98.5 86.7 99.6 91.4
SHOTViT [56] 98.2 97.9 82.9 97.2 85.7 99.8 93.6
AADViT [57] 98.8 98.5 79.8 99.3 84.4 99.8 93.4
NRCViT [58] 98.0 98.1 85.9 99.0 87.0 99.8 94.6
TABViT 100.0 98.9 86.4 99.9 86.9 99.8 95.3

4.6.2 Results

Office31. The results for the Office31 benchmark are presented in Table 4.1. Our approach
yields results that are competitive with SOTA methods when using the ResNet50 architecture.
Additionally, when employing the advanced ViT-L architecture, our method surpasses the
performance of the considered techniques, achieving an average accuracy of 95.3%.
Office-Home. As detailed in Table 4.2, our method’s outcomes on the Office-Home bench-
mark are either on par or superior to SOTA methods using ResNet50. Moreover, with the
ViT-L architecture, our method outperforms other techniques, achieving an average accuracy
of 88.2%.
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Table 4.2 Performance comparison of various SOTA methods on the Office-Home dataset
using both ResNet50 and ViT-Large backbones. Each column represents an experiment
SRC )TGT, while the rightmost column provides the average accuracy. The top results
are highlighted in bold, while the runners-up are underlined. All ViT-L outcomes were
independently obtained by us.

Method A )C A )P A )R C )A C )P C )R P )A P )C P )R R )A R )C R )P Avg

ResNet50 [124] 46.3 67.5 75.9 59.1 59.9 62.7 58.2 41.8 74.9 67.4 48.2 74.2 61.3
G-SFDAR50 [127] 57.9 78.6 81.0 66.7 77.2 77.2 65.6 56.0 82.2 72.0 57.8 83.4 71.3
SHOTR50 [56] 57.1 78.1 81.5 68.0 78.2 78.1 67.4 54.9 82.2 73.3 58.8 84.3 71.8
NRCR50 [58] 57.7 80.3 82.0 68.1 79.8 78.6 65.3 56.4 83.0 71.0 58.6 85.6 72.2
AADR50 [57] 59.3 79.3 82.1 68.9 79.8 79.5 67.2 57.4 83.1 72.1 58.5 85.4 72.7
ELR(NRC)R50 [128] 58.4 78.7 81.5 69.2 79.5 79.3 66.3 58.0 82.6 73.4 59.8 85.1 72.6
DIPER50 [80] 56.5 79.2 80.7 70.1 79.8 78.8 67.9 55.1 83.5 74.1 59.3 84.8 72.5
A2NetR50 [59] 58.4 79.0 82.4 67.5 79.3 78.9 68.0 56.2 82.9 74.1 60.5 85.0 72.8
TABR50 58.9 79.6 81.5 68.6 78.0 79.8 69.3 56.8 83.7 73.2 59.5 84.7 72.8
ViT-L [33] 75.3 88.5 91.4 85.3 89.7 89.9 83.3 75.0 91.5 86.8 74.7 92.0 85.3
SHOTViT [56] 80.9 92.0 91.9 89.9 92.2 76.1 77.0 81.9 92.1 88.9 82.8 93.9 86.6
NRCViT [58] 79.7 91.0 91.8 85.8 89.7 91.7 42.7 76.3 91.3 85.6 82.6 88.3 83.0
AADViT [57] 66.3 91.2 91.7 89.7 90.5 92.2 78.3 75.6 91.4 86.4 77.1 93.9 85.4
TABViT 81.3 92.7 93.2 89.8 92.9 93.4 86.9 76.1 91.7 89.4 80.9 89.7 88.2

Adaptiope. Table 4.3 shows the results for this challenging benchmark, including both mean
and standard deviation over five runs. On the ResNet50 architecture, our method significantly
outperforms other techniques with a notable margin of +6.9%. Furthermore, when utilizing
the ViT-L architecture, our method continues to lead, registering an average accuracy of
91.7%.
ImageCLEF-DA. The results are provided in Table 4.4 (mean and std). On this small dataset,
our method’s performance is consistent with other techniques when implemented on both
ResNet50 and ViT architectures. However, it is marginally outpaced by the NRC method,
which achieves an average lead of +0.4% for both architectures.

4.6.3 Analysis

The results highlight that our method, with its inherently simple yet effective pseudo-labeling
approach and clear design, achieves performance that is on par with or even surpasses state-
of-the-art methods across the examined benchmarks. Significantly, our approach outperforms
competitors in 3 out of 4 datasets when using the ViT-Large architecture. It is especially
notable that our method exceeds others substantially in the challenging Adaptiope benchmark
when employing ResNet50, showcasing its robustness. However, in the less restricted
UDA setting (where access to source data is permitted), some methods, such as CAN [48]
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Table 4.3 Multi-run (5 seeds) performance comparison of various SOTA methods on the
Adaptiope dataset using both ResNet50 and ViT-Large backbones. The top results are
highlighted in bold, while the runners-up are underlined. All results have been obtained by
us both for ResNet50 and ViT-L. Note: high standard deviations are due to the failure of
methods for one or more seeds in the considered experiment.

Method P )R P )S R )P R )S S )P S )R Avg

ResNet50 [124] 67.0
± 0.6

35.0
± 1.0

87.6
± 0.1

30.4
± 0.9

13.4
± 1.8

2.7
± 0.8

39.3
± 0.5

SHOTR50 [56] 78.5
± 0.2

58.8
± 2.0

91.9
± 0.2

57.4
± 1.6

58.9
± 2.0

44.6
± 2.9

65.0
± 0.9

AADR50 [57] 76.7
± 0.7

53.5
± 3.5

92.1
± 0.2

48.5
± 3.3

53.2
± 3.0

35.1
± 3.2

59.9
± 1.5

NRCR50 [58] 77.2
± 0.2

60.8
± 0.7

88.7
± 0.3

55.0
± 1.9

63.8
± 2.2

44.0
± 1.4

64.9
± 0.6

TABR50 79.9
± 0.4

65.2
± 2.5

92.2
± 0.2

64.1
± 1.2

72.3
± 0.9

57.7
± 1.7

71.9
± 0.3

ViT-L [33] 93.5
± 0.2

68.9
± 0.4

97.4
± 0.1

66.2
± 0.7

93.2
± 0.2

87.2
± 0.5

84.4
± 0.1

SHOTViT [56] 94.5
± 0.3

87.6
± 0.7

96.7
± 2.6

86.9
± 0.4

77.6
± 42.9

91.7
± 1.8

89.2
± 6.8

AADViT [57] 23.4
± 26.6

41.7
± 23.4

76.7
± 42.3

47.1
± 4.9

94.0
± 1.6

12.4
± 22.4

49.2
± 6.1

NRCViT [58] 93.2
± 0.4

83.3
± 1.0

97.5
± 0.2

65.7
± 35.9

77.3
± 42.4

90.5
± 2.1

84.6
± 8.0

TABViT 94.6
± 0.3

86.2
± 0.5

97.6
± 0.1

86.0
± 1.2

96.5
± 0.5

89.1
± 1.3

91.7
± 0.3

Table 4.4 Multi-run (5 seeds) performance comparison of various SOTA methods on the
ImageCLEF-DA dataset using both ResNet50 and ViT-Large backbones. The top results are
highlighted in bold, while the runners-up are underlined. All results have been obtained by
us both for ResNet50 and ViT-L.

Method B )C B )I B )P C )B C )I C )P I )B I )C I )P P )B P )C P )I Avg

ResNet50 [124] 90.0
± 3.1

84.6
± 2.8

68.0
± 2.5

59.3
± 1.3

83.9
± 1.3

69.1
± 1.8

60.6
± 0.2

92.8
± 0.8

75.2
± 0.5

58.7
± 1.4

91.1
± 1.0

88.5
± 2.2

76.8
± 0.3

SHOTR50 [56] 96.6
± 0.6

92.8
± 0.6

77.7
± 2.2

65.1
± 0.5

92.8
± 0.3

78.0
± 0.6

64.4
± 0.8

96.5
± 0.6

78.2
± 0.6

64.4
± 0.6

96.1
± 0.4

92.5
± 1.0

82.9
± 0.1

AADR50 [57] 96.5
± 0.7

92.7
± 0.6

78.0
± 1.2

65.7
± 0.7

92.6
± 0.5

77.9
± 0.7

65.6
± 0.6

96.6
± 0.8

78.9
± 1.4

64.7
± 1.3

96.2
± 0.7

93.2
± 0.7

83.2
± 0.2

NRCR50 [58] 96.6
± 0.7

93.2
± 0.3

78.3
± 1.5

65.9
± 0.8

93.1
± 0.5

78.4
± 0.7

64.8
± 0.7

96.4
± 0.5

79.0
± 0.8

65.2
± 1.0

96.1
± 0.7

93.0
± 0.7

83.3
± 0.0

TABR50 96.8
± 0.6

92.5
± 0.0

77.8
± 0.9

65.5
± 0.9

92.2
± 0.4

78.5
± 0.3

64.5
± 1.2

97.0
± 0.2

78.2
± 0.3

63.6
± 0.6

96.5
± 0.2

92.0
± 0.1

82.9
± 0.3

ViT-L [33] 96.2
± 0.9

94.9
± 0.7

78.2
± 1.3

69.3
± 1.1

94.6
± 0.7

78.2
± 1.2

69.9
± 1.1

96.2
± 0.4

81.2
± 0.9

66.8
± 0.9

92.6
± 2.9

97.3
± 0.8

84.6
± 0.4

SHOTViT [56] 98.3
± 0.2

97.9
± 0.2

82.5
± 0.4

71.5
± 1.3

98.0
± 0.2

82.7
± 0.3

72.2
± 0.9

98.2
± 0.4

82.8
± 0.5

72.5
± 0.9

98.3
± 0.3

98.3
± 0.2

87.8
± 0.3

AADViT [57] 95.4
± 6.9

98.0
± 0.2

83.1
± 0.6

70.9
± 3.5

98.0
± 0.2

82.8
± 0.5

74.2
± 1.0

98.3
± 0.5

83.4
± 0.6

74.3
± 1.1

96.9
± 3.5

98.3
± 0.4

87.8
± 1.1

NRCViT [58] 98.3
± 0.2

98.0
± 0.2

83.2
± 0.4

74.4
± 0.5

98.4
± 0.3

82.6
± 0.7

74.3
± 0.6

98.2
± 0.5

83.6
± 0.3

73.5
± 0.8

98.4
± 0.5

98.5
± 0.4

88.4
± 0.2

TABViT 98.8
± 0.1

98.0
± 0.3

82.9
± 0.4

70.6
± 3.1

98.3
± 0.2

82.9
± 0.1

72.7
± 0.2

98.8
± 0.2

83.4
± 0.5

71.8
± 0.8

98.7
± 0.2

98.4
± 0.2

88.0
± 0.3

(achieving 75.2% average accuracy as reported by [93]), can outperform our results in this
specific benchmark.
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Table 4.5 Ablation: the introduction of Pseudo-label Refinement (PR), i.e. Label Deletion +
Label Spreading, enhance the performance. The addition of TSAL give an additional boost.

FSPL PR TSAL Office31 Office-Home

✓ 89.4 72.0
✓ ✓ 89.6 72.2
✓ ✓ 89.6 72.4
✓ ✓ ✓ 89.9 72.8

Figure 4.4 Discriminability and Diversity terms of the SF-UDA objective averaged across
each training epoch with and without temperature scaling. The plot shows the experiment
Amazon → Webcam of Office31.

Ablation Study. Table 4.5 demonstrates the effectiveness of our pseudo-labeling procedure,
FTSP, which achieves strong performance on Office31 and Office-Home datasets. The
addition of pseudo-label refinement phase (PR) and our TSAL objective further improve
this performance. Figure 4.4 presents the impact of TSAL’s temperature scaling on both the
discriminability and diversity terms during the Amazon → Webcam experiment of Office31.
As expected, as training progresses, the discriminability term rises due to the increasing
temperature. This counteracts the network’s over-confidence and keeps the pseudo-label
information relevant. In contrast, without temperature scaling, the diversity term drops close
to its lowest possible value in the first epoch (log(1/31)≃−3.43, where 31 is the number of
classes). But with temperature scaling, the network’s predictions are sharpen, allowing for a
higher diversity value. These effects result in an improved adaptation (from 92.8%, without
temperature scaling, to 94.7% accuracy in the considered experiment). A comprehensive
ablation study involving different classifiers for FTSP, hyperparameters and values of trusted
samples (K) is presented in supplementary material, Sec. A.2.
Robustness. We evaluated our algorithm across four different benchmarks. For ImageCLEF-
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DA (Tab. 4.4) and Adaptiope (Tab. 4.3), experiments were conducted with 5 seeds each.
On the small ImageCLEF-DA, all methods we considered show stable results. However,
in Adaptiope with its pronounced domain gaps, certain methods encountered difficulties.
AAD did not achieve satisfactory results for both ResNet50 and ViT-L architectures. NRC
yielded less than optimal results for both, and while SHOT performed well with ViT-L, it
faced challenges with ResNet50. In contrast, our proposed method demonstrated consistent
performance across both architectures, surpassing other approaches.
Computational Efficiency. The computational demands of our approach align with those
of the most efficient state-of-the-art SF-UDA methods, such as SHOT [56]. Notably, our
publicly available implementation facilitates the distribution of TAB computations across
multiple GPUs. This capability significantly enhances the scalability of our algorithm,
making it adaptable to larger datasets and more complex architectures. For a detailed analysis
of the computational processes involved, readers are referred to the Appendix A.3.
Remarks and limitations. The experiments on all datasets were conducted using constant,
and potentially not-optimal, hyperparameters. Our post hoc ablation study in Sec. A.2
demonstrates the robustness of our method to hyperparameters variations. Moreover, it
suggests also that by choosing different configurations, performance can be further enhanced.
For example, with ResNet50, we achieved an average accuracy of 90.3% on Office31 and
72.9% on Office Home using K = 5. While our approach already shows competitive and su-
perior results when compared with SOTA methods, we recognize that adopting unsupervised
hyperparameter selection techniques (e.g., [103]), as utilized by other approaches [57, 58],
could further boost our method’s performance. We leave this exploration for future work.

4.7 Conclusion

In this work, we introduced Trust And Balance (TAB), a novel, simple and effective method
for SF-UDA in image classification. It is characterized by two key innovations: Few Trusted
Samples Pseudo-labeling, which computes high quality pseudo-labels for the target domain,
and Temperature Scaled Adaptive Loss, which balances the diversity, the discriminability
and the pseudo-labels significance in the objective. The empirical evaluations show that TAB,
despite its simple design, obtains performance similar to or better than SOTA methods in all
benchmarks considered and an increased robustness.



Chapter 5

In-Domain vs Out-of-Domain Transfer
Learning for Plankton Image
Classification

5.1 Context

In this contribution, we present a detailed study on the roles of pre-training, DNN architecture
choice, and fine-tuning in a specific real-world problem of image classification: plankton
recognition. We specifically design three Transfer Learning pipelines to identify the best
practices in this domain and to evaluate a comparison between In-Domain and Out-Of-
Domain pre-training of DNNs. The first pipeline involves pre-training the model from scratch
on a large-scale plankton dataset. In the second, the model is pre-trained on large-scale
natural image datasets (ImageNet1k or ImageNet21k). The third implements a two-stage
fine-tuning process (ImageNet → large-scale plankton dataset → target plankton dataset).
Our results show that Out-Of-Domain ImageNet21k pre-training outperforms the In-Domain
plankton pre-training, with an average boost in test accuracy of around 6%. In the next
part of this work, we adopt three ImageNet21k pre-trained Vision Transformers and one
ConvNeXt model, obtaining results (with a single model) that are on par with (or slightly
superior to) the state-of-the-art that uses an ensamble of many CNNs. Finally, we design
and test an ensemble of our Vision Transformers and the ConvNeXt, surpassing the existing
state-of-the-art works in plankton image classification on all the three target datasets.

We note that the specific task considered in this work, i.e., plankton recognition, is
significant as plankton are microorganisms that play a crucial role in the aquatic food web.
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Recently, there have been proposals to use plankton as biosensors, since they can react to even
minimal changes in the aquatic environment with specific physiological responses, potentially
leading to morphological and behavioral alterations. The development of high-resolution
in-situ automatic acquisition systems has enabled the research community to gather a vast
amount of plankton image data. Notable examples include the ZooScan and Woods Hole
Oceanographic Institution (WHOI) datasets, which comprise millions of plankton images.
However, obtaining unbiased annotations is costly in terms of time and resources, and in-situ
acquired datasets generally suffer from severe imbalance, with only a few images available
for several species.

5.2 Introduction

The term plankton refers to a large class of drifting aquatic microorganisms. Plankton
plays a key role in the aquatic ecosystem, being at the bottom of the marine food chain.
Moreover, phytoplankton is estimated to have produced around 50% of the total atmosphere
oxygen with fundamental involvement in local and global climate regulation [129]. Plankton
community composition is deeply impacted by natural or artificial perturbations of the aquatic
environment [130]. Plankton microorganisms can respond to changes in the environment
with physiological changes, potentially causing morphological, and behavioral modifications
[131]. For these reasons, their usage as biosensors has been proposed: detecting deviations
from a computed healthy baseline as indicators of potentially dangerous environmental
changes [132, 133].
The development of advanced in-situ high-resolution automatic acquisition systems, e.g.,
the submersible flow cytometer [134, 135] and the In Situ Ichthyoplankton Imaging System
(ISIIS) [136], is leading to a large amount of available plankton image data. In particular,
from 2006 to 2014 the Woods Hole Oceanographic Institution (WHOI) acquired a large-
scale dataset comprising millions of plankton images, labeled by experts in the field in 103
categories. Another example is the ZooScan dataset (acquired by means of the homonymous
instrument [137]) which includes 1.4 million images labeled into 98 different categories.
While there is a growing availability of such data, high-quality unbiased annotations can
be costly in terms of both time and resources [138, 139], furthermore there is a pressing
need to develop highly accurate algorithms for automatic plankton image classification. To
address this challenge, researchers have turned to machine learning solutions, particularly
supervised training of Convolutional Neural Networks (CNNs) [140, 141, 142, 143, 144],
which have demonstrated superior performance compared to traditional Computer Vision
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methods, as highlighted by several studies. CNNs are powerful Deep Learning architectures
commonly used for image classification and object recognition tasks: they consist of multiple
convolutional layers that can learn and extract hierarchical representations of input images,
allowing the network to identify features of varying complexity [145].
A widely used approach in plankton image classification is Transfer Learning, where the
weights of a pre-trained CNN architecture on a large general dataset (such as natural images)
are fine-tuned with the images and labels of a specific plankton dataset, as proposed by various
works [143, 146, 147] (the knowledge acquired by the model in the pre-trained dataset is
transferred to make the downstream task, i.e., plankton classification, easier). To achieve
state-of-the-art performance in plankton classification, current approaches typically involve
fine-tuning multiple CNN models, often six or more, and combining their predictions through
ensemble methods to obtain highly accurate results [143, 148, 149]. These methods typically
rely on the widely-used ImageNet1k dataset for pre-training and are evaluated on small-
to-medium-sized plankton datasets that have been curated from larger image collections,
including WHOI22 [150], Kaggle38 [136] and ZooScan20 [137], where the number following
the name denotes the number of classes included in the dataset (see Sec. 5.4.1). ImageNet1k
denotes the subset of ImageNet that consists of 1,000 natural image classes and was used in
the ImageNet Large Scale Visual Recognition Challenge 2012 [151]. Conversely, we will
refer to the entire dataset, which contains 21,841 classes, as ImageNet21k.
An important limitation of the aforementioned approaches is that the ensemble requires
training of multiple DNNs and, also, they should be used concurrently at inference time,
impacting the efficiency of the resulting method. Furthermore, only classical CNNs are
typically considered for plankton classification, and new architectures, designed in recent
years, have not been yet fully explored. Additionally, to the best of our knowledge, no study
has comprehensively examined the impact of the model pre-training on various large-scale,
in-domain plankton datasets versus out-of-domain natural image datasets.
To address these gaps, in this study, we first design three transfer learning pipelines to compare
the effect of in-domain (extended versions of the three cited plankton datasets, comprising
up to 1.4 million images) and out-of-domain (ImageNet1k [151] and ImageNet21k [152])
source datasets when adopting transfer learning on the three plankton benchmark datasets,
exploiting a classical CNN model: ResNet50.
Our experiments indicate that using ImageNet21k for pre-training results in a significant
improvement of approximately 6% in test accuracy compared to in-domain dataset pre-
training alone. This suggests that the complexity and diversity of ImageNet21k provide
valuable learning opportunities for effective plankton classification. While representations
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learned from large-scale in-domain plankton datasets are more specialized to the domain,
they may be less discriminative than those learned from ImageNet21k.
In the next part of this work, we adopt more recent and complex architectures trained
on ImageNet21k: three types of Vision Transformers (i.e., ViT [153], Swin [154] and
BEiT [155]) and a modern CNN (i.e. ConvNeXt [97]). Vision Transformers have been
introduced in [153] and, in contrast to CNNs, exploit a self-attention mechanism [32] to
aggregate information from patches of an image, enabling the model to recognize objects
by attending to different parts of the image simultaneously. We fine-tune each of the
Transformers and the ConvNeXt on our three target plankton datasets and our results show
that the BEiT outperforms the ResNet50 model with an average improvement of 2% in
terms of test accuracy. Comparing our results with the best ensembling methods, our
experiments show that the ImageNet21k pre-trained BEiT Transformer outperforms the
state-of-the-art ensembles on Kaggle38 and ZooScan20 and obtains a similar performance
on the WHOI22 dataset. Additionally, we investigate whether combining the three Vision
Transformers and the ConvNeXt models within an average ensemble architecture could bring
further improvement in accuracy. However, the accuracy gain (compared to our best single
model) is minimal and counterbalanced by the resulting additional computational complexity.
Nevertheless, the ensemble classifier outperforms the state-of-the-art results for all three
investigated datasets.

The remainder of the chapter is organized as follows: first, we introduce the related
works on Transfer Learning for plankton image classification. Then, we provide details on
the datasets (Sec. 5.4.1) and the implemented pipeline (Sec. 5.4.2). Finally, we provide the
experiment details (Sec. 5.5.1), presenting and discussing the obtained results (Sec. 5.5.2).

5.3 Related Works

In recent years, there has been a growing interest in the computer vision community toward
plankton image classification [143]. Starting from 2014, when the Kaggle National Data
Science Bowl was organized with the aim to create an accurate classifier for plankton images,
machine learning has been extensively applied to the task at hand [133]. The main approaches
involve designing and extracting features that are later used to train Random Forest or Support
Vector Machine (SVM) classifiers [140, 150, 139] or exploit Deep Learning in the form of
Convolutional Neural Networks (CNNs) [156, 157, 158, 159, 139, 148, 160, 161]. Nowadays,
large-scale annotated plankton datasets are publicly available (e.g., the ZooScan98 [137] and
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the WHOI80 datasets [135]). However, plankton datasets are typically imbalanced [162], and
obtaining high-quality annotations is expensive both in terms of time and resources. A popular
solution to deal with these challenges involves the usage of a Transfer Learning framework
[149, 160, 143, 148]. In [160] the authors compare the performance of an SVM classifier
trained on features extracted by means of CNNs (i.e., the DeepSea [163] and the AlexNet
[164]) pre-trained on the extended Kaggle plankton dataset [136] with 30 thousand images
and ImageNet1k. The authors find only a slight difference in the performance of AlexNet
pre-trained on the Kaggle plankton dataset and ImageNet1k when using it as a features
extractor on their in-house dataset. In [143], the authors adopt an ensemble of different CNN
models with three different classification pipelines involving Transfer Learning, testing them
on the same benchmark datasets used in this work. In particular, they compare: (i) a CNN
pre-trained on ImageNet1k and fine-tuned on the plankton target datasets; (ii) a two-round
fine-tuning procedure, where the ImageNet1k pre-trained model is fine-tuned on a source
plankton dataset and further trained on the target plankton datasets. In this work, the source
dataset is obtained by fusing the extended version of the Kaggle dataset [136] (15,962 images
and 83 classes) and a dataset referred to as Esmeraldo (11,005 images and 13 samples).
The two-round fine-tuning procedure provides small improvements or degradation of test
accuracy, depending on the model and the target dataset, with respect to a direct fine-tuning
of the pre-trained model. Moreover, the designed ensemble of CNNs provides a boost in
accuracy. In [149] the authors adopt average and stacking ensembling of six CNN models
including a DenseNet [165] and EfficientNets [166]. All the CNN models are pre-trained on
ImageNet1k. Their ensemble of six CNNs outperforms previous state-of-the-art results for
the classification of the investigated plankton datasets.
In [161] the authors compare different Transfer Learning scenarios using an ImageNet1k
pre-trained AlexNet, fine-tuned on the extended Kaggle dataset, an extended version of
the WHOI dataset with 53,239 images, and both of them in cascade. Their results show
that the ImageNet1k pre-trained CNN is more accurate than the same model pre-trained
on a plankton dataset, with the two-stage fine-tuning giving only a slight improvement.
The previously cited works focus on plankton image classification, which is the same task
considered in our study. However, it is worth noting that the advantages of pre-training
within a Transfer Learning framework have been investigated in other computer vision tasks
applied to plankton, such as specimen detection [167], where the classification of plankton
microorganisms is coupled with localization. Up to our knowledge, no work for specimen
detection performs a systematic analysis on the effect of in-domain pre-training for the
detection task, with most of the methods based on the fine-tuning of a pre-trained model



5.4 Methods 75

on the plankton target dataset. In these works, the usage of models pre-trained on out-of-
domain source datasets allows compensation for the limited availability of data, that prevents
training from scratch. In the context of object detection, DNNs are typically pre-trained
on Microsoft Common Objects in Context (MS-COCO), which is a popular out-of-domain
object detection dataset. In [168], the authors design a mask region CNN to perform multi-
class microorganisms detection. The proposed model is pre-trained on MS-COCO and
then fine-tuned on a plankton dataset, achieving good detection performance also on an
out-of-domain blood dataset. In [169], the authors introduce a phytoplankton image dataset,
to be used as a candidate source dataset for the specimen detection task. In this work, a
Faster R-CNN with an ImageNet pre-trained backbone is fine-tuned on the introduced dataset,
showing high detection accuracy. In [170] an ImageNet pre-trained CNN is exploited to
extract features from plankton images in a specimen detection task. The pre-trained features
are shown to provide higher accuracy with respect to a set of hand-crafted features, without
any fine-tuning on the plankton detection task.
Previous works have not systematically addressed the problem of in-domain versus out-of-
domain Transfer Learning in plankton image analysis. They instead rely on small-scale
plankton datasets as sources and typically employ classical CNN models. The ensembles
of CNNs designed in these works tend to yield better performance than single models,
however, limited insights are provided on the trade-off between increased complexity and
computational training/test time and accuracy improvement. To address these gaps, this work
proposes three Transfer Learning pipelines to systematically evaluate the effectiveness of
plankton in-domain and natural images out-of-domain pre-training datasets in a Transfer
Learning framework. We consider source in-domain plankton datasets with up to one million
images to allow a fair comparison in terms of the number of images with ImageNet datasets.
Finally, we design an ensemble of three Transformers and one ConvNeXt, evaluating its
effect in terms of the trade-off between complexity and accuracy gains for the task at hand.

5.4 Methods

5.4.1 Datasets

In this work, we exploit three popular benchmark plankton image datasets. The target datasets
are the same used in [140, 143, 149, 148]: (i) WHOI22, (ii) Kaggle38; (iii) ZooScan20. Each
of these datasets is a subset extracted from a corresponding larger collection of annotated
images. We consider the correspondent large-scale datasets as in-domain source datasets



5.4 Methods 76

to pre-train our models when testing the proposed Transfer Learning pipelines. In the next
paragraph, we provide a short description. Fig. 5.1 shows sample images of eight species for
each of the three included datasets, while Table 5.1 provides more details on the number of
images and classes included.

(a) ZooScan dataset.

(b) Kaggle dataset.

(c) WHOI dataset.

Figure 5.1 Sample images from seven different classes included in the datasets considered
for our analysis.

WHOI dataset

The WHOI dataset [135] (see Fig. 5.1c) refers to a public large collection of plankton
images acquired by the Woods Hole Oceanographic Institution (WHOI) using automated
submersible imaging-in-flow cytometry by means of an Imaging FlowCytobot (IFCB), from
2006 to 2014 [134]. The dataset includes 3.4 million images labeled into 103 categories.
A subset of the WHOI dataset, introduced in [150], includes 6,600 images labeled into 22
categories. This subset is referred to as WHOI22. Starting from the whole WHOI dataset, we
eliminate all the 22 classes of the WHOI22 and the class labeled as mix, obtaining 253,952
images belonging to 80 different species of plankton. In this work, we refer to the resulting
dataset as WHOI80. We use the WHOI80 as an in-domain source dataset, while the WHOI22
is exploited as a target dataset. The dataset is natively available with a test set, with a number
of images equal to the training set.
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Table 5.1 Schematic overview of the eight datasets used in this work including number and
type of images, number of classes, and role in the Transfer Learning pipeline.

Dataset # images # classes imeges type role

ImageNet21k 14,197,122 21,841 natural out-domain source
ImageNet1k 1,281,167 1,000 natural out-domain source

ZooScan98 1,400,000 98 plankton in-domain source
WHOI80 253,952 80 plankton in-domain source
Kaggle83 15,962 83 plankton in-domain source

Kaggle38 14,374 38 plankton target
WHOI22 6,600 22 plankton target
ZooScan20 3,771 20 plankton target

Kaggle dataset

The Kaggle dataset [136] (see Fig. 5.1b) refers to a collection of plankton images acquired in
the Straits of Florida by means of the In Situ Ichthyoplankton Imaging System (ISIIS), and
exploited for the National Data Science Bowl 2015 Kaggle competition. The original labeled
version of the dataset includes 30,336 images belonging to 121 different classes. In [140,
143] the authors use a subset of such dataset, including 14,374 greyscale images labeled into
38 classes. We refer to such a subset as Kaggle38 in the remainder of this chapter. Starting
from the whole labeled dataset, we remove the samples belonging to the 38 classes of the
Kaggle38 subset, obtaining 15,962 plankton images belonging to 83 different categories (as
done in [143]). We refer to this version of the dataset as Kaggle83. We use the Kaggle83 as
an in-domain source dataset and the Kaggle38 as a target dataset to test our Transfer Learning
pipelines. Since no test set is available, we adopt the same test protocol of [143, 140] using a
5-fold cross-validation procedure.

ZooScan dataset

The ZooScan dataset [171] (see Fig. 5.1a) refers to a large-scale collection of plankton
images acquired by means of an instrument named ZooScan[137]. The complete version of
the dataset includes 1.4 million images labeled into 98 classes (we refer to this dataset as
ZooScan98). A popular benchmark plankton dataset extracted from ZooScan98 is used in
many works[140, 143]. We refer to such a subset as ZooScan20, it contains 3,771 greyscale
images labeled into 20 classes. We use ZooScan98 as an in-domain source dataset and
ZooScan20 as a target dataset to test our Transfer Learning pipelines. Since no test set is
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available, we use again the same test protocol of [140, 143] adopting a 5-fold cross-validation
procedure.

Figure 5.2 Schematic representation of the three implemented Transfer Learning pipelines.
The dashed blue square corresponds to the first pipeline, where a model is pre-trained from
scratch on a large-scale in-domain plankton dataset; the dashed black square identifies the
adoption of out-of-domain ImageNet pre-training; the dashed red square represents the
two-stage fine-tuning procedure (ImageNet → in-domain plankton dataset → target dataset).

5.4.2 Transfer Learning pipelines

Fig. 5.2 shows a schematic representation of the pipelines we designed to evaluate the impact
of in-domain and out-of-domain Transfer Learning on plankton image data. In the first
Transfer Learning pipeline (dashed blue square in Fig. 5.2), we use the extended version of
the plankton datasets included in our analysis (see Sec. 5.4.1) as in-domain source datasets to
train a ResNet50 model [172] from scratch. The resulting model is then fine-tuned on each
of the three target datasets and evaluated in terms of accuracy and F1 score on the test sets
(see Sec. 5.5.1 for further details).
In the second Transfer Learning pipeline (dashed black square in Fig. 5.2) we use two
popular natural image datasets as out-of-domain source datasets to train a ResNet50 model:
ImageNet1k and ImageNet21k. The first is a collection of 1.2 million images belonging to
1,000 different classes, while the second includes 14 million images labeled into 21,841
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categories [173]. We fine-tune the resulting model on each of the three target datasets and
evaluate it in terms of accuracy and F1 score on the test sets. Finally, for the two in-domain
plankton datasets with less than one million images (i.e., WHOI80 and Kaggle83), we
design a third Transfer Learning pipeline (dashed red square in Fig. 5.2) adopting a two-
stage fine-tuning procedure, in the attempt to mitigate the effect of the number of images,
when comparing to the out-of-domain ImageNet datasets. In particular, we first fine-tune
a ResNet50 model pre-trained on ImageNet21k on one plankton in-domain dataset, later
performing another stage of fine-tuning on each of the three target datasets.

5.4.3 Ensemble of Transformers and ConvNeXt architectures for plank-
ton image classification

In this work, we first test the designed Transfer Learning pipelines exploiting a ResNet50
architecture. Then, we consider deeper and more complex architectures, namely Vision
Transformers and a ConvNeXt. In particular, we adopt and compare ViT [153], a hierarchical
Transformer (i.e., Swin)[154], a BEiT Transformer [155] and ConvNeXt [97] to accurately
classify our target plankton image datasets. All the models are pre-trained on ImageNet21k
and fine-tuned on the target datasets. Finally, following the state-of-the-art approaches for
plankton image classification, we combine the four models into an ensemble, to evaluate
the impact on performance on the target datasets. In particular, we average the output
probabilities for each of the models, selecting the output class based on the maximum of the
obtained values.

5.5 Results

5.5.1 Experiment details

Image pre-processing

The plankton datasets used in this work include images of different sizes and aspect ratios. An
important requirement for the efficient training of a neural network consists in having input
images of the same size, allowing them to be batched into tensors for hardware acceleration.
Additionally, for Transformer architectures, square input images are desirable as they are
divided into a grid of pre-defined square patches during training. Therefore, we follow
the resizing strategy employed in previous works [143]: (i) the aspect ratio is maintained
by padding the smallest dimension of each image, achieving a square shape; (ii) all the
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images are resized to a fixed size; and (iii) a square region is cropped from the resulting
image. For ZooScan images, prior to the described pipeline, we automatically remove the
artifact represented by the size indication legend. The resize and crop sizes are consistent
with the ones used for pre-training each architecture: for ResNet50, images are resized to
256×256 and then cropped to 224×224, while for other architectures (ViT, BEiT, Swin,
and ConvNeXt), images are resized to 439× 439 and then cropped to 384× 384. During
training, the crop is randomly performed across the image as an augmentation technique.
During testing, the crop is centered on the image.

Training details

Before fine-tuning the model weights, we proceed by substituting the existing fully-connected
layers on top of each model with a newly initialized bottleneck. This bottleneck comprises
a linear layer with 512 neurons, a normalization layer, and a non-linear activation function.
Finally, a linear classification layer is added with the number of output dimensions matching
the number of classes. The normalization is a Layer Normalization [174] (with GELU activa-
tion function) or a Batch Normalization [175] (with ReLU activation function) according
to the used backbone (the former for Vision Transformers and ConvNeXt, the latter for
ResNet50). We train the final classifier applying Weight Normalization [176]. We use data
augmentation based on random horizontal and vertical flips, Stochastic Gradient Descent
(SGD) [177] with Nesterov momentum (0.9) for the optimization, and cross-entropy as loss
function. We use regularization with weight decay (10−2) and label smoothing (0.1). The
initial learning rates are 10−3 for the pre-trained backbone and 10−2 for the bottleneck and
the classifier. They are decayed with exponential scheduling: at training step t, the learning
rate is evaluated as the initial learning rate multiplied by decay(t) =

(
1+ γ

t
n

)β where γ = 10,
β = 0.75 and n is the total number of training steps (# epochs · # steps in one epoch). We
use 100 epochs with early stopping (training/validation split is 85/15). The batch size is
64, but we split every batch across 4 GPUs (NVIDIA V100 16 GB), exploiting gradient
accumulation, when needed. We synchronize batch normalization statistics across GPUs.
For our experiments, we used Python (version 3.9.12) with PyTorch library (version 1.11.0)
and CUDA 10.2. We imported the architecture implementations from the TIMM library
[88]. The ConvNeXt model used in our work is ConvNeXt-XL architecture, while for the
Transformers the BEiT-L, ViT-L, and Swin-L implementations are adopted.
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Evaluation metrics

We evaluate our results by exploiting two common metrics for plankton image classification
(as done in [148]): accuracy and F1 score, defined as:

Accuracy :=
Total True Positives

Total Instances
(5.1)

F1 score :=
1
C

C

∑
i=1

F1 scorei (5.2)

F1 scorei := 2 · Precisioni ·Recalli
Precisioni +Recalli

(5.3)

In Eq.5.1, Total True Positives represents the sum of true positives across all classes,
and Total Instances represents the total number of images in the test dataset. In Eq.5.2, C

represents the total number of classes, and F1 scorei represents the F1 score corresponding to
instances in class i. The latter is computed as shown in Eq. 5.3, where Precisioni =

TPi
TPi+FPi

and Recalli = TPi+TNi
TPi+FPi+FNi+TNi

. True Positive (TPi), True Negative (TNi), False Negative
(FNi), and False Positive (FPi) correspond to the element in the confusion matrix of class
i. In summary, the accuracy metric provides a measure of performance, considering each
instance equally important. The F1 score provides a measure of performance considering
each class equally important when calculating the average. If a dataset is balanced, with
the same number of instances per class, F1 score and accuracy coincide, however, in the
case of imbalanced datasets, such as the plankton ones [162], F1 score may be considered a
relevant additional metric in the evaluation of a classification task. Finally, for Kaggle38 and
ZooScan20 datasets, the evaluation metrics are averaged among the 5 folds (see Sec. 5.4.1).

5.5.2 Experiment results

In-domain versus out-of-domain Transfer Learning

We apply the Transfer Learning pipelines described in Sec. 5.4.2 to the three datasets used
in this work (see Sec. 5.4.1). The experiments reported in this section, are performed
using ResNet50 as a baseline architecture. Table 5.2 shows the obtained results in terms of
accuracy and F1 score evaluated on the test set. It is worth noticing that the three extended
versions of the plankton datasets used as source datasets for the in-domain Transfer Learning
pipeline have a different number of images: (i) 15,962 for the Kaggle83; (ii) 253,952 for the
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Table 5.2 Performance comparison (accuracy and F1 score) of ResNet50 using the proposed
Transfer Learning pipelines across the three benchmark datasets. The best results are
highlighted in bold, second best results are underlined.

Target dataset : WHOI22 Kaggle38 ZooScan20

: Source dataset(s) Accuracy F1 score Accuracy F1 score Accuracy F1 score

WHOI80 0.878 0.878 0.876 0.831 0.826 0.837
Kaggle83 0.862 0.862 0.878 0.834 0.847 0.863
ZooScan98 0.912 0.912 0.914 0.884 - -
ImageNet21k 0.946 0.946 0.930 0.909 0.887 0.899
ImageNet1k 0.939 0.939 0.921 0.895 0.851 0.868

ImageNet21k → WHOI80 0.946 0.946 0.924 0.905 0.891 0.898
ImageNet21k → Kaggle83 0.938 0.938 0.929 0.907 0.877 0.896

WHOI80 and (iii) 1.4 million for the ZooScan98. As a comparison, ImageNet21k has 14
million images belonging to 21,841 classes. ImageNet1k is a subset of ImageNet21k with
1.2 million images belonging to 1,000 classes (with a size comparable to the ZooScan98
plankton dataset). As we can see in Table 5.2, ImageNet21k pre-training leads to the most
accurate model for the WHOI22 and the Kaggle target datasets both in terms of accuracy and
F1 score. ImageNet21k also leads to the best F1 score for the ZooScan dataset, while there
is a slight improvement when using a two-stage fine-tuning involving the WHOI dataset
(+0.004%) w.r.t. the test accuracy, on this dataset. Moreover, if we consider only the in-
domain Transfer Learning pipeline, it is possible to notice that the ZooScan98 dataset leads
to the best results for both the WHOI22 and the Kaggle dataset, with an average improvement
of around 3.6% w.r.t. pre-training on the other two extended plankton datasets. We do not use
ZooScan98 as a source dataset for the fine-tuning on ZooScan20, because it contains all the
images and the classes included in the target dataset. In fact, differently from WHOI80 and
Kaggle83 extended dataset, we do not remove the classes in common with the target dataset
for ZooScan98, because we are interested in considering a dataset with a size comparable
to ImageNet1k, in order to fairly compare one in-domain plankton dataset to the external
natural images dataset removing the number of images as potential influencing parameter.
Our findings suggest that using in-domain plankton datasets as sources in Transfer Learning
frameworks, has a limited or no effect on the accuracy of tested models, while the number of
classes and images in a source dataset are important factors that contribute to the quality of a
pre-training dataset.
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Table 5.3 Performance comparison (Accuracy and F1 score) of Vision Transformers, Con-
vNeXt, and ResNet50 (as baseline) pre-trained on ImageNet21k across the three benchmark
datasets. The best results are highlighted in bold, second best results are underlined.

Dataset : WHOI22 Kaggle38 ZooScan20

: Model Accuracy F1 score Accuracy F1 score Accuracy F1 score

ResNet50 0.946 0.946 0.930 0.909 0.887 0.899

BEiT 0.961 0.961 0.951 0.942 0.914 0.931
Swin 0.960 0.960 0.947 0.932 0.904 0.917
ViT 0.959 0.959 0.948 0.933 0.908 0.918
ConvNeXt 0.957 0.957 0.949 0.932 0.904 0.911

Exploiting the pre-training on ImageNet21k: Transformers and ConvNeXt for plankton
classification

The out-of-domain natural image dataset ImageNet21k corresponds to the best source dataset
when pre-training a ResNet50 in our experiments, in terms of test accuracy. Having this
in mind, we investigate the performance of more complex architectures that could benefit
even more from an ImageNet21k pre-training. In particular, we consider three different
Transformers: ViT [153], the hierarchical Swin Transformer [154] (Swin) and BEiT [155].
We also include a modern CNN, i.e., ConvNeXt [97], in our analysis. Table 5.3 shows the
performance of each of these models on the three plankton benchmark datasets. In our exper-
iments, the three Transformers and the ConvNeXt model are pre-trained on ImageNet21k.
As we can see, BEiT Transformer shows the highest performance both in terms of test
accuracy and F1 score, with an average improvement of 2% with respect to the ResNet50
model pre-trained on ImageNet21k (see Table 5.2). As a benchmark, we compare our results
with four recent state-of-the-art works on plankton image classification [149, 140, 143, 148].
Table 5.4 summarizes state-of-the-art results on the three investigated target plankton datasets.
Excluding [140], the state-of-the-art benchmark results are obtained by ensembling several
ImageNet1k pre-trained CNN models (six CNNs in [149], eleven in [143]). As we can see in
Table 5.3, our single BEiT model outperforms the state-of-the-art results for the Kaggle and
the ZooScan dataset, with performance comparable to [149] on the WHOI22 dataset, where
an ensemble of six CNN models is used.
Nonetheless, inspired by previous state-of-the-art results in plankton image classification, we
design an average ensemble of our ImageNet21k pre-trained Transformers and ConvNeXt
(see Sec. 5.4.3 for further details) to assess the effect on performance with respect to the
three target datasets. As we can see in Table 5.4, the resulting ensemble model provides a
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minimal effect on accuracy, with an average increase of around 0.6% with respect to our best
performing Transformer (i.e., BEiT).

Table 5.4 Performance comparison (Accuracy and F1 score) of our best single model (BEiT)
and our ensemble of 4 models with state-of-the-art approaches on three investigated plankton
datasets. The best results are highlighted in bold and the second best results are underlined.

Dataset : WHOI22 Kaggle38 ZooScan20

: Method Accuracy F1 score Accuracy F1 score Accuracy F1 score

Best 6 average [149] 0.961 0.961 0.947 0.937 0.898 0.915
Best 6 stack [149] 0.958 0.958 0.943 0.934 0.891 0.911
SFFS [143] 0.958 0.958 0.942 0.927 0.885 0.900
WS [143] 0.958 0.958 0.942 0.927 0.888 0.902
Fus 2R + Fus 1R [148] - 0.953 - 0.926 - 0.897
Fus PR+ Fus 2R +Fus 1R [148] - 0.953 - 0.926 - 0.896
NLMKL [140] - 0.900 - 0.846 - 0.894

BEiT (ours) 0.961 0.961 0.951 0.942 0.914 0.931
Ensemble (4 models, ours) 0.966 0.966 0.955 0.945 0.925 0.937

However, the minimal increase in accuracy is counterbalanced by a significant increase
in time and resources needed for training and inference. Table 5.5 reports an indication of
training and inference time, as the number of images that can be processed per second, by the
different architectures considered in our study (and by the ensemble of the 4 architectures)
on a single NVIDIA V100 GPU. These numbers depend on the specific hardware and
implementation. However, they highlight the difference, in terms of efficiency, among the
architectures, and the increase in time needed for computation when ensembling the four
models. Thus, the trade-off between complexity and accuracy gain should be carefully
evaluated, depending on the specific application (e.g., real-time or post-acquisition analysis).

Table 5.5 The average number of images processed by our models in one second at training
and inference time. The values have been evaluated based on 1000 iterations. The higher the
value, the faster the processing time.

Model BEiT ViT SWIN ConvNeXt Ensemble

Training (imgs/s) ↑ 20.32 21.72 32.57 13.16 4.95

Inference (imgs/s) ↑ 65.68 70.26 102.70 52.88 17.21
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5.6 Conclusion

In this work, we compare in-domain and out-of-domain Transfer Learning approaches for
plankton image classification. We design three different Transfer Learning pipelines us-
ing three large-scale in-domain source plankton datasets (i.e., WHOI80, Kaggle83, and
ZooScan98) and two out-of-domain natural image datasets (i.e., ImageNet1k and Ima-
geNet21k).
The general framework consists in fine-tuning a pre-trained model on three target plankton
datasets (i.e., WHOI22, ZooScan20, and Kaggle38). In the first pipeline, we train a model
from scratch on an in-domain plankton dataset. In the second pipeline, we adopt an Ima-
geNet1k or ImageNet21k pre-trained model, while in the third, we implement a two-stage
fine-tuning procedure, fine-tuning an ImageNet pre-trained model on an in-domain source
plankton dataset.
Regarding the first pipeline, we exploit three in-domain source datasets with different num-
bers of images and classes (see Sec. 5.4.1). Our experiments show that the ZooScan98 dataset
with 1.4 million images and 98 classes provides the best performance when used as a source
dataset, with an average improvement of 3.6% compared to the pre-training with the other
two in-domain datasets.
From the second pipeline, we obtain that ImageNet21k provides better performance com-
pared to ImageNet1k, with an average improvement of 4%. These results suggest that there
is no benefit in using a large-scale in-domain plankton dataset as a source dataset for Transfer
Learning compared to the out-of-domain ImageNet. Moreover, little or no benefit is obtained
when adopting a two-stage fine-tuning procedure. It is worth noticing that ZooScan98 has
a higher number of images than ImageNet1k, but leads to lower performance when used
as a source dataset. These results may indicate that the number of images and classes are
key factors for a pre-training dataset in a plankton image classification task. It is worth
noticing that, despite acquiring and annotating large-scale plankton datasets (as ZooScan98)
is expensive in terms of time and resources, our experiments show that the usage of in-domain
pre-training datasets provides no benefit with respect to ImageNet.
In the next experiments, we adopt current state-of-the-art architectures (ViT, Swin, BEiT,
and ConvNeXt, pre-trained on ImageNet21k). The pre-trained models are fine-tuned on
the target plankton datasets, providing an average accuracy boost of 2% with respect to the
ResNet50 model pre-trained on ImageNet21k. As a benchmark, we compare the obtained
results to recent state-of-the-art plankton image classification works, where ensembles of
CNN models (up to 11) are used for the task at hand. Our results show that our single BEiT
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model achieves better performance than state-of-the-art on the Kaggle and the ZooScan
datasets, with similar performance to [149] for the WHOI dataset. Following the current
trend in plankton image classification, we further design and test an average ensemble of the
three transformers and the ConvNeXt. The designed ensemble brings a slight improvement
with respect to the ImageNet21k pre-trained BEiT. However, it should be noted that such
a boost in accuracy (0.6% on average) is counterbalanced by a significant increase in the
computational resources and the training/inference time for the final model.

5.7 Data and code availability

All the code needed to reproduce our results is open-source and available at https://github.
com/Malga-Vision/plankton_transfer. The target plankton datasets are available at: Kaggle38
[136]; ZooScan20 [171] and WHOI22 [150]. The code for downloading the extended version
is included in the shared repository.

https://github.com/Malga-Vision/plankton_transfer
https://github.com/Malga-Vision/plankton_transfer


Chapter 6

Sim2Real Bilevel Adaptation for Object
Surface Classification using Vision-Based
Tactile Sensors

6.1 Context

In this contribution, we present a novel bilevel UDA approach for a specific robotic applica-
tion. In particular we design a pipeline to address the Sim2Real domain shift in the field of
vision-based tactile sensors for object surface classification. First, we train a Diffusion Model
using a relatively small dataset of real-world (unlabeled) images randomly collected from
everyday objects via the DIGIT sensor. Subsequently, we employ a simulator to generate
images by uniformly sampling the surface of objects from the YCB Model Set. These
simulated images are then translated into the real domain using the Diffusion Model and
automatically labeled to train a classifier. During this training, we further align features of
the two domains using an adversarial procedure. Our evaluation is conducted on a dataset
of tactile images obtained from a set of ten 3D printed YCB objects. The results reveal a
total accuracy of 81.9%, a significant improvement compared to the 34.7% achieved by the
classifier trained solely on simulated images. This demonstrates the effectiveness of our
approach. We further validate our pipeline using the classifier on a 6D object pose estimation
task from tactile data.
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6.2 Introduction

Perception of object properties is a fundamental requirement to accomplish everyday tasks.
Humans usually have a sense of the object surfaces through vision but sometimes they have
to integrate or substitute this information with tactile information. Knowing the kind of
surface they are dealing with while manipulating an object can be of primary importance to
understand the pose of the object or to decide the next actions.

Among the available tactile sensors, vision-based tactile sensors [178, 179] represent
the state-of-the-art when it comes to help robots perceive object properties as they produce
high resolution RGB tactile images of the surface in contact. Such images can be exploited
with Deep Learning techniques, despite that they require a huge amount of data for training,
which can be difficult to collect in the real world. Although simulators [180, 181] have been
proposed to overcome this issue, they hardly reproduce the effect of mechanical properties,
e.g., gel deformation, and light distribution with high fidelity.

In this work, we aim to fill the gap between simulated and real images by translating
the simulated images to the real domain using a Diffusion Model (DM) trained on few real
unlabeled images coming from a DIGIT sensor [178] (some exaples are shown in Fig. 6.1).
We propose a surface classifier which can distinguish among four classes: flat, curve, edge
and corner. The classifier is trained with simulated images that are sampled on the surface
of objects from the YCB Model Set [182] and then translated with the DM. To label the
images, we sample a point cloud on the object mesh and we employ an automatic procedure
to evaluate, for each point, the local curvature from which we extract the labels. Notably,
the overall procedure to generate training data does not require manual annotations, as it
uses a small set of unlabeled data from real contacts and a larger dataset that is acquired in
simulation and automatically labeled.

We test the classifier on real tactile images acquired on ten YCB objects. We compare
our model by training the classifier with simulated images or with images converted with
an alternative DM-based model from the literature [183] having more complex training
requirements than ours. The experiments show that our method can achieve better accuracy
in the classification task. Moreover, we employ our classifier within a pipeline for 6D object
pose estimation [184] from multiple tactile sensors.

We summarize our contributions as follows:

• An image translation procedure to fill the Sim2Real gap using a Diffusion Model which
easily generalizes to different vision-based tactile sensors;
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Figure 6.1 Our pipeline uses a Diffusion Model to translate simulated images towards the
real domain so as to reduce the Sim2Real gap.

• An object-agnostic surface type classifier trained using simulated images and few real
images;

• A method to automatically label the object surfaces given the object mesh, that we use
to train the above classifier.

6.3 Related Work

This work draws from the literature on both Sim2Real translation for vision-based tactile
sensors and perception of object properties using the same sensors.

Sim2Real

Some work attempt to reduce the Sim2Real gap by carefully emulating data from real sensors.
In [185] and [186] the authors mimic the behaviour of the GelSight sensor using Phong’s
model. In [180], the authors present a simulator for the DIGIT sensor based on OpenGL
using pyrender. A limitation of these methods is that they do not take into account the
mechanical properties of the sensors. In [181] the authors integrate the dependency on
the mechanical properties of the gel by adding a calibration procedure based on the sensor
output. Other approaches attempt to mitigate the domain shift between simulated and real
images. In [187], the authors try to bridge the Sim2Real gap by employing a CycleGAN
[188] to simulate the complex light transmission observed in real sensors, a characteristic
not captured by the simulator. In contrast, our work utilizes simulated images, from TACTO
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[180], which undergo a transformation via a Diffusion Model. trained on real images, in
order to mimic the real deformation of the gel and light transmission of the sensor. A
similar approach is considered in [183], where, however, the Diffusion Model is trained with
additional conditioning depth images that are obtained from a network [189] that had been
previously trained. In our case, we dispense with the need for this network and rely solely on
RGB images. In the experimental section, we compare with a variant of our pipeline where
the DM for image translation is substituted with that of [183].

Object perception with vision-based tactile sensors

To the best of our knowledge, there is no work that directly classifies the surfaces of an object
using vision-based tactile sensors. Nonetheless, we refer to other works which infer similar
properties of the object.
In [190] the authors integrate vision with touch to infer the shape of an object. In our work,
no visual information is needed. In [191] the authors train a network to retrieve the location
and shape of the contacts in order to infer the shape of the object while the sensor slides
along the object surface. In [192], the authors reconstruct the normals of the local surface of
small objects thanks to a network trained with real and simulated images. On the contrary,
we concentrate on objects whose size is not comparable to that of the sensor surface, thus
producing more ambiguous tactile images and on general classes of surfaces. In [189, 184]
the authors identify the possible contact point on the object surface by comparing the input
image with a database of images that are sampled on the object surface in advance, while our
work does not need any database at inference time.

6.4 Method

Our approach leverages unlabeled real-world data and labeled simulated data in order to
obtain good classification performance in real-world scenarios. To achieve this goal, we
devise an automated method for acquiring and labeling synthetic data. We incorporate two
levels of adaptation to mitigate domain shift and enhance performance. Specifically, we
employ a probabilistic Diffusion Model to translate the simulated images. We further adapt
the model features through an adversarial process using the Domain-Adversarial Training of
Neural Networks (DANN) method [47].

We remark that we always remove the background signal of the DIGIT, i.e. its RGB
output when not in contact with an object, from both real and simulated images. As DIGIT
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Figure 6.2 Overview of our pipeline for object surface classification.

sensors can exhibit slight background variations owing to manufacturing differences, this
ensures that the methodology remains agnostic to the specific background.

This section offers a comprehensive overview of all the components illustrated in Fig.
6.2 within our pipeline.

6.4.1 Acquisition and labeling of simulated data

We employ Poisson disk sampling [193] to extract uniformly distributed point clouds from
object meshes augmented with surface normals. For each point we simulate the image
produced by the DIGIT, using the simulator [180], while considering several rotations of the
sensor around the normal direction and several penetration depths, so as to ensure variability
in the collected data.
To automate the labeling process, we devised a simple yet effective algorithm to proficiently
categorize each point within the point clouds as either flat, curve, edge, or corner. Let
suppose to have a point cloud of M points: P = {pi}M

i=1, where pi ∈ R3. For every point
p j ∈ P the algorithm, which operates in four distinct steps, computes automatically the class
of the point:

1. The neighborhood N j of p j is computed: N j = {p ∈ P : ||p j − p||2 ≤ R}, where the
radius R is an hyperparameter of the algorithm.

2. We extract the ordered singular values of the 3×3 covariance matrix of the points in
N j, i.e., σ

( j)
1 ≥ σ

( j)
2 ≥ σ

( j)
3 .

3. We define the curvature level of the point p j as the ratio:

Curv(p j) :=
σ
( j)
3

σ
( j)
1 +σ

( j)
2 +σ

( j)
3

(6.1)
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Figure 6.3 On the left: curvature levels (Eq. 6.1) for the YCB objects “mustard bottle” and
“sugar box”. On the right: the resulting labels of surface types.

This method provides an estimation of the local surface behavior. Intuitively, when the
local curvature level is 0, the local area is entirely flat (as the smallest singular value
σ3 = 0) and the points would be distributed just on the plane defined by the first two
eigenvectors corresponding to σ1 and σ2. Conversely, when the local curvature level
is 1/3 (the maximum value attainable by the curvature function), the surface displays
pronounced curvature, as all three singular values are equal. By setting two thresholds
(0 < t1 < t2 < 1/3) on the local curvature level, we are able to partition and classify all
the points into three categories: flat, curve, and hard-curve.

4. Finally, points previously classified as hard-curve are further separated into edges and
corners, a task that cannot be achieved using curvature levels alone. In this step, we
utilize K-means clustering on the normal vectors of the neighborhood of hard-curve

points to classify them as either edges or corners. Intuitively, edges are defined by
two flat surfaces represented by two normal vectors. Consequently, the normal vectors
of the neighborhood of edge points should be easily clustered with K = 2, and the
advantage of using K = 3 should be negligible. On the other hand, corner points are
defined by three planes, and the normal vectors of the neighborhood cannot be easily
clustered with K = 2. Following this intuition, we compute the following quantity:

∆loss23 := loss(K = 2)− loss(K = 3), (6.2)

where loss(K = q) is the final loss of K-Means when K is set to q. A threshold on the
value of ∆loss23 is set to partition edges and corners: low values of this metric identify
edges, while high values identify corners.

We show the effectiveness of the overall approach for two YCB objects in Fig. 6.3.
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6.4.2 Image-level adaptation

As simulated images and actual images acquired with a DIGIT sensor exhibit notable
differences (see Fig. 6.1), we propose an unsupervised image-to-image translation method to
address the domain shift between these two domains. Our approach leverages the reverse
process of a probabilistic Diffusion Model. Diffusion Models are latent variable models
that involve two processes: the forward (diffusion) process and the reverse process. Let
x0 represent an image (in our work, a real image acquired with a DIGIT sensor). The
forward process is a fixed Markov chain that gradually introduces Gaussian noise to x0

over a predefined number of steps T , as determined by a variance schedule defined by the
parameters {β j}T

j=1. Specifically, at any given time step t ∈ 1, . . . ,T , the forward process
adds Gaussian noise to the image according to the following transition:

q(xt |xt−1) :=N (xt ;
√

1−βt · xt−1,βtI) (6.3)

where N is a Gaussian distribution and I is the identity matrix. The reverse process is
also a Markov chain with Gaussian transitions that can be learned using a model, such as
a neural network. This allows us to recover the image from the previous step (xt−1) given
the noisy image at step t (xt). By iterating this process, we can ultimately obtain the fully
denoised image, x0. To be more specific, the reverse transitions are as follows:

p(xt−1|xt) :=N (xt−1; µ(xt , t),Σ(xt , t)) (6.4)

Here, µ(·, ·) and Σ(·, ·) represent functions that can be learned during the training process of
the Diffusion Model. In our work, we utilized a U-Net architecture [194], which is commonly
employed in the literature.
Following the training, it becomes possible to sample an image with random Gaussian noise
(bearing a strong resemblance to the images generated in the forward process at step T ) and
iteratively denoise it. This iterative process enables the generation of an image from the
distribution of the training dataset. For more intuitions and for a more detailed description
on probabilistic Diffusion Models the reader can refer to [195] and [54].
To narrow the domain gap between simulated and real images, our approach encompasses
the following steps:

1. We train a U-Net model solely with unlabeled real images acquired with the DIGIT
sensor to acquire knowledge of the reverse process.
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2. Once trained, we introduce a moderate level of noise to the simulated images, advancing
in the forward process until step T ′ < T , with the aim of altering the style of the images
while preserving their semantic information.

3. We employ the reverse process learned in step 1 to denoise the images, moving from
step T ′ to step 0. As the Diffusion Model was trained using real images, the output
comprises images that retain the semantic information of the simulated ones but exhibit
a style more akin to real images as shown in Fig. 6.1.

Unlike previous works, such as [183], our diffusion method does not necessitate additional
information during training or inference. It operates exclusively on raw images without any
conditioning. The semantic conditioning for image generation is accomplished, as mentioned
earlier, by introducing a controlled level of noise into the simulated images, as it is similarly
done in [196]. This preserves crucial information while preventing complete degradation.

6.4.3 Feature-level adaptation

Despite the significant reduction in domain shift achieved by the Diffusion Model, some
residual differences between the domains still exist. To address this, we adopted a classical yet

Figure 6.4 Diagram of the classification architecture.
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effective adversarial approach, known as Domain-Adversarial Training of Neural Networks
(DANN), to facilitate the learning of domain-invariant representations.
Specifically, we utilized a Vision Transformer (ViT) [33], pretrained with DINO v2 method
[42], as a feature extractor, keeping it fixed throughout the training process. We introduce
and train a bottleneck layer (a linear layer, followed by Layer Normalization [174] and a
GELU [197] activation) to map ViT features into a domain-invariant space, along with a
classifier that maps these bottleneck features to our target classes, as depicted in Fig. 6.4.
During training, we employ a discriminator to distinguish between real and simulated
images, while the bottleneck layer is optimized to deceive the discriminator by making the
features from both domains indistinguishable. To be more precise, we define φ(·) to be our
feature extractor (ViT) that maps images to features, β (·) as our bottleneck that reduces the
dimension of features to 256, γ(·) as a classifier that maps bottleneck features to our four
classes and ψ(·) as a discriminator that maps bottleneck features to a domain label: 0 for
simulated images and 1 for real images. During training we sample a batch of real images
(without labels) xreal and a batch of simulated images (with labels) (xsim,ysim). We compute
the bottleneck features (ẑ), the predictions of the network ŷsim and the domain predictions of
the discriminator d̂all as follow:

ẑreal = φ(β (xreal)) (6.5)

ẑsim = φ(β (xsim)) (6.6)

ŷsim = γ(ẑsim) (6.7)

d̂all = ψ(ẑall) (6.8)

where ẑall is the concatenation of ẑsim and ẑreal along the batch dimension of the two inputs.
The bottleneck and the classifier are trained to minimize the following loss:

Lcls = CE(ysim, ŷsim)−α ·BCE(dall, d̂all) (6.9)

where dall are all the domain labels (0s and 1s based on the domain of the inputs), CE is the
cross-entropy loss, BCE is the binary cross-entropy loss and α is a hyperparameter that we
set to 1.2 in all of our experiments.
The discriminator, on the other hand, is trained to minimize:

Ldis = α ·BCE(dall, d̂all) (6.10)
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For this reason the training proceeds as an adversarial game between the bottleneck and the
discriminator. In practice, we trained the whole network (with the exception of the feature
extractor that is fixed) in an end-to-end fashion using a Gradient Reversal Layer (GRL) as
proposed in DANN [47] (refer to this work for more details).

6.4.4 Training and testing datasets

For our experiments, we collected three different datasets:

1. The first dataset comprises 5,000 real images acquired using a DIGIT sensor on the
surfaces of randomly selected everyday objects, excluding all objects from the YCB
Model Set [182]. We refer to this unlabeled dataset as Trainreal .

2. The second dataset consists of 50,000 simulated images, 12,500 per class, acquired
from randomly selected points sampled on the meshes of ten YCB objects (cracker

box, tomato soup can, tuna fish can, pudding box, gelatin box, banana, bleach cleanser,

bowl, power drill, wood block) and translated to the real domain as in Sec. 6.4.2. We
employ the algorithm described in Section 6.4.1 to associate a ground truth label for
each image, and we refer to this dataset as Trainsim.

3. The third dataset includes 792 real images acquired using our setup from ten 3D printed
YCB objects (master chef can, sugar box, mustard bottle, tuna fish can, potted meat

can, banana, pitcher base, bleach cleanser, bowl, power drill) (see Fig. 6.5). For every
tactile image we manually label the type of surface depending on the actual type of
contact. We use the latter as the ground-truth label for evaluation purposes. We refer
to this dataset as Testreal .

To demonstrate the generalization capabilities of our approach, we intentionally include
5 overlapping objects (tuna fish can, banana, bleach cleanser, bowl, power drill) in both
the Trainsim and Testreal datasets. As a result, our algorithm performs well on objects seen
during training and also on new objects.
We used the unlabeled Trainreal dataset for training the Diffusion Model, while the classifier
is trained (with DANN) using both Trainsim and the unlabeled Trainreal . The testing phase
was exclusively conducted on the Testreal dataset.
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Figure 6.5 Left: the testing setup with the DIGIT sensor touching the “bleach cleanser”
object. Right: example of YCB objects and their 3D printed counterparts.

6.5 Experimental Results

We evaluate the performance of the classifier by considering the accuracy for each object and
the F1-Score when analysing the results class-wise. In the results we also consider a variation
of the pipeline where the proposed Diffusion Model is substituted with the state-of-the-art
alternative [183]. Moreover, we perform several ablation studies in order to investigate the
role of the Diffusion Model and of the DANN procedure.
Beyond the classification task, we apply our method within a pipeline for 6D object pose
estimation from multiple tactile sensors [184], to show its effectiveness on a practical task.
The results of further experiments are provided in the supplementary video.
In order to collect the Testreal dataset, we use a DIGIT sensor mounted on a 7-DoF Franka
Emika Panda robot to touch ten 3D printed YCB objects in several configurations. We show
the setup and examples of the printed objects in Fig. 6.5.
In order to evaluate the outcome of the 6D object pose estimation experiments, we also
collect the pose of the object in the robot root frame. To do so, we employ a fiducial system
based on a RealSense camera and ArUco markers. To make sure that the object does not
move while touching it we fixed it to a table as shown in Fig. 6.5. We remark that the
necessity to fix the objects is the only reason for printing them in 3D.
Code and data will be made publicly available online1.

6.5.1 Experiments on surface classification

Table 6.1 presents the results in terms of accuracy for each considered object. In Table 6.2,
we instead detail the results for each class using the F1-Score defined as follows:

1https://github.com/hsp-iit/sim2real-surface-classification

https://github.com/hsp-iit/sim2real-surface-classification
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Table 6.1 Results of the classification experiments: accuracy for each object and averaged.

Image transl. None Tactile Diff. [183] Ours
Train w/ DANN ✗ ✓ ✗ ✓ ✗ ✓

master chef can 52.3% 41.2%, 58.7% 80.9% 66.6% 92.0%
sugar box 35.0% 35.0% 84.0% 71.0% 57.9% 93.0%
mustard bottle 41.0% 48.0% 34.0% 60.0% 63.0% 71.0%
tuna fish can 57.5% 68.1% 59.0% 80.3% 74.2% 75.7%
potted meat can 35.0% 43.0% 54.0% 76.0% 87.0% 84.0%
banana 2.4% 29.2% 29.2% 7.3% 56.0% 78.0%
pitcher base 40.6% 39.0% 85.9% 90.6% 64.0% 98.4%
bleach cleanser 38.0% 43.0% 39.0% 64.0% 69.0% 84.0%
bowl 40.3% 43.5% 62.9% 88.7% 53.2% 90.3%
power drill 3.1% 33.3% 50.0% 38.54% 23.9% 60.4%
Mean 34.7% 42.4% 55.6% 66.6% 61.6% 81.9%

Table 6.2 Results of the classification experiments: F1 score for each surface type.

Image transl. None Tactile Diff. [183] Ours
Train w/ DANN ✗ ✓ ✗ ✓ ✗ ✓

flat 46.5% 28.6% 61.5% 81.3% 86.4% 91.1%
curve 3.6% 31.1% 18.6% 30.3% 45.2% 73.5%
edge 28.% 56.2% 78.1% 74.4% 58.1% 83.2%
corner 0.0% 0.0% 46.6% 26.3% 21.1% 68.3%

F1-Score =
2 ·precision · recall
precision+ recall

,

where precision and recall are defined as usual.
In order to investigate how the image translation and the DANN procedure contribute to
the performance we repeated the experiments using different training configurations of the
pipeline. As regards the image translation we trained the classifier using:

• simulated images, indicated as “None”;

• translated images from the Diffusion Model proposed in [183], indicated as “Tactile
Diffusion”;

• translated images from the Diffusion Model proposed in this work, indicated as
“Ours”.

For each configuration above, we repeated the experiments with the DANN procedure enabled
or disabled.
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Figure 6.6 Visualization of the predicted surface type in terms of the object-sampled points
having the same label as the predicted one.

The results in Table 6.1 shows that the best performance, except few cases, is achieved when
using the proposed Diffusion Model as the translation mechanism combined with the DANN
procedure.
Using DANN, the proposed Diffusion Model increases the accuracy by ≈ 40 points with
respect to the “None” case and by ≈ 15 points with respect to the method [183].
As regards the DANN procedure, on average it helps increase the accuracy in all the configu-
rations. The best improvement, of ≈ 20 points, is obtained in conjunction with the proposed
Diffusion Model.
Table 6.2 shows that the proposed pipeline achieves the best performance on all surface types.
Remarkably, both the DM and DANN are essential to improve performance on all classes,
and specifically to gain acceptable performance on the class corners.
In Fig. 6.6 we present some qualitative results. Specifically, for each tactile image, we show
the name of the predicted class and all the points sampled on the object mesh, as per Sec.
6.4.1, having the same label as the predicted one. These results indicate that a combination
of the proposed classifier and the automatic labeling procedure of Sec. 6.4.1 is useful to
provide hypotheses on the contact location of the sensor on the object surface.
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Figure 6.7 Visualization of the outcome of the 6D object pose estimation experiment using
real tactile images.

6.5.2 Experiments on 6D object pose estimation

For these experiments we make use of the algorithm presented in [184] that estimates the 6D
pose of an object in contact with N tactile sensors given input tactile images and the pose of
the sensors from the robot proprioception.
Specifically, [184] extracts several hypotheses on the 3D location of each sensor on the object
surface given the input tactile image. Then, it uses gradient-based optimization to fuse the
hypotheses from all sensors resulting in a set of candidate 6D poses of the object.
In this work, we substitute the hypothesis extraction part, based on a convolutional autoen-
coder and a set of per-object databases of latent features, with the proposed classifier.
We choose to run the experiments using N = 3 sensors. As in [184], we considered four
different configurations of sensors for every object under study.
We compare the performance against a purely geometric baseline, as done in [184]. The
baseline skips the hypothesis extraction part and executes the optimization assuming that the
N sensors might touch the object everywhere.
To evaluate the performance we compare the output pose with the ground truth pose in terms
of the positional error and a variant of the ADI-AUC metric [198], introduced in [184], which
reports on the rotational error. Remarkably, we report quantitative results of experiments run
with real tactile images while [184] restricts the quantitative analysis to simulated data and
only provides qualitative results on real images.
Table 6.3 shows that using the tactile feedback, in the form of the proposed classifier, helps
halving the positional error and increasing the rotational metric by more than ten points, on
average.
In Fig. 6.7 we show a sample outcome of the experiment and compare it against the baseline.
The ground-truth pose is shown as the greyed-out mesh while the estimated pose as the red
point cloud. As can be seen, although the pose estimated by the baseline is compatible with
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Table 6.3 Results of the object pose estimation experiments: averaged positional error and
ADI-AUC with threshold set to 2cm.

Metric Positional error (cm) ↓ ADI-AUC2cm (%) ↑
Method Baseline Ours Baseline Ours
master chef can 2.97 0.69 93.54 97.23
sugar box 3.61 3.12 93.75 72.61
mustard bottle 2.97 1.83 69.83 96.61
tuna fish can 2.18 1.07 96.08 95.97
potted meat can 1.81 1.26 94.71 96.63
banana 6.72 2.39 48.49 96.93
pitcher base 6.71 2.73 25.0 47.19
bleach cleanser 4.97 2.96 70.34 94.28
bowl 1.74 2.08 97.29 96.27
power drill 8.36 4.09 67.77 73.76
Mean 4.21 2.22 75.68 86.75

the position of the contacts, two out of three sensors are in contact with the wrong part of the
object. Instead, the pose estimated by our method is compatible with all contact positions
and types. This further demonstrates the advantages of using the tactile feedback, in the form
of the proposed classifier, for this task.

6.6 Limitations

The rigidity of the elastomer of the DIGIT sensor requires a more than moderate force, when
interacting with objects, to highlight surface differences. Although this fact depends on the
sensor itself, it might impact the effectiveness of our method if the contact forces are too
weak.
We acknowledge that our method makes use of a Diffusion Model whose training and image-
translation times are non-negligible. Nonetheless, one of the advantages of the proposed
method is that it is trained on images without background, thus it can be used on different
devices without a re-train.

6.7 Conclusion

In this work, we tackled the Sim2Real gap in the context of vision-based tactile sensors to
classify local surfaces of objects. Our method combines a bilevel adaptation, at the image
and feature level, with an automatic labeling procedure, allowing us to train the classifier
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using a supervised approach while avoiding manual annotation. The extensive experiments
on real data and the comparison against a state-of-the-art method validate the robustness
and the effectiveness of our approach that we also applied successfully in the context of 6D
object pose estimation from tactile data.
As future work, we plan to exploit our classification approach for several other robotic tasks
and to study new adaptation mechanisms to further increase the classification accuracy.



Chapter 7

From Handheld to Unconstrained Object
Detection: a Weakly-Supervised On-line
Learning Approach

7.1 Context

In this contribution, we present a novel Weakly-Supervised Learning (WSL) approach that
incorporates an Active Learning (AL) framework and a Self-Supervised Learning (SSL)
strategy to bridge the gap between two domains for Object Detection in a robotic application.
The large number of annotations required for high performance DL-based Object Detectors
can be mitigated by using robots embodiment that can automatically acquire labeled training
data via a natural interaction with a human showing the object of interest, handheld. However,
learning solely from this data may introduce biases (because of the domain shift), and prevents
adaptation to novel tasks. While WSL offers a well-established set of techniques to cope
with these problems in general-purpose Computer Vision, its adoption in challenging robotic
domains is still at a preliminary stage. In this work, we target the scenario of a robot trained
in a teacher-learner setting to detect handheld objects. The aim is to improve detection
performance in different settings by letting the robot explore the environment with a limited
human labeling budget. We compare several techniques for WSL in detection pipelines to
reduce model re-training costs without compromising accuracy, proposing solutions which
target the considered robotic scenario. We show that the robot can improve adaptation to
novel domains, either by interacting with a human teacher (Active Learning) and/or with
an autonomous supervision (Self-Supervised Learning). We integrate our strategies into an
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on-line detection method, achieving efficient model update capabilities with few labels. We
experimentally benchmark our method on challenging robotic object detection tasks under
domain shift1.

7.2 Introduction

In the state-of-the-art, Object Detection is typically addressed with DL-based approaches [199,
200] that achieve remarkable performance. Despite their high accuracy, they are constrained
by requiring long training times and large annotated datasets, limiting their adoption in such
applied settings where quick adaptation to novel tasks is required. In robotics, the embodi-
ment of a robotic agent can be exploited to interact with the environment, including humans,
to mitigate this burden and actively acquire training data. Regarding the interaction with
humans, past work shows that a teacher-learner scenario can be exploited to automatically
collect labeled images for object recognition [201] and detection [202]. Specifically, in those
works the human teacher shows an object, while holding it in their hand, to the robot and
3D information is used to automatically collect the location information. However, while
effective and allowing for a natural interaction, this approach supports limited generalization
to novel, unseen, scenarios [202, 203]. A further possibility is to exploit robots ability to nav-
igate and autonomously explore the environment, acquiring training images during operation.
Such images come in streams and can carry useful information, eventually containing the
objects of interest, but they are not labeled. Weakly-supervised Learning (WSL) [204], is a
well-established general purpose Computer Vision framework which targets learning from
partially-annotated datasets. However, despite initial work in robotic vision [205, 203] the
robotic literature misses a thorough comparison that investigates advantages and limitations
of existing techniques, especially in the context considered in this paper. For instance,
in [203], the unlabeled images are processed with a pre-trained model to either select the
hard ones and ask a human expert to help and annotate them (Active Learning (AL) [206]) or
add the predictions of the easy ones to the training set (Self-Supervised Learning (SSL) [207,
204]). These frameworks allow for a natural interaction with the environment and the human
teacher to improve the visual system and the work presented in [203] effectively reduces
the amount of manual annotation, but it has some limitations. Firstly, the unsupervised
data processing is pool-based [206], that is, all unlabeled images are evaluated before query
selection. This is not suitable for a robotic system that is exploring the environment and
needs to decide interactively whether to request annotations or not. To this aim, stream-based

1The code of the experiments is available at: https://github.com/hsp-iit/Weakly-supervised-online-detection
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techniques [206] are preferable, because they allow to process images frame by frame and
to make individual query decisions on-line. This strategy, however, might yield to lower
accuracy since queries are constructed using limited information on the unlabeled set [206].
Moreover, the pre-trained detection method in [203] iterates multiple times over the unlabeled
data, which, while allowing to refine the data selection, slows down learning. Finally, while
succeeding in reducing the human effort required for refinement, [203] still needs a relatively
high number of manual annotations, which prevents its adoption in on-line applications.

In this work, we study how WSL techniques can be used to exploit the robot interaction
with the environment and the human teacher to update and improve performance of object
detection models previously trained with data of handheld objects. We focus on the stream-
based scenario with the aim of increasing the human labeling efficiency of weakly-supervised
on-line object detection. Moreover, we consider the case in which only one pass over the
unlabeled data is allowed. The main contributions of this work are as follows. We present and
empirically evaluate several AL techniques for detection, typically used in general purpose
computer vision. We compare pool-based and stream-based AL in challenging robotic
scenarios and propose a solution to overcome limitations of the latter. We also consider
the case where no human labeling is allowed for adaptation. Specifically, we investigate
the domain shift effects occurring when using a model trained on data of handheld objects
in different settings and how wrongly self-annotated data can degrade accuracy in those
cases. Finally, we propose an SSL sampling method to overcome this problem and we
empirically demonstrate that, in case no labeling is allowed, it can effectively improve model
performance. This paper is organized as follows: we introduce WSL in Sec. 7.3 and we cover
related work in Sec. 7.4. In Sec. 7.5, we present our efficient detection methods, which are
analyzed and validated in Sec. 7.6. Sec. 7.7 presents some final remarks about this work.

7.3 Background

The supervised learning approach to object detection is centered on learning the detector
function from an annotated dataset Dtrain = {(xi,yi)}N

i=1 of images (xi) and corresponding
bounding boxes and class annotations (yi). The methods described in Sec. 7.4.1 fall in this
category. They contributed to a clear progress in detection accuracy and inference speed.
However, they need expensively-annotated large-scale datasets to be optimized. This property
does not meet the robotic requirement for a detector to adapt to a variety of tasks, potentially
unknown a-priori, in a short time span. However, while large annotated datasets might not be
available, plenty of unsupervised images are usually accessible to robots. In this context, a
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training set D′
train = L∪U is typically composed of a labeled subset L = {(xi,yi)}N

i=1 and an
unlabeled subset U = {xi}M

i=1. WSL allows the agent to select unsupervised images from U

and acquire their labels semi-autonomously for updating the detector, minimizing human
effort and improving accuracy. WSL includes several sub-classes of methods, depending on
the label-acquisition mechanism [207, 204]. The most relevant for this work are Active and
Self-Supervised Learning.
Active Learning. AL [206] interactively queries unsupervised examples for expert labeling
to minimize human annotation and maximize accuracy. Unlabeled examples are chosen from
U according to a scoring function and a sampling strategy. Their labels are then queried to
an expert, and newly-annotated examples are added to L for training. If all images in U are
accessible at selection time, sampling is referred to as pool-based. Otherwise, if only one
candidate from U is accessible, sampling becomes a binary decision on keeping or dropping
it and is called stream-based. The AL selection criterion we focus on is uncertainty sampling,
which picks the examples the model is least confident about.
Self-Supervised Learning. In SSL [204], unlabeled images are annotated by the detector
itself with no human intervention, propagating predicted labels to high-confidence regions of
the input space by exploiting the geometry of the input data distribution. This technique is
effective if the detector is not overconfident of its predictions and if the confidence threshold
for propagating predicted labels is strict enough.

7.4 Related Work

7.4.1 Object Detection

Early approaches to object detection were based on feature dictionaries [208] or specific
kinds of image descriptors [209]. Feature vectors were separately classified by supervised
learning methods. Despite yielding limited accuracy, these approaches had the advantage
of being parsimonious in terms of computations and dataset size. More recently, object
detection experienced significant progress thanks to the introduction of DL-based methods.
This determined clear improvements in terms of predictive performance, mainly due to the
powerful representation capabilities of DNNs. Such approaches include two-stage detectors
based on Region Proposal Networks (RPNs) [210] (like e.g. Faster R-CNN [210] and
Mask R-CNN [199]) and related extensions [211, 212, 213]. These methods employ a
deep network to perform (i) region candidates predictions, (ii) per-region feature extraction
and (iii) region classification and refinement. Alternative end-to-end approaches include
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one-stage detectors, which replace the RPN with a fixed, dense grid of candidate bounding
boxes. One such example is SSD [214, 215], achieving accuracies competitive with the
RPN-based Faster R-CNN and high frame rate. Another one-stage method, RetinaNet [216],
rebalances foreground and background examples through the so-called Focal Loss.

7.4.2 Efficient Object Detection for Robotics

Despite their high accuracy, the approaches described above typically require (i) long training
time and (ii) large-scale annotated datasets for adaptation to novel tasks. These aspects limit
their adoption in robotics.

Training time efficiency

A well-known issue of DL-based pipelines is that they suffer from catastrophic forgetting

when optimized on new data [217]. This limitation implies retraining these models on
the full dataset (both old and new data), causing long adaptation time. To address this
issue, a recent work for robotic object detection leverages fast classifiers to enable on-line
adaptation [218, 219]. Specifically, in [219], an efficient multi-stage pipeline is proposed by
combining DL-based RPNs and feature extractors (namely, based on Faster R-CNN or Mask
R-CNN) with large-scale Kernel classifiers [220, 221, 222]. According to this approach, the
feature extractor is pre-trained off-line on a large representative dataset, yielding a powerful
and transferable learned representation, which is kept fixed during on-line operation. The
actual regions classification is performed integrating an efficient hard-negatives bootstrapping
approach (the Minibootstrap [219]) with a set of FALKON classifiers [220, 221].

Labeling efficiency

Labeling efficiency is another key requirement for robotic object detection. The broad class
of WSL methods [207, 204] provides a rich set of tools towards this goal in general purpose
Computer Vision, in particular AL and SSL – introduced in Sec. 7.3. After successful
applications to DL-based Object Classification [223, 224, 225], AL has been recently applied
also to Object Detection [226, 227, 228]. For instance, recently, detection-specific image
scoring functions (like e.g., localization tightness and stability [229]) have been proposed.
Instead, when no further annotation is allowed to exploit the unsupervised samples, SSL
techniques can be used. Similarly to AL, also SSL has been recently applied to object
detection. For instance, in [230], SSL is employed for dataset augmentation and training
object detectors. Moreover, the authors point out that vanilla SSL can degrade accuracy
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in presence of domain shift. We also observed the same issue in our robotic setting and
we propose a simple yet effective solution in Sec 7.5.4. Recent approaches integrate both
AL and SSL techniques into the same detection pipeline, such as Self-Supervised Sample
Mining [231, 232] (SSM). SSM sorts unsupervised images into separate candidate sets
for further AL and SSL processing, according to the predictive confidence scores of the
underlying DL-based detection model [211]. Another related field in Computer Vision is
Unsupervised Domain adaptation for object detection [233]. Specifically, the pseudo-labeling

approach [234, 235] proposes to adapt a detection model to novel and unknown domains (i.e.,
datasets) by using confident model predictions as pseudo-ground truth. The aforementioned
approaches have been proposed and benchmarked on general purpose Computer Vision
datasets. However evaluation of WSL techniques on robotic scenarios is still at an initial
stage (e.g., see [205, 203]). For instance, in [203], SSM is extended to enable on-line
adaptive object detection for Robotics, by integrating the WSL sample selection strategy with
the on-line object detection method [219]. However, [203] still requires a relatively large
number of manual annotations, does not investigate the effect of severe domain shift in Self-
Supervision and focuses on a pool-based processing. While showing encouraging results,
all these limitations prevent its adoption in on-line applications. In this work, we present an
empirical analysis of different general purpose Computer Vision AL and SSL techniques in a
challenging robotic scenario, targeting a low annotation budget regime. We focus on how
WSL techniques can be used to exploit the robot interaction with the environment and the
human teacher to update and improve performance of object detection models previously
trained with data of handheld objects. Moreover, we propose solutions to overcome the
aforementioned limitations, improving the AL performance and addressing the SSL failure
cases under domain shift, increasing overall labeling efficiency.

7.5 Methods

In this work, a robot is asked to detect a set of object instances in an unconstrained environ-
ment (referred to as TARGET). A first detection model is trained during a brief interaction
with a human, in a teacher-learner scenario, like e.g. in [202] where objects are handheld (the
TARGET-LABELED). Then, the robot autonomously explores the environment, acquiring
a stream of images in a new setting, where automatic annotation is not possible. Therefore,
these images are not labeled (TARGET-UNLABELED) and are used to adapt the detector
on-line exploiting the robot interaction with the environment and the human teacher. In
the next sections, we present the proposed pipeline (Sec. 7.5.1) and the learning protocol
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Figure 7.1 Overview of the proposed pipeline. Refer to Sec. 7.5.1 for details.

(Sec. 7.5.2). Then, we present all the considered AL and SSL techniques and the proposed
approaches (Sec. 7.5.3 and 7.5.4, respectively).

7.5.1 Pipeline Description

The proposed WSL pipeline (see Fig. 7.1) is composed of four main modules: (i) the On-line

Object Detection, (ii) the Scoring function, (iii) the AL Selection policy, and (iv) the SS

Selection policy.

On-line Object Detection (OOD)

For this module, we follow the method proposed in [219], but considering the implementation
presented in [236] and [237]. This is an on-line learning approach consisting of two stages:
(i) region proposals and feature extraction, and (ii) region classification and bounding-box
refinement. The first stage relies on layers from Mask R-CNN [199] (specifically, the
convolutional layers, the RPN [238] and the RoI Align layer [199]). In particular, this part is
used to extract a set of Regions of Interest (RoIs) from an image and encode them into a set
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of features. The second stage is composed of a set of FALKON [220] binary classifiers (one
for each class of the TARGET) and Regularized Least Squares (RLS) [239], respectively
for the classification and the refinement of the proposed RoIs. Classifiers are trained with
an approximate bootstrapping approach, called Minibootstrap [219], which addresses the
well-known issue of background-foreground class imbalance in object detection [240], while
maintaining a short training time. In this work, the adoption of OOD permits to achieve a
convenient speed/accuracy trade-off, since it allows to maintain a competitive accuracy with
other DCNN-based approaches with a fraction of the optimization time required (seconds or
minutes) [219, 236].

Scoring function

This function assigns a confidence score to the predictions for the images in the TARGET-
UNLABELED. This score is then used by the AL and SS Selection policies to decide which
images need to be manually annotated or can be considered as pseudo-ground truth. For this
part, we employ the Cross-Image Validation (CIV) proposed in SSM [231]. CIV stitches
predicted image patches from the TARGET-UNLABELED on random images, sampled from
TARGET-LABELED. Then, it executes the detector on the stitched images and computes a
consistency score from the obtained confidence scores [231].

AL and SS Selection policies

Given the predicted detections obtained by the OOD and the consistency score computed
by the Scoring function, these two policies decide whether an image of the TARGET-
UNLABELED is queried for annotation or the predicted detections are confident enough
to be used for self-supervision. Our main contribution relies on these last two components.
Firstly, we target a stream-based scenario, since it is more suitable for on-line applications.
Secondly, we consider a robotic setting with low annotation budget and a large domain shift
of the TARGET-UNLABELED with respect to the TARGET-LABELED. Specifically, for the
AL Selection policy, we consider several AL techniques, comparing their performance on the
considered robotic setting and proposing a solution to enforce diversity during sampling. The
adopted AL baselines and the proposed solution are listed in Sec. 7.5.3. Instead, for the SS

Selection policy, we consider a stream-based baseline and a novel strategy to overcome issues
caused by the domain shift, both described in Sec. 7.5.4. Finally, another major difference
with respect to previous work [203] is that we consider the case in which only one pass over
the TARGET-UNLABELED data is allowed, while typically in standard Computer Vision,
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and also in [203], an iterative process is used. This aspect is crucial for speeding up WSL.
However, it makes detector refinement more challenging.

7.5.2 Learning Protocol

The learning process is divided into: (i) Supervised phase (represented by the light blue
arrows in Fig. 7.1), and (ii) Weakly-supervised phase (represented by the orange arrows in
Fig. 7.1). Both phases rely on pre-trained Mask R-CNN’s weights as feature extractor for
the OOD. Those weights remain fixed, while model training and adaptation is performed by
optimizing on the new data only the second stage of the OOD, i.e., (i) the FALKON classifiers
with the Minibootstrap technique and (ii) the RLS box-refinement model (see Sec. 7.5.1
for details). The Supervised phase is performed within a few seconds of interaction with a
human on the TARGET-LABELED, yielding a first detection model (the seed model). In this
phase the human shows the objects to the robot, handling them in their hand and annotations
are automatically collected. Then, in the WSL phase, the SSL pseudo-ground truth and AL
queries are selected from the TARGET-UNLABELED as described in Sec. 7.5.1, using the
seed model’s confidence scores. Finally, they are added to the dataset which is used to re-train
the on-line detector.

7.5.3 Active Learning Strategies

For AL selection, we considered both (i) stream-based approaches, which are the focus of
this work, being suited to robotic scenarios, and (ii) pool-based ones.

A simple, yet often effective, pool-based strategy is to sample uniformly at random the
images with a confidence score below a threshold (Uniform random in Sec. 7.6). Another
diversity sampling strategy is to execute k-means clustering [239] on the image-level features
and select the resulting cluster centers (K-means-based AL in Sec. 7.6). In our analysis, we
report results for both strategies.

In stream-based AL settings, a simple selection strategy involves confidence score thresh-
olding followed by coin flipping [231] for implementing uncertainty and diversity sampling,
respectively (coin-flip AL in Sec. 7.6). Another, more practical, solution is to exploit
temporal coherence in image sequences to enforce sampling diversity [241]. Leveraging
temporal coherence is particularly suitable for on-line robotic tasks, since data, coming in
streams, needs to be acquired sequentially and is therefore highly temporally correlated. To
this aim, we consider the Fixed temporal window strategy, which employs a temporal
window of fixed size ∆ so that if frame t is selected, any other frame within [t −∆, t +∆] can
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Figure 7.2 Example images of the datasets used for this work: a) ICWT dataset; b) POIS in
TABLE-TOP dataset; c) WHITE in TABLE-TOP dataset; d) HO-3D; e) YCB-Video training
set, f) YCB-Video test set.

no longer be considered for selection. While enforcing diversity, this strategy, by using a
fixed ∆, does not take into account: (i) the exploration session duration, that is, the size nU of
TARGET-UNLABELED, which might be known a-priori even in stream-based scenarios,
and (ii) the available manual annotation budget k. We show in Sec. 7.6.2 that this results in
poor performance for low k when the TARGET-UNLABELED is redundant.

To overcome this limitation, we propose to use an adaptive temporal window size, defined
as

∆nU ,k =
nU ·α

k
and referred to as Adaptive temporal window in Sec. 7.6. This strategy allows to tailor the
strictness (window size) of the temporal diversity-enforcing sampling to the overall amount
of available unsupervised data nU , while at the same time ensuring to make full use of the
available budget k. For instance, given a budget k, the adaptive window size grows linearly
with nU in order to cover the entire duration of the exploration session. α ∈ (0,k)⊆ R is a
hyperparameter accounting for the proportion of AL candidates with respect to nU , which is
unknown a priori.

7.5.4 Self-Supervised Learning Strategies

For SS selection, we consider two stream-based baselines. The first is the SS baseline,
which selects all the images passing CIV as pseudo ground truth. However, we show in
Sec. 7.6.3 that under domain shift this leads to model degradation due to the abundance of
false negatives. For this reason, in this work, we propose a more conservative strategy, namely
SS pos. only, which only selects positive predictions and leaves out negative ones. In
Sec. 7.6.3, we show that our approach successfully counteracts severe model degradation.
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7.6 Experiments

The objective of our experiments is to evaluate the performance of the presented WSL
techniques in improving detection performance under domain shift. Specifically, we consider
the scenario of a robot previously trained with human interaction to detect handheld objects.
We aim to generalize to a different setting (i.e., a table top) by exploiting the unlabeled
data collected by the robot during autonomous exploration (Weakly-Supervised phase in
Sec. 7.5.2).

7.6.1 Experimental Setup

For the OOD, the weights of the Feature extractor are learned by training Mask R-CNN
on the MS COCO [242] dataset. ResNet50 [243] has been considered as Mask R-CNN’s
convolutional backbone (we use the available pre-trained Mask R-CNN weights2). During
Supervised and Weakly-Supervised phases, the feature extractor is fixed, while the FALKON
classifiers and RLS are updated as explained in Sec. 7.5.2 (we relied on [219] for hyper-
parameters selection). This allows to achieve a training time of few seconds or minutes for
each learning step.
Given the aforementioned target scenario, in our experiments we consider two different
cases of domain adaptation from handheld (Supervised phase) to table-top objects (Weakly-

Supervised phase). Specifically, we adapt (i) from iCubWorld Transformations [201] (iCWT)
to a set of sequences depicting a subset of iCWT’s objects on a table-top (TABLE-TOP) and
(ii) from HO-3D [244] to YCB-Video [245].

From iCWT to TABLE-TOP (iCW domain)

iCWT contains images for 200 handheld objects. Each object is demonstrated by a human
teacher to the robot (as in [202]) and is acquired with different sequences representing specific
viewpoint transformations: 2D rotation (2D ROT), generic rotation (3D ROT), translation
(TRANSL), scaling (SCALE) and all transformations (MIX) (see [201]). For the Supervised

phase, we employ a subset of the iCWT, considering 21 of the total 200 objects. All the
transformations, except from MIX, are considered, resulting in a TARGET-LABELED of size
nL ∼6K. The TABLE-TOP depicts the same 21 objects randomly placed on a table with two
different tablecloths: (i) pink/white pois (POIS) and (ii) white (WHITE). The two datasets

2https://github.com/facebookresearch/maskrcnn-benchmark/blob/master/MODEL_
ZOO.md

https://github.com/facebookresearch/maskrcnn-benchmark/blob/master/MODEL_ZOO.md
https://github.com/facebookresearch/maskrcnn-benchmark/blob/master/MODEL_ZOO.md
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contain the same objects, but with an important domain shift: iCWT frames include the hand
of the teacher, whereas TABLE-TOP has different backgrounds and light conditions and
depicts objects on a table. Refer to Fig. 7.2 for a visual representation of the domain shift. For
the Weakly-Supervised phase, we consider the WHITE sequence as TARGET-UNLABELED
while we leave the POIS sequence as test set to evaluate performance. These two sets are
respectively of size ∼2K and ∼1K.

From HO-3D to YCB-Video (YCB domain)

Similarly, in HO-3D and YCB-Video, objects from the YCB [246] dataset are presented
handheld by a human and in table-top sequences, respectively. Specifically, YCB-Video
presents sequences for 21 objects while in HO-3D a subset of 9 of those objects are considered.
Note that for our experiments we do not consider the labels for the remaining 12 objects
in YCB-Video. For the Supervised phase, we take from HO-3D at most four sequences for
each object resulting in a TARGET-LABELED of size nL ∼20K. For the Weakly-Supervised

phase, we consider a set of ∼11.3K frames obtained by extracting one image every ten from
the total 80 training video sequences available in the YCB-Video. As test set, instead, we
consider the ∼3K keyframe [245] images chosen from the remaining 12 sequences in the
YCB-Video.

Evaluation metrics

We report performance in terms of mAP (mean Average Precision) at the IoU (Intersection
over Union) threshold set to 0.5, as defined for Pascal VOC 2007 (see [247]). Specifically,
we repeat each experiment for three trials and we present the results, reporting the mean and
the standard deviation of the obtained accuracy3.

7.6.2 Active Learning Sampling Strategy Evaluation

In this section, we compare the AL techniques described in Sec. 7.5 considering differ-
ent manual annotation budgets for both iCW and YCB domains. To this aim, we report
in Fig. 7.3a and b the mAP trends obtained by increasing the AL query budget during
the Weakly-Supervised phase. Specifically, we report in orange shades the performance
obtained by the pool-based strategies (namely, k-means-based AL and Uniform random

from Sec. 7.5), and in green shades the stream-based ones (namely, Coin-flip AL, Fixed

3All experiments have been executed on a machine equipped with Intel Xeon E5-2690 v4 CPUs @2.60GHz,
and an NVIDIA Tesla P100 GPU.
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Figure 7.3 mAP comparison of pool-based (orange) and stream-based (green) AL strategies
with varying query budgets for iCW (a) and YCB (b) domains.

temporal window, and the proposed Adaptive temporal window from Sec. 7.5). We
empirically set the fixed temporal window size as ∆ = 6 and the adaptive temporal window
hyperparameter as α = 0.5 for the iCW domain and α = 0.4 for the YCB domain. As it can
be observed in Fig. 7.3a, for iCW domain the pool-based methods achieve the best mAP
trends. Notably, we observe that the Uniform random baseline is almost as effective as
k-means based-AL and they both present an early steep slope for limited manual annotation
budgets. These two aspects are due to the fact that the considered TABLE-TOP dataset in
the iCW domain, contains sequences of similar (and thus redundant) frames which need
to be properly filtered during data selection. This aspect of the dataset is also the main
cause for the poor performance obtained by the two stream-based techniques: Coin-flip
AL and Fixed temporal window, for low numbers of manual annotations. Indeed, while
being more suited for a robotic application, by reasoning only on a frame-by-frame fashion,
they lack global information on the whole data distribution, which turns out to be a critical
drawback especially for limited manual annotation budgets. However, for higher budgets,
the Fixed temporal window baseline achieves accuracies closer to the pool-based ones.
Finally, the proposed Adaptive temporal window presents the best mAP trend, among
the stream-based approaches, especially for low annotation budgets and it closely matches
the pool-based ones. On the contrary, as it can be observed in Fig. 7.3b, for the YCB domain
the pool-based methods, the Fixed and the Adaptive temporal window present similar
mAP trends. Specifically, the proposed Adaptive temporal window has the steepest slope.
This is due to the fact that the YCB-Video dataset, differently from the TABLE-TOP, presents
less redundant sequences and a smarter data selection based on temporal coherence provides
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Table 7.1 Results obtained by SS baseline (2nd column) and SS positives (3rd column)
for large (1st row) and small (2nd row) domain shift from the supervised (1st column) to the
Weakly-Supervised phase.

Sup. phase
(mAP(%))

SS baseline
(mAP(%))

SS pos. only
(mAP(%))

SS
samples

Large DS 48.8 ± 0.3 37.9 ± 1.8 50.9 ± 0.06 ∼ 12%
Small DS 40.3 ± 0.9 47.1 ± 0.1 46.6 ± 0.2 ∼ 35%

the best performance.
Finally, it is important to note that the proposed Adaptive temporal window stream-based
approach achieves significantly higher mAP values, than other stream-based techniques, for
low annotation budgets for both domains. This makes it the most successful stream-based
approach in such regime, which is the target of the presented work.

7.6.3 Self-Supervised Learning Evaluation

In this section, we investigate the impact of domain shift from handheld objects to table-top
datasets when no labeling is allowed (i.e., SSL). To this aim, we report in Tab. 7.1 the results
of applying the SS baseline (as defined in Sec. 7.5) in the two following scenarios:

• Large domain shift (Large DS in Tab. 7.1). We consider the scenario in which the
TARGET-UNLABELED presents a completely different setting (i.e., a table top) with
respect to the TARGET-LABELED (i.e., hand-held). For this, we used the iCW domain
of Sec. 7.6.1.

• Small domain shift (Small DS in Tab. 7.1). Here, the TARGET-LABELED and
TARGET-UNLABELED present similar conditions. The only difference in the latter
one is that the objects are presented, unlabeled, with different view poses. For this, we
considered as TARGET a 30-object identification task from iCWT. For each object,
we then use the TRANSL sequence (∼2K images) as TARGET-LABELED and the
union of the 2D ROT, 3D ROT, and SCALE sequences (∼6K images) as the TARGET-
UNLABELED. We test on the MIX sequences of all objects (∼4.5K images).

Note that, in this experiment, we use the only iCW domain because the explicit sub-division
in different viewpoint transformations of iCWT allows to control the dataset split in TARGET-
LABELED and TARGET-UNLABELED such that they present similar, but not identical,
conditions. This allows to precisely identify the Small DS setting.
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Tab. 7.1 reports the results obtained in both cases. For each row, we report the mAP
(represented as mean and standard deviation of the different repetitions) after the Supervised

phase (first column) and after the Weakly-Supervised phase for both SS baseline and
SS pos. only (second and third columns). Moreover, in the fourth column we report
the average percentage of samples selected by the SS process over the total. As it can be
observed, adding self-supervised data with SS baseline, with small domain shift, results
in an improvement in accuracy. On the contrary, with a larger domain shift, it leads to
a significant accuracy deterioration. A reason for this phenomenon can be identified by
analyzing the pseudo-ground truth generated by the SS process. We report in Fig. 7.4
some representative images depicting in green the region proposal candidates classified as
background by the detection system and that are therefore added as negative samples to the
dataset by the SS baseline. The actual detections which instead are considered as positive
samples in the SS process are shown in red. It can be noticed that, with large domain shift,
only few objects are correctly detected and therefore added to the training set as positives,
while most others are false negatives which are automatically annotated as background
samples. Clearly, retraining the detection model with such a poorly-labeled dataset leads
to the sharp performance decay shown in Tab. 7.1. This confirms similar findings from the
literature [234], in the considered setting. Note that, we empirically noticed that lowering
the confidence threshold used to determine a positive prediction is not suitable since, while
not ensuring less false negatives, it leads to imprecise predictions, with a similar negative
effect on the subsequent training. In Sec. 7.5, we introduce the SS positives only to
address this issue. This more conservative strategy includes only the regions predicted as
positive in the SS dataset, while the others are filtered away, avoiding adding false negatives.
Third column in Tab. 7.1 shows that this strategy, does not modify the basline in case of
Small DS where SS data is already reliable. However, for Large DS, not only effectively
removes wrong labels from the dataset, recovering from the two-digits accuracy decay, but
also successfully yields a performance improvement of ∼2 points. Moreover, it allows to
drastically reduce the standard deviation of the obtained accuracy, from 1.8% to 0.06%,
being less sensitive to statistical fluctuations. This demonstrates that, when no human manual
annotation is allowed, a robot trained to detect handheld objects can explore the new domain,
self-annotating the newly collected data and improving detection performance.
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Figure 7.4 Predictions on TARGET-UNLABELED images before model update, chosen by the
SS Baseline as positives (red) and negatives (green).

7.7 Conclusions

In this paper, we target the scenario of a robot trained with human interaction to detect
handheld objects, aiming to improve detection performance in different settings with au-
tonomous exploration and limited human intervention. We empirically demonstrate that
general purpose WSL techniques are unsuitable for challenging robotic scenarios and we
propose solutions to both (i) enforce diversity sampling for AL queries and (ii) improve
strong positives selection for SSL under severe domain shift. Finally, we build on previous
work [203], presenting and empirically evaluating a stream-based weakly-supervised on-line
object detection pipeline for Robotics, which exploit the robot interaction with the environ-
ment and the human teacher to update and improve performance of the visual system. It
significantly alleviates the annotation burden for on-line model adaptation to novel settings
while maximizing accuracy.



Chapter 8

Conclusion

In this project, we have conducted a detailed analysis of various aspects of Transfer Learning,
with a particular focus on fine-tuning, domain adaptation (including UDA and SF-UDA), as
well as their practical applications.

The foundational analysis, as outlined in Chapter 3, provides empirical evidences and
strategic guidance relevant for advancing the field of SF-UDA. This extensive empirical
study includes a variety of methods, architectures, and pre-training strategies. However, we
acknowledge the need for further research. Future work could extend this study to incorporate
additional SF-UDA methods, diverse normalization layers, and extend the scope to include
other vision tasks such as object detection and semantic segmentation. Furthermore, an
exploration of SF-UDA methods for Instruction Tuning [248] of Large Language Models,
for specific NLP tasks, would be of great interest for the community.

In Chapter 4, we introduced Trust and Balance (TAB), a novel and effective SF-UDA
approach for image classification. Through numerous ablation studies of TAB, we identified
potential areas for future improvement. An exploration of its applicability to semantic
segmentation is also worth pursuing.

In Chapter 5, we considered different Transfer Learning pipelines, achieving state-of-the-
art results in plankton image classification. Our findings on the choice of pre-training datasets
open up avenues for future research. In particular we believe that possible extensions of
this work may include: exploration of different fine-tuning strategies and Transfer Learning
pipelines, as well as the application of these methodologies to other biological domains
beyond plankton. Particularly, it would be interesting to assess whether ImageNet pre-training
remains the optimal choice compared to large-scale in-domain pre-training. This could clarify
the value of acquiring domain-specific expensive labeled data versus its potential lack of
impact on final performance, as suggested in our study.
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Finally, in Chapters 6 and 7, we presented specific applications of Transfer Learning
pipelines in robotics, leveraging Denoising Diffusion Models, UDA approaches, and Active
Learning. These chapters demonstrate how various techniques can be integrated into effective
pipelines for processing real-world data.

Discussion

The primary objective of this dissertation is to explore a variety of subtopics and techniques
within the broader domain of Transfer Learning, aiming to enhance data efficiency in Deep
Learning across diverse scenarios. The selection of a particular technique for any given
real-world application hinges on specific requirements and the availability of data within that
context. In numerous instances, it is feasible to employ multiple techniques in a synergistic
manner. For example, the methodology described in Chapter 6 incorporates an image-to-
image style transfer process (a SF-UDA technique), alongside a feature alignment phase
that utilizes a UDA algorithm. Whenever an application permits some level of labeling or
human interaction, Active Learning strategies, such as those detailed for Object Detection in
Chapter 7, can be included in the pipeline to enhance outcomes further.

Moreover, in light of the recent advancements in Large Vision and Language Models, it
is important to acknowledge their potential in generating samples or aiding the adaptation
process of smaller models across the various scenarios discussed in this dissertation. This
integration should not be perceived as a constraint of our proposed methodologies but rather
as complementary approaches that, when combined, can lead to superior performance with
minimal task-specific data. A critical direction for future research is investigating how
large-scale generative multimodal models can further refine data efficiency within transfer
learning pipelines.

Summary and Final Remarks

This dissertation comprehensively examines numerous elements and strategies of contempo-
rary Transfer Learning in Deep Learning. Through systematic analysis of both algorithmic
and design choices, we have introduced novel algorithms and pipelines tailored to specific
problems. We believe that our analyses and findings will significantly contribute to a deeper
understanding of Transfer Learning, serving as a valuable resource for practitioners and
guiding future research.
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Appendix A

Trust And Balance (Chapter 4)

A.1 Training Details

As outlined in Sec. 4.6.1, we employed standard procedures and hyperparameters drawn
from existing literature.
Pre-training. For the ResNet50 architecture, we utilized weights pre-trained on ImageNet
as provided by TorchVision [101]. For the ViT-Large architecture, weights pre-trained on
ImageNet21k from the timm library [88] were used.
Input pipeline and augmentations. Initially, images are resized to dimensions 256×256.
For training purposes, a random crop yielding a dimension of 224×224 is executed along
with the application of a random horizontal flip. During evaluation, a centered crop is applied.
Subsequent to these transformations, images undergo normalization based on the mean
and standard deviation values from ImageNet, consistent with the pre-training setup of the
backbones.
Source fine-tuning. The fine-tuning on the source domain employs SGD with Nesterov
Momentum of 0.9 and an L2 penalty of 10−3. A batch size of 64 is used, with learning rates
initialized to 10−3 for the pre-trained backbone and 10−2 for the additional bottleneck and
classifier with freshly initialized weights. We employ a Cross-entropy objective with label
smoothing [249] using a factor of 0.1 and clip gradients at 5.0. The learning rate adjustment
follows the equation:

lr(t) = lr(0)∗
(

1+10 · t
T

)−0.75
(A.1)

where lr(0) represents the initial learning rate, T the total training steps and t is the
current training step. The dataset is partitioned into training (85%) and validation (15%)
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subsets. Training continues for 100 epochs, and after each epoch, validation accuracy is
assessed. Model weights achieving the highest validation accuracy are retained. Distributed
fine-tuning is executed on 4 Nvidia V100 16GB GPUs.
Target adaptation. This phase uses a batch size of 64 with similar learning rates and
scheduling as source fine-tuning for 15 epochs, but the classifier γ remains fixed (lr set to
0). At every epoch, FTSP computes pseudo-labels, and by default, Multinomial Logistic Re-
gression serves as the classifier. We employ the MLR classifier from Scikit-Learn [250] with
default settings and minimal strength L2 regularization (C = 1

λ
= 1000). We subsequently

apply our Pseudo-label Refinement (PR): we remove the 20% least confident pseudo-labels
from each class based on predicted probabilities via the label deletion step. In the label
completion phase, Label Spreading [108] (from Scikit-Learn) with default hyperparameters
(RBF kernel with gamma = 20) is used. The TSAL objective, described in the main text,
is then minimized. Additionally, MixUp [51] regularization is utilized, where the mixing
ratio is sourced from a Beta distribution with parameters α = β = 0.3. Since no label is
available in this training phase the adapted model is the one obtained after the whole 15
epochs training that is directly tested with labels. Target adaptation takes place on a singular
GPU: NVIDIA V100 16GB for ResNet50 and NVIDIA A100 80GB for ViT-Large.

A.2 Few Trusted Samples Pseudo-labeling: an ablation
study

In this section, we present an ablation study centered around the FTSP methodology. It is
crucial to clarify that the hyperparameters used for the experiments presented in the main text
were kept fixed. The ablation experiments described herein have been conducted subsequently
to those in the main text to prevent potential evaluation biases. As we explore further, it
becomes evident that the hyperparameters used in the main text could be sub-optimal for
Office31 and Office-Home benchmarks. In particular the value of trusted samples (K) and
also the classifier (MLR) used.
Number of Trusted Samples and Pseudo-label Refinement. Throughout the experiments,
we consistently set the number K of trusted samples (per class) to 3 for ResNet50 and 7 for
ViT. We selected K = 3 for ResNet50 aiming for a constrained set of trusted samples, ensuring
these samples had accurate labels for the classifier training in FTSP. This approach stems
from the understanding that a limited number of samples can adequately train a classifier,
which then generalizes effectively across the entire target domain, as our empirical results
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confirm. Given that (according to the ImageNet benchmark) ViT-Large is a better performing
model compared to ResNet50, it also exhibits superior out-of-distribution generalization
as shown in [123]. Consequently, we followed this intuition and we increased K to 7 for
ViT-L, anticipating enhanced predictions and greater model reliability. In Table A.1, we
provide an ablation study focusing on the value of K for ResNet50 and on the effects of the
Pseudo-labeling Refinement phase that we propose. As it is possible to observe in the table
both for Office31 and Office-Home the algorithm is robust to the choice of K in the range
considered and the Pseudo-Labeling refinement provides in almost all cases benefits in terms
of accuracy. Additionally the value of K = 5 seems to be the best choice for these datasets
considering our classifier (MLR), increasing marginally the results reported in the main text
(with K = 3). For completeness we report in Table A.2 and A.5 the comparison of the best
performing SOTA methods, with our proposed method with optimal K.
Classifier. We present an ablation study about the choice of the classifier for FTSP. In
particular, in this study, we focused on the FTSP methodology without Pseudo-label
Refinement and we optimized the TSAL objective as stated in the main text. We evaluated
the following classifiers: Support Vector Machine Classifier with RBF (SVC-R) and Linear
(SVC-L) kernels, Multinomial Logistic Regression (MLR), and Linear Discriminant Analysis
(LDA). For these classifiers, we examined a variety of L2 regularization strengths, regulated
by the C hyperparameter in Scikit-Learn (where the value of C is inversely proportional to
the strength of regularization). We also assessed different shrinkage values for LDA.

Results for the Office-Home dataset are provided in table A.3, and the outcomes for the
Office31 dataset are presented in table A.4. For both datasets, it is evident that MLR, particu-
larly with weaker regularization, outperforms SVC. Furthermore, the Linear Discriminant
Analysis Classifier surpasses MLR in performance for the datasets examined.

Table A.1 Ablation on K with and without Pseudo-label Refinement: Average accuracy of
FTSP+TSAL using MLR with C=1000 for Office31 and Office-Home using different values
of K.

Classifier K=2 K=3 K=5 K=7 K=10

Office31 (w/o PR) 89.0 89.6 89.7 89.2 88.9
Office-Home (w/o PR) 72.3 72.4 72.9 72.5 72.3

Office31 (with PR) 89.6 89.9 90.3 89.9 89.8
Office-Home (with PR) 72.6 72.8 72.9 72.8 72.5
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Table A.2 Comparison of TAB (with K = 3 and K = 5) with two state-of-the-art methods
on the Office31 dataset using ResNet50. The top results are highlighted in bold, while the
runners-up are underlined.

Method A )D A )W D )A D )W W )A W )D Avg

DIPER50 [80] 96.6 93.1 75.5 98.4 77.2 99.6 90.1
A2NetR50 [59] 94.5 94.0 76.7 99.2 76.1 100.0 90.1
TABK=3 94.4 94.7 76.9 97.4 76.0 99.8 89.9
TABK=5 94.6 94.1 77.5 98.7 77.3 99.4 90.3

Table A.3 Ablation on Office-Home: Evaluation of SVM Classifiers using RBF (SVC-R)
and Linear (SVC-L) kernels, and Multinomial Logistic Regression (MLR) across varying
L2 regularization strengths. Here, the C hyperparameter is inversely proportional to regu-
larization strength. Linear Discriminant Analysis with different shrinkage values (S) is also
assessed. The value of trusted samples K is set to 3.

Classifier C=0.1 C=1.0 C=1000 S=0.5 S=0.99

SVC-R 68.9 71.5 71.3 — —
SVC-L 70.0 72.0 71.7 — —
MLR 72.3 72.3 72.4 — —
LDA — — — 72.6 72.7

Table A.4 Ablation on Office31: Evaluation of SVM Classifiers using RBF (SVC-R) and
Linear (SVC-L) kernels, and Multinomial Logistic Regression (MLR) across varying L2
regularization strengths. Here, the C hyperparameter is inversely proportional to regular-
ization strength. Linear Discriminant Analysis with different shrinkage values (S) is also
assessed.The value of trusted samples K is set to 3.

Classifier C=0.1 C=1.0 C=1000 S=0.5 S=0.99

SVC-R 87.4 89.2 89.4 — —
SVC-L 88.2 89.1 89.3 — —
MLR 89.0 89.2 89.6 — —
LDA — — — 89.2 89.8
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Table A.5 Comparison of TAB (with K = 3 and K = 5) with two state-of-the-art methods on
the Office-Home dataset using ResNet50. The top results are highlighted in bold, while the
runners-up are underlined.

Method A )C A )P A )R C )A C )P C )R P )A P )C P )R R )A R )C R )P Avg

AADR50 [57] 59.3 79.3 82.1 68.9 79.8 79.5 67.2 57.4 83.1 72.1 58.5 85.4 72.7
A2NetR50 [59] 58.4 79.0 82.4 67.5 79.3 78.9 68.0 56.2 82.9 74.1 60.5 85.0 72.8
TABK=3 58.9 79.6 81.5 68.6 78.0 79.8 69.3 56.8 83.7 73.2 59.5 84.7 72.8
TABK=5 58.3 80.3 81.5 67.3 81.0 78.4 69.8 57.8 83.0 72.0 60.1 85.3 72.9
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A.3 Efficiency of the Proposed Approach

The computational demands for executing the optimization of TSAL objective during the
target adaptation stage are comparable to those encountered in standard supervised learning.
These demands are influenced by several factors, including the chosen model architecture
(backbone), the use of hardware accelerators, the software implementation, and the volume
of data being processed.

The additional computational steps introduced by TAB at each adaptation epoch are
primarily for generating pseudo-labels, which involves the following processes:

1. Extraction of features and prediction probabilities for images from the target domain.

2. Selection of a Few-Trusted Samples dataset based on model predictions.

3. Training of a classifier on the Few-Trusted Samples dataset.

4. Use of the trained classifier to generate pseudo-labels for the target domain.

5. Optional application of Label Spreading to further refine the pseudo-labels.

The majority of the computational effort and time is allocated to the first step, which
is a common requirement across many SF-UDA algorithms. Steps 2 through 5, which
are unique to the TAB approach, require comparatively minimal time relative to feature
extraction. For context, in our experiments, steps 2 through 5, implemented using Scikit-learn
algorithms running on CPU, took only a few seconds, whereas feature extraction could take
minutes, especially with large architectures, extensive datasets, or in the absence of hardware
acceleration. Our publicly available code includes functions that facilitate feature extraction
(and model optimization) through distributed computing across multiple GPUs, significantly
enhancing time-efficiency.

In summary, the computational times for our approach are on par with other methodolo-
gies documented in the literature, such as SHOT, AAD, and NRC when models are adapted
using a single hardware accelerator. Moreover, our distributed computing implementation
further optimizes the performance of TAB, especially when additional GPUs are utilized,
enabling experiments with larger models and datasets.
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