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Figure 3.25: The plots show the interpretation of the mirr signal by the the numerical
and the analytical methods for L10 samples.
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Figure 3.26: The plots show the interpretation of the mirr signal by the the numerical
and the analytical methods for L15 samples.
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Figure 3.27: The plots show the interpretation of the mirr signal by the the numerical
and the analytical methods for L20 samples.
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Figure 3.28: The plots show the interpretation of the mirr signal by the the numerical
and the analytical methods for L25 samples.
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Figure 3.29: The plots summarize the results of the numerical (red) and analytical
(blue) models used to extract Ic from the VSM data, compared to the critical current
from the VAMAS measurements (empty dots are not scaled, i.e., Ec = 10, µV/m; black
dots are scaled to EV SM ).
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A global overview of the correlation between magnetic and transport critical

current is presented in the plot of Figure 3.30. It shows that all the VSM data, with

the exception of L25, agree within 5% with their respective VAMAS counterparts.

Another way to look at same result is represented by the VSM normalized

critical current plots, fig. 3.31. We can claim no critical current degradation, in

agreement with the VAMAS normalized Ic (fig. 3.10b), only if we use the numer-

ical shape factor to extract Ic from the mirr signal. Instead, the analytical shape

factor leads to an apparent critical current degradation which, in our opinion, is

a manifestation of the circular approximation. Anyway also the numerical model

can fail, as we can see in the L25 case. Herein, paradoxically, we see an improve-

ment of the critical current, almost the 15% more at 10.5 T. In the next section

we’ll analyze this aspect in a more quantitative way.

Figure 3.30: Correlation plot between magnetic (numerical shape factor analysis) and
transport critical current. The dashed lines delimit the ± 5% error region calculated
with errors propagation.
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Figure 3.31: The normalized critical current plot for numerical and analytical shape
factor.
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We conclude this section reporting the analysis of the Bc2(4.2 K) values for

the rolled samples, either for the numerical and analytical model. The Bc2 field

can be obtained by the fitting the Jc curve with eq. 3.2. We remember that Bc2

is also a function of the strain state, through the strain function. Therefor, it’s

behaviour is a symptom of the residual strain in the wire after lamination. The

Bc2 value at 4.2 K is expected to be, thanks to eq. 3.3, around 25.5 T for the

virgin wire. Concerning the C parameter in eq. 3.2, we can say that it’s related

to the intensity of the signal. We report the fitting equation for clarity

JL
c (B, 4.2 K) =

C

B

✓
B

Bc2

◆0.5✓
1 � B

Bc2

◆2

(3.26)

The Jc data are obtained from the critical current plot showed in fig. 3.24 and fig.

3.29 simply dividing by the correspondent SSC values listed in tab. 3.7. The fit

is done with the Kaleidagraph software with the free parameter Bc2 and C. The

results are visible in table 3.8.

Lamination Numerical model Analytical model
C (105 ATm�2) Bc2 (T) C (105 ATm�2) Bc2 (T)

0 2.364 25.71 2.378 25.71
10 2.477 24.26 2.400 24.28
15 2.530 24.43 2.379 24.44
20 2.795 24.21 2.546 24.23
25 3.041 24.12 2.732 24.14

Table 3.8: Comparison between Numerical and Analytical models for the fitting param-
eter of Jc from VSM data. In the Lamination columns 0 means no lamination at all,
i.e. the virgin sample.

We can see a similar trend in the values of Bc2 for both models, fig. 3.32a.

There is an initial strong decrease due to the first laminating process at 10%

and then a flattening around 24 T. This indicates that the e↵ects of residual

stress are significant up to a certain level of lamination. Considering that heat

treatment also contributes to the release of residual stress in the copper matrix,

we can conclude that the e↵ects of pre-HT deformation on Bc2, through the strain

function, are negligible for laminations between 10% and 25%.

Regarding the parameter C, the two models show a discrepancy, fig. 3.32b.

Only the numerical model, through the shape factor, captures a strong increasing
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trend in signal intensity. This underlies the good agreement between the transport

Ic values and the corresponding critical currents obtained from the VSM with the

numerical shape factor. Additionally, the value of C at 25% lamination supports

the interpretation of an overestimation of the mirr signals due to inter-bundle

currents among fused bundles.
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Figure 3.32: The plots show the data of table 3.8 versus the lamination percentage.
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3.9 Comparison between VAMAS and VSM data

The self-field corrections and the scaling procedure of the VAMAS data are neces-

sary steps to compare transport and magnetization critical currents. Nevertheless

we need a quantitative way to measure their compatibility. At this purpose we

assume IV AMAS;L
c , hereafter referred to more briefly as IL

c , as best estimator and

suppose the VSM IV SM ;L
c to be a Gaussian observable centred in IL

c , with standard

deviation �IV SM ;L
c estimated by the propagation errors applied to eq. 3.24

�IV SM ;L
c

IV SM ;L
c

=

s✓
�mirr

mirr

◆2

+

✓
�l

l

◆2

+

✓
�F

F
+

�SSC

SC

◆2

(3.27)

The relative error in mirr is about 1%; �l/l is variable from 0.1% to 2%; �F/F

and �SSC/SSC cannot be considered independent quantity since are derived from

the same SEM image analysis. The relative error in IV SM ;L
c results in the range

from 3 to 5%.

Our statistical approach is based on the parameter t, measuring the discrep-

ancy respect to the standard deviation at a single B field value

tL(B) =
|IV SM ;L

c (B) � IL
c (B)|

�IV SM ;L
c (B)

(3.28)

Since VAMAS measurements correspond to a set of points (Bi, IL
c (Bi)), to

summarize how the compatibility between IV SM ;L
c and IL

c is spread out over the B

values, i.e. for a given L value, we look at average of t and its standard deviation.

So we define

t̄L = 1/N
NX

i

|IV SM ;L
c (Bi) � IL

c (Bi)|
�IV SM ;L

c (Bi)
(3.29)

From a global perspective, by defining t̄L, we aim to summarize the statistical

compatibility of the data obtained at di↵erent external field values B. By selecting

a mean compatibility criterion within 2�IV SM ;L
c , the following conditions must be

satisfied

t̄L  1.0 and �tL  1.0 (3.30)

We look also at the mean relative di↵erence, i.e. the average along the Bi field

values of the quantity
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rel.diffL(Bi) =
|IV SM ;L

c (Bi) � IL
c (Bi)|

IL
c (Bi)

(3.31)

We can use the previous definition to compare the analysis based on the nu-

merical or analytical shape factors. We have to underling that this comparison is

meaningful only if eq. 3.29 is calculated respect to the scaled VAMAS data, also

for the analytical model. The result is in table 3.9. According to the criterion

indicated by eq. 3.30 the two methods agree with the transport measurements

until the 10% of rolling. In the case of L15 and L20, the analytical model is incom-

patible with the transport measurements. This means that, unlike the numerical

model, the analytical one is unable to capture the di↵erences due to the defor-

mation of the bundles and their orientation with respect to the external magnetic

field. At 25% of lamination, there is an inversion such that the analytical model

becomes highly compatible with the transport measurements, while the numerical

model exceeds the 2� on average. In our opinion, this paradox is a manifestation

of the bundles merging which leads to lose the non-coupling current hypothesis

over the 20% of rolling. This results in a stronger mirr signal, as observed also

in [51]. In the case of the analytical model, the more intense signal is o↵set by the

shape factor, which remains more or less constant, see tab. 3.7. This causes the

apparent compatibility with the transport measurements scaled to the criterion

EV SM
c . On the contrary, the interpretation made by the numerical model leads to

an improved critical current, which is just an artifact, an indication of a threshold,

above the 20% of rolling, that we can’t exceed, otherwise our method cannot be

applied.

Rolling %
Numerical model Analytical model

t̄L �tL < rel.diffL > t̄L �tL < rel.diffL >

0 0.6 0.4 0.6% 0.7 0.4 1.3%
10 0.7 0.4 -0.5% 1.0 0.8 -3.4%
15 0.5 0.5 -2.1% 1.9 0.5 -7.8%
20 0.4 0.3 1.6% 1.7 0.3 -7.3%
25 2.1 0.3 7.3% 0.9 0.2 -3.5%

Table 3.9: The table provides a comprehensive overview of the compatibility between
the VSM critical currents and the VAMAS ones.
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Chapter 4

ASTRACT Part II

The second part of the ASTRACT project is devoted to design, testing and

commissioning a sample-holder (SH) to perform critical current characterization

of Nb3Sn wires at 4.2 K, in a range from 10 to 13 T, in a controlled transverse

strain condition. We should remark that the word ”strain” is a little bit abused.

As noted in the ASTRACT part I, we can’t measure directly the internal strain

state of the wire. And also the diameter deformation as defined by eq. 3.1 is not

easy to be measured in a real-time critical current measurement. The only way is

looking for a correlation between a physical observable, for example the distance

between two flanges, and the diameter contraction of the wire. For instance, the

final goal is finding a correlation with respect to the invariants of the internal

strain field defined by eq. 2.25. This kind of correlations can be achieved only

through FEM simulations. At the moment is too early to deeply go inside this

subject. Thus, this chapter will be mainly dedicated to describe the steps leading

to the experimental setup. ASTRACT part II is still a work in progress, which

required an extension of the project until to the end of 2024. The design phase

has been concluded, as well as the material procurement and the manufacturing

of all main components in our workshop. Nowadays, we are assembling the SH,

evaluating solutions to problem which could not be expected during the design

phase. In this chapter we’ll describe the sample-holder design, the choices behind

it, and we’ll try to get in touch with the assembling and testing issues.

95



CHAPTER 4. ASTRACT PART II

Effect of transverse compressive stress on the current and upper 
criticaj field of Nb3Sn 

J. W. Ekin 
Electromagnetic Technology Division. National Bureau of Standards. Boulder. Colorado 80303 

(Received 29 May 1987; accepted for publication 3 September 1987) 

A large reversible degradation of the critical current of multifilamentary Nb3Sn 
superconductors has been observed when uniaxial compressive stress is applied transverse to 
the conductor axis at 4 K. In bronze-process multifilamentary Nb3Sn, the onset of significant 
degradation occurs at about 50 MPa. In an applied field of 10 T, the magnitude of the effect is 
about seven times larger for transverse stress than for stress applied along the conductor axis. 
The transverse stress effect increases with magnetic field and is associated with a reversible 
degradation of the upper critical field. The intrinsic effect of transverse stress on the upper 
critical field is about ten times greater than for axial stress. Although axial stresses on the 
Nb3Sn filaments are greater than transverse stresses in most applications, the transverse stress 
effect will need to be considered in the internal design of large magnets because of the greater 
sensitivity of Nb3Sn to transverse stress. It is shown that the transverse stress from the Lorentz 
force on the conductor is proportional to conductor thickness. This will place limits on 
conductor dimensions and the spacing between distributed reinforcement in large magnets. 
The effect may be particularly significant in cabled conductors where large transverse stress 
concentrations can occur at strand crossover points. 

I. INTRODUCTiON 
A large data base has been obtained for the effect ofaxial 

tensile stress and strain on the critical current of A 15 super-
conductors. I However, little is known about the effects of 
stress components other than the axial component. In prac-
tical superconducting magnets, however, the superconduc-
tor is subjected to three-dimensional stresses. Typically, the 
transverse component of stress is large and compressive. For 
example, in solenoidal magnets the transverse component 
arises from hoop stress which compresses the magnet wind-
ing radially, and in dipole magnets it arises from Lorentz 
force compression of the magnet windings at the midplane. 
This article reports the first measurements of the effect of 
transverse stress on the critical current and upper critical 
field of Nb3Sn. 2 

II. EXPERIMENT 
A. Apparatus 

To obtain data on the electrical effects of the transverse 
component of stress, an apparatus was designed and built to 
simultaneously apply mutually perpendicular components 
of current, magnetic field, and transverse compressive stress 
to a single-strand superconductor in a 4-K liquid helium 
bath. Current was supplied by a 900-A battery supply, mag-
netic field by a 100T split-pair magnet, and compressive 
stress by a servohydraulic testing system. 

Considerable care was used to ensure drag-free stress 
application as well as uniform stress over the test section 
between the voltage taps. As shown in Fig. 1, the sample was 
compressed between two stainless-steel anvil heads. One of 
the anvil heads was fixed. The other was designed to pivot so 

4829 J. Appl. Phys. 62 (12). 15 December 1987 

that it conforms to the flat surface of the first anvil head. This 
ensures that stress is applied uniformly along the sample 
length. The edges of the anvil heads were tapered and round-
ed in order to avoid any stress concentration where the sam-
ple enters and exits the pressure section. Voltage taps were 
soldered to the sample within the compressed region so that 
the electric field was measured only over the region where 
stress was uniformly applied to the test specimen. 

B. Sample characteristics 
These results were obtained on a Nb3Sn strand material 

used to make internally-cooled cabled superconductors for 
several large magnet systems. Sample characteristics are giv-
en in Table 1. Two types of samples of the same bronze-
process starting material were tested, one with a round cross 
section of diameter 0.69 mm, the other flattened before reac-
tion to a rectangular shape 0.38XO.76 mm2

• The samples 
were composed of 2869 filaments, each about 3.8 J.Lm in di-

Rounded 

Solder 

Copper Current 
Contact F 

Pivoting Anvil Head 

Sample Reacted 
to Shape 

Fixed Anvil Head 

FIG. 1. Schematic view oftransverse stress test apparatus showing mutual-
ly perpendicular magnetic field. current. and stress. Anvil edges are tapered 
and rounded to avoid stress concentration. Voltage taps are attached to the 
side of the sample within the uniform compression region. 
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Figure 4.1: A schematic view of the stress test apparatus developed by Ekin in the 1987

4.1 A brief look in the past

We have seen in section 2.3.4 the WALTER spring modified by the Senatore’s

group in Geneve University. Before it, the pioneristic study about the e↵ect

of transverse stress on Nb3Sn wires is represented by the Ekin’s work on the

subject [21]. In fig. 4.1 we can see the experimental setup chosen by him.

Essentially Ekin developed a U-shape setup where the anvil exerts a uniform

stress on the sample along fews centimeters. We note that the critical current is

characterized versus the applied stress, not transverse strain.

Another example of a comprehensive study about this subjects is the Luisa

Chiesa’s PhD Thesis [17]. In that work di↵erent sample-holder are manufactured

to study the e↵ects of transverse stress a↵ecting superconducting cables or wires.

A very interesting geometry showed in the Chiesa’s work is the hairpin model.

It’s a U-shape geometry where forces are applied on the long lateral straight part

of the sample, in a background field generated by a split-coil magnet, fig.4.2. This

configuration is particularly interesting because it was used to measure a single

Nb3Sn strand, not only to characterize Ic versus the transverse stress, but also

to evaluate its mechanical properties like the transverse Young’s modulus. Thus,

this means that the Author was able to measure the transverse displacement of

the test sample against the applied force per unit length. To our purpose it’s

important to recall more details about this experiment, so we deserve a section to

describe its geometry and results.
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4.3 Sample area structure
 

The split magnet system creates a magnetic field perpendicular to the vertical 
direction and gives the flexibility to use a hairpin sample with legs that connect to the 
current leads without having to bend the sample out of its plane (Fig. 4.5). The field and 
current direction create a natural load in the same direction as the mechanically applied 
load applied. 

-I
+I

B

Vertical force applied with 
linear actuator 

Moving wedge, 
pulled vertically 

Hairpin Nb3Sn cable 

Cable holder 

Pressing piece 
Applied force 
on the cable 

Transverse load caused by the vertical 
displacement of the wedge which 
displaces transversally the pressing piece 
and the cable  

Fig. 4.5 schematic view of the sample holder and how 
it is inserted inside the split magnet. 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 98Figure 4.2: The scheme shows the hairpin sample holder structure and the generation
of the applied load on samples. The text upside the picture is a quote from the Author’s
thesis and is referencing to fig. 4.5, the split coil representation.
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4.1.1 The hairpin setup at NHMFL in 2007

In this configuration the applied load is generated by the vertical movement of

segmented wedges. Next to them there are two matching pieces that are con-

strained vertically and can only slide horizontally. They touch two pressing pieces

underneath which the sample is located, thus the sample is pressed in between the

holder and the pressing piece. The vertical force is created by a linear actuator

outside the dewar. The force is measured by a load cell close to the actuator.

We do not enter in the details about the conversion of the vertical force into the

acting force on the sample, essentially they are based on analytical considerations

about the force distribution. The sample holder is made by TiAlV to match as

much as possible the Nb3Sn thermal contraction. The instrumentation is made

with voltage taps, temperature sensors, Hall probes and strain-gauges to monitor

the vertical displacement of the wedges. From the vertical displacement raw data,

with some geometrical consideration, (see Chapter 3 and 4 in [17]), it’s possible

to achieve the horizontal displacement and the transverse Young’s modulus of the

wire. With this setup they could measure cables but also a single strand, which is

the most interesting case for us. The single strand was an Oxford, Nb3Sn Internal

Tin, with a diameter of 0.82 mm and Jc at 12 T and 4.2 K of around 1014 A/mm2.

Pulling up the wedges with a vertical force up to 1500 N they could exert up to

8600 N of horizontal force over the 150 mm of sample length. The mechanical

system was acting as force multiplier. So, the first result in terms of critical cur-

rent degradation is depicted in fig. 4.3a. The normalized critical current shows a

sign of degradation approaching an applied force of around 40 kN/m. In terms of

transverse displacement, fig. 4.3b, this correspond to 70 µm on a diameter of 0.82

mm. The resulting transverse Young’s module is reported in fig. 4.3c. We note

that the plots correlate the y-axis to force per unit length, not to applied stress.

As pointed out by the Author, the evaluation of the applied stress is generally

based on the acting force over the e↵ective surface

� =
Facting

Dstrand lpressed
(4.1)

This is a rule of thumb leading to an underestimation of the real stress or, vice-

versa, leading to an overestimation of the force you need to have a certain stress

value. In the Chiesa’s work the main tool to face this approximation is the an-
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Fig. 4.18 Normalized critical current as a function of force per unit length for the single strand 
sample. 
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(a) Normalized critical current as a function of force per
unit length for the single strand sample.

Those data are the ones that will be used for the analysis in Chapter 5 in which the 
rce will be used to estimate the real area of contacts for each sample. In addition, in the 

modeling it will be required to set some parameters obtained from the measured 
isplacements. The displacements for the three different samples are shown in           

Figs. 4.23-4.25.  
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(b) Transverse displacement as a function of force per unit
length for the single strand sample.

 
 

 

 
 
 
 
Fig. 4.26 Young’s modulus measurements as a function of force per unit length for the single 
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Fig. 4.27 Young’s modulus measurements as a function of force per unit length for the 3-strand 
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(c) Transverse Young’s module as a function of force per
unit length for the single strand sample.

Figure 4.3: Main results from [17] about the single strand measurements with the hairpin
sample holder.
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CHAPTER 4. ASTRACT PART II

alytical approach through the Hertzian contact theory applied in three di↵erent

conditions. We are interested just in one of them, the case about a cylinder pressed

between two flat plates, so briefly we’ll summarize its key points. Further details

can be found in the Appendix III of [17].

4.1.2 Hertzian contact of a cylinder between two flat plates

The origin of contact mechanics is due to Hertz in 1892. To delve in more recent

development of the subject, one could refer to Timoshenko in [30]. Let us start

directly with the assumptions of the theory, which can be summarized in the fol-

lowing conditions about the contact characteristic:

In order for this simplification to be justifiable, the contact area must satisfy two 
conditions: 

 
(i) it must be small compared to the dimensions of each body so that the local stress 

does not influence the general behavior of the solid  
 
(ii) it must be small compared to the relative radii of curvature of the surfaces so that 

the strains in the contact region are sufficiently small to lie within the linear theory of 
elasticity. 

 
Additionally, the two surfaces are assumed to be frictionless. Referring to Fig. 5.2, if 

the significant dimension of the contact area is 2l and the relative radius of curvature R, 
the significant radii of each body R1 and R2 and their length and depth L, the assumptions 
made in the Hertz theory can be summarized as: 

 
(i) the surfaces are continuous and non conforming: 2l << R 
(ii) the strains are small: 2l << R 
(iii) each solid can be considered as an elastic half space: 2l << R1,2, 2l << L 
(iv) the surfaces are frictionless 

 
 
 
 
 
Fig. 5.2 Schematic view of two long cylinders in contact. 
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Figure 4.4: Schematic view of two long
cylinders in contact.

1. it must be small compared to the

dimensions of each body so that

the local stress does not influence

the general behavior of the solid

2. it must be small compared to the

relative radii of curvature of the

surfaces so that the strains in

the contact region are su�ciently

small to lie within the linear the-

ory of elasticity.

3. the two surfaces are assumed to

be frictionless

Referring to fig. 4.4, if the significant

dimension of the contact area is 2l and the relative radius of curvature R, the

significant radii of each body R1 and R2 and their length and depth L, the as-

sumptions made in the Hertz theory can be summarized as:

• the surfaces are continuous and non conforming: 2l << R

• the strains are small: 2l << R
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Two cases are relevant for the analysis of our data: the case of a cylinder between two 
plates, resembling the single strand sample on Fig. 5.3; and the case of crossing cylinders, 
resembling the general contacts between strands in a cable on Fig. 5.4. More details on 
the equations derivation can be found in Appendix III. The strategy is to use the general 
equations to estimate the effective contact areas in the tested cables and show that under 
very reasonable assumption all the samples behaved similarly with respect to the change 
in critical current as a function of load.  
 

(i) Infinite cylinder (single strand) 
 
The single strand sample (with radius a) tested resembles a case in which a long 

cylinder is pressed in between two flat plates or two solids with radius much bigger that 
the single strand diameter, as shown in Fig. 5.3.  

 
Fig. 5.3 Cylinder in contact with two solids. The contact pressure distribution developed in the 
cylinder is shown in the figure and is used to estimate the contact width 2l1, 2l2.  

 
The compressive load per unit axial length Fl (N/m) gives rise to a Hertzian 

distribution of pressure p given by Eq. 5.6: 
 

21

2

2
1

2
/

ii

l
l l

x
l
F

p ¸
¸
¹

·
¨
¨
©

§
−

⋅
⋅

=
S

                                       

(5.6) 
 
where the semi-contact width li is given by Eq. 5.7 (1/Req,i  = 1/a+1/Ri given that B is zero 
in Eqs. 5.3-5.5): 
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Figure 4.5: Cylinder in contact with two solids. The contact pressure distribution
developed in the cylinder is shown in the figure and is used to estimate the contact
width 2l1, 2l2.

• each solid can be considered as an elastic half space: 2l << R1,2, 2l << L

• the surfaces are frictionless

The case of a cylinder of radius a between two plates can be represented as in

fig. 4.5. We adapt the general formulas reported in [17] making the following

assumptions: the plates are planar, R1,2 ! 1, and made by the same material,

E1 = E2; the cylinder and the plates have the same Poisson’s coe�cient, ⌫ =

⌫1 = ⌫2; E is the cylinder Young module and F is load applied per unit lenght.

By this way we have the equation fitting our design which will be explained in

the upcoming section. This tuning of the equations doesn’t change the final result

we are going to learn from the Chiesa’s work. As depicted in fig. 4.5 the core

of the Hertzian theory is the pressure contact profile acting on the points O1

and O2. The basic assumption is that this pressure has a parabolic profile. The

consequences are the following:

• Given a compressive load per unit length F (kN/m) the semi-contact width

l is

l2 =
4Fa

⇡
(1 � ⌫2)

E1 + E

E1E
(4.2)
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• The total displacement of the cylinder diameter along the vertical axis is

� = 2F
(1 � ⌫2)

⇡E

✓
2ln

✓
4a

l

◆
� 1

◆
(4.3)

• The stress acting in points O1 and O2 is

� =
F

2l
(4.4)

Thanks to the Hertzian contact theory the Author in [17] was able to achieve a

more realistic relation between Ic and the applied stress, see fig. 4.6, with respect

to the standard choice to evaluate the stress as force divided by the e↵ective

surface (Nominal pressure). In the plot there are curves concerning three di↵erent

possibilities in the contact topology, nevertheless we can see that the irreversible

stress is approaching values close to 200 MPa. This is an important result that

will be discovered again, for example in [60], more years later.

Fig. 5.7 shows the displacement of a single strand (0.82 mm in diameter) for the three 
different pressing surfaces configuration calculated using Eq. 5.10. The calculated 
displacements are compared to the experimental results. The agreement is good at low 
load and less good at high load as expected from having disregarded non-elastic behavior 
and the limitation of li being much less than the radius of the strand. 

In Fig. 5.7 the concave surface case shows better fitting to the experimental results 
and it is the more appropriate to describe the experimental setup but the precise 
dimensions are unknown so that there is some uncertainty on the results. 

When the force per unit length Fl [N/m] is applied to a single strand, the effective 
contact pressure pl [Pa] is given using Eq. 5.16: 

 

i

l
l l

F
p

2
=                                                            (5.16) 

where li is l1 or l2. 
Fig. 5.8 shows the experimental results of the normalized critical current plotted as a 

function of the contact pressure calculated with Eq. 5.16. As mentioned earlier, the 
pressure applied has been commonly evaluated as the ratio of the force per unit length 
divided by the diameter of the strand. The conventional averaged nominal pressure 
differs from the contact pressure evaluated using the width of the contact area described 
above. In Fig. 5.8 the normalized critical current is also plotted for the conventional 
pressure. The degradation of the single strand starts at contact pressures greater than 105 
MPa in contrast with the case of nominal pressure where the degradation starts at around 
40 MPa. 
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Fig. 5.8 Single strand results: nominal pressure and effective contact pressure approaches. 
 

From Fig. 8 it can be seen that the three cases are relatively different. Considering the 
uncertainty on the machining of pressing pieces for the single strand the analysis results 
are contained between the concave case and the flat plate case. The experimental setup 
was not optimized for a single strand sample but for sub-cables. The flexibility of the 
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(a) Single strand results: nominal pressure and
e↵ective contact pressure for di↵erent contact
types.

Using Eqs. 5.7 and 5.10, the transverse displacement measured in the experiments can 
be compared to the one evaluated numerically as show in Fig. 5.6-5.7. 

Fig. 5.6 shows the contact width 2l for the three different cases. The case with convex 
and concave surfaces are evaluated with radii that are double the radius a of the strand. 
The other parameters used in the analysis are: 

E = 0.95 GPa Strand Young’s modulus and E1=E2=100GPa matching pieces Young’s 
modulus. 
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Fig. 5.6 Contact width 2l for the three different cases considered. Flat plate Ri = ∞, convex 
surface Ri = 2a and concave surface Ri = -2a. 
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Fig. 5.7 Displacement of a single strand, 0.82 mm in diameter. Comparison between 
measurements and numerical evaluations. The agreement is good at low load and less good at 
high load as expected from having disregarded non-elastic behavior in the model. 
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(b) Displacement of a single strand,
0.82 mm in diameter. Comparison
between measurements and numerical
evaluations.

Figure 4.6: The main Chiesa’s result for a single strand applying the Hertzian contact
equations. The parameter used are: E = 0.95 GPa strand Young’s module; E1 = E2 =
100 GPa pressing plate Young’s module; ⌫ = 0.3

In terms of diameter displacement, fig. 4.6b, the Hertzian theory show a good

agreement with the experimental measurements at low load, where also the three

type of contact converge on the same curve. At high load the agreement is lost,

probably because the model is not able to account the non-elastic behaviour.
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About this point we note that the transverse Young Module’s of the strand is a

fitting parameter. Quoting the Author:

In this analysis, Young’s modulus of a strand for a transverse load

was used as fitting parameter to analyze the experimental displacement

data. For the single strand data, the Young’s modulus value of E =

0.95 GPa was selected to obtain the best fit. On the other hand, the

larger value of about E = 4 GPa gave better fitting for the displace-

ment data of the 3-strand and the 45-strand samples. It is di�cult

to determine the absolute values of the transverse Young’s modulus of

a strand from the present experiments since the experiment itself was

not designed to measure Young’s modulus. Those measurements would

require a dedicated experiment using an absolute method to determine

the displacement-force curves. In the present experiment, the Young’s

modulus values come as extra measurements with little e↵ort and o↵er

insight on the mechanical behavior of the di↵erent samples.

The transverse Young’s modulus of a Nb3Sn strand is a necessary input to ap-

ply the equations based on the Hertzian contact. In 2023, Vallone et al. suggested

in [67] that elasto-plastic models may be more accurate in interpreting measure-

ments of mechanical properties of Nb3Sn cable stacks. In this regard, they propose

an average value of the transverse Young’s modulus for a Rutherford cable of ap-

proximately 26 GPa at 4.5 K (47 GPa at 300 K). Intuitively, we can imagine that

the RRP Nb3Sn wire has a transverse Young’s modulus lower than the longitu-

dinal one, given that the presence of voids in the cores may confer lower rigidity

in the transverse direction. Vallone also showed in [68] how a transverse Young’s

modulus value of 20 GPa may better describe the observed mechanical behavior

in MQXF short models. Furthermore, complicating the picture even further, the

strands in the cable are twisted, so the geometry and heterogeneity of such sys-

tem would lead one to question whether the same concept of Young’s modulus

is directly applicable. However, if we want to employ Hertzian contact theory

to estimate the transverse deformation that we will impose, we need to delimit

the possible values of the Young’s modulus of the strand. For this purpose, in a

conservative manner, the previous considerations can help us to consider values

in the range between 1 and 40 GPa.
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The Chiesa’s work is very impressive. To our knowledge is the first study, and

maybe the only one, attempting to measure the transverse displacement during

a critical current measurement of a Nb3Sn strand. However, there is not a direct

correlation between this two data. In our opinion it deserved to be mentioned

in the spirit of the ASTRACT project, even because it is a source of important

data to use as reference values in the development of our sample-holder. From

Chiesa’s work, we can understand how to use the Hertzian contact formula to

estimate the distance range we should measure in our setup. What is missing is

the a priori knowledge of the wire’s transverse Young’s modulus. Therefore, a

sensitivity analysis will be necessary.
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