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A B S T R A C T

Compliant mechanisms with complex hybrid configurations have been designed to meet the requirements of
specific applications demanding high performance. Kinetostatic analysis, fundamental at the early stage of
design, can become difficult for compliant systems characterized by series and parallel substructures. In the
present paper, the ellipse of elasticity method is implemented for the analysis of a compliant mechanism with
hybrid topology. Firstly, the ellipses associated to the different flexure hinges, characterized by uniform or
non-uniform cross-sections, and by constant or variable initial curvature, are determined. Then, the unique
ellipse representing the compliant mechanism is obtained by means of series and parallel compositions. By
exploiting the antiprojective polarity properties of the ellipse, the kinetostatic analysis of the compliant system
is reduced to a geometric problem with a straightforward solution. Linear and nonlinear finite element analyses
and experimental tests are performed to verify the theoretical results.
1. Introduction

Compliant mechanisms, through the deflections of flexible elements,
transmit force and motion avoiding wear, friction, and backlash. Be-
cause ot these advantages, compliant systems have been implemented
in a variety of scientific and industrial fields (Howell et al., 2013).
Many applications can be found in precision engineering (Wang et al.,
2021; Wu and Xu, 2018), optics (Li et al., 2017; Zhao et al., 2020),
MEMS (Saito et al., 2016; Hao and Zhu, 2019), and robotics (Bilancia
et al., 2021b; Morales Bieze et al., 2020). Mechanical applications
include constant-force mechanisms (Wang and Xu, 2018; Bilancia and
Berselli, 2020), compliant inverters (Huang et al., 2014) and ampli-
fiers (Xu and Li, 2011), compliant joints (Li and Hao, 2022) and
shells (Radaelli and Herder, 2017), grippers (Verotti et al., 2017; Ali
and Shimoda, 2023), multi-stable (Santer and Pellegrino, 2008; Chen
et al., 2023) and origami (Lang et al., 2018) devices.

Stiffness, range of motion, or, more in general, application-specific
kinetostatic requirements (Djourachkovitch et al., 2023), led to the
design of systems composed of series and/or parallel arrangements of
flexible and rigid elements, often resulting in complex hybrid topolo-
gies (Chen et al., 2016; Zhu et al., 2018b). Considering also the ge-
ometric profile variety of the flexure hinges and beams (Bilancia and
Berselli, 2021), the kinetostatic analysis of a compliant mechanism can
become a challenging task. To deal with this issue, many strategies
have been proposed for the solution of problems characterized by
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linear deflections or geometric nonlinearities (Cammarata et al., 2016;
Bilancia et al., 2021a; Cao et al., 2023).

In the following, the methods proposed for the small deflections case
are briefly recalled, whereas insights on large deflections analysis, such
as elliptic integral solutions (Zhang and Chen, 2013; Cammarata et al.,
2018), pseudo-rigid body models (Jin et al., 2020), or beam constraint
models (Awtar et al., 2006; Awtar and Sen, 2010; Chen et al., 2019),
can be found in Hao et al. (2016).

Finite element analysis has been performed for a variety of complex-
topology mechanisms (Friedrich et al., 2014). However, its implemen-
tation could be time-consuming and results depend on the number
of elements (Donaldson, 2008). Elastic beam theory has been exten-
sively applied for the analysis of compliant systems, as mechanical
amplifiers (Ling et al., 2016) and parallel guiding mechanisms (Luo
et al., 2015). However, the elastic line solution can become complicated
for several geometries, loads, or boundary conditions (Shooshtari and
Khajavi, 2010; Balduzzi et al., 2016). Castigliano’s theorems have been
used effectively in the analysis of non-uniform flexures (Lobontiu et al.,
2002, 2000) and of different compliant systems, as grasping (Kurita
et al., 2012; Chen et al., 2016), nanopositioning (Kenton and Leang,
2012; Yong and Mohemani, 2013), and amplification (Ueda et al.,
2010; Schultz and Ueda, 2013) mechanisms. Even though analytical
formulations can be obtained, the solution of the energy equations can
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get difficult in case of complex geometries or configurations (Ling et al.,
2020). The virtual work principle has been also used to determine the
compliance models of various flexures (Chen et al., 2009; Li et al.,
2013).

The compliance matrix method, not requiring the calculus of the
internal forces, proved to be suitable for the analysis of compliant
mechanisms with series and parallel topologies (Su et al., 2012; Lobon-
tiu, 2014), such as micro positioning stages (Qu et al., 2016) and
displacement amplifiers (Dong et al., 2018). In this approach, flexures
are modeled as kinetostatic functions arranged according to network
principles. However, the modeling procedure becomes complicated in
case of multiple applied forces (Ling et al., 2020; Arredondo-Soto
et al., 2022) and the complete displacements evaluation needs further
kinematic analyses (Zhu et al., 2018a).

A semi-analytical matrix displacement approach, based on the ma-
trix displacement and on the transfer matrix methods, has been pro-
posed for the modeling of compliant mechanisms with serial–parallel
substructures (Ling et al., 2018). The method implementation requires
the solution of the equilibrium equations at the nodes.

To avoid the solution of the equilibrium equations, an energy ap-
proach based on the screw theory was presented in Wu et al. (2019).
However, due to the large number of elements, a condensed approach
was further presented, based on energy conservation law, equilibrium
equations of nodal forces, and transfer matrix approach (Wu et al.,
2022).

Regarding the geometrical interpretation of compliance, the center
of elasticity and force-compliant axes were introduced in Lipkin and
Patterson (1992a,b). In case of planar deflections, the center of elastic-
ity has been considered to develop an intrinsic geometrical framework
based on two conic sections, that are the single-point compliance
ellipse and the single-point stiffness ellipse. These ellipses require the
definition of two associated coupling vectors, also depending on the
choice of a reference point (Krishnan et al., 2010).

Recently, the ellipse of elasticity theory was applied to the kine-
tostatic analysis of the compliant mechanisms (Sorgonà et al., 2023).
With respect to the geometrical framework presented in Krishnan et al.
(2010), this model is based on a unique conic section called ellipse of
lasticity. The ellipse of elasticity associated to an elastic suspension
epresents the antiprojective polarity transformation between poles of
isplacements and lines of action of forces that cause the deflection.
herefore, it is not limited to the single-point condition.

The main advantage of the ellipse of elasticity approach consists of
ransforming the deflection analysis, which is generally an analytical
r a numerical problem, into a geometric problem. Furthermore, in
ddition of reducing to one the number of the involved geometric
ntities, the model no longer needs a reference point to be chosen.

More specifically, the first step of the method consists of deter-
ining the ellipse of elasticity corresponding to each flexure of the

ompliant mechanism. By resorting to the geometry of masses theory,
his step can be readily performed for complex flexible elements, even
f characterized by variable curvature, variable cross-section, or, more
n general, variable flexural rigidity. The second step consists of the
eduction of the ellipses by series and parallel compositions. Solutions
f balance or energy equations are not required, because static balance
nd geometric congruence are implicitly taken into account in the
ompositions.

The procedure leads to the definition of a unique ellipse not depen-
ent on the load conditions. This conic defines, for every applied load,
he position of the pole of the displacements of the end-effector link
ith respect to the frame link. This relation is accomplished though a

traightforward geometric procedure.
These features make this approach suitable and particularly advan-

ageous in case of complex-topology mechanisms with multiple serial
nd parallel substructures. Since each substructure is systematically
2

educed, the ellipses’ composition leads to a geometric representation
f the whole compliant mechanism as a two-port system. This con-
ensed model embeds completely the input/output force–displacement
elations.

In this paper, the ellipse of elasticity method, previously applied to
basic-topology mechanism, is fully exploited for the straightforward

nalysis of a hybrid compliant mechanism, characterized by series
nd parallel substructures. More specifically, a compliant mechanism
omposed of two closed chains and one open chain is considered. The
lastic elements of the substructures have different geometric layouts,
ith uniform or non-uniform cross-section, and axis with various cur-
ature. In particular, a flexure with parabolic axis is introduced and
ts corresponding ellipse is defined resorting to closed-form solutions.
inear and nonlinear finite element simulations and an experimental
ampaign are carried out to verify the theoretical results and to validate
he implemented procedure.

. Problem statement

To facilitate the synthesis or the analysis procedures, a compli-
nt mechanism can be generally associated to a pseudo-rigid body
odel (PRBM), according to the rigid-body replacement method (How-

ll et al., 2013). In turn, a rigid-body mechanism can be represented by
ts corresponding graph, according to graph theory (Tsai, 2000). Fig. 1
hows a generic compliant mechanism (a), its corresponding PRBM (b),
nd the graph representation of the PRBM (c).

PRBMs can be composed of arrangements of open and closed kine-
atic chains, resulting in complex hybrid topologies. In these cases,

he kinetostatic analysis of the corresponding compliant mechanism
an become challenging. However, if the PRBM can be represented by
series–parallel graph (Bodirsky et al., 2007), the ellipse of elasticity

heory can be implemented to transform the analysis into a geometrical
roblem with a straightforward solution. According to this theory,
ach flexible element can be associated to an ellipse of elasticity that
epresents its kinetostatic behavior. Then, the ellipses can be composed,
hrough series and parallel reductions, into a unique ellipse that repre-
ents the compliant mechanism as one elastic suspension connecting
he end-effector link to the frame link.

Once this ellipse is determined, the kinetostatic analysis can be per-
ormed by exploiting the antiprojective polarity properties of ellipses.

. Theoretical background

Every elastic suspension connecting two rigid bodies, composed of
single element or of a complex arrangement of flexible and rigid

lements, can be represented by a geometric entity called ellipse of
elasticity (Culmann, 1875; Ritter, 1888). With reference to Fig. 2, the
application of a force 𝐑𝑖 or 𝐑𝑗 to the bodies 𝑖 or 𝑗, respectively,
determines the deformation of the suspension 𝑒𝑗𝑖 and a consequent
relative displacement of the rigid bodies. The ellipse of elasticity 𝑗𝑖,
with center 𝐶, establishes a bijective correspondence between the line
of action 𝑝 of the applied force and the resulting pole of displacements
𝑗𝑖. More specifically, this correspondence is defined as antiprojective
polarity transformation between antipolars, which are the lines of action,
and antipoles, which are the poles of displacements. Since this trans-
formation is defined in the projective plane PR2, the correspondence
olds also for the points at infinity and the line at infinity. As a
onsequence, pure translations and pure moments can be considered
n the transformation.

.1. Antiprojective polarity

The fundamental properties of the antiprojective polarity trans-
ormation are represented in 3. Different cases can be considered
epending on the position of the line of action with respect to the
llipse.
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Fig. 1. Hybrid compliant mechanism (a), PRBM (b), and graph (c).
Fig. 2. Ellipse of elasticity 𝑗𝑖 associated to the elastic suspension 𝑒𝑗𝑖 connecting the
rigid bodies 𝑖 and 𝑗, line of action 𝑝 and pole of displacements 𝑃𝑗𝑖.

(a) The corresponding antipole 𝑃𝑐 of a line of action 𝑝𝑐 , passing
through the center 𝐶 of ellipse, lies at infinity. Therefore, the
relative displacement of the rigid bodies is a pure translation
(Fig. 3(a)). The line 𝑝𝑐 is defined as a diameter of the ellipse;

(b) the corresponding antipole 𝑃𝑠 of a secant line of action 𝑝𝑠 lies
outside of the ellipse (Fig. 3(b));

(c) the corresponding antipole 𝑃𝑡 of a tangent line of action 𝑝𝑡 lies on
the ellipse and it is the symmetric of the tangent point Fig. 3(c);

(d) the corresponding antipole 𝑃𝑒 of an exterior line of action, 𝑝𝑒, lies
inside the ellipse (Fig. 3(d));

(e) the corresponding antipole of the line of action at infinity, 𝑝∞,
is the ellipse center 𝐶 (Fig. 3(e)). Therefore, the application of a
pure moment determines a rotation about the ellipse center.

In the previous cases, parallel lines of action have been considered.
Because of the antiprojective polarity properties, the antipoles of par-
allel lines of action lie on the same line 𝑞𝑐 , that is a diameter of the
ellipse. The generic line of action 𝑝, with antipole 𝑃 , intersects 𝑞𝑐 in 𝑃 ′

determined as

𝐶𝑃 𝐶𝑃 ′ = 𝐶𝑃𝑡

2
. (1)

The diameters 𝑝𝑐 and 𝑞𝑐 define a pair of conjugate diameters. It is
worth noting that every two ellipses have at least one pair of conjugate
diameters in common (Glaeser et al., 2016). In fact, with reference to
3

Fig. 3(f), the two concentric non-similar ellipses intersect in the points
𝐴, 𝐵, 𝐶, and 𝐷, which define a parallelogram. The common conjugate
diameters 𝑝𝑐 and 𝑞𝑐 are parallel to the sides 𝐵𝐶, 𝐴𝐷, and to the sides
𝐴𝐵, 𝐶𝐷, respectively. If the ellipses are similar, any pair of conjugate
diameters is common.

3.2. Kinetostatic modeling

The compliance behavior of the elastic suspension is represented by
the elastic weight 𝑤, defined through the relation

𝜃 = 𝑤𝑀 , (2)

where 𝜃 is the relative rotation of the bodies and 𝑀 is the moment
evaluated at the center of the ellipse. The elastic weight determines
also the translational compliances of the suspension. In fact, it can be
demonstrated that

𝜆𝑎 = 𝑤 𝑏2, 𝜆𝑏 = 𝑤 𝑎2 , (3)

where 𝜆𝑎 and 𝜆𝑏 represent the translation compliances along the direc-
tions of the ellipse axes.

The detailed evaluation of the geometric and elastostatic parameters
of the ellipse, that are the position of its center 𝐶, the orientation 𝛼 and
the lengths of its semi-axes 𝑎 and 𝑏, and the elastic weight 𝑤, is reported
in Section 3.3.

3.3. Determination of the ellipse of elasticity

The ellipse of elasticity of the generic flexure, modeled as an elastic
beam with variable curvature and variable cross-section, corresponds
to the central ellipse of inertia of its compliance distribution (Sorgonà
et al., 2023). As a consequence, the procedure for determining the
ellipse of elasticity is analogous to the determination of the ellipse of
inertia, on the condition that the mass distribution of the element is
substituted by its compliance distribution.

A generic initially-curved flexure, fixed at the origin of the reference
frame {𝑂𝑥𝑦} having axis length 𝑙, is shown in Fig. 4. The elastic line is
described by means of the arc-length coordinate system with arc-length
parameter 𝑠 ∈ [0, 𝑙].

The compliance distribution 𝑐(𝑠) can be written as

𝑐(𝑠) = 1 , (4)

𝐸(𝑠)𝐼(𝑠)
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Fig. 3. Properties of the antiprojective polarity transformation.
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Fig. 4. Flexure nomenclature.

here 𝐸(𝑠) is the Young’s modulus and 𝐼(𝑠) is the moment of inertia
f the cross-section with respect to the bending axis. Following the
eometry of masses theory, the elastic weight is given by

= ∫

𝑙

0
𝑐(𝑠)d𝑠 , (5)

hat is the zeroth-order moment of the distribution 𝑐(𝑠). The position of
he barycenter 𝐶 of the distribution can be obtained as

𝑐 =
𝑆𝑦

𝑤
, 𝑦𝑐 =

𝑆𝑥
𝑤

, (6)

where 𝑆𝑥 and 𝑆𝑦 are the first-order moments of the distribution. In
particular, the point 𝐶 ≡ (𝑥𝑐 , 𝑦𝑐 ) is the center of the ellipse of elasticity.

The second-order moments of the compliance distribution can be
calculated with respect to a central reference frame {𝐶𝑥0𝑦0}, with
rigin in 𝐶 and axis 𝑥0 and 𝑦0 parallel to 𝑥 and 𝑦, respectively. These

moments can be arranged in a 2 × 2 symmetric matrix as

𝐒0 =
[

𝑆𝑥0𝑥0 −𝑆𝑥0𝑦0
−𝑆𝑥0𝑦0 𝑆𝑦0𝑦0

]

. (7)

The matrix 𝐒0 can be calculated also in the principal reference frame
𝐶𝜉𝜂}, rotated of the angle

= 1
2
arctan

2𝑆𝑥0𝑦0
𝑆𝑦0𝑦0 − 𝑆𝑥0𝑥0

(8)

with respect to the frame {𝐶𝑥0𝑦0}. In this case, the central second-order
oments matrix becomes

𝛼 =
[

𝑆𝜉𝜉 0
0 𝑆𝜂𝜂

]

, (9)

where 𝑆𝜉𝜉 and 𝑆𝜂𝜂 are principal second-order moments, i.e. moments
with minimum and maximum values with respect to 𝛼, respectively.

The angle 𝛼 defines the orientation of the ellipse semi-axes, whose
lengths, according to Eq. (3), can be expressed as

𝑎 =

√

S𝜂𝜂
𝑤

, 𝑏 =

√

S𝜉𝜉
𝑤

. (10)

The geometric parameters 𝑥𝑐 , 𝑦𝑐 , 𝛼, 𝑎, 𝑏, and the elastostatic pa-
ameter 𝑤, completely define the ellipse of elasticity of the elastic
lement.

.4. Series and parallel compositions of the ellipses of elasticity

Figs. 5(a) and 5(b) show the ellipses of elasticity 1 and 2 asso-
ciated to the elastic elements 𝑒1 and 𝑒2, respectively. In the case of a
series arrangement, the elastic elements connect the rigid bodies 𝑖, 𝑘,
nd 𝑗, as depicted in Fig. 5(c). In the case of a parallel arrangement,
he elastic elements connect 𝑖 and 𝑗, as depicted in Fig. 5(d). Each
igure depicts also the resultant ellipses, which are 𝛴 and 𝛱 , for the
eries and parallel arrangement, respectively. The ellipses are defined
ccording to the procedure reported in Sorgonà et al. (2023), that can
5

e summarized by the relations listed in Tables 1 and 2. a
Table 1
Definition of the ellipses corresponding to the series composition.

0th 𝑤𝛴 = 𝑤1 +𝑤2

1st 𝑤1𝐶1𝛴 = 𝑤2𝐶2𝛴

2nd 𝐒0,𝛴 = 𝐒0,1 + 𝐒0,2 +

[

0 0

0 𝑤1𝐶1𝛴
2

+𝑤2𝐶2𝛴
2

]

Table 2
Definition of the ellipses corresponding to the parallel composition.

0th 1
𝑤𝛱

= 1
𝑤1

(

1 + 𝐶1𝑃1
2

𝑑2
𝑝1

+ 𝐶1𝑄1
2

𝑑2
𝑞1

)

+ 1
𝑤2

(

1 + 𝐶2𝑃2
2

𝑑2
𝑝2

+ 𝐶2𝑄2
2

𝑑2
𝑞2

)

1st 1
𝑤1𝑑

2
𝑞1

𝐶1𝑄1 =
1

𝑤2𝑑
2
𝑞2

𝐶2𝑄2 ,
1

𝑤1𝑑
2
𝑝1

𝐶1𝑃1 =
1

𝑤2𝑑
2
𝑝2

𝐶2𝑃2

2nd 𝐒−10,𝛱 =

⎡

⎢

⎢

⎢

⎣

𝑘𝑎 cot2 𝑝𝑞 +
𝑘𝑏

sin2 𝑝𝑞
𝑘𝑎 cot 𝑝𝑞

𝑘𝑎 cot 𝑝𝑞 𝑘𝑎

⎤

⎥

⎥

⎥

⎦

(∗)

(*) 𝑘𝑎 =
(

1
𝑤1𝑑

2
𝑝1

+ 1
𝑤2𝑑

2
𝑝2

)

𝑘𝑏 =
(

1
𝑤1𝑑

2
𝑞1

+ 1
𝑤2𝑑

2
𝑞2

)

4. Design of the hybrid compliant mechanism

The rigid-body mechanism serving as pseudo-rigid body model
is depicted in Fig. 6. From a kinematic point of view, the mecha-
nism is composed of two closed chains defining a six-bar Stephenson
mechanism, and of a two-link open chain.

The corresponding compliant mechanism, obtained by applying the
rigid-body replacement method, is shown in Fig. 7. The revolute joints
of the rigid-body mechanism are substituted with different flexures,
according to the following scheme:

∙ joints A are replaced by uniform, constant-curvature flexures.
More specifically, flexures A1 - A4 have radius 𝑟 = 13.33 mm and
subtend the angle 2𝜙 = 50◦, whereas A5 is a straight-axis flexure
with axis length 𝑙 = 9.00 mm;

∙ joints B are replaced by uniform parabolic-axis flexures with axis
equation 𝑦 = 0.075𝑥2, with 𝑥 ∈ [4.00, 15.80] mm;

∙ joints C are replaced by non-uniform straight-axis flexures. More
specifically, the variable cross-section delineates two circular pro-
files, symmetric with respect to the flexure axis, with equation
ℎ(𝑥) = ℎ0 + 2(𝑅 −

√

𝑅2 + 𝑥2), with 𝑥 ∈ [−8.00, 8.00] mm, ℎ0 =
2.00 mm, and 𝑅 = 132.83 mm.

The in-plane thickness of flexures A and B is ℎ = 1 mm, and the out-
of-plane thickness, equal for all the flexures, is 𝑏 = 10 mm. The pose
f the flexures is defined by the data listed in Table 3, considering
he reference frame {𝑂𝑥𝑦} introduced in Fig. 7. A homogeneous and
sotropic material is considered for the theoretical analysis. A Young’s
odulus 𝐸 = 2945 MPa is imposed, according to the material properties

f the prototype fabricated for the experimental campaign, as described
n Section 7.

. Application of the ellipse of elasticity theory

To perform the kinetostatic analysis of the compliant mechanism,
he ellipses of the elasticity of each flexure must be firstly determined.
hen, the ellipse associated to the whole mechanism can be evaluated
s a composition of the previous ones.

.1. Ellipses of elasticity of the single flexures

The flexible elements used in the rigid-body replacement step are
epicted in Table 4. For each element, the table lists the geometric
arameters and the relations used to define the corresponding ellipse,

ccording to the procedure described in Section 3.3. Further details
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Fig. 5. Definition of the ellipses corresponding to the series and parallel composition.
Fig. 6. Hybrid rigid-body mechanism.

regarding the uniform flexure with straight and parabolic axis are
reported in Appendix A and Appendix B, respectively.

The determined ellipses are shown in Fig. 8, whereas the numerical
values of center coordinates, semi-axes lengths, orientations, and elastic
weights, are listed in Table 5.

5.2. Ellipse of elasticity of the compliant mechanism

The ellipse of elasticity associated to the hybrid compliant mech-
anism can be defined by implementing a set of series and parallel
6

Fig. 7. Hybrid compliant mechanism.

compositions. Each composition results in a kinetostatic equivalent
compliant system with simplified topology.

With reference to Figs. 6 and 7, the end-effector link 8 is connected
to the frame 1 by means of several open and closed chains. The first
open chain, 𝑐1, is composed of bodies 8,7, 5 and flexures C2 and C1.
Body 5 is connected to the frame 1 by means of the open chain 𝑐2
composed of bodies 5, 6, 1 and flexures A4 and B2. Body 5 is also
connected to body 3 by means of the open chain 𝑐 composed of bodies
3
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Table 3
Geometric parameters of the beam elements.

Point coordinates Orientation
𝑥 (mm) 𝑦 (mm) (rad)

Center Symmetry axis

A1 12.73 −90.00 3.14
A2 −58.92 −26.67 0.00
A3 −46.19 13.93 1.57
A4 46.19 −13.93 −1.57

Midpoint Axis

A5 0.00 0.00 0.00
C1 46.19 26.67 1.57
C2 0.00 53.33 0.79

Vertex Axis

B1 −106.48 −7.37 1.57
B2 106.48 7.37 −1.57

Fig. 8. Ellipses of elasticity relative to the elastic elements.

5, 3, and flexure A5. Body 3 is connected to the frame 1 by means of
two open chains in parallel arrangement. The first one, 𝑐4, is composed
of bodies 3, 2, 1, and flexures A3, B1. The second one, 𝑐5, is composed
of bodies 3, 4, 1, and flexures A2 and A1.

The first step consists of the series composition relative to the chains
𝑐1, 𝑐2, 𝑐4, and 𝑐5, that lead to the ellipses 𝛴1

, 𝛴2
, 𝛴4

, and 𝛴5
,

respectively. The second step consists of the parallel composition of
the ellipses 𝛴4

and 𝛴5
, resulting in 𝛱1

, that represents the elastic
connection between the body 3 and the frame 1. In the third step, the
ellipse 𝛴6

is obtained as series composition of 𝛱1
and 35. In the

fourth step, the ellipse 𝛱2
is obtained as parallel composition of 𝛴2

and 𝛴6
. The final step consists of the series composition of 𝛱2

and
𝛴1

, resulting in 𝛴7
, that represent the compliant mechanism as elastic

suspension between body 8 and frame 1. The steps of the procedure
are reported in Table 6. The ellipse 𝛴7

is shown in Fig. 9, whereas its
parameters are listed in Table 7.

5.3. Kinetostatic analysis

The ellipse of elasticity 𝛴7
establishes a bijective correspondence

between the loads applied to the body 8 and its pole of displacements.
Therefore, the kinetostatic forward and inverse problems can be solved
geometrically exploiting the antiprojective polarity properties. In this
case study, according to the finite element simulations and to the ex-
perimental campaign reported in Sections 6 and 7, respectively, forces
7

Fig. 9. Ellipse 𝛴7
representing the compliant mechanism as elastic suspension between

the end-effector and the frame.

with lines of action passing through 𝐸 are considered as applied loads
and the field of displacements is evaluated for the same point. Given
the line of action 𝑝, the center of rotation is geometrically determined
according to the properties defined in Figs. 3(a)–3(e).

According to Eq. (2), the rotation of the end-effector is given by

𝜽 = 𝑤 ⃖⃖⃖⃖⃖⃗𝐶𝐸 × 𝐅 . (11)

The rotation occurs about 𝑃 , that is the antipole of 𝑝 with respect to
𝛴7

(see Fig. 3(d)). Then, the displacement of E can be calculated as

𝜹 = 𝜽 × ⃖⃖⃖⃖⃖⃗𝑃𝐸 . (12)

The theoretical evaluation of the displacements 𝜹 consequent to the
application of a set of forces 𝐅 is reported in Section 8 and compared to
the results obtained through finite element analyses and experimental
campaign.

6. Finite element analysis

To verify the theoretical results, the kinetostatic analysis of the
hybrid compliant mechanism has been also conducted by performing
finite element simulations with the commercial software Ansys APDL
(www.ansys.com). The mesh, composed of 29757 elements and of 32130
nodes, has been refined in the flexible regions, as shown in Fig. 10.
The element PLANE182 has been used in the simulation setup. Fixed
supports have been introduced to anchor the model to the fixed frame
(points A). The applied load consists of a force with variable magnitude
and direction, applied to point E. This load condition is analogous to
the one considered in Section 5.3 and Section 7. Two different sets of
simulations have been carried out, considering linear deflections and
geometric nonlinearities.

7. Experimental test

A polycarbonate monolithic compliant prototype, shown in Fig. 11,
has been fabricated by CNC milling process. The material has been
characterized through a set of bending tests (Young’s modulus 𝐸 =
2945 MPa). The experimental setup, reproducing the load conditions
described in Section 5.3, is schematically represented in Fig. 12. The
compliant system is anchored to the support with orientation described

https://www.ansys.com/
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Table 4
Geometric and ellipse parameters of the flexible elements.

Uniform, curved Notched, straight Uniform, parabolic

Ge
om

.

𝑥 = 𝑟 cos (𝛾) ℎ(𝑥) = ℎ0+2(𝑅−
√

𝑅2−𝑥2) , 𝑦 = 𝑎𝑥2

𝑦 = 𝑟 sin (𝛾) 𝑥 ∈ [−𝑙∕2, 𝑙∕2] . 𝑥 ∈ [𝑥1 , 𝑥2]
𝛾 ∈ [−𝜙, 𝜙] .

0th 𝑤 =
2𝑟𝜙
𝐸𝐼

𝑤 = 24
𝐸𝑡

∫ 𝑙∕2
0

d𝑥
ℎ(𝑥)3

𝑤 = ∫ 𝑙
0 𝑐(𝑠)d𝑠

1st
𝑥𝐶 = 𝑟

sin(𝜙)
𝜙

𝑥𝐶 = 0 𝑥𝑐 =
𝑆𝑦

𝑤

𝑦𝐶 = 0 𝑦𝐶 = 0 𝑦𝐶 = 𝑆𝑥

𝑤

𝛼 = 0 𝛼 = 0 tan 2𝛼 =
2𝑆𝑥0 𝑦0

𝑆𝑦0 𝑦0
−𝑆𝑥0𝑥0

2nd 𝑎2 = 𝑟2

2

(

1 −
sin(2𝜙)
2𝜙

)

𝑎2 =
∫

𝑙∕2

0

𝑥2

ℎ(𝑥)3
d𝑥

∫

𝑙∕2

0

d𝑥
ℎ(𝑥)3

𝑎 =
√

S𝜂𝜂
𝑤

𝑏2 = 𝑟2 −
(

𝑂𝐶
2
+ 𝑎2

)

𝑏2 = 0 𝑏 =
√

S𝜉𝜉
𝑤

Table 5
Parameters of the element ellipses of elasticity: center coordinates (mm), semi-axes
lengths (mm), orientations (rad) and elastic weights (rad/mNmm).
 𝑥𝐶 𝑦𝐶 𝑎 𝑏 𝛼 𝑤

12 −95.79 2.01 6.14 0.13 1.00 8.24
23 −46.19 26.85 3.30 0.37 0.00 4.47
34 −46.01 −26.67 3.30 0.37 1.57 4.47
14 −0.18 90.00 3.30 0.37 1.57 4.47
35 0.00 0.00 2.60 0.00 0.00 3.47
56 46.19 −26.85 3.30 0.37 0.00 4.47
16 95.79 −2.01 6.14 0.13 1.00 8.24
57 46.19 26.67 4.22 0.00 1.57 0.63
78 0.00 53.33 4.22 0.00 2.36 0.63

Table 6
Sequence of serial and parallel compositions of ellipses of elasticity.

Step Resultant Operation Component
ellipse ellipses

I

𝛴1
𝛴 (57 , 78)

𝛴2
𝛴 (16 , 56)

𝛴4
𝛴 (34 , 14)

𝛴5
𝛴 (12 , 23)

II 𝛱1
𝛱 (𝛴4

, 𝛴5
)

III 𝛴6
𝛴 (𝛱1

, 35)
IV 𝛱2

𝛱 (𝛴6
, 𝛴2

)
V 𝛴7

𝛴 ( 𝛱2
, 𝛴1

)

Table 7
Parameters of the resultant ellipse of elasticity: center coordinates (mm), semi-axes
lengths (mm), orientation (rad) and elastic weight (rad/mNmm).
 𝑥𝐶 𝑦𝐶 𝑎 𝑏 𝛼 𝑤

𝛴7
36.69 24.13 39.98 12.23 −0.70 1.78

by the angle 𝛽 between the global reference frame 𝑅0 = {𝑂𝑥0𝑦0} and
the local reference frame 𝑅 = {𝑂𝑥𝑦}.

More specifically, 𝑅0 has its origin on the tip 𝐸 and 𝑥-axis parallel to
the vertical line. The local reference frame 𝑅, attached to the compliant
mechanism, is obtained by rotating 𝑅0, about the 𝑧-axis, of the angle
𝛽.
8

Fig. 10. Generated mesh of the compliant mechanism.

The force is applied to the end-effector by connecting a weight to the
tip point 𝐸. Several magnitudes and directions have been considered,
according to Section 5.3 and Section 6, as detailed in Section 8.

The tip displacements were acquired by using a Logitech Streamcam
(www.logitech.com) positioned with the lens plane parallel to the
motion plane, as shown in the figure. The displacement analysis was
performed by using the video analysis software Tracker 6.1.3 (physlets.
org/tracker), as shown in Fig. 13.

8. Results

With reference to Fig. 9, the load condition consists of a set of
forces 𝐅 with different magnitudes (𝐹 =0.196, 0.490, 0.981, 1.471 N) and
lines of action 𝑝 (𝛽 = 𝜋∕4, 𝜋∕2, 3𝜋∕4, 𝜋 rad). For each force, the tip

https://www.logitech.com
https://physlets.org/tracker/
https://physlets.org/tracker/
https://physlets.org/tracker/
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Fig. 11. Polycarbonate sample.

Fig. 12. Schematic of the experimental setup.

Fig. 13. Tracking of the tip displacements.

displacements are evaluated by resorting to the theoretical model, to
the linear and nonlinear FEA, and to the experimental campaign.

The tip displacements, acquired during the test, are first compared
to the ones obtained through the theoretical model. The results are
9

Fig. 14. Theoretical and experimental results: comparison of the tip displacements.

Fig. 15. Comparison of the results obtained by means of theoretical model and linear
FEA.

shown in Fig. 14. Generally, the displacement directions and magni-
tudes are in good agreement. However, for the higher values of the
force magnitudes, the theoretical results show greater values of the
magnitude displacements. To provide deep insight into these outcomes,
linear and nonlinear FEA are included in the comparison.

Firstly, the theoretical displacements are compared to the ones
obtained by linear FEA. The results are reported in Fig. 15. In this case,
results show very good agreement. The maximum error between theory
and FEA, equal to 4.3%, is registered for the force magnitude of 0.981
𝑁 at 𝜋∕2 rad. Nevertheless, the error mean value, evaluated for all the
16 points, is equal to 2.6%.

A further comparison has been performed between experimental
and nonlinear FEA results, depicted in Fig. 16. Some directions, as 3𝜋∕4
and 𝜋, show greater error with respect to the other ones. This behavior
could be ascribed to the fabrication process, or to slight misalignments
between the force and the compliant mechanism in the experimental
phase. In this case, the medium error is 4.8%.

9. Discussion on distributed compliance

The procedure highlighted in the previous sections results to be
particularly suitable for the analysis of compliant mechanisms with
lumped compliance. In fact, the ellipse corresponding to each elastic
part can be easily defined, determining a straightforward composition
of the series and parallel substructures. The same procedure can be
applied also to compliant mechanisms with distributed compliance.
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Fig. 16. Comparison of the results obtained by means of experimental test and
onlinear FEA.

Fig. 17. Generic substructure with distributed compliance.

ig. 17 shows a generic elastic element, considered as a part of a
istributed-compliance mechanism. In this case, different strategies can
e adopted, depending on the compliance distribution. For example,
he whole element A-D could be considered as a substructure, and
he corresponding ellipse determined by solving the zeroth-, first-, and
econd-order moments of the distribution. A second approach could
onsist of determining, separately, the ellipses of the parts A-B, B-C,
nd C-D. Then, the ellipse of A-D could be determined as a series
omposition of the three elementary ellipses. This strategy could be
ore efficient of the previous one when the zeroth-, first-, second-order
oments of the single parts can be easily solved, numerically or in

losed-form, as in the case of elements with constant cross-section or
ith symmetric axes.

0. Conclusions

In this paper, the theory of the ellipse of elasticity has been applied
o the kinetostatic analysis of a compliant mechanism with different
lexures and hybrid topology. Uniform flexures with constant and vari-
ble curvature, and non-uniform flexures with circular profiles have
een considered. From a topological point of view, the compliant
echanism is based on a two-loop Stephenson mechanism, and on a

wo-link open chain. Firstly, the ellipse of elasticity has been deter-
ined at the element level for each flexure. Then, the ellipse at the
echanism level has been obtained by series and parallel compositions.

or different load conditions, the kinetostatic analysis has been reduced
o the solution of a geometric problem. Finite element simulations
10
have been performed to ascertain the theoretical results. Furthermore,
a polycarbonate monolithic prototype has been fabricated and tested
to verify the proposed approach. The mean error values between theo-
retical approach and linear FEA, and between experimental campaign
and nonlinear FEA, resulted to be 2.6% and 4.8%, respectively.
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Appendix A. Uniform straight beams

Uniform straight beams (joint A5 in the case study) can be treated as
a particular case of constant-curvature beams, with curvature tending
to zero. In this case, the center of the ellipse of elasticity coincides with
the beam midpoint. In addition, assuming a constant beam length 𝑙, and
for 𝜙 → 0, arc equations in Table 4, become

𝑤 = 𝑙
𝐸𝐼

(A.1)

2 = 𝑙2 lim
𝜙→0

(

2𝜙 − sin(2𝜙)
16𝜙3

)

= 𝑙2

12
, (A.2)

𝑏2 = 𝑙2 lim
𝜙→0

(

𝜙2 − sin(𝜙)2

4𝜙4

)

− 𝑙2

12
= 0 . (A.3)

herefore, the ellipse of elasticity degenerates in a segment having
ength 2𝑎, with 𝑎 = 𝑙

√

3∕6.

Appendix B. Parabolic arc: zeroth-, first-, second-order moments

The integrals introduced in Section 3.3 result in explicit primitive
functions, thanks to the substitution 2𝑎𝑥 = sinh(𝑡). Therefore, the
eneric integrals in the arc-length parameter are transformed as

∫

𝐿

0
𝑓 (𝑥(𝑠)) d𝑠 = ∫

𝑥2

𝑥1
𝑓 (𝑥)

√

1 + (2𝑎𝑥)2 d𝑥

= 1
2𝑎 ∫

𝑡2

𝑡1
𝑓
(

sinh(𝑡)
2𝑎

)

cosh(𝑡)2 d𝑡 , (B.1)

here 𝑡1 = arsinh(2𝑎𝑥1), and 𝑡2 = arsinh(2𝑎𝑥2).
The line can be normalized by the transformation of coordinates

𝑥, 𝑦} → {𝑢, 𝑣} ≡ {2𝑎𝑥, 2𝑎𝑦}, and the moments can be calculated on the
rc

= 1 𝑢2, 𝑢 ≤ 𝑢 ≤ 𝑢 ∶ (𝑢 = 2𝑎𝑥 , 𝑢 = 2𝑎𝑥 ).

2 1 2 1 1 2 2
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Moreover, the normalization leads to simpler explicit expressions of the
definite integrals. Thus, recalling that

⎧

⎪

⎨

⎪

⎩

sinh(𝑡) = 𝑢 ,
cosh(𝑡) =

√

1 + sinh(𝑡)2 =
√

1 + 𝑢2 ,

𝑡 = log (sinh(𝑡) + cosh(𝑡)) = log
(

𝑢 +
√

1 + 𝑢2
)

,

the moments of the normalized arc read:

𝑤∗ = 2𝑎𝑤 = 1
𝐸𝐼 ∫

𝑡2

𝑡1
cosh(𝑡)2 d𝑡

=

𝑢(1 + 𝑢2)1∕2||
|

𝑢2

𝑢1
+ log

(

𝑢 +
√

1 + 𝑢2
)

|

|

|

|

𝑢2

𝑢1

2𝐸𝐼
, (B.2)

𝑆𝑢 = 4𝑎2𝑆𝑥 = 1
2𝐸𝐼 ∫

𝑡2

𝑡1
sinh(𝑡)2 cosh(𝑡)2 d𝑡 =

𝑢(1 + 𝑢2)3∕2||
|

𝑢2

𝑢1

8𝐸𝐼
− 𝑤∗

8
(B.3)

𝑆𝑣 = 4𝑎2𝑆𝑦 =
1
𝐸𝐼 ∫

𝑡2

𝑡1
sinh(𝑡) cosh(𝑡)2 d𝑡 =

(1 + 𝑢2)3∕2||
|

𝑢2

𝑢1

3𝐸𝐼
, (B.4)

𝑆𝑢0𝑢0 = 8𝑎3𝑆𝑥0𝑥0 = 𝑆𝑢𝑢 −𝑤∗𝑣2𝑐 =

= 1
4𝐸𝐼 ∫

𝑡2

𝑡1
sinh(𝑡)4 cosh(𝑡)2 d𝑡 −

𝑆2
𝑢

𝑤∗ =
𝑢3(1 + 𝑢2)3∕2||

|

𝑢2

𝑢1

24𝐸𝐼
−

𝑆𝑢
4

−
𝑆2
𝑢

𝑤∗ ,

(B.5)

𝑣0𝑣0 = 8𝑎3𝑆𝑦0𝑦0 = 𝑆𝑣𝑣 −𝑤∗𝑢2𝑐 =
1
𝐸𝐼 ∫

𝑡2

𝑡1
sinh(𝑡)2 cosh(𝑡)2 d𝑡 −

𝑆2
𝑣

𝑤∗

= 2𝑆𝑢 −
𝑆2
𝑣

𝑤∗ ,

(B.6)

𝑆𝑢0𝑣0 = 8𝑎3𝑆𝑥0𝑦0 = 𝑆𝑢𝑣 −𝑤∗𝑢𝑐𝑣𝑐 =

= 1
2𝐸𝐼 ∫

𝑡2

𝑡1
sinh(𝑡)3 cosh(𝑡)2 d𝑡 −

𝑆𝑢𝑆𝑣
𝑤∗

=
𝑢2(1 + 𝑢2)3∕2||

|

𝑢2

𝑢1

10𝐸𝐼
−

𝑆𝑣
5

−
𝑆𝑢𝑆𝑣
𝑤∗ ,

(B.7)

where 𝑢𝑐 , 𝑣𝑐 are the coordinates of the ellipse center 𝐶. In the case
1 = 𝑥1 = 𝑡1 = 0, Eqs. (B.2)–(B.7) particularize as

𝑤∗ = 2𝑎𝑤 =
𝑢2(1 + 𝑢22)

1∕2 + log
(

𝑢2 +
√

1 + 𝑢22

)

2𝐸𝐼
, (B.8)

𝑆𝑢 = 4𝑎2𝑆𝑥 =
𝑢2(1 + 𝑢22)

3∕2

8𝐸𝐼
− 𝑤∗

8
, (B.9)

𝑆𝑣 = 4𝑎2𝑆𝑦 =
(1 + 𝑢22)

3∕2 − 1
3𝐸𝐼

, (B.10)

𝑆𝑢0𝑢0 = 8𝑎3𝑆𝑥0𝑥0 =
𝑢32(1 + 𝑢22)

3∕2

24𝐸𝐼
−

𝑆𝑢
4

−
𝑆2
𝑢

𝑤∗ , (B.11)

𝑣0𝑣0 = 8𝑎3𝑆𝑦0𝑦0 = 2𝑆𝑥 −
𝑆2
𝑣

𝑤∗ , (B.12)

𝑆𝑢0𝑣0 = 8𝑎3𝑆𝑥0𝑦0 =
𝑢22(1 + 𝑢22)

3∕2

10𝐸𝐼
−

𝑆𝑣
5

−
𝑆𝑢𝑆𝑣
𝑤∗ . (B.13)

astly, if 𝑢1 = −𝑢2, it is the arc is symmetric, moments 𝑆𝑦 and 𝑆𝑥0𝑦0 are
ull, whereas Eqs. (B.8), (B.9), (B.11) and (B.12) hold, provided that
he values of the corresponding moments are doubled.
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