
A Chatbot that Uses a Multi-Agent
Organization to Support Collaborative Learning

Mateus da Silveira Colissi1, Renata Vieira2[0000−0003−2449−5477], Viviana
Mascardi3[0000−0002−2261−9926], and Rafael H. Bordini1[0000−0001−8688−9901]

1 School of Technology, Pontifical Catholic University of Rio Grande do Sul, Av.
Ipiranga, 6681 – Porto Alegre, RS, Brazil

Mateus.Colissi@edu.pucrs.br, rafael.bordini@pucrs.br
2 CIDEHUS, University of Évora, Palácio do Vimioso Largo do Marquês de

Marialva, n.º 8 - Évora, Portugal
renatav@uevora.pt

3 Department of Informatics, Engineering, Robotics and Systems Engineering,
University of Genova, Via Dodecaneso, 35, 16146 Genova GE, Italy

Viviana.mascardi@unige.it

Abstract. This work investigates and apply the use of a multi-agent
system to assist in the coordination of group tasks, specifically in educa-
tional environments, in which the interaction occurs indirectly, that is,
asynchronously. The system has a web interface integrated with a chatbot
for more natural interaction. The chatbot communicates with the multi-
agent system that is responsible for the organization of the group, that
is, it contains information about the tasks and members of the groups, in
addition to restrictions that can be imposed according to the organiza-
tion of the group, and it is also able to return the requested information
in natural language through the chatbot. This approach was validated in
a practical undergraduate course of software engineering. The students
assessed the functionalities and usability of the system while working in
groups in order to develop software collaboratively. Our system was used
to assist students in a real project. With this assessment, it was found
that the system was able to support the development of the group tasks,
ensuring quick and consistent responses to the student’s request.

Keywords: Multi-Agent System · JaCaMo · Chatbot · Dialogflow ·
Group Coordination

1 Introduction

Institutions use different types of learning methods, such as classroom learning
and virtual learning. However with different learning methods, we need different
learning approaches. To assist these learning methods, several techniques and
tools are being used in virtual environments, such as: chats, conversational agents
and others. With the use of virtual learning environments, concerns arise for
example regarding collaboration between people in learning techniques such as
groupwork.



2 M. Colissi et al.

According to King [11], collaborative learning may motivate studies more
than individual study, so in educational environments it is important to promote
collaborative learning to enable group participation and interaction in various
tasks, where knowledge is built through dialogues that enable the sharing of ideas
and information within the group [12]. Also, it can provide important feedback
for the teacher to know how were the interactions and discussions made by the
group, as well as the individual contribution of students in problem solving [1].

However, there are various causes of inefficiencies in groupwork such as poor
capacity balance, incorrect team dynamics, poor communication or difficult so-
cial situations [2]. Solving these inefficiencies for virtual teams would help im-
prove the relationship of team members in their online learning environment,
allowing them to complete tasks daily, improving collaboration, productivity,
and task tracking.

One way to support the management of group learning is to create environ-
ments that facilitate knowledge sharing and other valuable learning attitudes,
helping to promote student discussion and interaction skills [7]. With the ad-
vancement of Artificial Intelligence (AI), there is growing use of conversational
agents such as chatbots to aid learning. However, most of the work in this area
are for individual learning.

In a functional group, each member is responsible for one or more tasks. One
of the main requirements for group work to perform well is that its members
operate in harmony. Contributing toward solutions for the problem of groupwork
coordination, this work aims mainly to: improve information sharing among
group members; increase group productivity; improve overall performance in
collaborative tasks; and to allow the person responsible for the groups to be
aware of noteworthy events during the performance of the tasks.

This work explores the use of virtual assistants in a collaborative environ-
ment, where agents represent their users as part of a groupwork project, and they
also assist in the organization and communication between users. The commu-
nication is done through the chatbot and not directly.This multi-agent system
has the main objective of facilitating the dissemination of information about the
current status of the project and allowing the person in charge of the group to
monitor performance during the execution of tasks without disturbing the the
individual members. In particular, the focus is on academic environments, where
it is very important that the group members as well as the lecturers are aware
of how the project is evolving.

2 Related Work

Islam et al. [10] proposed a browser-based client interface approach with Express
and SocketIO framework, Node.js, Jade and AngularJS, that can be accessed
using only a web browser available on PCs, tablets, laptops, or mobile devices.
The teacher uploads the lecture to the site for students to study/solve by col-
laborating in pairs. Collaborative peer activities were proposed where students



A Chatbot that Uses MAS Organization to Support CL 3

collaborated synchronously or asynchronously in conjunction with the teacher’s
lecture.

Tegos and Demetriadis [14] proposed a prototype dialogue support system,
acting as an instant messaging application, in order to accomplish one or more
learning tasks in an online activity, with a conversation agent that uses text-to-
speech to read its interventions, offering academically productive talk (APT). To
encourage collaboration, the agent introduces concepts into the group discussion
displaying outside the main chat frame using the Levenshtein-based string sim-
ilarity algorithm and a WordNet lexicon for synonyms to calculate a proximity
score for each identified concept.

Paikari et al. [13] proposed a chatbot called Sayme to address the detec-
tion and resolution of possible code conflicts that may arise in the development
of parallel software. Sayme is implemented using Python, MySQL, and Google
Cloud Platform. Slack is used as the chat channel to communicate with devel-
opers. In addition, the chatbot operates autonomously, initiating conversations
with developers based on information collected from Git. Sayme also monitors
when developers save files using Git commands to automatically extract files
that are being changed and on which lines they are being changed. To detect
possible indirect conflicts between files, all files are analyzed using the Abstract
Syntax Trees (AST) library.

Sayme provides information about potential direct and indirect conflicts,
helping developers to resolve those conflicts. Its main function is to proactively
detect possible conflicts between developers working in parallel, notifying them
before the conflicts become too complex. Its secondary function is to respond to
a variety of requests that help developers understand the state of work of other
developers.

Unlike other approaches in the literature, our architecture allows a formal
representation of the group organization through a MAS, managing multiple
groups simultaneously, in which each group has different roles and tasks for
members to carry out. This improves the management of knowledge related to
the proposed organization in collaborative work. On the other hand, there are
challenges in the use of these systems in collaborative educational environments,
for example, due to the efforts required in the construction of agent organizations,
in which roles and tasks must be well defined and explicitly represented within
the system.

3 Our Approach

The overall architecture of the proposed system involves software development
in different environments to allow better user interaction and coordination. Our
system is able to receive requests in the form of questions (about the state of the
organization) or actions to be performed (register new tasks, select new tasks,
among others) and return a coherent answer with the user’s group through plans
in the JaCaMo multi-agent systems development platform [3].



4 M. Colissi et al.

Fig. 1. Our Approach

Figure 1 shows our approach. The student makes a request in natural lan-
guage about the tasks they need to complete and the chatbot returns information
from the MAS. The tasks that students had to achieve were related to software
development, that is, front-end and back-end development tasks, among others.
The following are examples of tasks to be performed: modeling the persistence
layer, generating the initial physical and logical database schema, creating the
POST method to receive the registration data, creating the GET endpoint in
the users API, and creating the profile screen and user route management.

A website was developed to define permission levels and assist in the identifi-
cation of agents in JaCaMo, in addition to allowing the leader to register/delete
users and make requests to the chatbot. The website was developed using the
Angular frontend framework, for the backend Firebase was used with the Real-
time Database. To coordinate the groups, the JaCaMo system is able to collect
information from the database to initialize the groups according to commands
from the leaders. The information generated at runtime by the organization is
not stored in the database, but in the JaCaMo artifact for each group. For the
development of the chatbot, the Dialogflow platform was used. The next sections
present the details of the architecture components mentioned above.

3.1 Chatbot

To communicate with the JaCaMo MAS, intents were created in Dialogflow
for each question to be answered about the group’s organization and for each



A Chatbot that Uses MAS Organization to Support CL 5

action to be performed. To organize requests made by users, intents were trained
using parameters. The phrases were trained with a parameter name (@name)
for queries of the type ”name last-name discipline role Question”. The @name
parameter was created to identify the agent in MAS and is managed by an entity
that recognizes a pattern through regular expressions.

3.2 Multi-Agent System

The system was implemented on the JaCaMo platform using a Dialogflow
integration developed by Engelmann et al. (available in https://github.
com/DeboraEngelmann/helloworld from jason/wiki). The available JaCaMo-
Dialogflow integration was adapted to suit the needs of our project.

JaCaMo enables the integration of three multi-agent programming dimen-
sions: agents, organizations, and environment. A JaCaMo system consists of the
following platforms: Jason [5] for agent programming, CArtAgO [4] for environ-
ment programming, and Moise [8] for programming organizations. JaCaMo in-
tegrates these three platforms for a uniform and consistent programming model,
with the goal of simplifying the combination of these dimensions when program-
ming MAS [3].

Organizations can be used to ensure coordination in multi-agent systems.
Coordination is related to agents’ social skills, where agents communicate with
each other to share data, beliefs, goals, and plans [5]. With coordination, agents
can achieve joint objectives and plans that otherwise would not be possible, and
ensure that tasks are performed consistently and efficiently by synchronizing
their actions and interactions with other agents [9,6].

In JaCaMo, agents who are members of a group play various roles, each with
a set of distinct missions that must be fulfilled for the project to be completed.
These roles and missions must be part of a Moise scheme, previously organized,
usually before the system started. Note that such schemes must be developed
according to the instructions and needs of the responsible teacher for each ap-
plication.

For the development of the JaCaMo MAS, three types of agents were used:

Request coordinator is the agent who focuses on the artifact related to
the requests from Dialogflow. It has plans to deal with each Dialogflow intent,
that is, for each chatbot intent there is a corresponding plan. As it receives
all requests from Dialogflow, it is responsible for the communication between
the real user and the respective agent, that is, it forwards the information to
the respective agent. It also has plans responsible for starting a leader agent at
runtime, sending the necessary beliefs for that agent to start a group.

Leader is the agent that is responsible for starting a group at runtime,
creating the members of the team dynamically with the information provided
by the request coordinator. It has plans responsible for: initializing and defining
the team’s workspace, group, and initial tasks; in addition to initializing team
members, it is also responsible for assigning missions and roles to these agents;
and finally it is responsible for answering the questions regarding the group,

https://github.com/DeboraEngelmann/helloworld_from_jason/wiki
https://github.com/DeboraEngelmann/helloworld_from_jason/wiki


6 M. Colissi et al.

that is, organizing the group’s information and forwarding it to the request
coordinator according to the requests.

Student is the agent that has plans to dynamically join a group and
workspace as directed by the group leader. It also has plans related to the tasks
to be completed for the resolution of the group project, that is, the plans are
related to the situation of the tasks in relation to the Moise scheme, such as: se-
lecting, dropping, and completing tasks. Finally, it is also able to directly answer
the request coordinator’s queries regarding tasks.

Table 1 shows the commands available in the system. The command operation
has two representations in the system, one for leaders that shows: tasks [register
task, remove task, list tasks, tasks not being performed and uncompleted tasks],
group [group members, list due date for tasks, remove member and mark project
as complete], log and members’ productivity and one for students: tasks [list
registered tasks, select task and list unfinished tasks], my tasks and group [group
members and project status (completed or not completed)].

Table 1. System commands

Command Description Responsible agent

commands
Show the commands available

in the system
Leader and

Student

create group Initialize the group in the MAS Leader

tasks Show commands for tasks Leader and Student

group Show commands for groups Leader and Student

log Show the group log Leader

productivity Show group productivity Leader

update
Show the last update
made by the group

Leader and
Student

objective Show the project description Leader and Student

delivery date Show the due date for tasks Leader and Student

completed project Mark the project as completed Leader

how long to deliver the task
Show how much time is left

before the delivery date
Student

project
Show the state of

completion of the project
Student

concluded Mark task as complete Student

4 Experiment Results and Analysis

Our system was evaluated during two months of tests with students in an un-
dergraduate course on software engineering. It was tested with two groups (two
software development projects), in which the groups consisted of eighteen stu-
dents and a lecturer responsible for the group. The students performed several
sprints during the development of the project; with each sprint, new tasks were
added to the MAS, specifically in the Moise organization, as well as corrections
and improvements in the system’s response.



A Chatbot that Uses MAS Organization to Support CL 7

The students’ questions and answers were checked through the Dialogflow
platform itself to assess whether the chatbot was able to correctly identify and
trigger the desired intent. Of the 577 requests made to the chatbot, only 54 were
incorrectly identified.

The MAS was able to deliver quick responses (which is necessary due to the
time that Dialogflow waits for a query to be answered) and consistent with the
group and its representation in the system. The exchange of messages between
the agents of the system to consult information about the group was an inter-
esting approach regarding the organization, since all information about a group
was stored in one place, specifically with the group leader.

The most important reason for using MAS is the possibility to create mul-
tiple domains. In particular, if there are different people or organizations with
different objectives and proprietary information, the MAS is capable of handling
those interactions effectively, and possibly efficiently, e.g., when decentralised co-
ordination is required. That is, MAS are able to model an organization’s internal
affairs in unified approach, avoiding the need to develop an organization that
encompasses all representations of roles and tasks, but rather to develop differ-
ent organizations that are accessible in a single system with its own capabilities
and priorities.

5 Conclusion and Future Work

Increasingly, remote (non face-to-face) learning has been used in the education
or training of people through digital resources to acquire new knowledge, to
develop professionally by acquiring new skills and abilities of the most diverse
types, among others. With reasonable technological support, management sys-
tems play a large role in collaborative groups and can mainly assist in online
education, which is being used as an alternative to face-to-face activities to con-
tinue education amid the restrictions imposed by the pandemics of COVID-19.

In this context, online education allows people who do not have access to
information in physical environments (for social reasons or for a specific situa-
tion, such as the pandemic) to easily, quickly, and dynamically use personalized
and efficient knowledge from a digital platform. Although this form of learning
has so many good points, it is still far from being the ideal method. There are
concerns about the collaborative distance learning method, in which the main
problems to be solved in this approach are: balance of skills within a group, in-
correct group dynamics, lack of communication in the group and difficulty with
social situations.

Our work provides initial evidence that an approach based on multi-agent
systems are adequate, in particular with the JaCaMo platform, because it allows
us to create and control an organization in terms of members and the manage-
ment of task assignment. Communication with the user through a chatbot aims
to allow a more effective and natural communication with the system. As future
work, we intend to work on the chatbot’s pro-activity in interaction with the
group, thus making it an active member in group decision making.



8 M. Colissi et al.

Acknowledgments

This work was partially funded by the Portuguese Foundation for Science and
Technology, project UIDB/00057/2020. The authors also gratefully acknowledge
partial support from CAPES and CNPq.

References

1. Allaymoun, M.H., Trausan-Matu, S.: Analysis of collaboration in computer sup-
ported collaborative learning chat using rhetorical schemas. In: Proceedings of the
International Conference on Information and Communication Systems. pp. 39–44
(2016)

2. Andrejczuk, E., Rodŕıguez-Aguilar, J.A., Roig, C., Sierra, C.: Synergistic team
composition. In: Proceedings of the Conference on Autonomous Agents and Mul-
tiAgent Systems. p. 1463–1465 (2017)

3. Boissier, O., Bordini, R.H., Hübner, J.F., Ricci, A., Santi, A.: Multi-agent oriented
programming with jacamo. Science of Computer Programming 78, 747–761 (2013)

4. Bordini, R.H., Dastani, M., Dix, J., Fallah-Seghrouchni, A.E. (eds.): Multi-Agent
Programming, Languages, Tools and Applications. Springer (2009)

5. Bordini, R.H., Hübner, J.F., Wooldridge, M.: Programming multi-agent systems
in AgentSpeak using Jason. John Wiley & Sons (2007)

6. Brazier, F.M.T., Mobach, D.G.A., Overeinder, B.J., Wijngaards, N.: Supporting
life cycle coordination in open agent systems. In: Proceedings of the MAS Problem
Spaces Workshop at AAMAS. pp. 1–4 (2002)

7. Ferschke, O., Tomar, G., Rosé, C.P.: Adapting collaborative chat for massive open
online courses: Lessons learned. In: Proceedings of the International Conference on
Artificial Intelligence in Education. pp. 13–18 (2015)

8. Hübner, J.F., Sichman, J.S., Boissier, O.: Developing organised multiagent sys-
tems using the moise+ model: programming issues at the system and agent levels.
International Journal of Agent-Oriented Software Engineering 1, 370–395 (2007)

9. Huhns, M.N., Stephens, L.M.: Multiagent Systems and Societies of Agents, chap. 2,
p. 79–120. Massachusetts Institute of Technology Press, Cambridge, USA (1999)

10. Islam, A., Flint, J., Jaecks, P., Cap, C.: A proficient and versatile online student-
teacher collaboration platform for large classroom lectures. International Journal
of Educational Technology in Higher Education 14–1, 29 (Nov, 2017)

11. King, A.: Structuring peer interaction to promote high-level cognitive processing.
Theory Into Practice 41, 33–39 (Mar, 2002)

12. Neto, A.J.M., Fernandes, M.A.: Chatbot and conversational analysis to promote
collaborative learning in distance education. In: Proceedings of the International
Conference on Advanced Learning Technologies. pp. 324–326 (2019)

13. Paikari, E., Choi, J., Kim, S., Baek, S., Kim, M., Lee, S., Han, C., Kim, Y., Ahn,
K., Cheong, C., van der Hoek, A.: A chatbot for conflict detection and resolution.
In: Proceedings of the 1st International Workshop on Bots in Software Engineering.
pp. 29–33 (2019)

14. Tegos, S., Demetriadis, S.N.: Conversational agents improve peer learning through
building on prior knowledge. Educational Technology & Society 20–1, 99–111 (Jan,
2017)


	A Chatbot that Uses a Multi-Agent Organization to Support Collaborative Learning

