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Abstract. Quantum guessing games form a versatile framework for studying

different tasks of information processing. A quantum guessing game with
posterior information uses quantum systems to encode messages and classical

communication to give partial information after a quantum measurement has

been performed. We present a general framework for quantum guessing games
with posterior information and derive structure and reduction theorems that

enable to analyze any such game. We formalize symmetry of guessing games

and characterize the optimal measurements in cases where the symmetry is
related to an irreducible representation. The application of guessing games

to incompatibility detection is reviewed and clarified. All the presented main

concepts and results are demonstrated with examples.

1. Introduction

Information processing, both classical and quantum, is ultimately about getting
a desired output from a given input. This can be seen as a guessing game, where the
aim is formalized as a score function that gives high scores for successful outputs
and no scores for unsuccessful outputs. The guessing game setup is a natural
translation of many different information processing scenarios and it is therefore
a useful framework for studying the advantages that manipulation of quantum
systems can give in information processing tasks. The guessing game can be a
communication scenario, where Alice tries to transmit information to Bob, possibly
simultaneously hiding it from others. Or it can be a computing scenario, where Alice
chooses an input string and then runs a computation on it (in this case Alice and
Bob can be the same person). Our interest is in quantum guessing games, where
the transmitted information is encoded into quantum states and then decoded by a
quantum measurement. There can be processing between encoding and decoding,
but this can all be seen as a part of the measurement since we put no restrictions
on it.

In both of the previously mentioned scenarios it is possible that Alice, or someone
else, sends partial information after Bob has already performed a measurement. In
the presently investigated scenario this later sent information is classical and we
call these games (quantum) guessing games with posterior information. In the
computing scenario this kind of game can be seen as a hybrid computation, where
one runs classical and quantum computing in parallel and uses both to conclude
the final result. The classical part of a computation may, for example, find one
instance that is known to be incorrect with certainty while the quantum part tries
to find the correct answer even if some error is expected. The final guess takes into
account both parts and is then typically better than each of them alone.
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The main aim of this paper is to present a clear framework for different types
of guessing games with posterior information. We show that any such game can
be written in a certain kind of standard form and, further, the calculation of the
maximal average score in a given game reduces to the calculation of the usual
discrimination success probability of a so-called auxiliary state ensemble. We for-
mulate symmetry for guessing games with posterior information and present the
solution of a symmetric scenario when the symmetry is related to an irreducible
representation. With examples we demonstrate that it is, indeed, possible to calcu-
late the best average score analytically in many interesting cases. In our exemplary
cases we derive the solutions for a class of encodings in a qubit system (the angle
between the states of the encodings being a free parameter) and this therefore en-
ables to make comparisons and observations that a bunch of numerical solutions
could not provide.

It is instructive to compare guessing games with posterior information to similar
scenarios where the classical partial information is given to Bob before he is per-
forming a measurement. We call this kind of scenario a (quantum) guessing game
with prior information. Typically prior information allows Bob to adjust and opti-
mize his measurement in a more clever way than when the same partial information
is given afterwards. This difference in average scores is the basis of a method that
uses guessing games in the detection of quantum incompatibility. We reformulate
the incompatibility detection method in the present general framework, recall the
known results and point out some open questions. We further characterize a class
of encodings for which prior and posterior information are equally valuable. For
these encodings the timing of partial information is therefore irrelevant. The fact
that in quantum guessing games the timing of partial information can change the
maximal average score is the essential difference to classical guessing games. This
observation may aid in finding new applications of quantum guessing games where
the manipulation of quantum systems boosts information processing.

At this point, it is in order to briefly comment on related scenarios that have
been investigated earlier. As already mentioned, in this work by a guessing game
we mean a task that one party (Alice) sets for another party (Bob) and where
the goal is specified by a score function. The aim of Bob is to maximize the
average score and the basic question is how to do it, i.e., what are the optimal
actions and what is the maximal average score that can be achieved with those
actions. By calling this scenario a guessing game we want to make a distinction
with more general scenarios and emphasize their different basic questions and tasks.
Nevertheless, one should note that the terminology varies and a guessing game can
mean something different in other contexts. Also, the resources that are available
for the players vary in different investigations. For example, a prepare-and-measure
scenario refers to a similar setting, although it is often assumed that Alice and Bob
get independent inputs and that they might also have either shared randomness
or shared entanglement. The basic question is to characterize the correlations that
Alice and Bob can generate and to derive conclusions on properties (e.g. dimension)
of the system and devices [1, 2, 3]. A special type of these games are non-local
games, which usually mean games with several space-separated players that can
communicate only with a referee but can have a preliminarily agreed joint strategy
[4, 5, 6]. The basic question is to see the effect of shared entanglement or other
quantum resources. Another related topic is that of input-output processes and
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their analysis. This is a broad topic and has diverse research questions, e.g. to
characterize some properties of the intermediate quantum dynamics [7, 8, 9]. All
the previously mentioned scenarios are under active research and their applications
grow rapidly. A general conclusion is that by analyzing how the use of certain
resources can facilitate the achievement of specific tasks has proven to be a powerful
way to clarify fundamental aspects of quantum theory.

The benefit of restricting the current work to (later precisely specified) guess-
ing games with posterior classical information is that we can present an in-depth
analysis and derive a reduction theorem for all such games. Our investigation is
organized as follows. In Section 2 we recall the basics of usual state discrimination
and, more generally, guessing games with arbitrary score function. This scenario is
expanded in Section 3 to cover guessing games with posterior information, which are
the focus of the current work. These games can be recast in the so-called standard
form, explained in Section 4. Strikingly, the maximal average score in any guessing
game with posterior information equals with the maximal success probability in the
usual state discrimination game of a related auxiliary state ensemble. This simple
but important result is also treated in Section 4 and it implies that all known meth-
ods to solve state discrimination games are applicable in our more general setting.
Section 5 reviews the connection of guessing games to incompatibility detection.
In Section 6 we formulate symmetry of guessing games with posterior information
and show how it can be used to calculate the maximal average score in symmetric
scenarios. Three different kind of examples that demonstrate all the presented main
concepts and results are treated in Section 7. Finally, in Section 8 we summarize
our conclusions and point out some new directions for future investigations.

2. Guessing games

2.1. State discrimination. We will deal with finite dimensional quantum systems
and measurements with a finite number of outcomes. We fix a d-dimensional,
complex Hilbert space H, denote by L(H) the set of all its linear operators and
say that % is state on H if it is a positive element of L(H) (i.e. % is selfadjoint with
nonnegative eigenvalues) and tr [ρ] = 1. We denote by |X| the cardinality of a finite
set X. A measurement on H with the outcome set X is a map M : X → L(H)
such that M(x) is positive for all x and

∑
xM(x) = 1. A state ensemble on H with

the label set X is a map E : X → L(H) such that E(x) is positive for all x and∑
x tr [E(x)] = 1. Any state ensemble can be written as a product E(x) = p(x) %x,

where (%x)x∈X is a family of states on H and p : x 7→ tr [E(x)] is a probability
distribution on X.

In the usual minimum error state discrimination, the system is prepared in one
of several possible states %x, x ∈ X, and the task is to guess the correct state
by performing a measurement. This can be seen as a scenario where two parties
communicate by one of them sending one classical message x – the label of the state
– to the other, and to this aim he encodes x into a quantum system. The encoding
is then described by a state ensemble E , in which the probability distribution p is
the prior probability of labels to occur and x 7→ %x is the actual encoding. For
any measurement M with the outcome set X, we denote by P(E ;M) the guessing
probability, given as

(1) P(E ;M) =
∑
x

tr [E(x)M(x)] =
∑
x

p(x) tr [%xM(x)] .
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The maximal guessing probability for E is denoted as

(2) P(E) = max
M

P(E ;M) ,

where the optimization is over all measurements with the outcome set X. We refer
to reviews [10, 11, 12] for more background and details on state discrimination.

There is a communication task which is, in a sense, opposite to state discrim-
ination and therefore called antidiscrimination, also antidistiguishability or state
exclusion. As in state discrimination, the system is prepared in one of several pos-
sible states %x, x ∈ X. But now the task is to guess one of the labels different
from the encoded label x. Hence, the success probability (i.e. the probability of
guessing a label different from the encoded label) in the antidiscrimination task is
1−P(E ;M), and its optimization amounts to minimizing – instead of maximizing
– the guessing probability (1). Apart from its simplicity, antidiscrimination has
turned out to be a fruitful notion. For instance, it has played a key role in discus-
sions on the controversy between epistemic and ontic interpretations of quantum
states [13, 14, 15], while a connection to quantifications of quantum resources has
been revealed in [16]

2.2. General form of guessing games. A guessing game can be something dif-
ferent than discrimination or antidiscrimination, although the basic idea is the
same (see Figure 1). Generally, we have a score function f : X × Y → [0, 1] and
the associated average score is given as

(3) Ef (E ;M) =
∑
x,y

f(x, y) tr [E(x)M(y)] =
∑
x,y

f(x, y) p(x) tr [%xM(x)] .

The input and output label sets X and Y can be different (some examples are
presented shortly). We are often considering a scenario where a state ensemble E
is given and the used measurement M is optimized to give as high average score as
possible. The maximal average score is denoted by

(4) Ef (E) = max
M

Ef (E ;M) .

In a typical guessing game some pairs (x, y) ∈ X ×Y are wanted (successful guess)
and other pairs are unwanted (unsuccessful guess). If we assign values f(x, y) =
1 for wanted pairs and f(x, y) = 0 for unwanted pairs, then the average score
Ef (E ;M) equals with the probability of getting a wanted pair. Intermediate scores
(i.e. 0 < f(x, y) < 1) are also possible and can be e.g. used to give some reward if
the guess is almost wanted but not exactly.

 

Figure 1. In a guessing game one party (Alice) encodes a classical
message x into a quantum state, and then she sends the state to
another party (Bob). Bob then performs a measurement and thus
he obtains an outcome y. By comparing x to y, a score f(x, y)
is assigned to the game. The set X of possible choices for the
sent message and the set Y of possible outcomes for the performed
measurement need not coincide.
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In the previously discussed state discrimination we set X = Y and choose a score
function f which assigns nonzero values to all elements on the diagonal of X×X and
f(x, y) = 0 for all x 6= y. If we additionally require that f takes only values 0 and 1,
then we get the standard discrimination score function f(x, y) = δx,y =: fδ(x, y), for
which Efδ = P. In the antidiscrimination task one aims to get any other outcome
than the sent message x, thus we choose a score function f such that f(x, x) = 0
and f(x, y) > 0 for y 6= x. If we further require that f takes only values 0 and 1,
then we obtain the standard antidiscrimination score function f = 1− fδ.

The general formulation of guessing games directs us to see that there are natural
generalizations of discrimination and antidiscrimination games to the cases in which
the receiver is allowed to guess several (fixed integer 2 ≤ k < |X|) outcomes instead
of one. To formulate these type of guessing games, we choose Y = {S ⊂ X : |S| =
k} and f such that f(x, S) = 1 for x ∈ S and f(x, S) = 0 otherwise. The receiver
hence gets a score if and only if the input x is contained in the guessed set S. In
the respective generalization for antidiscrimination games we choose f such that
f(x, S) = 1 for x /∈ S and f(x, S) = 0 otherwise.

2.3. Reduction to usual state discrimination. Different score functions de-
termine different kind of guessing games and they can have quite diverse goals.
However, the calculation of the maximal average score and determination of op-
timal measurement strategy are similar in all guessing games. In fact, following
[17, Section 2.2.2], any guessing game can be recast as a discrimination game by
suitably redefining the state ensemble at hand. To this aim, we set

(5) ∆(E , f) =
∑
x,y

f(x, y) p(x)

and whenever this constant is nonzero we further define the auxiliary state ensemble
Ef with the label set Y as

(6) Ef (y) = ∆(E , f)−1
∑
x

f(x, y) E(x) .

With this definition we have the equalities

Ef (E ;M) = ∆(E , f) P(Ef ;M) ,(7)

Ef (E) = ∆(E , f) P(Ef ) .(8)

In this way a guessing game with an arbitrary score function f is recast in a usual
state discrimination game for the respective auxiliary state ensemble.

We remark that the precondition ∆(E , f) 6= 0 mentioned earlier means that
f(x, y) 6= 0 for some x, y with E(x) 6= 0. If ∆(E , f) = 0, the auxiliary state
ensemble can be defined in an arbitrary way without changing (7)-(8), since in that
case Ef (E ;M) = 0 for all M and thus (7)-(8) are satisfied for any choice of Ef .

We end this section with an upper bound for P(E) which despite its simplicity
will be quite useful in the later developments (Sections 6 and 7). It has the same
derivation as [18, Proposition 2].

Proposition 1. For a state ensemble E with the label set X, we denote by Λ(E)
the largest eigenvalue of all the operators E(x), x ∈ X. Then,

(9) P(E) ≤ dΛ(E) .
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The above equality is attained if and only if there exists a measurement M with the
outcome set X satisfying E(x)M(x) = Λ(E)M(x) for all x ∈ X. If this is the case,
then P(E) = P(E ;M) for such a measurement.

Proof. If λ(x) is the largest eigenvalue of the operator E(x), we have λ(x)1−E(x) ≥
0, and then

λ(x) tr [M(x)]− tr [E(x)M(x)] = tr
[(
λ(x)1− E(x)

)
M(x)

]
= tr

{[(
λ(x)1− E(x)

) 1
2M(x)

1
2

]∗[(
λ(x)1− E(x)

) 1
2M(x)

1
2

]}
≥ 0 .

In this expression, the last equality is attained if and only if
(
λ(x)1−E(x)

)
M(x) =

0, that is, E(x)M(x) = λ(x)M(x). It follows that

P(E ;M) =
∑
x

tr [E(x)M(x)] ≤
∑
x

λ(x) tr [M(x)] ≤
∑
x

Λ(E) tr [M(x)] = Λ(E) tr [1]

= dΛ(E) ,

where all the equalities are attained if and only if E(x)M(x) = λ(x)M(x) for all
x and M(x) = 0 for all x such that λ(x) < Λ(E). The latter two conditions are
equivalent to E(x)M(x) = Λ(E)M(x) for all x, thus proving the claim. �

To elucidate the previous proposition, suppose that a state ensemble E consists
of n equally probable quantum states. In this case the largest eigenvalue of each
E(x) is at most 1/n and hence Λ(E) ≤ 1/n. Therefore, (9) gives P(E) ≤ d/n. This
bound has been called the basic decoding theorem [19] and it connects the Hilbert
space dimension of a quantum system to its information capacity.

2.4. Partition and property guessing games. There are two classes of guessing
games, namely, partition and property guessing games, that are concrete in their
goals but general enough to cover many applications. In a partition guessing game
the input set X is partitioned in some way and Y labels the partitions of X. For
instance, we can take X = {1, . . . , n} and Y = {even, odd}. The aim is to guess the
correct quality of the input label, which is obviously less demanding than to guess
the input label itself. Generally, suppose that Y is an arbitrary set, υ : X → Y is
a function and let Xy = υ−1(y) for all y. Then, (Xy)y∈Y is a partition of X, i.e., a
collection of subsets that are disjoint and whose union is X. The associated score
function fυ is defined as

(10) fυ(x, y) = δυ(x),y =

{
1 if x ∈ Xy

0 otherwise
.

This game has been studied in [20], where it was called set discrimination of quan-
tum states. Another related score function f¬υ is defined as f¬υ(x, y) = 1−fυ(x, y).
In the special case when X = Y and υ is the identity function, the score function
fυ is the standard discrimination score function fδ and f¬υ is the standard antidis-
crimination score function 1− fδ.

Let υ : X → Y be a function that determines a partition guessing game in the
previously specified way. The reduction formulas (5) and (6) give ∆(E , fυ) = 1 and

(11) Efυ (y) =
∑
x∈Xy

E(x) .
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We thus conclude that a partition guessing game can be recast as the usual dis-
crimination game where the states are mixtures of the states in the blocks of the
partition.

Partition guessing games are a special class of property guessing games. While
a partition divides a set X into disjoint subsets, properties can have overlaps. For
instance, we can take X = {1, . . . , n}, Y = {small, large} and agree that ‘small’ are
numbers x satisfying x ≤

⌈
n+1

2

⌉
and ‘large’ are numbers x satisfying x ≥

⌊
n+1

2

⌋
. In

this case, the numbers x with
⌊
n+1

2

⌋
≤ x ≤

⌈
n+1

2

⌉
have both properties. Generally,

suppose that X, Y are arbitrary sets and R ⊂ X × Y is a relation. The associated
score function fR is defined as the indicator function of the set R, i.e.,

(12) fR(x, y) = 1R(x, y) =

{
1 if xRy

0 otherwise
.

Another related score function f¬R is defined as f¬R(x, y) = 1 − fR(x, y). In
the special case when Y = {S ⊂ X : |S| = k} and R is the ‘belongs to’ re-
lation, the property guessing games defined via fR and f¬R are the generalized
(anti)discrimination games introduced at the end of Section 2.2.

3. Guessing games with posterior information

3.1. General scenario. We will now expand the guessing game setup to cover later
sent classical information. Related formulations have been investigated earlier in
[21, 22] and their differences to the current approach has been explained in [18],
where the following scheme was introduced in a more specialized form. In guessing
games with posterior information, the standard communication scenario is modified
by adding one step to it. The starting point, known both to Alice and Bob, consists
of finite sets X, Y , a score function f : X × Y → [0, 1], a finite set T describing
partial information, and conditional probabilities α(t | x) for all t ∈ T and x ∈ X
relating partial information to input labels. We can take T = {1, . . . ,m} whenever
it is convenient to label the elements of T by integers, although this is not always
the case as T may not have a natural ordering (see Section 3.4).

The scenario has the following steps (see Figure 2):

(i) Alice uses a state ensemble E with the label set X. This means that she picks
a label x with probability p(x) = tr [E(x)] and transmits the respective state
%x = E(x)/tr [E(x)] to Bob.

(ii) Bob receives %x and performs a measurement M with the outcome set Z. Bob
obtains the outcome z ∈ Z with probability tr [%xM(z)].

(iii) Bob receives a classical message t ∈ T . This message depends on the input
label x; Bob receives t with probability α(t | x). This additional information
can be sent by Alice, but it can have also another origin. The essential point
is that Bob receives it after he has performed the measurement. We call α
the partial information map.

(iv) Bob uses the additional information to post-process the obtained measurement
outcome z to an element y ∈ Y . For each t ∈ T , Bob can use a different
post-processing matrix νt that relabels the outcome z into y with probability
νt(y | z). We denote ν : t 7→ νt and call this the post-processing map. The
aim of Bob is to choose y such that f(x, y) is maximal.

Summarizing, a guessing game with posterior information is defined by a score
function f (the goal of the game) and a partial information map α (the additional
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Figure 2. In a guessing game with posterior information Bob
receives Alice’s partial information only after he has performed a
measurement in the quantum state transmitted by her. He then
postprocesses the obtained outcome trying to maximize the score
of the game.

aid for reaching the goal), while Alice’s preparations are determined by E and Bob’s
guessing strategy is determined by a measurement M and post-processing map ν.
The average score in the previously described scenario is

(13) Epost
f,α (E ;M, ν) =

∑
x,y,t,z

f(x, y)α(t | x) νt(y | z) tr [E(x)M(z)]

and its maximal value is

(14) Epost
f,α (E) = max

M,ν
Epost
f,α (E ;M, ν) ,

where the optimization is over all measurements M and post-processing maps ν.
We remark that in (14) also the outcome set of M is allowed to vary. In particular,
the fact that the maximum in (14) is attained is not immediate. However, we will
prove in Section 4.1 that this is indeed the case (see Proposition 2).

3.2. Extreme cases. There are two extreme cases of posterior information, those
of telling everything or telling nothing. It is illustrative to see how the scenario in
these cases is simplified.

Firstly, Alice can tell the sent label x to Bob as it is, in which case T = X and
α(t | x) = δt,x. This means that the quantum prepare-and-measure part as well as
the postprocessing are obsolete and Bob – as he learns x – can just choose yx such
that f(x, yx) is maximal. Indeed, in this setting we have

Epost
f,α (E ;M, ν) =

∑
x,y,z

f(x, y) νx(y | z) tr [E(x)M(z)]

≤
∑
x

f(x, yx)
∑
z

(∑
y

νx(y | z)
)

tr [E(x)M(z)]

=
∑
x

f(x, yx) p(x)

and the bound is achieved by choosing νx(y | z) = δy,yx The maximal average score
is thus given as

∑
x f(x, yx) p(x).
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Secondly, Alice can tell a posterior message t that is independent of the original
label, i.e., α(t | x) = α(t). This kind of posterior information cannot help Bob. In
fact, from (13) we get

Epost
f,α (E ;M, ν) = Ef (E ;M′) ,

where

M′(y) =
∑
z

(∑
t

α(t) νt(y | z)

)
M(z) .

The post-processing that Bob might choose to perform can hence be included in the
measurement and the guessing game reduces to that without posterior information,
as expected.

Still a related special case is the one in which Alice may send useful posterior
information but Bob is not taking advantage of it, i.e., Bob is post-processing his
measurement outcome in a fixed manner. Formally, this means that the post-
processing map ν : t 7→ νt is constant, hence the measurement

M′′(y) =
∑
z

νt(y | z)M(z)

does not depend on t, and (13) takes the form

Epost
f,α (E ;M, ν) =

∑
x,y,t

f(x, y)α(t | x) tr [E(x)M′′(y)] = Ef (E ;M′′) .

Choosing Y = Z and νt(y | z) = δy,z one has M′′ = M and this confirms the
intuitively clear fact that

(15) Epost
f,α (E) ≥ Ef (E)

for any choice of α, as Bob can always decide to ignore the posterior information.

3.3. Deterministic posterior information. As defined earlier, a partial infor-
mation map α specifies how partial information relates to input labels. Suppose
that α(t | x) ∈ {0, 1} for all x, t. Since

∑
t α(t | x) = 1, this means that for each

x ∈ X there is a unique τ(x) ∈ T such that α(τ(x) | x) = 1. Therefore, the input
label x specifies the later sent posterior information deterministically. By denoting
Xt = τ−1(t), the sets (Xt)t∈T constitute a partition of X and α = ατ , where

(16) ατ (t | x) = δτ(x),t =

{
1 if x ∈ Xt

0 otherwise
.

We refer to this case as the case of deterministic posterior information. For the
task of state discrimination, this scenario has been discussed in [18].

As a paradigmatic exemplary case of the previously explained deterministic
posterior information, we recall the discrimination task presented in [23], where
|X| = |Y | = 4 and |T | = 2. In this guessing game the set X can be chosen to
contain four symbols {♣,♠,♦,♥}, and Alice chooses the input label among them
with uniform probability. She uses a qutrit system to send her message to Bob,
and the respective (pure) qutrit states correspond to the unit vectors

%♣ ∼
1√
2

 1
1
0

 , %♠ ∼
1√
2

 1
−1
0

 , %♦ ∼
1√
2

 1
0
1

 , %♥ ∼
1√
2

 1
0
−1

 .
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These are four states of a three dimensional system, hence there is no measurement
that would perfectly discriminate them. In fact, Proposition 1 and the discussion
after it implies that P(E) ≤ 3/4 for any uniformly distributed four qutrit states.

However, we are considering discrimination with posterior information and Bob
knows that after he has performed the measurement, Alice will inform him about
the color of the symbol (black for {♣,♠} and red for {♦,♥}). In our notation,
this means that the partition of X is Xblack = {♣,♠} and Xred = {♦,♥}. The
measurement M that Bob wisely decides to use is

M(1) =
1

4

 1 1 1
1 1 1
1 1 1

 , M(2) =
1

4

 1 1 −1
1 1 −1
−1 −1 1

 ,

M(3) =
1

4

 1 −1 1
−1 1 −1
1 −1 1

 , M(4) =
1

4

 1 −1 −1
−1 1 −1
−1 −1 1

 .

This leads to the probability distributions

tr [%♣M(·)] =
(

1
2 ,

1
2 , 0, 0

)
,

tr [%♠M(·)] =
(
0, 0, 1

2 ,
1
2

)
,

tr [%♦M(·)] =
(

1
2 , 0,

1
2 , 0
)
,

tr [%♥M(·)] =
(
0, 1

2 , 0,
1
2

)
.

From these probabilities we confirm that Bob can indeed infer the correct input label
if he gets the color of the input symbol as a posterior information. For example, if
the outcome is z = 2, then Bob needs to post-process it to ♣ if the color is black,
and to ♥ if the color is red.

3.4. Non-deterministic posterior information. We say that posterior infor-
mation is non-deterministic if 0 < α(t | x) < 1 at least for some x and t. This
means that for some x there are at least two possible labels t and t′ that can oc-
cur as partial information when x is the sent input label, and thus Alice makes a
random choice between some alternatives.

A paradigmatic exemplary case of non-deterministic posterior information is the
exclusion of wrong options. Let us set T = X and define

(17) αex(t | x) = (|X| − 1)−1(1− δx,t) .

This partial information map means that Alice announces one wrong option t after
Bob has performed his measurement, and she picks it with uniform probability
within the set X \ {x}. More generally, we can fix any positive integer k < |X| and
define

(18) T = {S ⊂ X : |S| = k} , αex(S | x) = |X| [ |T | (|X| − k) ]−1 1X\S(x) ,

where |T | = |X|! [ k! (|X| − k)! ]−1 and the normalization constant of αex is the
inverse cardinality of the set Tx = {S ∈ T : x /∈ S}. This choice of α means that
Alice announces a collection of k wrong options S = {x1, . . . , xk}, and she picks it
with uniform probability within the set Tx.
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4. Reduction to usual state discrimination games

4.1. Standard form of guessing games with posterior information. As we
have previously seen, Bob’s guessing strategy is determined by a measurement M
and post-processing map ν. There is a certain freedom in choosing M and ν, still
leading to the same average score for a given state ensemble E . To see this, we
write the average score (13) as

(19) Epost
f,α (E ;M, ν) =

∑
x,y,t

f(x, y)α(t | x) tr [E(x)Nt(y)] ,

where Nt are the post-processed measurements defined as

(20) Nt(y) =
∑
z

νt(y | z)M(z) .

Thus, different measurements M and post-processing maps ν which yield the same
measurements Nt in (20) lead to equal average scores.

Given a collection of measurements (Nt)t∈T , all with the same outcome set Y ,
we recall that the collection is called compatible if each Nt can be written as in
(20) for some choice of M and ν [24]. Otherwise, one says that the collection is
incompatible. As a consequence of (14) and (19), we can write

Epost
f,α (E) = max

{∑
x,y,t

f(x, y)α(t | x) tr [E(x)Nt(y)] : (Nt)t∈T is compatible

}
.

The compatibility constraint guarantees that the two measurement scenarios – us-
ing M and post-processing, or using the collection (Nt)t∈T – are equivalent. In
fact, without the compatibility constraint, the scenario with many measurements
becomes a guessing game with prior information. We come back to this point in
Section 5.

The outcome set of M in the definition of compatibility of (Nt)t∈T is not fixed
and it can be arbitrary. However, every compatible collection of measurements
has a joint measurement, i.e., a measurement defined on their product outcome set
and giving them as marginals [25]. In the current context, this means that we can
always switch from M to a measurement with the outcome set Y T and to a fixed
post-processing map, defined as

(21) πt(y | φ) = δy,φ(t) =

{
1 if y = φ(t)

0 if y 6= φ(t)
.

(Here and in the following we use the customary notation Y T for the set of all
maps φ : T → Y . If T = {1, . . . ,m}, then Y T is identified with the product set Y m

canonically. The functional notation is convenient especially when T does not have
any natural ordering.) In fact, starting from M and ν, we define a measurement
M̄ν with the outcome set Y T as

(22) M̄ν(φ) =
∑
z

M(z)
∏
t

νt(φ(t) | z)
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and then we have∑
φ

πt(y | φ) M̄ν(φ) =
∑
z

M(z) νt(y | z)
∏
t′ 6=t

∑
y′

νt′(y
′ | z)

=
∑
z

νt(y | z)M(z) ,

which means that the post-processed measurements (20) are the marginals of M̄ν .
In particular,

(23) Epost
f,α (E ;M, ν) = Epost

f,α (E ; M̄ν , π) .

The importance of this transition from M and ν to M̄ν and π is that for the latter
pair the outcome set is fixed and so is also the post-processing map. We thus reach
the following conclusion.

Proposition 2. The maximum in (14) is attained, and

(24) Epost
f,α (E) = max

M̄
Epost
f,α (E ; M̄, π) ,

where the optimization is over all measurements M̄ with the outcome set Y T .

Proof. Clearly, Epost
f,α (E ; M̄, π) ≤ Epost

f,α (E) for all M̄, and (24) is then a consequence
of the bound

Epost
f,α (E ;M, ν) ≤ max

M̄
Epost
f,α (E ; M̄, π)

following from (23). The maxima in (14) and (24) are attained, since the measure-
ments with the outcome set Y T form a compact set and in (24) the post-processing
map π is fixed. �

As a result, if the objective is to optimize the average score of a guessing game
with posterior information that has Y as the output label set and T as the partial
information set, it is enough to consider guessing strategies of the following standard
form:

• Bob is using a measurement M̄ with the outcome set Y T . From the obtained
measurement outcome φ, he chooses φ(t) based on the posterior information
t ∈ T .

This general formulation is useful for proving results in the subsequent sections.

4.2. Reduction theorem. In the following we present the basic steps how the
maximal average score in a guessing game with posterior information can be calcu-
lated. Our approach is related but more general than a result presented in [18]. The
main point is that a standard form guessing game with posterior information can
be translated to a usual state discrimination task. We first recall from Section 4.1
than in the standard form Bob’s measurement is defined on the product outcome
set Y T . For any measurement M̄ with the product outcome set Y T and for the
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post-processing map π defined in (21), the average score (13) can be rewritten as

(25)

Epost
f,α (E ; M̄, π) =

∑
x,y,t,φ

f(x, y)α(t | x)πt(y | φ) tr
[
E(x) M̄(φ)

]
=
∑
φ

tr

[(∑
x,y,t

f(x, y)α(t | x) δy,φ(t) E(x)

)
M̄(φ)

]

=
∑
φ

tr

[(∑
x,t

f(x, φ(t))α(t | x) E(x)

)
M̄(φ)

]
= |Y ||T |−1

∆(E , f) P
(
Ef,α ; M̄

)
.

In the last expression, ∆(E , f) is the constant defined in (5), while Ef,α is a new
state ensemble with the label set Y T , which extends the auxiliary state ensemble
(6) to the scenario with posterior information. Under the presumption ∆(E , f) 6= 0
it is defined as

(26) Ef,α(φ) =
(
|Y ||T |−1

∆(E , f)
)−1∑

x,t

f(x, φ(t))α(t | x) E(x) .

(In the case ∆(E , f) = 0 we can set, for instance, Ef,α(φ) =
(
d |Y ||T |

)−1
1 and then

the following formulae cover also this situation.) The normalization constant before
the sum in (26) is due to the fact that∑

φ

tr

[∑
x,t

f(x, φ(t))α(t | x) E(x)

]
= |Y ||T |−1

∑
x,y,t

f(x, y)α(t | x) p(x)

= |Y ||T |−1
∆(E , f) .

The main purpose of introducing the auxiliary state ensemble is summarized in the
following statement.

Theorem 1. For any E , α and f , we have

(27) Epost
f,α (E) = |Y ||T |−1

∆(E , f) P(Ef,α) .

Proof. The claim follows by combining (24) and (25). �

We remark that the definition of the auxiliary state ensemble Ef,α is consistent
with the earlier definition of the auxiliary state ensemble (6). Indeed, if the posterior
information is trivial, then |T | = 1, implying that Ef,α = Ef and (25), (27) reduce
to (7), (8), respectively.

4.3. State discrimination with deterministic posterior information. State
discrimination with deterministic posterior information is a prototypical example
of the discussed scenario and in Section 3.3 we recalled one concrete case of that
type. For this class of games the auxiliary state ensemble has a simple form. To
see it, let T = {1, . . . ,m}, fix a function τ : X → T , set Xt = τ−1(t) and define the
partial information map ατ as in (16). Moreover, let Y = X and fix the standard
discrimination score function f = fδ. The auxiliary state ensemble (26) becomes

(28) Efδ,ατ (x1, . . . , xm) = |X|1−m
∑
t s.t.
xt∈Xt

E(xt) ,

where we write elements φ ∈ XT as ordered m-tuples (x1, . . . , xm) with xt = φ(t).
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We remark that this case was already studied in [18], where it was proved that

Epost
fδ,ατ

(E) = ∆′ P(F) for another definition of the constant ∆′ and the auxiliary

state ensemble F (see equations (22) and (23) therein). The difference between the
ensembles Efδ,ατ and F is in the respective label sets, which are the product set
Xm for the former ensemble and X1 × . . .×Xm for the latter one. Actually, up to
the constant factor ∆′ |X|1−m, the state ensemble F coincides with the restriction
of Efδ,ατ to the set X1 × . . . ×Xm. Therefore, we see that in this particular case
there is a certain amount of redundancy in employing the auxiliary state ensemble
Ef,α to evaluate Epost

f,α (E).

4.4. State discrimination with the exclusion of wrong options. State dis-
crimination with the random exclusion of one wrong option was discussed in Section
3.4. Suppose that T = X and α = αex is the partial information map (17). The
auxiliary state ensemble (26) becomes

(29)

Ef,αex(φ) = C
∑
t

∑
x

f(x, φ(t)) (1− δx,t) E(x)

= C
∑

y∈φ(X)

∑
t s.t.
φ(t)=y

∑
x

f(x, y) (1− δx,t) E(x)

= C
∑
x,y

f(x, y)
∣∣φ−1(y) \ {x}

∣∣ E(x) ,

where 1/C = (|X|−1) |Y ||T |−1∆(E , f). We observe that the dependence on the out-
come φ is only in the cardinalities

∣∣φ−1(y) \ {x}
∣∣ appearing in the last line of (29).

These are integer numbers between 0 and |X|−1 such that
∑
x

∣∣φ−1(y) \ {x}
∣∣ ≤ |X|.

We can perform a similar computation for the case in which one excludes more
than one wrong option. Using the same notation as in Section 3.4, we find that

(30) Ef,αex(φ) = C
∑
x,y

f(x, y)
∣∣φ−1(y) ∩ Tx

∣∣ E(x) ,

where 1/C = |T | |X|−1(|X| − k) |Y ||T |−1∆(E , f).

5. Guessing games with prior information

5.1. General scenario. We recall that Epost
f,α (E) denotes the best achievable av-

erage score when the optimization is over all measurements M and post-processing
maps ν. In Section 4.1 we saw that finding Epost

f,α (E) is equivalent to optimizing the

sum in (19) over the compatible collections of |T | measurements with the outcome
set Y . One can obviously write such a sum also without the assumption of com-
patibility, but ignoring this constraint may lead to a larger maximal average score
than Epost

f,α (E). In fact, the usage of the additional information t for the choice of
the measurement Nt means that t is used prior the measurement happens. We call
this different scenario a guessing game with prior information (see Figure 3), and
we write

(31) Eprior
f,α (E ; (Nt)t∈T ) =

∑
x,y,t

f(x, y)α(t | x) tr [E(x)Nt(y)]

for its average score.
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Figure 3. In a guessing game with prior information Bob arranges
his measurement after he receives Alice’s partial information. The
postprocessing of the obtained outcome can now be included in the
measurement itself. In this scenario Bob is allowed to optimize his
measurement in order to get the highest score.

The maximal average score is
(32)

Eprior
f,α (E) = max

{
Eprior
f,α (E ; (Nt)t∈T ) : (Nt)t∈T is any collection of measurements

}
.

The evaluation of Eprior
f,α (E) boils down to determining the maximal average scores

of |T | different guessing games of the usual type. To see this, we introduce the total
probability

(33) q(t) =
∑
x

α(t | x) p(x)

and, whenever q(t) is nonzero, we define the conditional state ensemble Et as follows:

(34) Et(x) = q(t)−1α(t | x) E(x) .

With the above definition, we can rewrite (31) as

(35) Eprior
f,α (E ; (Nt)t∈T ) =

∑
t

q(t)Ef (Et;Nt)

and by combining (4) and (32), we then obtain

(36) Eprior
f,α (E) =

∑
t

q(t)Ef (Et) .

Thus, the maximal average score with prior information Eprior
f,α (E) is a convex sum

of maximal average scores Ef (Et) for different t. It can hence be evaluated by
means of the techniques of usual minimum error state discrimination, applied to
each conditional state ensemble Et. The definition of Et is subject to the same
remarks as those after the introduction of the auxiliary state ensemble in (6). Note
that in the present case the label sets of Et and E coincide, and that their states
are essentially the same. Indeed, %t,x = Et(x)/tr [Et(x)] and %x = E(x)/tr [E(x)] are
equal for all t and x such that q(t) 6= 0 and Et(x) 6= 0. On the other hand, the
probabilities pt(x) = tr [Et(x)] and p(x) = tr [E(x)] may be different in general.
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5.2. Detection of incompatibility. Summarizing the earlier discussion, a score
function f and a partial information map α define two different guessing games
as the partial information can be delivered to Bob either before or after he is
performing a measurement. If Bob can access this information before, then the
average score is Eprior

f,α (E ; (Nt)t∈T ) given in (31). While if Bob gets the information
only later and his usage of it is therefore limited to post-processing the measurement
outcomes, then we are back in the guessing game with posterior information, and
the maximal average score is

(37) Epost
f,α (E) = max

{
Eprior
f,α (E ; (Nt)t∈T ) : (Nt)t∈T is compatible

}
as discussed in Section 4.1. We thus see that the difference of the two games is
really about (in)compatibility of measurements. The following result, first proved
in [18] for a more restricted scenario, is based on these observations.

Proposition 3. If Eprior
f,α (E ; (Nt)t∈T ) > Epost

f,α (E), then (Nt)t∈T is incompatible.

The opposite question is: if (Nt)t∈T is a collection of incompatible measurements,
how can we detect their incompatibility by performing a guessing game? This means
that we compare the average score Eprior

f,α (E ; (Nt)t∈T ) to the maximal average score

with posterior information, Epost
f,α (E). The first one can even be calculated from

experimental data if Nt are real devices, whereas Epost
f,α (E) can be determined or at

least upper bounded analytically (more about that in later sections). This question
has been studied from various different angles in [26, 27, 28, 29, 30] and important
findings have been reported. One statement is the following (see Theorem 2 in
[26]).

Theorem 2. Let X = Y × T and υ : X → Y , τ : X → T be the projections of
X onto the respective factors. Moreover, fix the score function fυ and the partial
information map ατ as in (10) and (16), respectively. Then, for any incompatible
collection of measurements (Nt)t∈T with the outcome set Y , there exists a state

ensemble E with the label set X such that Eprior
fυ,ατ

(E ; (Nt)t∈T ) > Epost
fυ,ατ

(E).

Proof. The proof is a straightforward adaptation of the argument provided in [26].
Let V be the linear space of all collections (Ft)t∈T of operator valued functions
Ft : Y → L(H). Any collection of measurements (Nt)t∈T with the outcome set Y
is an element of V, and all collections which are compatible constitute a compact
convex subset C ⊂ V. Indeed, by the discussion in Section 4.1, a collection (Nt)t∈T
is compatible if and only if each measurement Nt is obtained as the marginal of
a joint measurement, and joint measurements form a compact convex subset of
the linear space of all L(H)-valued functions on Y T . Now, suppose (Nt)t∈T is
an incompatible collection of measurements. By a standard separation argument,
there exists a hyperplane in V which separates (Nt)t∈T from C. Equivalently, one
can find (Ft)t∈T ∈ V and κ ∈ R such that, by defining

ξ
(
(N′t)t∈T

)
= κ−

∑
y,t

tr [Ft(y)N′t(y)]

for all collections of measurements (N′t)t∈T , the inequality ξ ≥ 0 holds on the set C,
while ξ

(
(Nt)t∈T

)
< 0 for the incompatible collection (Nt)t∈T . Fix µ > 0 satisfying

Ft(y) + (µ/2)1 ≥ 0 for all y, t, and let 1/λ =
∑
y,t tr

[
Ft(y) + µ1

]
> 0. Define

E(y, t) = λ
(
Ft(y) + µ1

)
.
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It is easy to check that E is a state ensemble with the label set X. Moreover,

Eprior
fυ,ατ

(E ; (N′t)t∈T ) = −λ ξ
(
(N′t)t∈T

)
+ κ′ ,

where κ′ = λ (κ+ dµ |T |). By (37), it follows that

Epost
fυ,ατ

(E) = −λ min
{
ξ
(
(N′t)t∈T

)
: (N′t)t∈T ∈ C

}
+ κ′

< −λ ξ
(
(Nt)t∈T

)
+ κ′ = Eprior

fυ,ατ
(E ; (Nt)t∈T )

as claimed in the theorem. �

We underline that, in order to detect all incompatible collections of measure-
ments with the outcome set Y in a guessing game with partial information from
the set T , Theorem 2 requires a sufficiently large label set X, namely, |X| = |Y | |T |.

Combined together, Proposition 3 and Theorem 2 lead to the conclusion that a
collection (Nt)t∈T is incompatible if and only if there is a guessing game such that

Epost
f,α (E ; (Nt)t∈T ) > Epost

f,α (E) for some choice of f , α and E . It appears that the full
realm of guessing games with posterior information has not yet been investigated
from the viewpoint of incompatibility detection and there are several open ques-
tions. For instance, when a given class of such guessing games is enough to detect
all incompatible collections of measurements? In particular, is it possible to use
smaller state ensembles and still be able to detect incompatibility? Further, what
is the condition for a pair of a score function f and a partial information map α to
detect some incompatible pair? We leave these questions for future investigations.

5.3. Quantum versus classical information. Proposition 3 and Theorem 2 also
point out a fundamental difference between quantum and classical theory: while
quantum theory admits guessing games in which prior information gives an advan-
tage over posterior information, in classical theory the two scenarios are equivalent.
In terms of the maximal average scores (32) and (37), this amounts to say that

for any classical state ensemble E , we have Eprior
f,α (E) = Epost

f,α (E) for all f and α.

To give a precise explanation of this statement, we recall that the states of a (fi-
nite dimensional) classical system are just probability distributions on a fixed finite
set H. Denoting by `(·) the linear space of all complex functions on a given set,
measurements on H with the outcome set Z are described by linear positive maps
M∧: `(H) → `(Z) which send the probability distributions on H into those on Z.
The general structure is

(38)
[
M∧(g)

]
(z) =

∑
h

µ(z | h) g(h) ∀g ∈ `(H) ,

where µ(z | h) are conditional probabilities uniquely determined by the measure-
ment M∧. For classical guessing games, everything goes as in the quantum case up
to replacing the Born rule tr [E(x)M(z)] with the probabilities

[
M∧(E(x))

]
(z) inside

the expressions of the average scores. In classical theory, any collection (N∧
t )t∈T of

measurements with the outcome set Y is compatible. Indeed, if

(39)
[
N∧
t (g)

]
(y) =

∑
h

νt(y | h) g(h) ,

then each N∧
t is the marginal of the following measurement M̄∧

ν with the product
outcome set Y T

(40)
[
M̄∧
ν (g)

]
(φ) =

∑
h

g(h)
∏
t

νt(φ(t) | h) .
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In particular, for all f , α and E , we have Eprior
f,α (E ; (N∧

t )t∈T ) = Epost
f,α (E ; M̄∧

ν , π),

where π is the post-processing map defined in (21). This implies that the probability

Eprior
f,α (E ; (N∧

t )t∈T ) can not exceed the bound Epost
f,α (E), as claimed.

When the equality Eprior
f,α (E) = Epost

f,α (E) holds, we say that the timing of partial
information is irrelevant for the state ensemble E in the guessing game with score
function f and partial information map α. As we have just seen, this is always the
case for guessing games based on classical systems. It is still true for quantum state
ensembles which are diagonal with respect to a fixed reference basis of the system
Hilbert space, as shown in the following statement.

Theorem 3. Suppose E is a state ensemble such that the operators E(x) and E(x′)
commute for all x, x′ belonging to the label set of E. Then, the timing of partial
information is irrelevant for E in all guessing games.

Proof. We show that for all collections of measurements (Nt)t∈T there exists a
compatible collection (N′t)t∈T such that

(∗) Eprior
f,α (E ; (Nt)t∈T ) = Eprior

f,α (E ; (N′t)t∈T ) ,

and then the claim follows from (32) and (37). Let (ϕh)h∈H be an orthonormal
basis of H which diagonalizes all the operators E(x), x ∈ X. We define two linear
maps Φmeas : L(H)→ `(H) and Φprep : `(H)→ L(H) as follows:[

Φmeas(%)
]
(h) = tr

[
|ϕh〉〈ϕh| %

]
, Φprep(g) =

∑
h

g(h) |ϕh〉〈ϕh| .

The state ensemble E is invariant with respect to the composed map Φprep ◦Φmeas,
that is, Φprep

(
Φmeas(E(x))

)
= E(x) for all x. Let N∧

t be the classical measurement
on H with the outcome set Y which is given by[

N∧
t (g)

]
(y) = tr [Φprep(g)Nt(y)] .

We have

tr [E(x)Nt(y)] = tr
[
Φprep

(
Φmeas(E(x))

)
Nt(y)

]
=
[
N∧
t

(
Φmeas(E(x))

)]
(y)

= 〈 (N∧
t ◦ Φmeas)(E(x)) , δy 〉 = tr [E(x) (N∧

t ◦ Φmeas)
∗(δy)] ,

where 〈 g , γ 〉 =
∑
y g(y) γ(y) is the duality relation for elements g, γ ∈ `(Y ), δy

is the delta function at y, and (N∧
t ◦ Φmeas)

∗ : `(Y ) → L(H) is the dual map of
N∧
t ◦Φmeas. If we set N′t(y) = (N∧

t ◦Φmeas)
∗(δy), then the collection of measurements

(N′t)t∈T so obtained is compatible, since such is the collection of classical measure-
ments (N∧

t )t∈T . Moreover, (∗) holds for (N′t)t∈T , thus completing the proof. �

Remarkably, the converse statement of Theorem 3 is not true. In other words,
there exist state ensembles whose states do not commute, but for which the timing
of partial information is irrelevant in specific guessing games. A nontrivial example
is provided in Section 7.5.

6. Symmetry in guessing games

6.1. Symmetries and group actions. As we have seen in Theorem 1, evaluating
the maximal average score Epost

f,α (E) boils down to a usual state discrimination

problem for the auxiliary state ensemble Ef,α defined in (26). However, finding the
maximal guessing probability P(Ef,α) may still be a difficult task since the number

of states involved in the calculation scales as |Y ||T |. Even assuming that the states
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of E are pure does not provide any actual simplification, as typically those of Ef,α
are mixed.

A natural attempt to reduce the complexity of the problem is by assuming that
the state ensemble E possesses some symmetry, and then exploiting group theory in
order to obtain the desired results. This indeed works for usual state discrimination
[31, 32], and our objective is now to provide an extension to the present more general
setting.

For the rest of the section we fix a finite group G acting on the sets X, Y and T ,
and we assume that the quantities f and α are G-invariant, i.e., invariant under the
action of G (see e.g. [33] for the basics of group actions). More precisely, denoting
by g both an element of the group and its (left) action on the three sets above, we
require that

(S1) f(gx, gy) = f(x, y) for all x ∈ X, y ∈ Y and g ∈ G,
(S2) α(gt | gx) = α(t | x) for all x ∈ X, t ∈ T and g ∈ G.

In concrete situations, the above conditions often arise in a natural way. As
examples, we consider the cases of partition guessing games and deterministic pos-
terior information described in Sections 2.4 and 3.3. Thus, let υ : X → Y be a
surjective function and (Xy)y∈Y the partition of X determined by υ as described in
Section 2.4. Moreover, suppose the group G acts on X in a way that for all y there
is y′ such that gXy = {gx : x ∈ Xy} = Xy′ . Then, we can define an action of G on
Y by setting gy = y′. This action satisfies υ(gx) = gυ(x) for all x and g. Therefore,
the score functions fυ and f¬υ associated with υ are G-invariant (condition (S1)).
In the same way suppose τ : X → T determines a partition (Xt)t∈T of X which is
preserved by the action of G. Then, the partial information map ατ of Section 3.3
is invariant with respect to the action of G on T defined by Xgt = gXt (condition
(S2)).

In order to describe symmetry on the operator side, we fix a projective unitary
representation U of G onH and we suppose that the state ensemble E is G-covariant
in the following sense:

(S3) U(g) E(x)U(g)∗ = E(gx) for all x ∈ X and g ∈ G.

We can now state the following straightforward result.

Proposition 4. If f , α and E satisfy conditions (S1)–(S3) above, then the auxiliary
state ensemble Ef,α defined in (26) satisfies

(41) U(g) Ef,α(φ)U(g)∗ = Ef,α(g.φ)

for all φ ∈ Y T and g ∈ G, where the action of G on Y T is defined as

(42) (g.φ)(t) = gφ(g−1t)

for all t ∈ T .

In other words, G-invariance of f and α together with G-covariance of E imply
G-covariance of Ef,α if we regard the set Y T as a G-space in the natural way.

6.2. The case of an irreducible representation. If a guessing game possesses
the symmetries described in the previous section, evaluating the maximal average
score Epost

f,α (E) drastically simplifies if the representation U is irreducible, i.e., {0}
and H are the only subspaces of H which are invariant under the action of U .
Indeed, we have the following result.
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Theorem 4. Suppose f , α and E satisfy the symmetry conditions (S1)–(S3). More-
over, assume that the representation U is irreducible. The following facts are true.

(a) Denote by Λ(Ef,α) the largest eigenvalue of all the operators Ef,α(φ), φ ∈ Y T .
Then,

(43) Epost
f,α (E) = d |Y ||T |−1∆(E , f) Λ(Ef,α) .

(b) Fix φ0 ∈ Y T such that the operator Ef,α(φ0) has Λ(Ef,α) among its eigenvalues,
and denote by Π0 the orthogonal projection onto the eigenspace of Ef,α(φ0)

associated with Λ(Ef,α). The equality Epost
f,α (E ; M̄, π) = Epost

f,α (E) is attained by
the measurement

(44)

M̄(φ) =

{
d
(
|G.φ0| rank(Π0)

)−1
U(g) Π0 U(g)∗ if φ = g.φ0 for some g ∈ G

0 otherwise
.

Proof. By Proposition 4, for all g ∈ G we have

Ef,α(g.φ0)U(g) Π0 U(g)∗ = Λ(Ef,α)U(g) Π0 U(g)∗ .

In particular, Π0 commutes with U(g) for all g belonging to the stabilizer subgroup
G0 = {g ∈ G : g.φ0 = φ0}, and therefore the operator M̄(φ) given by (44) is well
defined. It also follows that Ef,α(φ) M̄(φ) = Λ(Ef,α) M̄(φ) for all φ ∈ Y T . In order
to apply Proposition 1 to the state ensemble Ef,α and the measurement M̄, we still
need to check that

∑
φ M̄(φ) = 1. Indeed, since U(g) M̄(φ)U(g)∗ = M̄(g.φ) and

U(g)
∑
φ

M̄(φ)U(g)∗ =
∑
φ

M̄(g.φ) =
∑
φ

M̄(φ) ,

Schur’s lemma implies that
∑
φ M̄(φ) = µ1 for some µ ∈ R, where µ = 1 because

dµ = tr [µ1] =
∑
φ

tr
[
M̄(φ)

]
=

∑
φ∈G.φ0

d |G.φ0|−1 = d .

By Proposition 1, it then follows that P(Ef,α) = P(Ef,α; M̄) = dΛ(Ef,α). Combin-
ing this fact with (25) and (27) yields the statement of the theorem. �

For all φ ∈ Y T , the set G.φ = {g.φ : g ∈ G} is the orbit of G passing through
φ. Item (b) of the previous theorem means that we can always find an optimal
measurement that is concentrated on such an orbit. As already remarked in the
proof, the measurement (44) satisfies the covariance condition

(45) M̄(g.φ) = U(g) M̄(φ)U(g)∗

for all φ ∈ Y T and g ∈ G. This fact combined with the equality

(46) πgt(gy | g.φ) = πt(y | φ)

implies that the marginals (Nt)t∈T of M̄ are such that

(47) Ngt(gy) = U(g)Nt(y)U(g)∗

for all g ∈ G, y ∈ Y and t ∈ T . Therefore, different marginals are related by a
permutation of the outcome set Y and a unitary conjugation by U .
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7. Example: two pairs of orthogonal qubit states

In the following we demonstrate the results of the previous sections by fixing
four noncommuting qubit states as our state ensemble and evaluating Eprior

f,α (E)

and Epost
f,α (E) for several choices of f and α. In all the examples below, partial

information increases the maximal average scores with both prior and posterior
information. However, we will see two cases in which Eprior

f,α (E) > Epost
f,α (E) (Sections

7.3 and 7.4) and one in which the timing of partial information is irrelevant (Section
7.5).

7.1. Notation. We recall that the Hilbert space of a qubit system is H = C2 and
that any qubit state % is represented as a vector in the Bloch ball {r ∈ R3 : ‖r‖ ≤ 1}
by means of the relation

% = 1
2 (1+ r · σ) .

In this formula we have denoted r · σ = r1σ1 + r2σ2 + r3σ3 for the vector r =
r1e1 + r2e2 + r3e3, where σ1, σ2 and σ3 are the three Pauli matrices and e1, e2

and e3 the unit vectors along the coordinate axes. More generally, any selfadjoint
operator M ∈ L(C2) can be written as

M = µ1+m · σ

for some µ ∈ R and m ∈ R3, uniquely detemined by M . If m is nonzero, the
eigenvalues λ+, λ− of M and the corresponding eigenprojections Π+, Π− are

λ± = µ± ‖m‖ , Π± = 1
2 (1± m̂ · σ) ,

where m̂ = m/ ‖m‖ = m/(λ+ − µ) is the unit vector along the direction of m.
For θ ∈ (0, π/2], we fix

(48) a = cos
(

1
2θ
)
e1 + sin

(
1
2θ
)
e2 , b = cos

(
1
2θ
)
e1 − sin

(
1
2θ
)
e2

and define

X = {+a, −a, +b, −b}

as the label set of Alice. The state ensemble E is chosen to be

(49) E(x) = 1
8 (1+ x · σ)

for all x ∈ X. It hence corresponds to two orthogonal pairs of pure states, %+a, %−a
and %+b, %−b, all apprearing with the same probability 1/4 in the state ensemble
E (see Fig. 4 for an illustration in the Bloch ball).

The elements of X are permuted by the dihedral group D2 ⊂ SO(3), which
consists of the identity element I together with the three 180◦ rotations R1, R2

and R3 along the respective coordinate axes. The group D2 acts on C2 by means
of the projective unitary representation

(50) U(I) = 1 , U(Ri) = σi ,

and the state ensemble E is manifestly D2-covariant. Since the representation U is
irreducible, we can use Theorem 4 to evaluate Epost

f,α (E) provided that f and α are
D2-invariant.
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θ

%+a

%+b%−a

%−b

Figure 4. The states of the ensemble (49) represented in a section
of the Bloch ball. Each state is chosen with uniform probability
and is directed along one of the labels +a, −a, +b and −b.

7.2. Discrimination and antidiscrimination without partial information.
For comparison we recall the maximal guessing probabilities in the usual discrimi-
nation and antidiscrimination guessing games when there is no partial information
available. By using Proposition 1, it is straightforward to show that P(E) = 1/2
irrespective of the angle θ. A different proof of this fact can be found e.g. in [11].

The maximal guessing probability in the antidiscrimination guessing game is 1,
as it can be evaluated by forming first the auxiliary state ensemble given in (6).
An alternative way to see this fact is by observing that

∑
x∈X %x = 21. This

condition implies that the four states can be perfectly antidiscriminated with any
prior probability distribution p [34].

7.3. Discrimination with deterministic posterior information. Let us con-
sider discrimination of the state ensemble (49) with deterministic posterior infor-
mation, hence we choose X = Y and f = fδ. The set X is partitioned into two
disjoint subsets Xa and Xb, where

(51) Xa = {+a, −a} , Xb = {+b, −b} .
The partial information consists in giving the correct subset of the input label, thus
T = {a, b} and the partial information map is ατ with τ(±a) = a and τ(±b) = b
(see Section 3.3).

We begin by evaluating the maximal average score Eprior
fδ,ατ

(E). It is enough to

observe that the conditional state ensemble (34) is

(52) Et(x) =

{
1
4 (1+ x · σ) if x ∈ Xt

0 otherwise

and that Et is perfectly discriminated by means of the sharp measurement

(53) Nt(x) =

{
1
2 (1 + x · σ) if x ∈ Xt

0 otherwise
.

It follows that

(54) Eprior
fδ,ατ

(E) = 1 .

In order to calculate the maximal average score Epost
fδ,ατ

(E) in the posterior infor-
mation guessing game, we use the symmetry of the problem. The score function fδ
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and the partial information map ατ are D2-invariant by the discussion after con-
ditions (S1) and (S2) in Section 6.1. Thus, by Theorem 4, evaluating the maximal

average score Epost
fδ,ατ

(E) amounts to finding the maximal eigenvalue of the operators

Efδ,ατ (φ), φ ∈ Y T , defined by (28), which in the current case become

(55) Efδ,ατ (x1,x2) =
C

8
·


(1+ x1 · σ) if x1,x2 ∈ X1

(1 + x2 · σ) if x1,x2 ∈ X2

[21+ (x1 + x2) · σ] if x1 ∈ X1 and x2 ∈ X2

0 if x1 ∈ X2 and x2 ∈ X1

with 1/C = |Y ||T |−1∆(E , d) = 4. By means of straightforward calculations, we get

Λ(Efδ,ατ ) =
C

8

(
2 +

∥∥a+ b
∥∥) =

C

4

(
1 +

√
1 + cos θ

2

)
,

and then Theorem 4 yields

(56) Epost
fδ,ατ

(E) =
1

2

(
1 +

√
1 + cos θ

2

)
.

The average scores (54) and (56) were already obtained in [18], where a detailed
description of the optimal measurements was also provided. We remark that there
are strict inequalities

(57) Eprior
fδ,ατ

(E) > Epost
fδ,ατ

(E) > Efδ(E)

for all θ ∈ (0, π/2] and of these three quantities only Epost
fδ,ατ

(E) varies with θ.

7.4. Discrimination by excluding one wrong option. Let us still consider the
discrimination game, but now with a different kind of partial information. Namely,
Alice excludes one wrong option. We hence keep X = Y and f = fδ, but now
X = T and the partial information map is αex described in Section 3.4, that is,
αex(t | x) = (1− δx,t) /3.

In the present case, the conditional state ensemble (34) is

(58) Et(x) = 1
6 (1− δx,t) (1+ x · σ) .

Using Proposition 1 we conclude that Efδ(Et) = P(Et) = 2/3, the unique optimal
measurement being still given by (53) with t = τ(t). The maximal average score
with prior information is then

(59) Eprior
fδ,αex

(E) =
2

3
.

Since the sharp optimal measurements (53) do not commute for t 6= t′, we expect

that Eprior
fδ,αex

(E) > Epost
fδ,αex

(E).
With the introduced group theoretical machinery we can find out that

(60) Epost
fδ,αex

(E) =
1

12

(
4 +
√

10 + 6 cos θ
)
.
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To see this, we first observe that the partial information map αex is D2-invariant,
hence Theorem 4 applies also in this case. The auxiliary state ensemble (29) be-
comes

(61)

Efδ,αex
(φ) =

C

24

∑
x

∣∣φ−1(x) \ {x}
∣∣ (1+ x · σ)

=
C

24

{(
αφ+ + αφ− + βφ+ + βφ−

)
1+

[(
αφ+ − α

φ
−
)
a+

(
βφ+ − β

φ
−
)
b
]
· σ
}
,

where 1/C = |Y ||T |−1∆(E , d) = 64 and we have denoted

(62) αφ± =
∣∣φ−1(±a) \ {±a}

∣∣ , βφ± =
∣∣φ−1(±b) \ {±b}

∣∣ .
The largest eigenvalue of Efδ,αex

(φ) is

λ(φ) =
C

24

{
αφ+ + αφ− + βφ+ + βφ− +

∥∥∥(αφ+ − αφ−)a+
(
βφ+ − β

φ
−
)
b
∥∥∥}

=
C

24
γ
(
αφ+, α

φ
−, β

φ
+, β

φ
−
)
,

where γ is the function

γ
(
α+, α−, β+, β−

)
= αφ+ + αφ− + βφ+ + βφ−

+
[(
α+ − α−

)2
+
(
β+ − β−

)2
+ 2

(
α+ − α−

)(
β+ − β−

)
cos θ

] 1
2 .

The corresponding eigenprojection is

Π(φ) = 1
2 (1+ m̂(φ) · σ)

with

m̂(φ) =

(
αφ+ − α

φ
−
)
a+

(
βφ+ − β

φ
−
)
b

γ
(
α+, α−, β+, β−

)
−
(
αφ+ + αφ− + βφ+ + βφ−

) .
For all φ ∈ XX , the numbers αφ± and βφ± satisfy the constraints

αφ±, β
φ
± ∈ N , αφ±, β

φ
± ≤ |X| − 1 , αφ+ + αφ− + βφ+ + βφ− ≤ |X| .

The maximum of γ
(
α+, α−, β+, β−

)
with α±, β± subject to these constraints is

equal to 4 +
√

10 + 6 cos θ (see Appendix A for details) and it is attained at the
feasible points

f0 = (1, 0, 3, 0), f1 = (3, 0, 1, 0), f2 = (0, 3, 0, 1), f3 = (0, 1, 0, 3) .

If φ0 ∈ XX is given by

(63) φ0(+a) = φ0(−a) = φ0(−b) = +b , φ0(+b) = +a

and we further define

(64) φi = Ri.φ0 for i = 1, 2, 3 ,

then with straightforward calculations

fi =
(
αφi+ , α

φi
− , β

φi
+ , βφi−

)
for all i = 0, 1, 2, 3 .

Using the notations of Theorem 4, it follows that

Λ(Efδ,αex
) =

C

24

(
4 +
√

10 + 6 cos θ
)

and the operator Efδ,αex(φ0) has Λ(Ed,αex) among its eigenvalues. Therefore, we
obtain (60).
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The optimal measurement (44) is

(65) M̄(φ) =

{
1
4 (1+ m̂(φ) · σ) if φ ∈ {φ0, φ1, φ2, φ3}
0 otherwise

with

(66)

m̂(φ0) = −m̂(φ2) =
a+ 3b√

10 + 6 cos θ
,

m̂(φ1) = −m̂(φ3) =
3a+ b√

10 + 6 cos θ
.

Its marginal N+a is

N+a(+a) = 0 , N+a(+b) = 1
4 [21+ (m̂(φ0) + m̂(φ1)) · σ] ,

N+a(−a) = 1
4 (1− m̂(φ1) · σ) , N+a(−b) = 1

4 (1− m̂(φ0) · σ) ,

and the other marginals N−a, N+b and N−b are obtained from N+a by means of
the relation (47).

7.5. Partition guessing game by excluding one wrong option. Finally, we
consider a partition guessing game of the kind described in Section 2.4. We choose
Y = {a, b} and let υ : X → Y be the function υ(±a) = a, υ(±b) = b. With this
choice of Y and υ, we consider the score function fυ defined in (10). Thus, the
task is to detect the correct direction of the label x, i.e., to guess whether x ∈ Xa

or x ∈ Xb for the two sets Xa, Xb defined in (51). We still have X = T and the
partial information map is αex(t | x) = (1− δx,t)/3 as in the previous section.

We first observe that, according to Section 2.4, without partial information the
task is equivalent to discriminating two totally mixed states. Indeed, in the current
case, Efυ (y) = (1/4)1 for both y = a, b, and therefore the best discrimination
strategy is random guessing, i.e.,

(67) Efυ (E) = P(Efυ ) =
1

2
.

In other words, we can reach the maximal average score without making any mea-
surement.

To calculate the optimal average score in the cases with partial information, we
first observe that the conditional state ensemble Et is the same as (58), but now
the score function has changed. We evaluate Efυ (Et) by using (7)-(8), where in the
present case ∆(E , fυ) = 1 and the auxiliary state ensemble (6) is

(Et)fυ (y) =
1

6
·

{
(1− t · σ) if y = υ(t)

21 otherwise
.

We obtain

Efυ (Et) = ∆(E , fυ) P
(
(Et)fυ

)
=

2

3
,

where we used Proposition 1 to evaluate P
(
(Et)fυ

)
= 2/3. A measurement Nt

maximizing Efυ (Et;Nt) = ∆(E , fυ) P
(
(Et)fυ ;Nt

)
is the trivial measurement

(68) Nt(y) =
(
1− δy,υ(t)

)
1 .
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Clearly, the collection of measurements (Nt)t∈T is compatible. By (32) and (37),
it follows that

(69) Eprior
fυ,αex

(E) = Epost
fυ,αex

(E) =
2

3

independently of the angle θ. As in the earlier consideration of the same task but
without partial information, also in this case the maximal average score can be
reached without making any measurement.

8. Conclusion and outlook

In minimum error state discrimination the task is to correctly guess the un-
known state of a quantum system from a finite set of alternatives. Guessing games
constitute a natural extension to tasks that do not necessarily require the full de-
termination of the unknown state. The difference between the two scenarios is in
the choice of the figure of merit, which is assumed to be Kronecker delta for state
discrimination, and is allowed to be any score function (even with possibly different
input and output sets) for guessing games. Regarded in this way, the history of
guessing games traces back to the very origin of state discrimination, since in their
seminal works Holevo [31] and Helstrom [35] already considered a figure of merit
of a general type. Within this well-established framework, our contribution was a
systematic study of the role of partial information as a resource for improving the
score of the games. Actually, it is posterior information that fundamentally changes
the usual scenario and makes the already known optimization techniques for state
discrimination not directly exportable to the new context. Nevertheless, we showed
that even in this case all earlier results become applicable at the cost of switching
from the original game to a properly derived auxiliary state discrimination task.

There are several interesting generalizations of guessing games with partial in-
formation beyond the scenarios described in this paper. Firstly, in our approach we
optimized the game only on Bob’s side, i.e., on the side which receives information
and tries to retrieve the original message encoded by the sender. However, also
Alice could try to arrange her preparation in order to improve the score of the
game. In the scenario without partial information, this amounts to maximizing the
average score (3) both over the measurement M and the state ensemble E . If par-
tial information is taken into account, then also the partial information map α can
enter the optimization problem for the average score (13). When Alice is allowed
to cooperate in the game, however, suitable constraints should be imposed over
the encodings that she can access, as otherwise the game becomes trivial. Indeed,
without any constraint, Alice can always use the state ensemble E(x) = δx0,x %,
and then Bob’s optimal strategy is guessing any y which maximizes f(x0, y), with
no reference to Alice’s partial information t and his measurement outcome z. For
example, the prior probability distribution p(x) = tr [E(x)] may be required to be
uniform, a constraint that is frequent in communication protocols.

As a second possible generalization, one may consider the case in which also
posterior information is of the quantum type, i.e., the partial information map α
is a collection of quantum states (αx)x∈X . In this case, the average score (13)
becomes

(70) Epost
f,α (E ;M,O) =

∑
x,y,z

f(x, y) tr [αxOz(y)] tr [E(x)M(z)] ,
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where each Oz is a measurement with the outcome set Y and the correspondence
O : Z 7→ Oz takes the place of the post-processing map ν. Indeed, in the classical
case all states αx, x ∈ X, are diagonal with respect to the same basis (ϕt)t∈T ,
and then (70) boils down to (13) if one replaces α(t | x) = tr [|ϕt〉〈ϕt|αx] and
νt(y | z) = tr [|ϕt〉〈ϕt|Oz(y)]. In the latter replacement, the measurement Oz just
consists in reading out the classical message t and, according to its value and the
value of z, it yields the outcome y with probability νt(y | z). Although extend-
ing (13) to quantum posterior information, the average score (70) has a different
statistical interpretation. Namely, formula (70) describes a scenario in which Bob
receives two quantum states at a time, that is, αx and %x = E(x)/tr [E(x)]. He
then performs the measurement M on %x and, according to the result z of this
measurement, he makes a successive measurement Oz on αx. Finally, based on
the outcome y of the measurement Oz, Bob gets the score f(x, y). As we see, in
this scenario partial information is still used to post-process the measurement M,
but in a way that depends on the result of another measurement. Of course, the
same alternative interpretation is also valid for the average score (13) if we regard
t as the conditioning variable in the probabilities νt(y | z). Interestingly, the two
interpretations coexist when partial information is of classical type, as they merely
differ in the order of conditioning over z and t. However, only one of them makes
sense when partial information is turned into quantum, since conditioning over t is
then no longer possible.

As we illustrated in the paper, one of the main applications of guessing games
with partial information is the detection of quantum incompatibility. In Section 5.2,
we already pointed out several related questions which still remain unsolved. The
central one is characterizing guessing games that are capable of detecting all the
incompatible collections of measurements with a given length. We showed that, if
|T | is the length and Y is the outcome set of the measurements, then incompatibility
can always be detected by using a state ensemble of |Y | |T | states. However, it is not
clear whether smaller state ensembles still suffice for the task. An interesting related
question is to characterize those guessing games which do not detect incompatibility
at all, i.e., for which games the timing of partial information is irrelevant. Although
we proved that this is always the case for commutative state ensembles, we also
showed in Section 7.5 that commutativity is not a necessary condition, and other
features of the game (i.e., its score function and/or partial information map) must
come into play.
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Appendix A. Auxiliary calculations for Section 7

For the function

γ
(
α+, α−, β+, β−

)
= α+ + α− + β+ + β−

+
[(
α+ − α−

)2
+
(
β+ − β−

)2
+ 2

(
α+ − α−

)(
β+ − β−

)
cos θ

] 1
2

with θ ∈ (0, π/2], we evaluate

max γ
(
α+, α−, β+, β−

)
subject to

α±, β± ∈ {0, 1, 2, 3} and α+ + α− + β+ + β− ≤ 4(71)

and we also find the set of feasible points where the maximum is attained. Assuming
(71), we distinguish three cases.

(i) Suppose α+ = α− = 0. Then,

γ
(
α+, α−, β+, β−

)
= β+ + β− + |β+ − β−| = 2 max{β+, β−} ≤ 6 .

(ii) Suppose β+ = β− = 0. Then, γ
(
α+, α−, β+, β−

)
≤ 6 as above.

(iii) Suppose αj 6= 0 and βk 6= 0 for some j, k. We have(
α+ + α−

)2 ≥ (α+ − α−
)2
,

(
β+ + β−

)2 ≥ (β+ − β−
)2(

α+ + α−
)(
β+ + β−

)
≥
(
α+ − α−

)(
β+ − β−

)
.

Moreover, the equality is attained in all the three relations if and only if either
α+ = β+ = 0 or α− = β− = 0. Then,

γ
(
α+, α−, β+, β−

)
≤ γ

(
α+ + α−, 0, β+ + β−, 0

)
≤ γ

(
α+ + α−, 0, 4−

(
α+ + α−

)
, 0
)
,

where α+ +α− ≥ 1 and 4−
(
α+ +α−

)
≥ β+ +β− ≥ 1. In the last expression,

both relations are equalities if and only if β+ +β− = 4−
(
α+ +α−

)
and either

α+ = β+ = 0 or α− = β− = 0. It is easy to see that

max{γ(α, 0, 4− α, 0) : α ∈ {1, 2, 3}} = 4 +
√

10 + 6 cos θ

and that the maximum is attained if and only if α ∈ {1, 3}. Since

γ
(
α+ + α−, 0, β+ + β−, 0

)
= γ

(
0, α+ + α−, 0, β+ + β−

)
,

we conclude that γ
(
α+, α−, β+, β−

)
= 4 +

√
10 + 6 cos θ if and only if the

quadruple
(
α+, α−, β+, β−

)
belongs to the set

F = {(1, 0, 3, 0), (3, 0, 1, 0), (0, 1, 0, 3), (0, 3, 0, 1)}
Combining the three cases above, we see that the constrained maximum of γ is
4+
√

10 + 6 cos θ, and that the set F constitutes all the feasible points at which the
maximum is attained.
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