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Abstract— Accurate and reliable trajectory prediction (TP) is a
fundamental requirement to support trajectory-based operations
(TBOs). Particularly, the mismatch between planned and flown
trajectories (caused by operational uncertainties from airports,
Air Traffic Control interventions, Airspace Users behaviour and
changes in flight plan data) act as a driver for shortcomings in flow
and capacity management (e.g. congestion and suboptimal
decision making) and as a precursor for potential safety conflicts.
Therefore, enhanced traffic forecasts (which integrate uncertainty
assessment and include different sources of relevant flight
information) may enable improved demand-capacity balancing
and conflict detection and resolution (CD&R) models. Moreover,
new methodological approaches, as the exploitation of historical
data by means of machine-learning techniques is expected to boost
TP performance.

This paper presents the data-driven, dynamic and adaptive TP
framework achieved within DIAPasON project, considering
adaptation to different Airspace Users’ characteristics and
strategies. The main target is the development of a methodology
for TP and traffic forecasting in a pre-tactical phase (one day to
six days before the day of operations), when few or no flight plans
are available. This is able to be adjusted to different time scales
(planning horizons), taking into account the level of predictability
of each of them.

Keywords: Trajectory prediction; data-driven; traffic forecast;
adaptative.

1. INTRODUCTION

Traffic prediction is a key element in Air Traffic Management
(ATM), as it plays a fundamental role in adjusting capacity and
available resources to current demand, as well as in helping
detect and solve potential conflicts [1]. Moreover, the future
implementation of the Trajectory Based Operations (TBO)
concept will impose on aircraft the compliance of very
accurately arrival times over designated points [2] [3]. In this
sense, an improvement in TP aims at enabling an efficient
management of the expected increase in air traffic strategically,
with tactical interventions only as a last resort. To achieve this
objective, the ATM system needs tools to support traffic and
trajectory management functions, such as strategic planning,
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trajectory negotiation and collaborative de-confliction. In all of
these tasks, trajectory and traffic prediction represents a
cornerstone [4].

The problem of achieving an accurate and reliable trajectory
and traffic prediction has been tackled through different
methodologies, with different levels of complexity [S][6][7][8].
There are two main aspects to consider when assessing the most
appropriate forecasting methodology:

e  Time-horizon. Depending on the timescale (anticipation
before the day of operations), the level of uncertainty
associated to the prediction will be different.

e Input data. Both the source and the quality of the input
data (completeness, validity, accuracy, consistency,
availability and timeliness) are key characteristics when
assessing the viability of the prediction.

Considering all this, the DIAPasON project used a wide set of
actual operational data from Spanish airspace to elaborate a
data-driven, dynamic (reflecting the ability to adapt to different
planning horizon) and adaptive (as is able to be enhanced
iteratively with new tactical data reflecting changes in
operational behaviour) TP framework which is presented in this
paper.. The proposed method aims to anticipate the needs of the
ATM system; main applications of the model are related to:
reduction of complexity, demand-capacity balancing, conflict
resolution, separation management, ANSP resource allocation.

II.  STATE OF THE ART IN TRAJECTORY PREDICTION

There have been a significant numbers of different approaches
to trajectory prediction in ATM, both from an individual (single
aircraft) and general (overall traffic) perspective. Many aspects
can be considered as driver for the approach adopted in the
research presented here, as described below.

The works developed around organization of airspace are
globally focused in achieving an “ideal” airspace configuration,
for this matter, dynamic sectorisation is considered with the
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corresponding problem of Demand-Capacity balancing. In a
more in-depth analysis of the demand, the research is fixed in
clustering techniques, improving the scope as well as the
analysis of the data already available. Then, the trajectory
prediction is enlarged by considering other type of data apart
from the temporal and spatial, designated as contextual data.
From the point of view of clustering, several approaches can be
stated. Clusters are formed from similar trajectories; this
similarity  trait requires an extensive analysis of
origin/destination pairs, take-off patterns, weather deviations
and any other type of data [8]. Considering a different approach,
the clusters are formed taking into account the relevant part of
the trajectories, relevance is understood as a changing variable
where markers to each of the route waypoints are assigned and
added or discarded for each analysis [12]. Contextual data can
be chosen to cluster by relevance. Following this line, temporal
characterization is thought to be of high importance [13],
enabling the identification of salient traffic and temporal
persistent flows. Temporal clustering has been implemented
[14] using a k-means algorithm, for the classification of arrivals
and departures for Multi-Airport Systems. The final objective
is to obtain a route that can be representative for each cluster,
lowering the computational requirements.

In terms of the data available for clustering, Flight Plans are the
most important resource and they are extremely dependent on
the airline, consequently analysis of the behaviour of the airline
have been developed [14] obtaining patterns that can be
posteriorly used for a more accurate prediction. This is
measured through predictability, reliability and accuracy
indicators.

For further determination of the spatial-temporal state of the
aircraft a variety of trajectory prediction methodologies have
been developed that do not require any specific data of the
performance of the aircraft, they do require aircraft state data,
flight information, historical data or flight information from
aircraft messaging. Environmental conditions are included in
analysis [16]. In recent studies the analysis and prediction is
developed using Machine Learning techniques. Furthermore, in
some reference [17] the trajectory (route terminology employed
in the paper) is obtained from weighting a series of factors;
concretely two groups of factors are considered: reaction
(constraints to the route) and planned (changes in the route
utilization). These factors are obtained using a regression
model. In recent studies the analysis and prediction is
developed using Machine Learning techniques [8], the Hidden
Markov Model is considered among several options.

An accuracy analysis is consistently associated to the trajectory
prediction methods. The confidence level of the output is
dependent on the quality of information extracted and varies
depending on the phase of flight due to the difficulty of
prediction for each of the phases [18], while in other studies
[19] a statistical model is used based on empirical observations
and a Monte Carlo simulation is conducted. Other studies
involve the use of a Distributional Robust Optimization
formulation [14], the uncertainty of the prediction is based on
the drawing of information from different uncertain parameters
by using probabilistic operations. To set the method in place,

data is used from the Time Based Flow Management system
obtaining this way the calibration.

For the demand-capacity balance instead of considering
individual flights the approach is to consider a flow allowing
independent flow routes, with an Eulerian-Lagrangian [20]
model where the optimization is solved using a Model
Predictive Controller Technique minimizing the air and ground
delay. Contrarily if individual flights are taken into account
(which is typical for conflict resolution), interacting trajectories
can be localized and modified in order to solve this problem,
for this purpose collaborative reinforcement learning methods
have been explored [21], [24]. The sector configuration can be
obtained through a Branch and Bound algorithm choosing
between the combinations available [22]. Complementarily, the
recent outcomes expressed in projects datACRON [23] and
COPTRA [25] are references for the approach presented here.

III. DATA-DRIVEN FRAMEWORK: CHARACTERIZING
DEMAND

In order to analyse the features of existing data which may be
helpful in the development of the demand predictive model, a
data set including all flight plans over Spanish airspace in three
months of 2018 (respectively January, March and August to
analyse and mitigate seasonal effects) have been selected. This
data set comes from Spanish ATC Platform (SACTA), and
includes all the different updates of the flight plans (even those
prior to departure), as opposite to normal EUROCONTROL
open datasets which store the last filed and regulated ones. This
feature enables the analysis of the evolution and different
behaviours of different airlines at different time-horizons, key
feature of the TP framework proposed in this research through
dynamic characterization of demand in pre-tactical phase.
Callsigns flying less than 10 times in a month and airlines with
less than 200 flights in a month are discarded.

Using this dataset, a clustering process is applied. The main
“dissimilarity measure” used in the analysis is:

d =1 — (common_wp/max(wp), where:

e common wp: number of waypoints appearing in both the
first and the last Flight Plan of each FPkey (last intended
as last before estimated off-block time);

e max wp: maximum between the number of waypoints
appearing in the first Flight Plan and the number of
waypoints appearing in the last Flight Plan.

The histogram in Figure 1 represents the distribution of d in the
different months. It is clear that 0 is the most common value
and that the frequency of greater values rapidly decreases as the
value increases: in particular, more than 70% of the Flight Plans
do not show any difference in the first and the last path declared
and that, in general, only 10% of the Flight Plans shares less
than the 50% of waypoints between the first and last record
before off-block time.

Furthermore, differences between months do not seem to be
really relevant from this perspective. March and August behave
almost identically, while in January there seem to be slightly
smaller values of d.
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Figure 1: Histogram of the distribution of d i(dissimilarity) n the different
months analysed.

The variable immediately associated to this d is a Dt (DeltaT)
variable defined as the difference between the expected off-
block time of a flight and the record time of its first flight plan,
in order to understand at what level of anticipation (before the
beginning of departure operations) the flight plan was emitted.
As can be seen in Figure 2 (Dt is expressed in hours, and the
categories are chosen as almost homogenous in size), d seems
slightly or not dependent on the level of anticipation with which
the flight plan is registered. In fact, while the first histogram
(less than 2 hours before EOBT) is different from the others,
there is apparently no pattern in the following ones. The fact
that the “<2” section is composed essentially of observation
with d=0 can be also because in many cases the first and last
flight plan coincide. However, the graph remains meaningful as
it shows that flight plans recorded in that time slot are almost
surely reliable.
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Figure 2: Representation of Dt for different anticipations in the reception of
the flight plan.

Another variable which seems not linked to the dissimilarity is
the involvement in weather phenomena. The same comparison
was performed distinguishing different weather conditions, in
all the three months, leading to the same conclusions.
Furthermore, no stable pattern is found also for aircraft type.
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The distribution of d is also analysed for airlines, airports and
routes. To associate a representative value of d to a group of
flights, one possible choice is to use the average value of the
variable in the group. The distribution of d is very asymmetrical
and consequently the average is mainly determined by the
highest values, possibly leading to a non-representative
estimation. Because the median is 0 for every airline and airport
(in fact, the 70% percentile of d is 0 for almost every subgroup),
a possible choice is to consider another quantile; the most
effective in discriminating the airlines and airports is found to
be the 80% percentile.
The following graphs represent airlines in three groups
(European Legacy, European Low Cost and Non-European).
These graphs report the 80% percentile essentially for two
reasons:
e This value is assumed by d, while this is not true for the
mean.
e Ithasan “operational” meaning being x the quantile, it can
be said that the 80% of data relative to the group assumes
values smaller than x.

Furthermore, in Figure 3-5 the size of every group is indicated.
These numbers indicate the occurrences in the selected samples
(so, for example, infrequent flights are discarded) so they are

just approximations of the real number of flights.
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Figure 3: Representation of the 80th percentile for the Group of “European
Legacy” airlines.
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Figure 4: Representation of the 80th percentile for the Group of “European
Low Cost” airlines.
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Figure 5: Representation of the 80th percentile for the Group of “Non-
European” airlines.

According to these Figures, there seems not to be great
differences between the three groups (legacy, low cost, non-EU
airlines); the major differences are, in fact, within each group.
The role of airports, instead, seems more decisive: departures
from non-EU airports show lower values of d and departures
from Madrid show much “less reliable” behaviours than the
other frequent airports. Initially no impact of A-CDM was
observed, but this variable can be further explored.

Arrivals, on the other hand, behave differently: non-EU airports
show more variable values of d, often higher values too. This
distribution also reflects in the routes (e.g., flights departing
from Madrid have higher d-values than flights arriving).
Moreover, the Reliability time has been analysed. It is possible
to estimate, for each flight number but also for each airline, the
average time in which the flight plan became identical to the
last one, plus a Confidence Interval based on the variance and
size of data relative to that airline.

Figure 6 and Figure 7 are representative of the idea: the point is
the average “reliable time” (sample mean), and the black line is
the 95% probability interval of the mean.
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Figure 6: Reliability time for European Legacy Airlines.
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Figure 7: Reliability time for Low Cost Airlines.

The previous analysis suggests that the reliability of a flight
plan depends essentially on the “intrinsic” properties of the
flight and in some cases on the season, while the
“contingencies” (e.g., weather, hour of the day, day of the
week) play a limited role, according to the prediction presented,
based on historical data.
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IV. BUILDING THE PREDICTIVE FRAMEWORK

Considering the different features of demand flight plans and
time horizons, the predictive model is built. The prediction is
performed for different At’s (where At is the difference between
current time and off-block time): 8h, 4h, 2h, 1h.

For each 4t, the predictive methodology is the following:

o the current flight plan is compared with all the historical
flight plans of the same flight (in this context, flight =
callsign) at the same At, selecting all the past single
flight’s whose trajectories coincide with the current one.

o if the current flight plan is not the first one recorded that
day, also the previous flight plans are compared with the
corresponding past ones, discarding from the previously
selected single flights all the ones that do not match.

o for all the selected single flights, the last-before-off-block-
time planned trajectory is retrieved.

o the predicted trajectory is the most frequent one in this set.
In this case, this methodology is applied on two sets of data,
different from the one used for the dissimilarity measure:

e data from February 1st to May 31st, 2018 (in the

following, denoted as spring)

e data from June Ist to September 30th, 2018 (in the
following, denoted as summer)

and only to flights: classified as “Regular”, flying at least 3
times a week, pertaining to the most frequent airlines, and with
average levels of At sufficiently high.

To estimate the real usefulness of the prediction, its accuracy is
compared with the one of the “default” prediction (i.e., the last
trajectory is predicted to be the current one). Accuracy is the
percentage of trajectories which are correctly predicted for each
flight (see Table and Table II).

TABLE I: AVERAGE DEFAULT AND PREDICTED ACCURACY IN THE DIFFERENT
TIME HORIZONS FOR THE SPRING DATASET ANALYSED.

SPRING 8h 4h 2h 1h
average default 76% 75% 82% 86%
accuracy
average prediction 82% 82% 85% 87%
accuracy

In spring the prediction is able, on average, to anticipate at /t=8
the accuracy that the default prediction has at time At=2, so it
reaches the same level of certainty 6 hours before.

TABLE II: AVERAGE DEFAULT AND PREDICTED ACCURACY IN THE DIFFERENT
TIME HORIZONS FOR THE SUMMER DATASET ANALYSED.

SUMMER 8h 4h 2h 1h
average default 88% 76% 83% 88%
accuracy
average prediction 92% 85% 87% 90%
accuracy
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It is important to remark the fact that the smallest accuracies
appear in At=4 and not in 4t=8 can probably be explained with
the fact that not all the flights considered record flight plans
with the anticipation of At=8 every day, so the values are
computed on slightly different samples (and it can be
reasonable to suppose that the sample relative to At=8 is
somehow more “reliable”). For this reason, 4t=8 in these tables
can be considered as a world apart.

Relative improvement in accuracy is computed for each
callsign as follows:

callsign prediction accuracy — callsign default accuracy

callsign default accuracy

As could be expected, the relative improvement in accuracy is
greater for and At=4h than for the smallest At’s, in both the
seasons.

TABLE III: AVERAGE RELATIVE IMPROVEMENT IN THE DIFFERENT TIME
HORIZONS FOR THE SPRING DATASET ANALYSED.

SPRING 8h 4h 2h 1h
average relative 23% 29% 10% 6%
improvement

TABLE IV: AVERAGE RELATIVE IMPROVEMENT IN THE DIFFERENT TIME
HORIZONS FOR THE SUMMER DATASET ANALYSED.

SUMMER 8h 4h 2h 1h

average relative improvement 13% | 59% | 23% | 13%

Dafault V3 Frediction accuracy

Density

0,00 n.2s 0 &0 078 1 00
Accuracy
Figure 8: Comparison between default and predicted accuracy.

In Figure 8, prediction accuracy (in blue) and default accuracy
(dashed line) at At=8h in spring are represented (this
representation is consistent with other At’s and seasons). In
view of this, three main considerations arise:
e the distribution of prediction accuracy is concentrated on
highest values in general.

"S85 10" SESAR Innovation Days

e the prediction accuracy has a negligible percentage of
values lower of 0.5, so the biggest difference with the
default accuracy is with regards to the lowest values.

e ifvalues greater than 90% are concerned, the two densities
appear almost overlapped.

It can be concluded that this prediction is particularly useful in

enhancing accuracy for “very unpredictable” flights, while for

very regular flights the default choice and the prediction are
almost always the same.

This conclusion is confirmed by the correlation between the

default accuracy and the relative increase due to the prediction,

clearly represented in Figure 9 (4t=4h):

In the following, results about relative improvement are often

reported only for At=4h. The reason is that this 4t is computed

on a larger sample than At=8h, and at the same time the
differences in relative improvement are more visible than for
At=2h and 1h.

Correlation between default accuracy and relative increase
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Figure 9: Correlation between default accuracy and relative improvement for
the At=4h time horizon.

From Figure 9, it is also possible to understand the global
distribution of the relative increase: the most frequent value is
0 and, though there are some (very few) negative values (which
means, cases in which the default prediction would suggest the
right trajectory while our prediction fails), the general mean is
“pushed up” by the many high values. The maximum is around
800%, which means there are flights for which the accuracy of
our prediction is 8 times greater than the default (e.g., 0.1 of
default accuracy and 0.8 of prediction accuracy).

It is pertinent to mention that the predictions are independent
from airspace and runway configuration, which are aspects
usually omitted in flight plans in pre-tactical phase.

Next, we have a look at how the prediction accuracy is
distributed with regards to airlines. These graphs are referred to
spring; summer graphs are not reported since there are no
meaningful differences. For the comparison to be meaningful,
At=8h was not represented, for the previously explained
reasons.
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Figure 10: Average prediction accuracy for European Legacy.

Eurcpsar Low Cost
_—
""" 0 At ! _
| ——
D e ——
=
Mermwan X ""! e
! e
il | 1 ih)
z —_—
g :-J'-d..dn'.,-hfl]l L ——— .:
L]
warip i | T= .'
Flrmwa

Esrowngn

zelng-
gEcEpaes

Tiamawa Fiars

:’-I'fl"ﬂ'. prediction m:w'-:'f
Figure 11: Average prediction accuracy for Low-Cost Carriers.

Three main considerations arise:

e In most of the airlines the prediction accuracy increases as
At decreases.

e There are some slight differences between airlines, but
basically the prediction reaches a similar level of accuracy
in for all the airlines, apparently without any bias.

e The level of accuracy is, on average, over 80% for the
great majority of airlines.

What is probably of major interest is to evaluate the average
relative improvement in accuracy for each airline. In fact, this
value is informative: if it is high, it means that the
unpredictability of that airline is “systematic enough” to
become predictable, and so it is likely to be part of a strategy.

Graphs are relative to At=4h, both seasons. The number of
flights involved in the analysis is reported next to each bar. The
horizontal axes have different scales in the two seasons since
the relative improvement in summer has highest values.
European airlines show a clear behaviour: Air Europa, Alitalia
and Air Nostrum (legacy) and Vueling, Ryanair and Iberia
Express (low cost) have significantly higher values than the
others, in both the seasons. Also, the companies with the
smallest values are consistent in the two seasons. The
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aforementioned airlines show the same behaviour also when we
compare them with other airlines traveling on the same routes,

as represented in Figure 12:
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Figure 12: Comparison between airlines flying the same route in the spring
period analysed.

By means of the previously described predictive model, it is
possible to estimate the probability of change of every flight
(given that the flight is a regular and frequent one).

Figure 13 is relative to the diurnal shift and it is referred to
At=4h. Callsigns with average probability of change less than
0.01 are not shown.
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Figure 13: Average probability of change of Lufthansa for At=4h for different
routes during the diurnal shift.

Furthermore, the probability of change is not independent of the
route; in Figure 15 and 15, it is clear that the same airlines can
behave in quite different ways on different routes, while on the
same route, different airlines tend to behave in similar ways.
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Figure 14: Average probability of change in the route LEMD-LEBL for the
airlines: Vueling, Air Europa and Iberia.

Fgteds] gL
Engage EE@ ! g

T T LT

SESAR »

A



LERA-LEBL

Avemnge peohakidty of hasge i
Figure 15: Average probability of change in the route LEPA-LEBL for the
airlines: Vueling, Air Europa and Ryanair.

Another observation that deeper analyses suggest is that flights
departing from some airports (especially the biggest ones) seem
to have higher probability of change, e.g. LEMD.

V.  APPLICATION AND RESULTS

The objective of this section is to present the differences in
occupancy counts per sectors between the real data in the
planning phase and the output provided by an application of the
predictive framework described.

For this purpose, the time and altitude were estimated so that a
4D trajectory is considered, as opposite to the previous metrics
computer over a horizontal prediction of the waypoints.

The first step was to extract the information from the Network
Manager in order to obtain the number of occupancy counts
based on the information of the flight plan just before the EOBT
(Estimated Off-Block Time) of the flight. The second step was
to extract the output from the predictive model using the same
time windows, i.e., 15 minutes width sliding 15 minutes.

The third step is to compare the real data, flight plan before
EOBT, with the computation of occupancy counts extracted
from the algorithm. It is key to highlight that the model provides
two different outputs: data that are just what would be predicted
if the flight plans were completely reliable (and so the
knowledge from the week before), and data with the prediction
model. Both cases are provided in two different timestamps:
eight and four hours before EOBT, emulating time-horizon of
interest according to operational feedback.

The comparison was carried out for six different days from
summer and winter season of 2018: 18™, 20™ and 23 of June,
and 19%, 21 and 24" of November (Monday, Wednesday and
Saturday), and for two different sectors: LECMTLL and
LECMASU. A summary of the results are presented in Figures
16-20, where the light blue line is the real data, “fp” stands for
flight plan (trusting in the reliability of the flight plan), “pred”
corresponds to the output with the predictive model, and DT4
and DTS are the two different timestamps described.

LECMTLL

Figure 16. Comparison for 18th of June in LECMTLL sector.

2% 10" SESAR Innovation Days

LECMASU

Figure 17. Comparison for 18th of June in LECMASU sector.

Figures 16 and 17 above show the comparison between the
reality and the forecast for 18" of June 2018 and for two
different sectors: LECMTLL and LECMASU. In both cases,
the trend of the occupancy counts is captured by the forecast,
but it is interesting to underline that the behaviour of the
prediction is better in the case of LECMASU than LECMTLL
which is a sector with most of the flights in evolution, instead
of in en-route phase, more typical for LECAMSU sector.
Moreover, zooming in to a specific period, as seen in Figure 18,
it can be said that, for this specific application, the prediction 4
hours before the EOBT is better than the one 8 hours before.

LECMASL

Figure 18. Comparison between DT4 and DTS.

Regarding the day of the week, there are no important
differences, and the trend of the occupancy counts is also
captured, as it can be seen in Figure 19.
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Figure 19. Comparison for 23rd of June in LECMASU sector.

However, for winter season the difference between forecast and
reality is higher, as can be seen in Figure 20. This can be
explained by the uncertainty induced by bad weather.

LECMASU
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Figure 20. Comparison for 24th of November in LECMASU sec
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VI. CONCLUSIONS

The research activity aimed at developing a methodology for
Trajectory Prediction and traffic forecasting in a pre-tactical
time horizon (covering from one to six days prior to operation),
period in which few flight plan are available.

As a result of the work conducted, the project has obtained a
Trajectory Prediction framework considered to be data-driven,
dynamic, adaptive, and Airspace User oriented.

Both the actual specific implementation based on operational
Spanish data and the overall methodological framework
allowing extension to any similar context of operations are
considered sufficiently usable.

The characterization of demand in pre-tactical phase such as the
one carried out and presented in this paper, it is considered the
key result as it demonstrates the potential for trajectory
prediction application of the repetitive features of traffic within
ATM domain. Moreover, each airline shows a different
behaviour that the presented framework is able to capture and
update in a tactical manner, when connected to real-time data.
As an example of application to an specific use cases, an initial
predictive model was developed using actual high-quality
operational data from the Spanish ANSP, ENAIRE.

Results of this model were analysed in different time horizons
to conclude that the lowest accuracy is found in 4t=4 and not
in At=8. This can probably be explained with the fact that not
all the considered flights submit flight plans with the
anticipation of At=8 every day, so the prediction accuracies for
different At are computed on slightly different samples. The
main outcome is that the model significantly enhances the
prediction accuracy for “very variable” flights, while for very
regular flights the default choice and the prediction are usually
the same.

The prediction accuracy of the model was also computed for
different airlines, concluding that in most of the airlines the
prediction accuracy increases as At decreases, being similar for
mainly are airlines and over 80% in most of the cases.
Refinement for specific applications is recommended and
would be necessary in order to obtain the maximum benefit of
the predictive features of demand. In particular, extension to
vertical profile information (altitude, speed and time), which is
not detailed in flight plans and thus this information is modelled
in the presented framework, instead of predicted, is foreseen.
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