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Abstract We describe an algorithm that, given an initial design F𝑛 of size 𝑛 and a
linear model with 𝑝 parameters, provides a sequence F𝑛 ⊃ . . . ⊃ F𝑛−𝑘 ⊃ . . . ⊃ F𝑝

of nested robust designs. The sequence is obtained by removing each individual run
of F𝑛 until a 𝑝-run saturated design F𝑝 is obtained. The potential impact of the
algorithm on real applications is high, because it can be used in a wide spectrum of
designs. The initial fraction F𝑛 can be of any type and the output sequence can be
used to organize the experimental activity. The experiments can start with the runs
corresponding to F𝑝 and then continue by adding one run after the other (from F𝑛−𝑘
to F𝑛−𝑘+1) until the initial design F𝑛 is obtained. In this way, if for some unexpected
reasons the experimental activity has to be interrupted before the end when only
𝑛 − 𝑘 runs have been completed, the corresponding F𝑛−𝑘 will have a high value of
robustness for 𝑘 ∈ {1, . . . , 𝑛 − 𝑝}. The algorithm uses the circuit basis, a special
representation of the kernel of a matrix with integer entries.
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1 Introduction

Optimal designs and orthogonal fractional factorial designs are frequently used in
many fields of applications, including medicine, engineering and agriculture. They
offer a valuable tool for dealing with problems where there are many factors involved
and each run is expensive. The literature on the subject is extremely rich. A non-
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exhaustive list of references includes [3] for design of experiments in general, [2],
[7], and [18] for optimal designs and [15], [6], [14] for orthogonal fractional factorial
designs.

When searching for an optimal experimental design, the aim is to select a design
which produces the best estimates of the relevant parameters for a given sample size.
There are many criteria for choosing an optimal design for the problem under study.
They include alphabetical design criteria, and among these D-optimality is one of
the most commonly used in applications.

In this work we focus on the notion of robustness of a design, [11]. Let us suppose
that a given design has 𝑛 runs and that the model to be estimated has 𝑝 parameters,
with 𝑛 > 𝑝. The model-design pair determines the design matrix 𝑋 . The notion of
robustness is important mainly for two reasons. First, the robustness of the design
can be interpreted as the probability that a randomly selected subset of 𝑝 runs is a
saturated design (i.e the 𝑝 parameters of the model can be estimated). A high value
of robustness has practical importance. If during the experimental activity 𝑛− 𝑝 runs
are lost (i.e. the corresponding response values are not available) the probability
that the 𝑝-run final design is saturated is high. Second, a close connection between
robustness and D-optimality for a large class of model matrices is proved in [11].

The aim of this contribution is to provide a general order-of-the-runs criterion
based on the notion of robustness. It can be applied to a wide range of possible
designs. All designs for qualitative factors can be considered, from factorial designs
with two-level factors, to multi-level and mixed-level factors. Even in some cases
of continuous factors the proposed criterion can be applied. Since the robustness is
based on the combinatorial properties of the design matrix, the unique assumption
is to have a design matrix with integer entries. In practice combinatorial algorithms
are limited by the dimension of the designs under analysis. We will discuss this issue
in the next sections.

The main result of this work is an algorithm that starts from an initial design F𝑛

(of size 𝑛 > 𝑝) and removes each individual run of F𝑛 until a 𝑝-run saturated design
F𝑝 is obtained. The choice of which point is removed at each step 𝑘 (1 ≤ 𝑘 ≤ 𝑛− 𝑝)
aims to find a (𝑛 − 𝑘)-run sub-fraction F𝑛−𝑘 of the initial design with the highest
value of robustness. The output of the algorithm is a sequence of robust fractions
F𝑛 ⊃ . . . ⊃ F𝑛−𝑘 ⊃ . . . ⊃ F𝑝 . In practice, the experimental activity can start with
the runs corresponding to F𝑝 and then continues by adding one run after the other
(from F𝑛−𝑘 to F𝑛−𝑘+1) until the initial design F𝑛 is obtained. In this way, if for some
unexpected reasons the experimental activity has to be interrupted before the end
when only 𝑛− 𝑘 runs have been completed, the corresponding F𝑛−𝑘 will have a high
value of robustness, 1 ≤ 𝑘 ≤ 𝑛 − 𝑝. It is worth noting that the value of robustness
of F𝑛−𝑘 is high for each 𝑘 , 1 ≤ 𝑘 ≤ 𝑛 − 𝑝 as shown in the simulation study. In
the simulation study, some examples are illustrated to prove the effectiveness of
the algorithm. The problem of partial availability of data and techniques to prevent
possible loss of information are addressed in, e.g., [4], [5], [19], both in model-based
and model-free frameworks. In the paper [8] a combinatorial approach is introduced
for the analysis of orthogonal arrays with removed runs using aberrations and the
Generalized Word-Length Pattern criterion.
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The algorithm introduced here uses the circuit basis, i.e., a special representation
of the kernel of a matrix with integer entries. By exploiting some combinatorial
properties of such a basis, we obtain a sequence of nested designs with high perfor-
mance in terms of robustness. This result is obtained with a unique computation of
the circuit basis in the first step. The theory of robustness based on circuits is fully
described in [11], while the estimability of saturated designs using circuits is studied
in [10].

It is worth noting that there are no restrictions on the way in which the initial
design F𝑛 is determined. It can be an orthogonal fractional factorial design, a D-
optimal design, or any other design defined according to the user’s preferences. The
only restriction applies to the design matrix that must have integer entries. It follows
that ANOVA-type models for qualitative variables can be considered. Polynomial
models for continuous variables can also be considered with the restriction that the
entries of the design are rational numbers. The examples below show that, from the
combinatorial point of view, in some cases quantitative factors are easily rewritten
in the qualitative framework. The general case of quantitative factors where an
approximation of the design matrix is needed falls outside the scope of the present
work, and we will provide some reflections for this in the concluding remarks.

The material is organized as follows. In Sect. 2 the definition of circuit basis
is introduced together with its main algebraic and combinatorial properties, and
the connections with robustness of a design are reviewed. Sect. 3 is devoted to
the description of the proposed algorithm and some computational remarks. A first
example on a small design is illustrated with full details. In Sect. 4 some examples are
presented and discussed. Finally, Sect. 5 contains some final comments and pointers
for future work.

2 Circuits and robustness

We consider a design F with 𝑛 runs, chosen from a set D with 𝑁 runs, 𝑁 > 𝑛. For
experiments with 𝑑 discrete factors 𝑋1, . . . , 𝑋𝑑 , the set D is usually represented as
a Cartesian product such as

{0, . . . , 𝑠1 − 1} × · · · × {0, . . . , 𝑠𝑑 − 1} ,

where 𝑠1, . . . , 𝑠𝑑 are the number of levels of the factors 𝑋1, . . . , 𝑋𝑑 , respectively.
However, for our theory the special coding of the factor levels and even the Cartesian
product structure of the full-factorial design are irrelevant. We may simply assume
that a subset of 𝑛 runs has been selected from a large set labeled {1, . . . , 𝑁}. In the
language of fractional factorial designs, the design F is a fraction, while the large
set D is a full-factorial design.

Given a full-factorial design D we consider a linear model on D:

y = 𝑋D𝜷 + 𝜺 , (1)
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where y is the vector containing the response variable, 𝑋D is the model matrix,
𝜷 is the vector of parameters, and 𝜺 is the error term. Without loss of generality,
to simplify some algebraic issues of our theory, we assume that the matrix 𝑋D is
full-rank with dimension 𝑁 × 𝑝, where 𝑝 is the number of estimable parameters.

When a fraction F is selected, the expression of the model in Eq. (1) becomes

y = 𝑋F𝜷 + 𝜺 , (2)

where the model matrix 𝑋F has dimension 𝑛×𝑝 and is obtained from 𝑋D by selecting
only the rows pertaining the chosen runs.

As pointed out in the Introduction, we aim at defining an algorithm which gives
“optimal” subsets of a given fraction. Here, we use the criterion of robustness.
Following [12] and [13], the robustness is defined in terms of saturated fractions.

Definition 1 Let F be a fraction with model matrix 𝑋F . The robustness of the
fraction F under the model 𝑋F is the proportion of saturated minimal fractions over
the number of minimal fractions contained in F :

𝑟 (𝑋F) =
#{saturated F𝑝}(𝑛

𝑝

) . (3)

We observe that the number of runs of a minimal fraction is 𝑝 and for a minimal
fraction F the robustness can be either 0 or 1.

We now show how to use the circuits of the model matrix 𝑋F to study the
robustness of the fraction. Then, in the next section we will provide an algorithm to
sequentially remove runs from F to maintain the robustness as high as possible.

To match the language of Combinatorics with the design theory, we work with
the transposed of the model matrix, i.e., we consider the matrix 𝐴F = 𝑋 𝑡

F and with
a slight abuse of notation we still call it the model matrix. Note that working with
𝐴F implies that the runs identify columns, while parameters identify rows.

In words, a circuit of 𝐴F is an element u of ker(𝐴F) with integer entries and
minimal support, where the support of a vector u is the set of indices 𝑖 with 𝑢𝑖 ≠ 0.
We denote by supp(u) the support of the vector u.

Definition 2 Let u ∈ Z𝑛 be an 𝑛-dimensional integer vector. u ∈ ker(𝐴F) is a
circuit if the nonzero entries of u are relatively prime and there is no other vector
v ∈ ker(𝐴F) with supp(v) ⊂ supp(u).

The set of all the circuits of 𝐴F is called the circuit basis of 𝐴F and is denoted
with C(𝐴F). The circuit basis is always finite.

For a comprehensive introduction to circuits and its properties the reader can refer
to [16] and [20]. Here, the key issue for using the circuit basis as a special basis of
ker(𝐴F) is given by the following property.

Proposition 1 Let F ′ be a sub-fraction of F , and decompose each circuit of 𝐴F
into u = (uF′ , uF−F′ ). The circuits of 𝐴F′ are

{uF′ : u ∈ C(𝐴F), supp(u) ⊆ F ′} .
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Prop. 1 says that the circuit basis is the natural representation of the kernel
ker(𝐴F) when we need to remove runs, because we don’t need to recompute the
basis of the kernel at each step. The first computation contains all the information
needed to compute the robustness also for all possible sub-fractions.

Moreover, the minimality property established in Def. 2 is used in the following
result, from [10], which characterize the saturated minimal fractions using the circuit
basis.

Proposition 2 Let 𝐴F be a model matrix with circuit basis C(𝐴F). A minimal sub-
fraction F𝑝 , i.e., a fraction with 𝑝 runs from F , is saturated if and only if it does not
contain any of the supports supp(u) for all u ∈ C(𝐴F).

Exploiting Prop. 2, in [11] an algorithm for finding robust fractions using the
design points of a candidate set D, based on an exchange-type strategy is described.
Without introducing all the technical details, the algorithm in [11] is based on two
general principles: (i) remove the point contained in the largest number of circuits; (ii)
remove the point contained in the smallest circuits. Such two rules are summarized
in the definition of a loss function 𝐿 (𝑃) defined as

𝐿 (𝑃) =
∑︁

supp(u)⊇F,supp(u) ∋𝑃

(
𝑛 − #supp(u)
𝑝 − #supp(u)

)
. (4)

Note that the sum is taken over all the circuits u in the fraction containing the point
𝑃.

The algorithm is formed by the following main steps: (a) Start from a fraction F ;
(b) Remove from F the run with the highest loss function; (c) Add a new run from
D not in F ; (d) Repeat steps (b)-(c) until no reduction in the number of circuits is
possible.

To actually compute the circuit basis C(𝐴F) for a given model matrix 𝐴F there
are several available packages and free software. For our computations we have used
4ti2, see [1], a program for computing combinatorial objects like Markov bases,
Graver bases, circuits, and more.

A common drawback of Algebraic Statistics tools is the limitation to small prob-
lems. The computation of the circuits does not make exception. The number of
circuits for a model matrix on the full-factorial design increases fast with the number
of runs and the computations are actually feasible only for small-sized problems. To
give a rough idea, the circuits for a full-factorial 2𝑑 design with main effects and
first-order interactions is feasible only for 𝑑 ≤ 6. For the 2𝑑 with only main effects,
the circuit basis has 20 elements for 𝑑 = 3; 1,348 elements for 𝑑 = 4; 353,616
elements for 𝑑 = 5.

As a running example, let us consider a 3 · 22 design with main effects and the
interaction between the two binary factors. The full-factorial design has 𝑁 = 12
points and there are 𝑝 = 6 free parameters. To run the exchange-type algorithm
described above, we compute the circuits of the model matrix on the full-factorial
design and we obtain a circuit basis with 42 circuits: 18 circuits with support on 4
points and 24 circuits with support on 6 points. Now, to find a robust fraction with
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a fixed size, say 𝑛 = 8, it is enough to run the algorithm above with an arbitrary
starting fraction with 8 runs. One can start with a randomly selected fraction, or can
select a fraction satisfying some given criteria, such as D-optimality. However, the
algorithm introduced in this work does not need the computation of the circuit basis
for the full-factorial design, but only the circuit basis for the starting fraction, and
therefore it can be applied also in relatively large examples.

We make explicit here some computational remarks, and we will come back on
these issues later after the introduction of the new algorithm in Sect. 3. First, the
procedure above is based on the loss function defined in Eq. (4). Such formula
does not count the exact number of non-estimable minimal fractions and thus it is
not assured that for each sample size it returns a fraction with the highest possible
robustness. In the simulations described in [11], for sample sizes near to minimal
the performance is quite good, but for large fractions, where the number of circuits
contained in more than one minimal fraction is not negligible, the algorithm may
yield a fraction with low robustness. However, in the next section we will illustrate
why the chosen loss function is a good choice for the selection of the runs to be
removed. Second, the algorithm assumes that the circuit basis for the candidate set
(in general the full-factorial design) is available. The computation of the circuit basis
for large designs can be actually unfeasible and thus the practical applicability is
usually limited to small cases. Third, the algorithm above works for a fixed sample
size, and it yields non-nested fractions when applied with different sample sizes.
This is due to the random addition of a new run, and to the presence of ties, i.e., runs
with the same loss function to be removed.

3 Removing runs from a fraction

In this section we consider another version of the circuit-based algorithm for remov-
ing runs from a given design. While the procedure described in the previous section
was essentially based on the first property of the circuits, summarized in Prop. 2,
the algorithm below fully exploits the second property of the circuits, described in
Prop. 1.

Given a fraction F and a model with (transposed) design matrix 𝐴F , we use the
circuit basis C(𝐴F) as a “geometric tool” to choose the order of the points to be
removed from F with the goal of obtaining the best possible robustness of the sub-
fractions. Note that in the loss function in Eq. (4) only the circuits with support on
𝑝 points or less are involved. Thus, we systematically remove from the circuit basis
the circuits with support on more than 𝑝 points. Moreover, to avoid computational
problems we assume that the design matrix 𝐴F is full-rank. The algorithm works as
follows:

1. Start from a fraction F with 𝑛 runs, and compute the circuit basis C(𝐴F);
2. Compute the loss function for the runs in F based on C(𝐴F);
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3. Remove from F the run with the highest loss function 𝐿 (𝑃). In case of ties,
randomize among the runs with the highest loss function, and define a sub-
fraction F ′ with 𝑛 − 1 runs;

4. Iterate items 2 and 3 until the desired number of runs has been removed.

The validity of the algorithm rests on two facts. First, from Prop. 1, the circuit basis
C(𝐴F) computed for the fraction F is valid also for all the sub-fractions F ′ ⊂ F ,
and thus the computation of the circuits is limited to the initial step and only for the
given starting fraction. Second, the chosen expression of the loss function helps in
reaching robust fractions at each step. Indeed, if we consider a circuit u with support
contained in F , the number of non-estimable fractions containing the circuit u and
the design point 𝑃 is

𝐿̃ (𝑃, 𝑢) =
(
𝑛 − #supp(u)
𝑝 − #supp(u)

)
if 𝑃 ∈ u and

𝐿̃ (𝑃, 𝑢) =
(
𝑛 − #supp(u) − 1
𝑝 − #supp(u) − 1

)
if 𝑃 ∉ u. The sum over all the circuits would yield a loss function of the form

𝐿̃ (𝑃) =
∑︁

supp(u)⊇F,supp(u) ∋𝑃

(
𝑛 − #supp(u)
𝑝 − #supp(u)

)
+

∑︁
supp(u)⊇F,supp(u) ̸ ∈𝑃

(
𝑛 − #supp(u) − 1
𝑝 − #supp(u) − 1

)
.

(5)
However, in view of our greedy strategy, we aim primarily at reducing the number of
circuits because the surviving circuits entail new non-estimable minimal fractions in
the subsequent steps. The idea of looking at the circuits instead of the non-estimable
fractions rely on the idea that the circuits are the causes of the non-estimability and
thus we concentrate in the elimination of such causes. As a consequence, the two
addends in Eq. (5) have a totally different meaning because the second addend adds
a positive contribution to the loss function for circuits not containing the data point
𝑃. Thus, we only keep the first sum and we use the loss function defined in Eq. (4).

Ideally the algorithm can be iterated until a saturated fraction is reached. Remem-
ber that in this case the robustness of the fraction can be either 0 or 1. Although
robustness is useful for small designs with run size near to the minimum 𝑝, the
algorithm works for all run sizes from 𝑛 to 𝑝. Even in the intermediate cases, where
the complete enumeration of all the sub-fractions may be computationally difficult,
the proposed algorithm is able to easily find robust sub-fractions because it works
on the runs and not on the sub-fractions.

Let us illustrate now a very small example in order to show the applicability
of the algorithm above. We consider again the 3 · 22 case with main effects and
the interaction between the two binary factors. The problem is to find robust sub-
fractions of a D-optimal design. We use here a lexicographic order of the factor
levels. In this example, we start with the fraction F9 which has 𝑛 = 9 runs:
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F9 = {(−1,−1, +1), (−1, +1,−1), (−1, +1, +1), (0,−1,−1), (6)
(0, +1,−1), (0, +1, +1), (+1,−1,−1), (+1,−1, +1), (+1, +1,−1)}

with robustness 𝑟 (𝑋F9 ) = 0.5952. The model has 𝑝 = 6 parameters, so we seek for
sub-fractions with 8, 7 and 6 runs.

There are 7 circuits with support contained in F9: 3 circuits with support on 4
points, 4 circuits with support on 6 points. We point out that the relevant circuit basis
now has only 7 circuits, while the circuits basis for the full-factorial design has 42
elements, as described in the previous section. The 7 circuits are listed below (where
the columns are ordered according to the list in Eq. (6)):

0 0 0 1 -1 0 -1 0 1

0 1 -1 -1 0 1 1 0 -1

0 1 -1 0 -1 1 0 0 0

1 -1 0 -1 1 0 1 -1 0

1 -1 0 0 0 0 0 -1 1

1 0 -1 -1 0 1 1 -1 0

1 0 -1 0 -1 1 0 -1 1

In F9 the highest loss function 𝐿 (𝑅) is reached by the 3 runs

(−1, +1,−1), (0, +1,−1), (+1, +1,−1) .

We randomly choose the first run from the above list, thus defining the robust sub-
fraction

F8 = {(−1,−1, +1), (−1, +1, +1), (0,−1,−1), (0, +1,−1), (7)
(0, +1, +1), (+1,−1,−1), (+1,−1, +1), (+1, +1,−1)}

with robustness 𝑟 (𝑋F8 ) = 0.7143.
Among the 7 circuits above, only 3 of them still survive (the columns are ordered

according to the list in Eq. (7)):

0 0 1 -1 0 -1 0 1

1 -1 -1 0 1 1 -1 0

1 -1 0 -1 1 0 -1 1

To further reduce the sample size of the fraction we compute again the loss function
of the 8 remaining points. The highest value is reached by the 4 runs:

(0,−1,−1), (0, +1,−1), (+1,−1,−1), (+1, +1,−1) .

We randomly choose the third run in this list, and we get

F7 = {(−1,−1, +1), (−1, +1, +1), (0,−1,−1), (0, +1,−1), (8)
(0, +1, +1), (+1,−1, +1), (+1, +1,−1)}

with robustness 𝑟 (𝑋F7 ) = 0.8571.



Robust designs against data loss: A general approach 9

Only 1 circuit has support contained in F7 (the columns are ordered according
the the list in Eq. (8)):

1 -1 0 -1 1 -1 1

In the last step to reach the minimal fraction, we remove one of the 6 runs in the
support of the last circuit. We randomly choose the last run and we obtain

F6 = {(−1,−1, +1), (−1, +1, +1), (0,−1,−1),
(0, +1,−1), (0, +1, +1), (+1,−1, +1)} .

Of course this last fraction has robustness 1, because it is a minimal fraction and
does not contain any support of the circuits.

In this example we can compare the robustness of the sub-fractions F8, F7, F6
with the robustness of all the possible sub-fractions with 8, 7, 6 runs respectively.
There are 9 sub-fractions of F9 with 8 runs: 6 of them have robustness 0.5357; 3 of
them have robustness 0.7143. There are 36 sub-fractions of F9 with 7 runs: 3 of them
have robustness 0 and they are actually non-estimable; 24 of them have robustness
0.5714; 9 of them have robustness 0.8571. Finally, there are 84 sub-fractions of F9
with 6 runs: 34 of them have robustness 0; 50 of them have robustness 1. We observe
that our procedure has identified the highest robustness in all the steps.

Before the illustration of the examples in the next section, some computational
remarks are needed to clarify the special features of the circuits for finding robust
designs using our algorithm. First, the sub-fraction property of the circuits in Prop. 1
operates here in two ways. On one hand, we don’t need the computation of the circuits
for the full-factorial design, but only for the starting design. This makes feasible the
computations also in cases where the circuits for the full factorial design cannot be
computed. Moreover, the circuit basis in the first step is still valid throughout the
whole algorithm, and no further computations are needed. These features allow us
to use the algorithm also in intermediate-sized examples: using a standard PC, the
time needed for the computation of the circuits for all the examples discussed in this
paper ranges from 0.01 seconds for the running example above to 0.55 seconds for
the example in Section 4.1.2.

4 Examples and applications

In Sect. 4.1 we evaluate the performance of the algorithm, that is the ability to produce
a sequence of robust nested sub-fractions. We run a simulation study which considers
different designs with both qualitative and quantitative factors. In Sect. 4.2, starting
from the data available in a real application, we show the importance of choosing a
robust fraction in terms of the ability to obtain a reliable estimate of 𝛽, the unknown
vector of parameters, in the case some runs are lost.
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4.1 Performance of the algorithm

We consider two examples. The examples have been chosen to show the possibility
to use the proposed approach in different contexts. In each example we consider a
starting design with 𝑛 > 𝑝 runs. Then we analyze the robustness of its sub-fractions
which are obtained removing 1, . . . , 𝑛 − 𝑝 points by the starting design. It follows
that by removing 𝑘 points (1 ≤ 𝑘 ≤ 𝑛 − 𝑝), we must consider

(𝑛
𝑘

)
sub-fractions of

the starting design and, for computing the robustness of each sub-fraction, we must
consider

(𝑘
𝑝

)
size-𝑝 fractions which are contained in it. In this way we obtain the

exact distribution of the robustness of all the sub-fractions of size 𝑛− 𝑘 of the starting
design. This distribution allows us to evaluate the goodness of the solutions proposed
by the algorithm. In the second example the number

(𝑛
𝑘

) (𝑘
𝑝

)
becomes too large, and

thus we build an approximation of the distribution of the robustness by sampling.
More specifically we consider min(

(𝑛
𝑘

)
, 1000) sub-fractions and we evaluate the

robustness of each sub-fraction by classifying min(
(𝑘
𝑝

)
, 1000) fractions of size 𝑝

which are contained in it as saturated or not.

4.1.1 Example 1: a Plackett-Burman design

The first example considers five 2-level factors and a model with a constant term plus
the 5 main effects. The number of degrees of freedom of the model is 𝑝 = 1 + 5 = 6.
The robustness of a Plackett-Burman design with 𝑛 = 12 runs is analyzed. For
this problem the circuit basis has 91 circuits, while the corresponding circuit basis
for the full-factorial problem would consist of 44, 560 circuits. The values of the
robustness of the fractions which are obtained removing 𝑘 = 1, . . . , 𝑛 − 𝑝 = 6
points are computed and compared with the values of the robustness corresponding
to the fractions found by the algorithm. The distributions of the robustness for
each 𝑘 = 1, . . . , 6 are exact. The case 𝑘 = 0 (i.e. no points removed) provides the
robustness of the initial design. The results are summarized in Fig. 1.

Table 1 compares the values of the robustness of the fractions found by the
algorithm (𝑟∗) with the 75th, 90th and 95th percentile of the distributions of the
robustness (𝑝75, 𝑝90, 𝑝95 respectively). It is worth noting that for each number 𝑘 of
points removed the algorithm provides values of robustness greater than the 75th
percentile and apart from 𝑘 = 3 equal to the 95th percentile.

4.1.2 Example 2: a design with quantitative continuous factors

The second example considers five continuous variables 𝑥𝑖 , 𝑖 = 1, . . . , 5 which
take values in the interval [−1, +1]. The model contains the intercept, five linear
terms 𝑥𝑖 , 𝑖 = 1, . . . , 5, five quadratic terms 𝑥2

𝑖
, 𝑖 = 1, . . . , 5 and the four interaction

terms 𝑥1𝑥2, 𝑥1𝑥3, 𝑥1𝑥4, 𝑥1𝑥5. The number of degrees of freedom of the model is
𝑝 = 1 + 5 + 5 + 4 = 15. For this problem the circuit basis has 276 circuits. The
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Fig. 1 Distribution of robustness vs number of points removed for the Plackett-Burman design in
Sect. 4.1.1. For each sample size the robustness of the design selected by the proposed algorithm is
represented with an horizontal line.

Table 1 Example 1: Comparison of the output of the algorithm (𝑟∗) with the 75th, 90th, and 95th
percentile of the distribution of the robustness (𝑝75, 𝑝90, 𝑝95 respectively). The value 𝑘 is the
number of points removed by the initial design. The value corresponding to the robustness of the
initial design (𝑟0) is given at 𝑘 = 0.

𝑘 𝑝75 𝑝90 𝑝95 𝑟∗

0 𝑟0=0.903
1 0.903 0.903 0.903 0.903
2 0.905 0.905 0.905 0.905
3 0.917 0.917 0.929 0.917
4 0.929 0.964 0.964 0.964
5 1 1 1 1
6 1 1 1 1

robustness of a D-optimal design with with 𝑛 = 20 runs is analyzed. The 20-run
D-optimal design has been obtained using as candidate set the full factorial design
{−1, +1}5 The values of the robustness of the fractions which are obtained removing
𝑘 = 1, . . . , 𝑛 − 𝑝 = 5 points are computed and compared with the values of the
robustness corresponding to the fractions found by the algorithm. The distributions
of the robustness for each 𝑘 = 1, . . . , 5 are obtained by sampling. The results are
summarized in Fig. 2.

Table 2 compares the values of the robustness of the fractions found by the
algorithm (𝑟∗) with the 75th, 90th and 95th percentile of the distributions of the
robustness (𝑝75, 𝑝90, 𝑝95 respectively). It is worth noting that for each number 𝑘

of points removed by the initial design the algorithm provides values of robustness
greater than the 95th percentile.
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Fig. 2 Sampling distribution of robustness vs number of points removed for the 5-factor example
in Sect. 4.1.2. For each sample size the robustness of the design selected by the proposed algorithm
is represented with an horizontal line.

Table 2 Example 2: Comparison of the output of the algorithm (𝑟∗) with the 75th, 90th, and 95th
percentile of the distribution of the robustness (𝑝75, 𝑝90, 𝑝95 respectively). The value 𝑘 is the
number of points removed by the initial design. The value corresponding to the robustness of the
initial design (𝑟0) is given at 𝑘 = 0.

𝑘 𝑝75 𝑝90 𝑝95 𝑟∗

0 𝑟0=0.954
1 0.971 0.975 0.977 0.978
2 0.979 0.989 0.991 0.994
3 0.993 0.996 1 1
4 1 1 1 1
5 1 1 1 1

4.2 The impact of data loss in a real-data application

We consider the application described in [17]. Briefly, a new technique for approxi-
mating the stress in pad-type nozzles attached to a spherical shell is presented. The
stress values corresponding to a single replicated full factorial design with three
3-level factors (A,B, and C) are used for studying, using standard ANOVA, the ef-
fects of the factors on the membrane stress ratio. For showing the impact that our
algorithm could have in practical applications we use the discontinous membrane
stress (approximate analysis) as response. The full factorial design D = {−1, 0, 1}3

with the corresponding values of the response (y) are reported in Table 3.
As in [17], we consider a model with main effects and two-order interactions. The

model can be written in matrix form as in Eq. (1), i.e.
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Table 3 Values of the discontinous membrane stress 𝑦 observed for each run of the full factorial
design D.

Case no. 𝐴 𝐵 𝐶 y Case no. 𝐴 𝐵 𝐶 y

1 -1 -1 -1 191.8 15 1 0 0 278.3
2 0 -1 -1 230.5 16 -1 1 0 153.7
3 1 -1 -1 269.6 17 0 1 0 213.3
4 -1 0 -1 159.3 18 1 1 0 236
5 0 0 -1 175.5 19 -1 -1 1 208.6
6 1 0 -1 186.3 20 0 -1 1 293.6
7 -1 1 -1 154.8 21 1 -1 1 369.8
8 0 1 -1 167.6 22 -1 0 1 170.5
9 1 1 -1 154.8 23 0 0 1 234
10 -1 -1 0 227.5 24 1 0 1 286
11 0 -1 0 295.1 25 -1 1 1 152.4
12 1 -1 0 369 26 0 1 1 206.1
13 -1 0 0 174.6 27 1 1 1 251.9
14 0 0 0 231.5

y = 𝑋D𝜷 + 𝜺.

The row 𝑥 (𝑎,𝑏,𝑐) of 𝑋D corresponding to the design point (𝑎, 𝑏, 𝑐) ∈ D is defined
as

(1, 𝑥𝑎, 𝑥𝑏, 𝑥𝑐, 𝑥𝑎𝑏, 𝑥𝑎𝑐, 𝑥𝑏𝑐)

where 𝑥𝑦 = (1𝑦=−1 − 1𝑦=1, 1𝑦=0 − 1𝑦=1), 𝑥𝑦𝑧 = 𝑥𝑦 ⊗ 𝑥𝑧 , 𝑦, 𝑧 ∈ {𝑎, 𝑏, 𝑐}, ⊗ denotes
the Kronecker product, and 1𝑐 is the indicator function that gives 1 if the condition
𝑐 is true and 0 otherwise. The number of columns of 𝑋D i.e. the number of degrees
of freedom of the model is 𝑝 = 1 + 3 · 2 + 3 · 4 = 19. The least-square estimate 𝛽 of
𝛽 is obtained as

𝛽 = (𝑋 𝑡
D𝑋D)−1𝑋 𝑡

Dy. (9)

Using our algorithm we obtain a sequence of robust fractions F27 ≡ D ⊃ . . . ⊃ F19.
We focus on F25, F24, and F23 which are the fractions of D which correspond to
the loss of 2, 3, and 4 runs, respectively. More specifically F25 = D {18,1} , F24 =

D {18,1,23} , and F23 = D {18,1,23,25} , where D 𝐼 means the full factorial design without
the 𝑐𝑎𝑠𝑒 𝑛𝑜. in the set 𝐼, where the 𝑐𝑎𝑠𝑒 𝑛𝑜. of each run of the full factorial D is
defined in Table 3.

Using F𝑥 we compute the corresponding estimate 𝛽𝑥 of 𝛽, 𝑥 = 23, 24, 25. We
measure how far 𝛽𝑥 is from 𝛽 (the estimate of 𝛽 obtained using the full factorial
design D) using the mean error 𝑒𝑥 defined as

𝑒𝑥 =
1
𝑝

𝑝∑︁
𝑖=1

���� (𝛽𝑥)𝑖 − (𝛽)𝑖
(𝛽)𝑖

���� = 1
19

19∑︁
𝑖=1

���� (𝛽𝑥)𝑖 − (𝛽)𝑖
(𝛽)𝑖

����
where (𝑣)𝑖 denotes the 𝑖-th component of the vector 𝑣.
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Table 4 For each number of available runs, 𝑥 = 23, 24, 25, the mean error 𝑒𝑥 , the number of
estimable fractions 𝐸𝑥 among all the sub-fractions of size 𝑥 of D, the relative frequency of the
event 𝑒𝑘𝑥 > 𝑒𝑥 , and the relative frequency of non-estimable fractions 𝐸𝑥 are reported.

𝑥 𝑒𝑥 𝐸𝑥 #(𝑒𝑘𝑥 > 𝑒𝑥 )/𝐸𝑥 𝐸𝑥/
(27
𝑥

)
23 0.299 16,821 0.838 0.0415
24 0.198 2,898 0.876 0.0092
25 0.269 351 0.567 0

For 𝑥 = 23, 24, 25 we build all the fractions A𝑘
𝑥 of size 𝑥 of D, 𝑘 = 1, . . . ,

(27
𝑥

)
.

For each fraction A𝑘
𝑥 we compute 𝛽𝑘𝑥 , the least-square estimates of 𝛽 using A𝑘

𝑥 , and
the corresponding errors 𝑒𝑘𝑥 . It is worth noting (see Table 4) that

• the errors 𝑒𝑥 are less than the median of 𝑒𝑘𝑥 for all the 𝑥 and for 𝑥 = 23, 24 𝑒𝑥 are
close to the 15-th percentiles of 𝑒𝑘𝑥 , meaning that approximately 85% of fractions
A𝑘

𝑥 provide mean errors 𝑒𝑘𝑥 greater than 𝑒𝑥 ;
• for 𝑥 = 23, and 𝑥 = 24 there are 𝐸23 = 729, and 𝐸24 = 27 non-estimable fractions,

and 𝐸23 = 16, 821, and 𝐸24 = 2, 898 estimable fractions, respectively (a fraction
F is non-estimable when det(𝑋 𝑡

F𝑋F) = 0). It follows that the probability that a
randomly chosen fraction is non-estimable is 729/17, 550 ≈ 4.15% for 𝑥 = 23
and 27/2925 ≈ 0, 92% for 𝑥 = 24.

We run a simulation study for assessing the stability of the results. We considered
𝑁 = 10, 000 vectors yi generated as

yi = 𝑋D𝜷 + 𝜺𝒊 , 𝑖 = 1, . . . , 𝑁

where 𝜷 is taken equal to 𝛽 as defined in Eq. (9), 𝜺𝒊 is a vector of independent standard
normally distributed random variables, and 𝜺𝒊 and 𝜺 𝒋 are independent when 𝑖 ≠ 𝑗 .
For each simulation 𝑖 we compute 𝑒𝑖,𝑥 , the error obtained using the robust fraction
F𝑥 and 𝑒𝑖,𝑥 the error obtained using a randomly chosen fraction of D of size 𝑥,
𝑥 = 23, 24, 25. The empirical distribution functions of {𝑒𝑖,25 : 𝑖 = 1, . . . , 10, 000}
and {𝑒𝑖,25 : 𝑖 = 1, . . . , 10, 000} computed using 𝑥 = 25 runs (that is two runs have
been lost) are reported in Fig. 3. It is evident that the errors obtained using the
robust fraction F𝑥 are smaller than those obtained using a random fraction of size
𝑥 of D (e.g. the median of {𝑒𝑖,25 : 𝑖 = 1, . . . , 10, 000} is 0.0647 and the median of
{𝑒𝑖,25 : 𝑖 = 1, . . . , 10, 000} is 0.0854). The goodness of the results is also confirmed
for 𝑥 = 23 and 24.

5 Final remarks

The main result of this contribution is an algorithm for organizing the 𝑛 runs of a
given fraction F𝑛 in such a way that, if for some reasons 𝑘 of the 𝑛 runs are lost, the
remaining 𝑛 − 𝑘 runs constitute a robust design, 1 ≤ 𝑘 ≤ 𝑛 − 𝑝. As shown in the
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Fig. 3 Empirical distribution functions of {𝑒𝑖,25 : 𝑖 = 1, . . . , 10, 000} (solid line) and {𝑒̃𝑖,25 : 𝑖 =
1, . . . , 10, 000} (dashed line).

simulation study, the algorithm can provide very good designs in terms of robustness
for all 𝑘 ∈ {1, . . . , 𝑛− 𝑝}. This means that 𝑘 does not need to be defined at the design
stage (it would have been extremely difficult to make a hypothesis on the number 𝑘
of runs that could be lost before starting the execution of the experiments).

The algorithm can be used with any type of initial design. The starting design
F𝑛 can be an orthogonal fractional factorial design or a D-optimal design or any
user-defined design. It is worth noting that the algorithm can work in many practical
siyuations. The reason is that the circuits needed are those of the matrix 𝐴F𝑛

which
has dimension 𝑝 × 𝑛 and, usually in the applications, both the number of parameters
𝑝 and the size of the starting fraction F𝑛 are not large.

One of the requirements is that the matrix 𝐴F𝑛
must have integer values. This is

always the case for models with qualitative factors. Some preliminary work is needed
for models with quantitative variables. For a model matrix with real numbers it is
possible to build an approximate version of it with rational entries. The approximation
can be built as accurately as required since the set of rational numbers Q is dense in
the set of real number R. Finally the model matrix can be transformed into a matrix
with integer values simply by multiplying the rational matrix by a suitable integer
constant. In some cases, as shown in the second example of Sect. 4, a D-optimal
design used as a starting design for the algorithm contains only points with integer
entries, and from the combinatorial point of view the problem reduces immediately
to the qualitative case. Although the approximation of a real design matrix with a
rational one is outside the scope of the present work, some first experiments in this
direction are promising. For instance, we have considered the design matrix with
non-rational entries presented in [9], page 1674. Using 1, 2, or 3 decimal places to
approximate the real entries, we obtain in all cases the same structure of the circuit
basis.
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