
Automated Parking in CARLA:
a Deep Reinforcement Learning-based Approach

Luca Lazzaroni1[0000-0001-8092-5473], Alessandro Pighetti1[0009-0001-7166-5750],
Francesco Bellotti1, Alessio Capello1[0000-0003-4277-7283],

Marianna Cossu1[0009-0008-4548-7648], and Riccardo Berta1[0000-0003-1937-3969]

1 Department of Electrical, Electronic and Telecommunication Engineering (DITEN),
University of Genoa, Via Opera Pia 11a, 16145 Genoa, Italy

luca.lazzaroni, alessandro.pighetti, alessio.capello,
marianna.cossu}@edu.unige.it,

{francesco.bellotti, riccardo.berta}@unige.it

Abstract. This paper focuses on developing a Deep Reinforcement Learning
(DRL) - based agent for real-time trajectory planning and tracking in a simulated
parking environment, specifically low-speed maneuvers in a parking area with
comb-shaped spaces and a random distribution of non-player vehicles. We rely
on CARLA as a virtual driving simulator due to its realistic graphics and physics
simulation capabilities, and on the Gymnasium and Stable-Baselines3 toolkits for
training the agent. We show that the agent is able to achieve a success rate of
97% in reaching the target parking lot without collisions. However, integrating
CARLA with DRL frameworks poses challenges, such as determining suitable
environment and neural network update frequencies. Despite these issues, the re-
sults demonstrate the potential of DRL agents in developing automated driving
functions.

Keywords: automated driving functions, CARLA driving simulator, deep rein-
forcement learning, Gymnasium, automated parking, proximal-policy optimiza-
tion.

1 Introduction

A growing trend in the development of automated driving functions (ADFs) is the use
of DRL agents that learn specific tasks by interacting with the target environment fol-
lowing a trial-and-error mechanism and supported by a deep neural network brain [1].
Due to the inherent nature of this approach, it is useful to train them within virtual
driving simulators that are as true to reality as possible. This allows for safe operating
environments where the agent can learn the desired behavior, shaped through the
awarding of rewards and penalties based on the status of the agent within the environ-
ment. Indeed, the objective of a DRL agent is to maximize the sum of expected rewards
(i.e., the cumulative reward) over its lifetime. By exploiting the information learned
about the expected utility (i.e., the sum of expected future rewards discounted by a
factor), the agent can increase its long-term reward. This implies that the contributions

mailto:marianna.cossu%7d@edu.unige.it

2

that make up the reward function (RF) have to be specifically designed to enable the
agent to achieve the target policy.

We are interested in developing a DRL agent able to perform real-time trajectory
planning and tracking in a high-fidelity simulated parking environment, taking as input
sensors data and consequently acting on the steering wheel and the throttle and brake
pedals, emulating the actions of a human driver. The focus of our research is low-speed
maneuvers in a parking area with comb parking spaces and random distribution of the
number of parked non-player vehicles (NPVs).

The remainder of the paper is structured as follows. Section 2 presents the environ-
ment, then Section 3 shows the performed experiment, while Section 4 the obtained
results. Finally, conclusions are drawn in Section 5.

2 Environment

To train our model, we took a step toward more realistic simulations than previously
done in [1] and [2] for parking (using Unity) and highway driving (using highway-env
[3]), respectively. To increase the level of realism in terms of graphics and physics
simulation, we opted for CARLA as a driving simulator [4], an open-source software
created to support ADFs development. It includes several town maps and different ve-
hicle models to which sensors such as radar, lidar, camera, etc. can be attached. In ad-
dition, CARLA exposes an API that allows users to control all aspects related to the
simulation, including traffic, pedestrian behaviors, weather, sensors, etc. The official
DRL-related section lacks recent updates but some recent works have recently been
proposed [5, 6], showing promising results in trajectory tracking applications.

Starting from the built-in Town 5, where a parking area is already available, we re-
moved all the unnecessary surrounding entities from the scene, so to obtain a light-
weight scenario to reduce the computational cost of rendering and thus training time.
The parking area, visible in Fig. 1, measures 50 × 50 m and is composed of 60 comb
parking spaces with a 90° layout, 5 × 2.5 m each. Brick walls cordon off the area, pre-
venting the agent from falling during training. The weather includes 15 different con-
ditions of sun, rain, fog, and clouds and 41 vehicle models are available, from motor-
bikes to trucks, with customizable colors.

Fig. 1. Bird view of the parking area. The red square marks the target parking lot.

3

3 Experiment

To implement our DRL agent, we opted for Gymnasium (formerly known as OpenAI
Gym [7]), an open-source Python toolkit that exposes an API to facilitate the design
and implementation of DRL environments which has become a de facto standard for
the communication between agents and simulation environments. In addition, Gymna-
sium offers the ability to define custom environments, so, we wrapped the CARLA
parking setting into a Gymnasium environment to get a DRL-compatible interface. Fur-
thermore, Gymnasium is compatible with Stable-Baselines3 (SB3) [8], an open-source
Python library that offers a variety of DRL algorithms to set up the training algorithm
and the neural network architecture and configuration quickly and intuitively. The sche-
matic of the tools used and their interfacing are shown in Fig. 2.

Fig. 2. Outline of the tools used for the implementation of the DRL agent.

At each episode, the vehicle starting point and orientation are chosen randomly within
the drivable area. The target to be reached is one of the 60 lots, randomly chosen at
each episode. To train our agent, we used the Audi e-tron vehicle model, available in
CARLA. The car measures 4.90 × 1.93 × 1.62 m, and has a total mass of 2490 kg. The
vehicle dynamics are modeled by CARLA with NVIDIA PhysX [9], one of the most
popular physics simulation engines. The ego vehicle (EV) is equipped with a lidar sen-
sor placed in the center of the vehicle with a 360° horizontal field of view.

The key part in the development of a DRL agent is RF. We split it into several con-
tributions, some dense (given at each simulation step) and some sparse (awarded only
when some events occur). Table 1 offers an overview the components of the RF. Dis-
tance and heading are the two dense contributions to induce EV to approach the target.
Collision is sparse, needed to teach the agent to avoid other NPVs and the walls delim-
iting the area. Two contributions are related to reaching the target parking lot, goal and
alignment. The goal reward is awarded when EV reaches the lot, while alignment re-
wards the agent if it parks aligned well.

Table 1. RF components.

Name Description Range Type
Distance Euclidean distance from EV to target [-0.1, 0] dense
Heading Angle between EV forward vector and EV-target vector [-0.1, 0] dense
Collision Collision with walls or NPVs event [-1, 0] sparse

4

Goal Target achieved event [0, 15] sparse

Alignment
Angle between EV forward vector and parking lot orienta-
tion

[0, 10] sparse

For the training of the model, we used the PPO algorithm [10]. PPO aims to optimize
policies for sequential decision-making tasks. It balances exploration and exploitation
by iteratively updating policy parameters based on the clipped surrogate objective, en-
suring stability and reliable performance. As the backbone neural network, we opted
for a multi-layer perceptron configuration, composed of 2 hidden layers of 512 neurons,
whose input and output values are summed up in Table 2. To give the agent the ability
to better perceive its motion, at each network update we stacked the last four input
values on top of the current one. This allows the agent to capture the dynamics and
changes in the environment over time.

Table 2. PPO network input and output.

Type Quantity Dimension Resulting size

Input

Lidar data 61

340 (5 stacked inputs)

Distance from target (x, y) 2
Speed (x, y) 2
Acceleration (x, y) 2
Angular velocity (yaw) 1

Output

Throttle 1

4
Steering 1
Brake 1
Reverse 1

Given the results previously obtained in an environment similar to ours, although sig-
nificantly less complex, such as [1], we adopted a curriculum learning (CL) strategy for
training our agent [11]. In this case, we split the training into three distinct phases. The
first phase involves only EV, no NPV is present and an episode terminates if the target
is reached or if it goes over 240 steps. Collision is not penalized to incentivize the agent
to explore the environment. In the second phase, the number of NPVs is chosen ran-
domly between 0 and 20 at each episode and, again, only the goal reaching or the
timeout can end the episode. Collisions are now slightly penalized with a weight equal
to -0.1. Finally, in the third phase, conditions are similar to phase #2 but now a collision
(penalty weight -1) terminates the episode.

4 Results

We trained our PPO agent for about 60M steps (Fig. 3). The first CL phase took 25M
steps, after which the agent was able to reach the goal 100% of the time (Fig. 3a). Once
this is achieved with no NPVs present in the scene, the second phase started, lasting

5

about 15M steps in which the agent learned to park with NPVs parked near the target
parking lot. The last phase, in which collisions represented a terminal state, lasted 20M
steps, achieving a final success rate of 97%.

 (a) (b)

Fig. 3. The PPO agent training over ~60M steps. (a) is the success rate and (b) the cumulative
reward. Dashed blue lines distinguish the three CL phases.

Although the success rate is satisfactory, some problems related to the use of CARLA
arose during code development. In particular, the lack of direct support for DRL made
the implementation of the environment and synchronization with Gymnasium and SB3
particularly complex. Too high values of the CARLA environment update frequency
(greater than 20 Hz) greatly lengthened the training time due to the higher computa-
tional load but, conversely, frequencies that were too low (lower than 10 Hz) did not
guarantee proper observation of the environment by the agent (e.g., it happened that the
agent stepped on the goal without being detected). In addition, it was necessary to adopt
the decision period (i.e., the frequency at which the agent takes an action) since too
high network update frequencies (greater than 10 Hz) did not allow the agent to learn
to move, since too short a press on the accelerator pedal is not sufficient to allow move-
ment. A good trade-off we found is to use a CARLA environment update rate of 20 Hz
and a network update rate of 5 Hz (equivalent to a decision period of 4) but this required
a lot of trial and error.

5 Conclusions

This paper presented a DRL agent for real-time trajectory planning and tracking in a
CARLA-simulated environment where low-speed maneuvers are performed in a park-
ing area with comb-shaped spaces. The agent is able to achieve a 97% success rate in
reaching the target parking lot without collisions. The training process involved a CL
strategy with three distinct phases that gradually increased the complexity of the envi-
ronment by introducing NPVs and penalizing collisions. However, the use of CARLA
presented challenges in integrating DRL into the environment. Issues related to the en-
vironment update frequency and decision period had to be carefully handled to ensure
proper learning and observation by the agent but the overall success rate and perfor-
mance of the trained agent confirm the capability of DRL approaches for the

6

development of ADFs. Future work will focus on different sensor configurations and
extend the range of action to more complex parking scenarios or other ADFs.

Acknowledgements

The authors would like to thank all partners within the Hi-Drive project for their coop-
eration and valuable contribution. This project has received funding from the European
Union's Horizon 2020 research and innovation programme under grant agreement No
101006664. The sole responsibility of this publication lies with the authors. Neither the
European Commission nor CINEA – in its capacity of Granting Authority – can be
made responsible for any use that may be made of the information this document con-
tains.

References

1. Lazzaroni, L., Bellotti, F., Capello, A., Cossu, M., De Gloria, A., Berta, R.: Deep Reinforce-
ment Learning for Automated Car Parking. In: Berta, R. and De Gloria, A. (eds.) Applications
in Electronics Pervading Industry, Environment and Society. pp. 125–130. Springer Nature
Switzerland, Cham (2023). https://doi.org/10.1007/978-3-031-30333-3_16.

2. Capello, A., Forneris, L., Pighetti, A., Bellotti, F., Lazzaroni, L., Cossu, M., De Gloria, A.,
Berta, R.: Investigating High-Level Decision Making for Automated Driving. In: Berta, R.
and De Gloria, A. (eds.) Applications in Electronics Pervading Industry, Environment and
Society. pp. 307–311. Springer Nature Switzerland, Cham (2023).
https://doi.org/10.1007/978-3-031-30333-3_41.

3. Leurent, E.: An Environment for Autonomous Driving Decision-Making,
https://github.com/eleurent/highway-env, (2018).

4. Dosovitskiy, A., Ros, G., Codevilla, F., Lopez, A., Koltun, V.: CARLA: An Open Urban
Driving Simulator, http://arxiv.org/abs/1711.03938, (2017).
https://doi.org/10.48550/arXiv.1711.03938.

5. Pérez-Gil, Ó., Barea, R., López-Guillén, E., Bergasa, L.M., Gómez-Huélamo, C., Gutiérrez,
R., Díaz-Díaz, A.: Deep reinforcement learning based control for Autonomous Vehicles in
CARLA. Multimed Tools Appl. 81, 3553–3576 (2022). https://doi.org/10.1007/s11042-021-
11437-3.

6. Gutiérrez-Moreno, R., Barea, R., López-Guillén, E., Araluce, J., Bergasa, L.M.: Reinforce-
ment Learning-Based Autonomous Driving at Intersections in CARLA Simulator. Sensors.
22, 8373 (2022). https://doi.org/10.3390/s22218373.

7. Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J., Zaremba,
W.: OpenAI Gym, http://arxiv.org/abs/1606.01540, (2016).
https://doi.org/10.48550/arXiv.1606.01540.

8. Raffin, A., Hill, A., Gleave, A., Kanervisto, A., Ernestus, M., Dormann, N.: Stable-Base-
lines3: Reliable Reinforcement Learning Implementations. Journal of Machine Learning Re-
search. 22, 1–8 (2021).

9. NVIDIA PhysX, https://github.com/NVIDIA-Omniverse/PhysX, (2023).
10. Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal Policy Optimiza-

tion Algorithms, http://arxiv.org/abs/1707.06347, (2017).

	1 Introduction
	2 Environment
	3 Experiment
	4 Results
	5 Conclusions
	Acknowledgements
	References

