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Abstract

Stable models of logic programs have been studied and characterized in relation with
other formalisms by many researchers. As already argued in previous papers, such
characterizations are interesting for diverse reasons, including theoretical investigations
and the possibility of leading to new algorithms for computing stable models of logic
programs. At the theoretical level, complexity and expressiveness comparisons have
brought about fundamental insights. Beyond that, practical implementations of the
developed reductions enable the use of existing solvers for other logical formalisms
to compute stable models. In this paper, we first provide a simple characterization
of stable models that can be viewed as a proof-theoretic counterpart of the standard
model-theoretic definition. We further show how it can be naturally encoded in differ-
ence logic. Such an encoding, compared to the existing reductions to classical logics,
does not require Boolean variables. Then, we implement our novel translation to a
Satisfiability Modulo Theories (SMT) formula. We finally compare our approach, em-
ploying the SMT solver yices, to the translation-based ASP solver lp2diff and to
clingo on domains from the “Basic Decision” track of the 2017 Answer Set Program-
ming competition. The results show that our approach is competitive to and often
better than lp2diff, and that it can also be faster than clingo on non-tight domains.

Keywords: Logic programming, stable models, answer set programming, difference
logic

1. Introduction1

Logic programming and non-monotonic reasoning are two important and histori-2

cal areas within Artificial Intelligence, which have been studied and are at the core of3

knowledge representation and reasoning. During the years, many theoretical contri-4

butions have been presented; relatively more recently, solving tools, in particular for5

Answer Set Programming (ASP) (Baral, 2003; Brewka et al., 2011; Gelfond and Lif-6

schitz, 1988, 1991; Marek et al., 2008; Niemelä, 1999), have been employed to solve7

real-life problems, even in industrial settings (Erdem et al., 2016; Falkner et al., 2018;8

Schüller, 2018; Gebser et al., 2018; Dodaro et al., 2021). Thus, it is often important to9
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complement theoretical findings with the implementation and analysis of related solving10

systems (see, e.g., (Gebser et al., 2012; Alviano et al., 2019; Janhunen et al., 2009) for11

ASP solvers). Stable models of logic programs, a.k.a. answer sets, have been studied12

and characterized also in relation with other formalisms. As already argued (see, e.g.,13

(Lifschitz, 2010)), such characterizations are interesting for diverse reasons, including14

the possibility of computing stable models by means of reductions enabling the use of15

existing solvers for other logical formalisms. This is the case, e.g., for the SAT-based16

approaches of the assat (Lin and Zhao, 2004) and cmodels (Giunchiglia et al., 2006)17

ASP solvers, and the reduction from logic programs to Mixed Integer Programming18

implemented by lp2mip (Liu et al., 2012).19

In this paper, we first introduce stable derivations as a new characterization of
stable models and show how it can be naturally encoded in difference logic, i.e., as
quantifier-free first-order formulas whose atoms have the form

(x ▷◁ y + c),

where x and y are variables ranging over the reals/rationals or the integers, c is a numeric20

constant, and ▷◁ ∈ {=, ̸=,≤, <,≥, >}. While this is neither the first alternative to the21

standard definition of stable models (see, e.g., (Lifschitz, 2010)) nor the first reduction22

to difference logic (see, e.g., (Niemelä, 2008)),23

1. our definition of stable derivation is simple, as witnessed by the fact that it is24

rather short, and25

2. its corresponding reduction to difference logic uses only one numeric variable per26

atom in a logic program, without the need to include any Boolean variable.27

Stable derivations can be viewed as a proof-theoretic counterpart of the standard28

model-theoretic definition of stable models. About the reduction, we first provide a29

basic version directly following the characterization. Then, we introduce an improved30

reduction that takes Strongly Connected Components (SCCs) into account, which come31

into play for distinguishing recursive positive body atoms on non-tight domains (Erdem32

and Lifschitz, 2003).33

We implement these translations to Satisfiability Modulo Theories (SMT) formulas134

expressed in difference logic. Employing the SMT solver yices (Dutertre, 2014a),35

we compare our reduction to the translation-based ASP solver lp2diff, which comes36

certainly closest to our approach, and to the state-of-the-art solver clingo on domains37

from the 2017 ASP competition (Gebser et al., 2020). In particular, we consider all38

domains of the “Basic Decision” track of the competition, whose ASP encodings consist39

of normal rules with classical and built-in atoms only, i.e., the type of logic programs40

we deal with in our paper. The results show that, when employing yices, our approach41

is competitive to and often better than lp2diff, and that it can be also faster than42

clingo on non-tight domains. However, let us also point out that, beyond the direct43

use of our reduction to compute stable models by SMT solvers, one may take it as basis44

for future extensions by theory reasoning (Lierler, 2023; Kaminski et al., 2023), e.g., on45

floating point numbers or even real arithmetic.46

1http://smtlib.cs.uiowa.edu/standard.shtml
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The paper is structured as follows. First, Section 2 introduces necessary prelim-47

inaries. Section 3 then presents our characterization of stable derivations, while the48

corresponding reduction to difference logic is provided in Section 4. In Section 5, we49

develop an improved version of this reduction by taking SCCs into account. Implemen-50

tation details and results of our experiments are described in Section 6. Section 7 and 851

conclude the paper by discussing further related work, and by drawing some conclusions52

and possible topics for future research, respectively.53

2. Stable models, Clark’s completion and ordering constraints54

Let V be a countable set of atoms. By V ⊥ we mean the set obtained adding the55

atom ⊥ denoting falsity to V , i.e., V ⊥ = V ∪ {⊥}. A rule is an expression of the form56

A← A1, . . . , Am,¬Am+1, . . . ,¬An (1)

(0 ≤ m ≤ n) where A,A1, . . . , An are atoms in V ⊥ and ¬ is the symbol for negation.57

We assume that in (1), Ai ̸= Aj for 1 ≤ i < j ≤ n. A (logic) program is a set of rules.58

Given a rule r of the form (1), head(r) = A is the head, body+(r) = {A1, . . . , Am} is59

the set of positive body atoms, body−(r) = {Am+1, . . . , An} is the set of negative body60

atoms, and body(r) = {A1, . . . , Am,¬Am+1, . . . ,¬An} is the body of r. If A = ⊥ then61

(1) is said to be a constraint.62

63

Consider a logic program Π. A (truth) assignment is a subset of the set V of atoms,64

thus not containing ⊥. A truth assignment M satisfies65

1. an atom A if A ∈M ,66

2. a negated atom ¬A if A ̸∈M ,67

3. a set of atoms and negated atoms if M satisfies all the elements in the set,68

4. a rule if M satisfies the head whenever M satisfies the body of the rule,69

5. a program Π if M satisfies all the rules in Π, in which case M is also said to be70

a model of Π.71

A model M of Π is minimal if Π has no other model which is a subset of M . As72

standard, for a suitable concept S, we write M |= S to mean that M satisfies S.73

For any truth assignment M , the reduct ΠM of Π relative to M is the set of rules
obtained from Π by considering each rule r ∈ Π of the form (1) and dropping r if at
least one of the atoms in the negative part of the body−(r) is in M , and then dropping
¬Am+1 . . . ,¬An otherwise, i.e.,

ΠM = {head(r)← body+(r) : r ∈ Π,M ∩ body−(r) = ∅}.

A truth assignment M is a stable model of Π if it is the least model of the reduct of Π74

relative to M .75

Example 1. Consider the program Π in the three atoms A,B,C whose rules are:76

A← B,
B ← A,
A← ¬C,
C ← C.

(2)

Π has the three models {A,B,C}, {A,B} and {C}, of which only the last two are77

minimal and only the second one is stable.78
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A model M is a supported model of Π if for each atom A ∈ V ⊥, A ∈ M iff there79

exists a rule r ∈ Π such that head(r) = A and M |= body(r). The provided definition80

of stable model is due to Gelfond and Lifschitz (1988) and has the property that each81

stable model M of Π is a supported model of Π. Thus, all the stable models are also82

supported while the converse is not necessarily true (Marek and Subrahmanian, 1992).83

Fages (1994) proved that also the converse is true if Π is tight, i.e., if the positive84

dependency graph of Π85

1. having one node for each atom in V , and86

2. an edge from A ̸= ⊥ to each atom A1 ̸= ⊥, . . . , Am ̸= ⊥ for each rule (1) in Π,87

does not contain any loop.88

Theorem 1 (Fages (1994)). Let Π be a program. A stable model of Π is also a supported89

model of Π, and if Π is tight then a supported model of Π is also a stable model of Π.90

If for each atom A there are finitely many rules with head A, the supported models91

of Π coincide with the models of the Clark’s completion Comp(Π). Assuming Π is92

finite, the Clark’s completion Comp(Π) of Π is defined to be the set of formulas in93

propositional logic consisting of94

A ≡
∨

r:r∈Π,head(r)=A

∧
L∈body(r)

L, (3)

for each atom A ∈ V ⊥.95

Note that (3) is included in Comp(Π) for every A ∈ V ⊥, even when A = ⊥ or A is
not the head of any rule in Π. In the former case, (3) is equivalent to

¬
∨

r:r∈Π,head(r)=⊥

∧
L∈body(r)

L,

and in the latter case, (3) is equivalent to ¬A. Clark’s completion provides a reduction96

to classical logic for tight programs. Comp(Π) has |V | Boolean variables and size97

O(||Π||), where ||Π|| is the size of Π.98

Babovich et al. (2000) and later Erdem and Lifschitz (2003) generalized Fages’ result99

to programs Π tight on a set M ⊆ V of atoms, defined as the programs for which there100

exists a function λ mapping each atom in M to an ordinal such that for each rule r in101

Π, if M satisfies the head and the body of the rule then, for each atom A in the positive102

body of the rule, λ(head(r)) > λ(A). A program is tight according to Fages’ definition,103

if it is tight on every set of atoms.104

Theorem 2 (Erdem and Lifschitz (2003)). Let Π be a program. Let M be a supported105

model of Π. If Π is tight on M then M is a stable model of Π.106

Example 2. Consider the rules in (2). If Π consists of the second and third rules then
Π is tight and Comp(Π) consists of the formulas

A ≡ ¬C,
B ≡ A,
¬C.
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If Π consists of the last three rules in (2), then (i) Π is not tight, (ii) Comp(Π)107

consists of the first two of the above formulas, (iii) we can conclude that M = {A,B}108

is a stable model since Π is tight on M , but (iv) we are not allowed to conclude, on the109

basis of Theorem 2, that {C} is not a stable model.110

If Π consists of all the rules in (2), then (i) Π is not tight, (ii) Comp(Π) consists111

of the formulas112

A ≡ (B ∨ ¬C),
B ≡ A,
C ≡ C,

(4)

(iii) the set of models of Comp(Π) is {{A,B,C}, {A,B}, {C}}, and (iv) Π is not tight113

on any of the models of Comp(Π).114

If the program Π is non tight, several authors showed how it possible to add extra115

constraints in order to rule out the supported models which are not stable, see for in-116

stance (Ben-Eliyahu and Dechter, 1994; Lin and Zhao, 2003, 2004).117

118

Here, in the following, we give a brief overview of the approaches which are more119

related to our work. Other related works are discussed in Section 8.120

Janhunen showed that, in order to rule out the models of the completion which
are not stable, it is sufficient to add suitable level ordering constraints. For any truth
assignment M ⊆ V , define the set of supporting rules of M to be ΠM = {r ∈ Π :
M |= body(r)}. Given an assignment M , a level numbering of M for Π is a function
λ : M ∪ ΠM 7→ N such that for each atom A ∈M ,

λ(A) = min{λ(r) : r ∈ ΠM , head(r) = A}

and, for each rule r ∈ ΠM ,

λ(r) = max{0,max{λ(A) : A ∈ body+(r)}}+ 1.

Theorem 3 (Janhunen (2004)). Let Π be a program. Let M be a supported model of121

Π. M is a stable model of Π iff there exists a level numbering of M for Π.122

In the same work, Janhunen proved that, for a supported model M of Π, there is123

at most one level numbering, and also showed –assuming V is finite– how to encode124

level numbering in propositional logic using ⌈log2(|V |+2)⌉ bits. Thanks to Theorem 3,125

there exists a one-one-correspondence between the stable models of Π and the models126

of J(Π), which consists of the encoding of the level numbering and of Comp(Π). J(Π)127

has O(|V | × ⌈log2(|V |)⌉)) Boolean variables and size O(||Π|| × log2(|V |)).128

A few years later, Niemelä introduced level ranking of an assignment M for Π to be129

a function λ : M 7→ N such that for each atom A ∈M , there exists a rule r ∈ ΠM such130

that head(r) = A and for each atom B ∈ body+(r), λ(A) ≥ λ(B) + 1. Niemelä also131

showed that if we add the restrictions to level rankings saying that for each A ∈M132

1. λ(A) = 1 whenever there is a rule r ∈ ΠM with head(r) = A and body+(r) = ∅,133

and134

2. for every rule r ∈ ΠM with head(r) = A and body+(r) ̸= ∅, there exists B ∈135

body+(r) with λ(A) ≤ λ(B) + 1,136
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then we have a one-to-one correspondence between level ranking and level numbering.137

Level rankings satisfying such additional restrictions are said to be strong.138

Theorem 4 (Niemelä (2008)). Let Π be a program. Let M be a supported model of Π.139

M is a stable model of Π iff there exists a (strong) level ranking of M for Π.140

Like level numbering, for each supported model M , there is at most one strong level141

ranking. The strong level ranking can be thus used to produce compact encodings in142

propositional logic as in Janhunen (2004), but without the need of encoding the level143

associated to the rules.144

(Strong) level rankings can be encoded in difference logic, defined as the extension145

to propositional logic in which the set of atomic formulas is extended in order to allow146

for expressions of the form x ▷◁ y+c, where x and y are variables ranging over a numeric147

unbounded domain (usually the integers or the rationals/reals), c is a numeric constant148

and ▷◁∈ {=, ̸=,≤, <,≥, >}. Then, an interpretation σ maps each numeric variable to149

a value in its domain, and σ satisfies an atomic formula x ▷◁ y + c iff σ(x) ▷◁ σ(y) + c.2150

Thanks to Theorem 4, the stable models of Π can be computed as the models of N(Π),151

where N(Π) is the set of formulas in difference logic consisting of Comp(Π) and of the152

encoding of the (strong) level ranking. N(Π) has |V | Boolean variables, |V | numeric153

variables and size O(||Π||), though the introduction of additional Boolean variables may154

produce a more compact encoding, but still in O(||Π||).155

Example 3. Let Π be the set of rules in (2). For each atom A ∈ V , we assume to have156

a numeric variable λN(A) in the difference logic encoding. Then, N(Π), as defined in157

Niemelä (2008), is equivalent to158

A ≡ (B ∨ ¬C),
B ≡ A,
C ≡ C,

A→ ((B ∧ λN(A) ≥ λN(B) + 1) ∨ ¬C),
B → A ∧ λN(B) ≥ λN(A) + 1,
C → C ∧ λN(C) ≥ λN(C) + 1,

(5)

where the first 3 formulas correspond to Comp(Π) and the other ones are the encoding of159

the level ranking conditions. Any model of the above formulas satisfy A,B,¬C, λN(B) ≥160

λN(A) + 1.161

162

The formulas encoding the additional conditions on strong level ranking are163

A→ (¬B ∨ λN(A) ≤ λN(B) + 1) ∧ (C ∨ λN(A) = λN(⊤)),
B → ¬A ∨ λN(B) ≤ λN(A) + 1,

C → λN(C) ≤ λN(C) + 1,
(6)

2It is possible to distinguish between rational/real difference logic and integer difference logic; in
the former, variables take values in the rationals/reals while in the latter case variables are assumed to
take integer values. The distinction is useful as, e.g., the satisfiability of 0 < x− y < 1 depends on the
domain of x and y. However, in this paper such distinction is useless since we are going to consider
formulas whose satisfiability does not depend on the chosen domain.
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where λN(⊤) is a “dummy” variable necessary in order to respect the syntax of difference
logic and whose intended interpretation is 1. The encoding in difference logic of the
strong level ranking corresponds to the formulas in (5) and (6) which impose, assuming
the intended interpretation of λN(⊤), that the models satisfy

λN(A) = 1,
λN(B) = 2.

As expected, strong level rankings (like level numbering) are unique: each atom in the164

stable model has a uniquely associated level, while the constraints say nothing about the165

value of the variables associated to the atoms not belonging to the stable model, in this166

case λN(C).167

Several other characterizations and corresponding reductions can be introduced on168

the basis of Niemelä’s level ranking. For instance, in the same paper Niemelä defines169

other reductions based on the SCCs of the positive dependency graph associated to Π,170

and Gebser et al. (2014) show how it is possible to encode (strong) level rankings (also171

exploiting SCCs) in SAT modulo acyclicity. We will also show, in Section 5, how our172

characterization and enconding, presented in the next two sections, can be improved173

by handling SCCs.174

3. A simple proof-theoretic characterization of stable models175

This section presents our characterization of stable models, starting from the def-176

inition of stable derivation, which conceptually relates to Clark’s completion (Clark,177

1978).178

Definition 1. Consider a program Π. A stable derivation is a function λ mapping179

each atom A ∈ V ⊥ to an ordinal such that λ(A) < λ(⊥) iff there exists a rule r ∈ Π180

with head A and181

1. for each atom B ∈ body+(r), λ(A) > λ(B), and182

2. for each atom B ∈ body−(r), λ(B) ≥ λ(⊥).183

Given a stable derivation λ, the set of atoms stably derived by λ is {A : λ(A) <184

λ(⊥)}. A set of atoms M is stably derivable (from Π) if there exists a stable derivation185

of M . From the above definitions, it immediately follows that, in a stable derivation,186

λ(⊥) = 0 only if the set of stably derivable atoms is empty.187

Example 4. In the case of the logic program (2), every stable derivation λ is such that
λ(A) < λ(B) < λ(⊥) ≤ λ(C) and the only stably derivable set of atoms is {A,B}.
In general, there is more than one stably derivable set of atoms, as in the case of the
program

A← ¬B,
B ← ¬A

whose stable derivations satisfy either

λ(A) < λ(⊥) ≤ λ(B)

or
λ(B) < λ(⊥) ≤ λ(A)

and the two corresponding stably derivable sets of atoms are {A} and {B}.188
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A set of atoms is stably derivable iff it is a stable model.189

Theorem 5. Let Π be a program. A set of atoms M is a stable model of Π iff M is190

stably derivable from Π.191

Proof. For the left to right direction, assume M is a stable model. We define a stable
derivation for Π via the operator TΠM : 2V 7→ 2V defined, for an arbitrary program Π,
as

TΠ(I) = {head(r) : r ∈ Π, I |= body(r)},

and considering the following sequence of subsets of V

TΠ↑0= ∅,

and, for each i ≥ 0,
TΠ↑i+1= TΠ(TΠ↑i).

Now, since M is a stable model of Π, for each A ∈ M there is a unique i such that192

A ∈ TΠM ↑i \TΠM ↑i−1, and we set λ(A) = i iff A ∈ TΠM ↑i \TΠM ↑i−1. For A ̸∈ M , we193

set λ(A) = λ(⊥) = ω, the first limit ordinal. Then, M = TΠM↑ω and for each A ∈ V ,194

λ(A) < λ(⊥) iff A ∈ M . Clearly, λ is a stable derivation for Π: if λ(A) = i < ω195

then A ∈ TΠM ↑i \TΠM ↑i−1 and thus there exists a rule r ∈ Π such that (i) for each196

B ∈ body+(r), B ∈ TΠM ↑i−1 and thus λ(B) < λ(A), and (ii) for each B ∈ body−(r),197

B ̸∈M and thus λ(B) = λ(⊥) = ω.198

For the right to left direction, suppose there is a stable derivation λ for Π. We show199

that M = {A : λ(A) < λ(⊥)} is the least model of ΠM , which implies that M is a200

stable model of Π. We first show that M is a model of ΠM . Assume it is not. Then,201

there exists a rule r of the form (1) such that M |= {A1, . . . , Am,¬Am+1, . . . ,¬An,¬A}202

i.e., λ(A1) < λ(⊥), . . . , λ(Am) < λ(⊥) while λ(Am+1) ≥ λ(⊥), . . . , λ(An) ≥ λ(⊥),203

λ(A) ≥ λ(⊥), which implies λ(A1) < λ(A), . . . , λ(Am) < λ(A) and λ(Am+1) ≥ λ(⊥),204

. . . , λ(An) ≥ λ(⊥), λ(A) ≥ λ(⊥), which is not possible since λ is a stable derivation.205

Now we prove that M is minimal. Assume it is not. Then, there is another model206

M ′ ⊂M of ΠM and an atom A ∈M \M ′ with the lowest value λ(A) among the atoms207

in M \M ′. Since A ∈ M then λ(A) < λ(⊥) and there exists a rule r ∈ Π such that208

M |= body(r). But, for each B ∈ body+(r), B ∈ M ′ since λ(B) < λ(A), and for each209

B ∈ body−(r), B ̸∈ M ′ since M ′ ⊂ M . Thus, M ′ |= body(r) and then, since M ′ is a210

model of Π, A ∈M ′, contradicting the assumption.211

The term “stable derivation” has been used given (i) the analogy with the standard212

definition of derivation in classical logic, and (ii) the correspondence, as established by213

Theorem 5, with stable models. Indeed, a stable derivation can be seen as a sequence214

of applications of rules as in a standard derivation in classical logic, once215

1. each rule r is interpreted as the inference rule head(r) ← body+(r) carrying the216

restriction that the whole derivation must not contain the atoms in body−(r), and217

2. each applicable rule r is applied in the derivation.218

Differently from classical logic, given the restrictions of the rules, the later application219

of an applicable rule r may invalidate the (stability of the) derivation. These two220

differences make the stably derivable relation nonmonotonic –while classical logic is221

indeed monotonic– but thanks to Theorem 5 we have a nice correspondence between222
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the standard “model-theoretic” definition of stable model and this “proof-theoretic”223

definition of stable derivation, again similarly to what happens in classical logic.224

Comparing the statements of Theorem 2, Theorem 3, and Theorem 4 with Theorem225

5, our characterization of stable models does not assume that the starting assignment226

M is a supported model. If instead we consider our definition of stable derivation, since227

for any two ordinals α and β the condition α > β is equivalent to α ≥ β + 1, it is easy228

to check the correspondence between the first condition on stable derivation and the229

condition on level ranking.230

As it happens for level rankings, given the freedom in selecting the ordinal associated231

to each atom, the number of stable derivations is, in general, infinite even in the case of232

finite programs. If we consider two stable derivations λ1 and λ2 to be equivalent if, for233

each pair of atoms A,B ∈ V ⊥, λ1(A) < λ1(B) iff λ2(A) < λ2(B), then, whenever V ⊥
234

is finite, there are finitely many non equivalent stable derivations. It is however still235

possible that there exists two non equivalent stable derivations having the same set of236

stably derivable atoms.237

Example 5. Consider the logic program Π obtained adding B ← ¬C to (2). In this238

case there are three sets of non equivalent stable derivations λ1, λ2 and λ3 for Π,239

characterized by λ1(A) < λ1(B) < λ1(⊥) ≤ λ1(C), λ2(B) < λ2(A) < λ2(⊥) ≤ λ2(C)240

and λ3(A) = λ(B) < λ(⊥) ≤ λ(C). However, all the stable derivations lead to the same241

set {A,B} of stably derivable atoms.242

We can thus define a weaker notion of equivalence, and say that two stable deriva-243

tions are weakly equivalent if they have the same set of stably derivable atoms. Of244

course, two equivalent stable derivations are also weakly equivalent. Further, similarly245

to what has been done in Niemelä (2008) for level rankings, we can impose additional246

restrictions on stable derivations in order to enforce that any two of them are either247

not weakly equivalent or map ⊥ to a different ordinal. We do this by introducing strict248

stable derivations.249

Definition 2. A stable derivation λ is strict if it maps each atom A ∈ V to an ordinal250

λ(A) such that λ(A) ≤ λ(⊥) and either λ(A) = 1 or for each rule r ∈ Π with head A,251

1. either there exists an atom B ∈ body+(r) with λ(A) ≤ λ(B) + 1, or252

2. there exists an atom B ∈ body−(r) with λ(B) < λ(⊥).253

We will illustrate the definition of a strict stable derivation on a simple example,254

which also shows that condition 2. is necessary.255

Example 6. Consider the following program:256

A,
B ← A,
B ← ¬A.

(7)

For these rules, following the conditions of a strict stable derivation, we will have257

λ(A) = 1,
λ(B) = 1 or λ(B) ≤ λ(A) + 1,
λ(B) = 1 or λ(A) < λ(⊥).

(8)
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Without condition 2., we would need to impose λ(B) = 1, which is not possible258

due to λ(A) = 1 < λ(⊥) and λ(B) = 1 ≥ λ(⊥) implied by the definition of a stable259

derivation.260

Notice also that the above conditions trivially hold when A = ⊥ and, thus, in a261

strict stable derivation they hold for each A ∈ V ⊥. Further, for each A ∈ V ⊥ in a strict262

stable derivation, it is easy to check that λ(A) = 0 only if λ(⊥) = 0 and, thus, only if263

the set of stably derived atoms is empty.264

Theorem 6. Let Π be a program in the set V of atoms. For any stable derivation λ265

of Π there is a strict stable derivation λ1 of Π which is equivalent to λ and such that266

λ1(⊥) = |V | + 1 if V is finite, and λ1(⊥) = ω, otherwise. Any two distinct weakly267

equivalent strict stable derivations of Π differ only in the ordinal associated to ⊥.268

Proof. Let M be the set of atoms stably derived by λ. Consider the stable derivation269

λ1 having M as stably derived set of atoms constructed in the “left to right” direction270

of the proof of Theorem 5. By construction λ1 is strict, equivalent to λ and satisfies271

λ1(⊥) = ω. On the other hand, it is clear that if V is finite, then the proof still holds if272

in the proof we replace M = TΠM↑ω with M = TΠM↑|V |+1 and impose λ1(⊥) = |V |+ 1.273

Assume there are two weakly equivalent strict stable derivations λ1 and λ2 and an274

atom A ∈ V with λ1(A) ̸= λ2(A), and either λ1(A) ̸= λ1(⊥) or λ2(A) ̸= λ2(⊥). Since λ1275

and λ2 are weakly equivalent then λ1(A) < λ1(⊥) and λ2(A) < λ2(⊥). Take such atom276

A to be such that for each atom B ∈ V with λ1(B) ̸= λ2(B), min(λ1(A), λ2(A)) ≤277

min(λ1(B), λ2(B)). Assume min(λ1(A), λ2(A)) = λ1(A) (analogous proof can be done278

for the other case). Thus, for each atom B with λ1(B) < λ1(A), λ1(B) = λ2(B).279

Further, from λ1(A) < λ2(A), it follows λ2(A) > 1. Then, λ1(A) < λ1(⊥), λ2(A) <280

λ2(⊥) and the equivalence between λ1 and λ2 implies the existence of a rule r with281

head(r) = A and282

1. for each B ∈ body+(r), λ1(B) = λ2(B) < λ1(A) < λ2(A),283

2. for each B ∈ body−(r), λ1(B) = λ1(⊥) and λ2(B) = λ2(⊥), and284

3. since λ2(A) > 1, there exists some B ∈ body+(r) such that λ1(B)+1 = λ2(B)+1 ≥285

λ2(A) > λ1(A) ≥ λ1(B) + 1, which is not possible.286

287

It is worth observing that our definition of strict stable derivation explicitly imposes288

that for each atom A ∈ V , λ(A) ≤ λ(⊥). However, λ(A) ≤ λ(⊥) is already entailed by289

the definition of stable derivation for those atoms A for which the rule A← ⊥ is in Π.290

4. A reduction of stable derivations/models to difference logic291

The simple definition of (strict) stable derivation has a correspondingly reduction292

to difference logic, which, thanks to Theorem 5, also characterizes stable models.293

Consider a finite program Π over a finite set V of variables. In the reduction of Π294

to difference logic, we introduce a variable λdl(A) for each atom A ∈ V ⊥, while the set295

λdl(Π) of formulas corresponding to Π contains the formula296

(λdl(A) < λdl(⊥)) ≡
∨

r∈Π:head(r)=A(
∧

B∈body+(r)(λdl(A) > λdl(B)) ∧∧
B∈body−(r)(λdl(B) ≥ λdl(⊥))),

(9)
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for each A ∈ V ⊥. For a set M of atoms, let λdl(M) be the following set of formulas in297

difference logic:298

λdl(M) = {λdl(A) < λdl(⊥) | A ∈M} ∪ {λdl(A) ≥ λdl(⊥) | A /∈M}.

Theorem 7. Let Π be a finite program. A set M of atoms is a stable model of Π or,299

equivalently, is stably derivable from Π iff λdl(Π) ∪ λdl(M) is satisfiable in difference300

logic.301

Proof. Each formula in λdl(Π) is a direct translation of the corresponding condition in302

the definition of stable derivation.303

Thus, for the left to right direction, every stable derivation λ corresponds to an304

interpretation σ such that, for each atom A ∈ V with λ(A) < λ(⊥), σ(λdl(A)) = λ(A),305

and for each atom A ∈ V with λ(A) ≥ λ(⊥), σ(λdl(A)) = Vmax, where Vmax is a306

value greater than any value assigned to the variables A with λ(A) < λ(⊥). σ satisfies307

λdl(Π) ∪ λdl(M), where M is the set of atoms stably derived by λ.308

For the right to left direction, if σ is a model of λdl(Π) ∪ λdl(M), we can put the309

set S of values assigned by σ in one to one correspondence with the first |S| ordinals310

respecting the ordering. Then, if f is the function defining the correspondence between311

the two sets, for each atom A ∈ V ⊥, define λ(A) = f(σ(λdl(A))). By construction,312

for each A,B ∈ V ⊥, λ(A) ≤ λ(B) iff σ(λdl(A)) ≤ σ(λdl(B)) and, thus, given the313

correspondence between λdl(Π) and the definition of stable derivation, λ is a stable314

derivation in which M is the set of atoms stably derived by λ.315

The above theorem allows us to compute stably derivable sets of atoms of a program316

Π with difference logic solvers. Indeed, given a model σ of λdl(Π),M = {A : σ(λdl(A)) <317

σ(λdl(⊥))} is a stably derivable set of atoms.318

We can also provide the corresponding translation for the additional conditions319

holding for strict stable derivations. However, difficulties arise if we consider variables320

ranging over the rationals/reals. In fact, in such cases, when λdl(A) < λdl(⊥) we would321

like to impose additional conditions forcing λdl(A) to be the “successor” value of some322

value λdl(B) < λdl(A), and if λdl(B) ranges over the rationals/reals there is no such323

successive value. Further, difference logic does not allow to impose that a given variable324

is greater or equal than a constant, and the set of rationals/reals/integers does not have325

any minimum value.326

A simple solution to all the above problems—providing a translation to the obser-327

vations of the previous section—is to modify condition (9) to328

(λdl(A) < λdl(⊥)) ≡
∨

r∈Π:head(r)=A(
∧

B∈body+(r)(λdl(A) ≥ λdl(B) + 1) ∧∧
B∈body−(r)(λdl(B) ≥ λdl(⊥))) ∨

(λdl(A) > λdl(⊥)),

(10)

and then include the formula corresponding to the strictness conditions:329 ∧
r∈Π:head(r)=A(

∨
B∈body+(r)(λdl(A) ≤ λdl(B) + 1) ∨∨
B∈body−(r)(λdl(B) < λdl(⊥)) ∨

(λdl(A) = λdl(⊤))).
(11)

As already the case for the encoding of strong level ranking in difference logic, λdl(⊤)330

is a new variable that is supposed to be interpreted as 1, which is introduced to respect331
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the syntax of difference logic. Let λsdl(Π) be the set consisting of the formulas (10) and332

(11) for each A ∈ V ⊥ or r ∈ Π, respectively.333

Theorem 8. Let Π be a program over a finite set V of atoms. For each A ∈ V , λsdl(Π)334

entails both λdl(A) ≤ λdl(⊥) as well as λdl(A) = λdl(⊥) if λdl(⊤) ≥ λdl(⊥).335

Proof. λdl(A) ≤ λdl(⊥) is an easy consequence of (10). Assume there is a model σ336

of λsdl(Π) such that σ(λdl(⊤)) ≥ σ(λdl(⊥)) and σ(λdl(A)) < σ(λdl(⊥)) for some vari-337

able λdl(A). Consider such a variable to be one with minimum σ(λdl(A)) value. Since338

σ(λdl(A)) < σ(λdl(⊥)), by (10) there must be a rule r with head A, body+(r) = ∅ (other-339

wise, σ(λdl(B)) < σ(λdl(A)) for each B ∈ body+(r) contradicts that λdl(A) is a variable340

with minimum σ(λdl(A)) value), and σ(λdl(B)) = σ(λdl(⊥)) for each B ∈ body−(r).341

Then, by (11), σ(λdl(A)) = σ(λdl(⊤)). But σ(λdl(⊤)) = σ(λdl(A)) < σ(λdl(⊥)), which342

contradicts the other initial hypothesis that σ(λdl(⊤)) ≥ σ(λdl(⊥)).343

Theorem 9. Let Π be a program over a finite set V of atoms. Let σ be an interpretation344

of λsdl(Π) such that σ(λdl(⊤)) = 1 and σ(λdl(⊥)) = |V |+1. Let λ be the function such345

that, for each A ∈ V ⊥, λ(A) = σ(λdl(A)). Then, σ is a model of λsdl(Π) iff λ is a strict346

stable derivation.347

Proof. Formulas (10) and (11) are a direct translation of the corresponding condition348

in the definition of strict stable derivation.349

Example 7. Let Π be the set of rules in (2). The formulas (9) in λdl(Π) are350

(λdl(A) < λdl(⊥)) ≡ (λdl(A) > λdl(B)) ∨ (λdl(C) ≥ λdl(⊥)), (12)

(λdl(B) < λdl(⊥)) ≡ (λdl(B) > λdl(A)), (13)

(λdl(C) < λdl(⊥)) ≡ (λdl(C) > λdl(C)), (14)

(λdl(⊥) < λdl(⊥)) ≡ ⊥. (15)

Any model of these formulas satisfies λdl(A) < λdl(B) < λdl(⊥) ≤ λdl(C).351

The formulas (10) and (11) in λsdl(Π), encoding strict stable derivations, are352

(λdl(A) < λdl(⊥)) ≡ (λdl(A) ≥ λdl(B) + 1) ∨ (λdl(C) ≥ λdl(⊥)) ∨ (λdl(A) > λdl(⊥)),
(λdl(B) < λdl(⊥)) ≡ (λdl(B) ≥ λdl(A) + 1) ∨ (λdl(B) > λdl(⊥)),
(λdl(C) < λdl(⊥)) ≡ (λdl(C) ≥ λdl(C) + 1) ∨ (λdl(C) > λdl(⊥)),
(λdl(⊥) < λdl(⊥)) ≡ (λdl(⊥) > λdl(⊥)),

(λdl(A) ≤ λdl(B) + 1) ∨ (λdl(A) = λdl(⊤)),
(λdl(C) < λdl(⊥)) ∨ (λdl(A) = λdl(⊤)),

(λdl(B) ≤ λdl(A) + 1) ∨ (λdl(B) = λdl(⊤)),
(λdl(C) ≤ λdl(C) + 1) ∨ (λdl(C) = λdl(⊤)),

and they entail λdl(⊤) = λdl(A) < λdl(A) + 1 = λdl(B) < λdl(⊥) = λdl(C).353

The proposed encoding in difference logic of (strict) stable derivations has thus354

|V |+1 numeric variables and size O(||Π||), while Niemelä’s encoding (2008) of (strong)355

level ranking includes |V | Boolean and |V | numeric variables. We thus provide a linear356

encoding, in the size of a program, in a fragment of classical first-order logic (difference357

logic).358
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5. Improved reduction by handling SCCs359

The SCCs of the positive dependency graph, introduced in Section 2, associated360

with a program Π partition the atoms V into equivalence classes such that the mem-361

bers of each class mutually reach one another by (possibly empty) paths. We refer362

to the partition of V based on SCCs by SCC(Π) and by SCC(A) we denote the part363

including the atom A ∈ V . Moreover, any injective function τ : SCC(Π) 7→ N such that364

τ(SCC(A1)) ≥ τ(SCC(A2)) holds for each edge from A1 to A2 in the positive depen-365

dency graph of Π is a topological ordering of SCC(Π). Some topological ordering τ of366

SCC(Π) is guaranteed to exist, while τ is in general not unique even if τ(SCC(A)) ≥ 1367

for the atoms A ∈ V are required to be successive natural numbers.368

The intuitive role of SCC(A) is to gather the atoms that may contribute to (unstable)369

derivations in which A circularly supports itself. This in turn means that atoms outside370

SCC(A) cannot undermine the stability of a (supported) model M of Π, as formally371

stated by Theorem 1. Accordingly, the following refined difference logic reduction of372

(strict) stable derivations exploits SCCs to condition λdl(A) values differing from λdl(⊥)373

and λdl(⊤) on atoms in SCC(A) only.374

First, for a program Π over a finite set V of atoms, the formula (9) can be updated375

as follows:376

(λdl(A) < λdl(⊥)) ≡
∨

r∈Π:head(r)=A(
∧

B∈body+(r)∩SCC(A)(λdl(A) > λdl(B)) ∧∧
B∈body+(r)\SCC(A) (λdl(B) < λdl(⊥)) ∧∧
B∈body−(r)(λdl(B) ≥ λdl(⊥))),

(16)

where the condition λdl(B) < λdl(⊥) is used for atoms B in the positive part of a rule377

body whenever B does not belong to SCC(A). We thus merely inspect the value λdl(B)378

but do not relate it to λdl(A), just alike the dual condition λdl(B) ≥ λdl(⊥) for atoms B379

in the negative part of a rule body.380

Example 8. For the program Π consisting of the rules in (2), we have that SCC(Π) =381

{{A,B}, {C}}, and the formulas (16) in λdl(Π) are (12)–(15) as in Example 7. More-382

over, the SCCs remain unchanged when the rule A ← ¬C is replaced by A ← C, in383

which case (12) turns into384

(λdl(A) < λdl(⊥)) ≡ (λdl(A) > λdl(B)) ∨ (λdl(C) < λdl(⊥)),

including λdl(C) < λdl(⊥) instead of λdl(A) > λdl(C) for the positive body atom C from385

outside SCC(A) = {A,B}. Either formulation of λdl(Π) for the modified program Π386

entails λdl(⊥) ≤ λdl(C) and λdl(⊥) ≤ λdl(A) = λdl(B), which means that neither A, B,387

nor C can be stably derived.388

In general, Theorem 7 remains valid when λdl(Π) is based on the formula (16)389

instead of (9). The left to right direction in the proof of Theorem 7 still applies, and390

for the right to left direction, we use some topological ordering τ of SCC(Π) to modify391

a model σ′ of λdl(Π) ∪ λdl(M):392

σ(λdl(A)) =


max{σ(λdl(B)) : B ∈M, τ(SCC(B)) < τ(SCC(A))}

+ |{B ∈ SCC(A) : σ′(λdl(B)) ≤ σ′(λdl(A))}| if A ∈M,

max{σ(λdl(B)) : B ∈M}+ 1 if A /∈M.
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This inductive remapping leads to σ(λdl(A)) = σ(λdl(⊥)) iff σ′(λdl(A)) ≥ σ′(λdl(⊥)),393

and in addition, σ′(λdl(B)) < σ′(λdl(⊥)) yields σ(λdl(A)) > σ(λdl(B)) for every atom394

B /∈ SCC(A) occurring in the positive body part of some rule r ∈ Π with head(r) = A.395

As a consequence, the model σ of λdl(Π)∪λdl(M) reestablishes the right to left argument396

in the proof of Theorem 7.397

Second, the formulas (10) and (11) for the strictness conditions can be updated to398

incorporate SCCs:399

(λdl(A) < λdl(⊥)) ≡
∨

r∈Π:head(r)=A(
∧

B∈body+(r)∩SCC(A)(λdl(A) ≥ λdl(B) + 1) ∧∧
B∈body+(r)\SCC(A) (λdl(B) < λdl(⊥)) ∧∧
B∈body−(r)(λdl(B) ≥ λdl(⊥))) ∨

(λdl(A) > λdl(⊥)),

(17)

∧
r∈Π:head(r)=A(

∨
B∈body+(r)∩SCC(A) (λdl(A) ≤ λdl(B) + 1) ∨∨
B∈body+(r)\SCC(A) (λdl(B) ≥ λdl(⊥)) ∨∨
B∈body−(r)(λdl(B) < λdl(⊥)) ∨

(λdl(A) = λdl(⊤))).

(18)

The expression λdl(B) < λdl(⊥) or λdl(B) ≥ λdl(⊥), respectively, again inspects the400

value λdl(B) for atoms B in the positive part of a rule body, but does not relate λdl(B)401

to λdl(A) whenever B does not belong to SCC(A). The arguments in the proof of402

Theorem 8 remain valid when λsdl(Π) consists of the formulas (17) and (18) instead of403

(10) and (11). For a counterpart of Theorem 9 on the correspondence between model404

σ of λsdl(Π) and strict stable derivations, we associate σ with the inductively defined405

function406

λ(A) =



min{max{λ(B) | B ∈ body+(r)} |
r ∈ Π, {B ∈ body+(r) ∩ SCC(A) | σ(λdl(B)) ≥ σ(λdl(A))} ∪

{B ∈ body+(r) \ SCC(A) | σ(λdl(B)) = σ(λdl(⊥))} ∪
{B ∈ body−(r) | σ(λdl(B)) < σ(λdl(⊥))} = ∅}+ 1

if σ(λdl(A)) < σ(λdl(⊥)),
λ(⊥) if σ(λdl(A)) = σ(λdl(⊥)).

This function λ is a strict stable derivation iff σ is a model of λsdl(Π) based on the407

formulas (17) and (18), so that Theorem 9 carries forward to strictness conditions408

refined by SCCs.409

Example 9. Let Π be the set of rules in (2) augmented with B ← C and C ← ¬D,410

for which we obtain SCC(Π) = {{A,B}, {C}, {D}}. The formulas (17) in λsdl(Π) are411

(λdl(A) < λdl(⊥)) ≡ (λdl(A) ≥ λdl(B) + 1) ∨
(λdl(C) ≥ λdl(⊥)) ∨ (λdl(A) > λdl(⊥)), (19)

(λdl(B) < λdl(⊥)) ≡ (λdl(B) ≥ λdl(A) + 1) ∨
(λdl(C) < λdl(⊥)) ∨ (λdl(B) > λdl(⊥)), (20)

(λdl(C) < λdl(⊥)) ≡ (λdl(C) ≥ λdl(C) + 1) ∨
(λdl(D) ≥ λdl(⊥)) ∨ (λdl(C) > λdl(⊥)), (21)

(λdl(D) < λdl(⊥)) ≡ (λdl(D) > λdl(⊥)), (22)

(λdl(⊥) < λdl(⊥)) ≡ (λdl(⊥) > λdl(⊥)). (23)
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Taken on their own, (19)–(23) entail λdl(B) + 1 ≤ λdl(A) < λdl(⊥) and λdl(C) <412

λdl(⊥) = λdl(D). Along with the strictness conditions (18) obtained per rule, which are413

(λdl(A) ≤ λdl(B) + 1) ∨ (λdl(A) = λdl(⊤)),
(λdl(C) < λdl(⊥)) ∨ (λdl(A) = λdl(⊤)),

(λdl(B) ≤ λdl(A) + 1) ∨ (λdl(B) = λdl(⊤)),
(λdl(C) ≥ λdl(⊥)) ∨ (λdl(B) = λdl(⊤)),

(λdl(C) ≤ λdl(C) + 1) ∨ (λdl(C) = λdl(⊤)),
(λdl(D) < λdl(⊥)) ∨ (λdl(C) = λdl(⊤)),

λsdl(Π) entails λdl(⊤) = λdl(C) = λdl(B) < λdl(B) + 1 = λdl(A) < λdl(⊥) = λdl(D).414

The resulting model of λsdl(Π) represents the strict stable derivation λ(C) = 1, λ(B) =415

2, λ(A) = 3, λ(D) = λ(⊥).416

We note that difference logic expressions in λdl(Π) as well as λsdl(Π) are solely of the417

form λdl(A) < λdl(⊥), λdl(A) ≥ λdl(⊥), λdl(A) > λdl(⊥), or λdl(A) = λdl(⊤) when Π is418

tight, which resembles how existing encodings take advantage of SCCs to dismiss atom419

levels and default to Clark’s completion for tight programs (Janhunen, 2004; Niemelä,420

2008; Janhunen et al., 2009; Gebser et al., 2014).421

6. Implementation and Experimental Analysis422

In this section, we present details about the implementation of our tool, the bench-423

marks employed for the evaluation, and the results of our experiments, in three separate424

subsections. First, we describe details of our implementation, which allows us to use425

SMT solvers starting from the characterization in previous sections. Then, we describe426

the benchmarks that we used for testing the translation, together with our experimental427

settings. Finally, the results that we obtained are presented.428

6.1. Implementation429

In this subsection we first present implementation details that allowed us to rep-430

resent our formulas in a format such that SMT solvers can be used on the reduction431

provided in Section 4. Then, we show how to include the improvements due to SCCs432

from Section 5. Finally, we present our tool asp2idl.433

434

The encoding is based on the formula (9), adapted and optimized to be used with435

an SMT solver.436

In particular, given a program Π, starting from formula (9) we can have a direct437

translation.438

For every rule r, with head(r) = A, we add a formula of the form:439

λdl(A) < λdl(⊥) ≡ (
∧

B∈body+(r)

(λdl(A) > λdl(B)) ∧
∧

B∈body−(r)

¬(λdl(B) < λdl(⊥))).

In order to optimize the translation to difference logic, we decided to split such a440

formula. Thus, for the i-th rule ri of Π we introduce a new Boolean variable denoted441

with wi and, assuming head(ri) = A, we add a formula of the form:442
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wi →
(∧

B∈body+(ri)
(λdl(A) > λdl(B))∧∧

B∈body−(ri)
¬(λdl(B) < λdl(⊥))

)
.

(24)

At the same time, we consider all the formulas in which A is in the head of a rule,443

and add:444

λdl(A) < λdl(⊥)→
∨

ri∈Π:head(ri)=A

wi. (25)

Further, we can add, for every rule r with head A the formula:445

( ∧
B∈body+(r)

(λdl(B) < λdl(⊥)) ∧
∧

B∈body−(r)

¬(λdl(B) < λdl(⊥))
)
→ λdl(A) < λdl(⊥). (26)

Finally, it is easy to prove that, for each atom A which is a head of a rule and for446

each atom B occurring in the positive body of the rule with head A ̸= ⊥, a formula of447

the form:448

λdl(A) > λdl(B)→ λdl(⊥) > λdl(B) (27)

can be safely added still obtaining an equisatisfiable reduction.449

Example 10. Consider the program Π in the four atoms A,B,C,D whose rules are:450

A← B,
A← C,
B ← A,

B ← C,¬D,
C ← A,B,
C ← ¬D,
D ← ¬C.

(28)

Such program would be translated, following formulas (24), (25), (26), and (27)451

into:452
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w1 → λdl(B) < λdl(A),
w2 → λdl(C) < λdl(A),
w3 → λdl(A) < λdl(B),

w4 → λdl(C) < λdl(B) ∧ ¬(λdl(D) < λdl(⊥)),
w5 → λdl(A) < λdl(C) ∧ λdl(B) < λdl(C),

w6 → ¬(λdl(D) < λdl(⊥)),
w7 → ¬(λdl(C) < λdl(⊥)),

λdl(A) < λdl(⊥)→ (w1 ∨ w2),
λdl(B) < λdl(⊥)→ (w3 ∨ w4),
λdl(C) < λdl(⊥)→ (w5 ∨ w6),

λdl(D) < λdl(⊥)→ w7,

λdl(B) < λdl(⊥)→ λdl(A) < λdl(⊥),
λdl(C) < λdl(⊥)→ λdl(A) < λdl(⊥),
λdl(A) < λdl(⊥)→ λdl(B) < λdl(⊥),

(λdl(C) < λdl(⊥) ∧ ¬(λdl(D) < λdl(⊥)))→ λdl(B) < λdl(⊥),
(λdl(A) < λdl(⊥) ∧ λdl(B) < λdl(⊥))→ λdl(C) < λdl(⊥),

¬(λdl(D) < λdl(⊥))→ λdl(C) < λdl(⊥),
¬(λdl(C) < λdl(⊥))→ λdl(D) < λdl(⊥),

λdl(B) < λdl(A)→ λdl(B) < λdl(⊥),
λdl(C) < λdl(A)→ λdl(C) < λdl(⊥),
λdl(A) < λdl(B)→ λdl(A) < λdl(⊥),
λdl(C) < λdl(B)→ λdl(C) < λdl(⊥),
λdl(A) < λdl(C)→ λdl(A) < λdl(⊥),
λdl(B) < λdl(C)→ λdl(B) < λdl(⊥),

Handling SCCs. In case the starting encoding is non-tight, and thus there are SCCs,453

some changes are in order. Consider formula (16), given a program Π, we can rewrite454

formula (24). For every rule ri, with A = head(ri), we would rewrite (24) as:455

wi →
(∧

B∈body+(ri)∩SCC(A) λdl(A) > λdl(B)∧∧
B∈body+(ri)\SCC(A) λdl(B) < λdl(⊥)∧∧
B∈body−(ri)

¬(λdl(B) < λdl(⊥))
) (29)

Moreover, it is possible to reduce the number of generated formulas by using formula456

(27) only for atoms in the same SCC.457

The implementation details presented above can be adapted to the strict stable458

derivation presented in Sections 4 and 5. We remind that, in order to implement the459

“strict” version, we would have to implement the formulas (10) and (11) instead of the460

formula (9) for the implementation without the handling of SCCs. In the implemen-461

tation handling SCCs, formula (16) should be replaced by the implementation of the462

formulas (17) and (18).463

ASP2IDL System. To obtain the translated formulas we developed the system ASP2IDL.464

The system makes use of the Python library PySMT (Gario and Micheli, 2015) to obtain465
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Domain Variables Translation Min Q1 Median Q3 Max

Graph Coloring 12454
asp2idl 9561 9998 11137 12012 12373

asp2idl+scc 5767 6025 6675 7192 7373

Hanoi Tower 146467
asp2idl 119134 146492 152440 167909 260394

asp2idl+scc 72718 89421 93053 102494 158848

Visit all 752263
asp2idl 23881 27912 88938 112405 156705

asp2idl+scc 18874 22039 70045 88487 123302

Labyrinth 325405
asp2idl 77846 128824 298583 400842 459934

asp2idl+scc 60129 99431 230203 308937 354455

Knight Tour with Holes 899753
asp2idl 113822 219744 412418 533257 745260

asp2idl+scc 100550 177101 314725 469446 658232

Table 1: Average number of variables and minimum, first quartile, median, third quartile, and maxi-
mum sizes of the generated formulas obtained by the translations.

the difference logic formulas. The input of the system is a ground instance, obtained466

through the usage of the ASP grounder gringo (Gebser et al., 2019), in the aspif467

format, which also computes the SCCs in case the domain is non-tight, via the option –468

reify-sccs. The output of our system is a formula in the SMT-LIB standard language469

(Barrett et al., 2017), which is fed to the underlying SMT solver. The translation tool470

is available at https://github.com/MarcoMochi/ASP2IDL.471

6.2. Benchmarks and Experimental Settings472

We tested our implementation on 6 well-known domains (coming from the 2013473

(Calimeri et al., 2014) and 2014 Calimeri et al. (2016) ASP Competitions), used in the474

2017 ASP competition (Gebser et al., 2020) falling in Track #1, which correspond to475

all domains which have encodings that use just normal rules, so our translation can476

be directly applied to them: Graph Coloring, Hanoi Tower, Knight Tour with Holes,477

Labyrinth, Stable Marriage and Visit-all. The Graph Coloring, Hanoi Tower, Sta-478

ble Marriage and Visit-all encodings are tight, while the Knight Tour with Holes and479

Labyrinth domains are non-tight and thus contain SCCs. We tested the instances us-480

ing the translation without taking into account SCCs handling (asp2idl) and with the481

SCCs handling enabled (asp2idl+scc), and compared the obtained results to another482

translation-based solver lp2diff version 1.27 (Janhunen et al., 2009), and clingo ver-483

sion 5.6.2 as a reference. After preliminary tests, we omitted from the translation the484

formulas corresponding to strictness conditions, given they do not bring to computa-485

tional advantages. The instances considered were the ones actually “evaluated” at the486

competition, and the baseline SMT solver employed was Yices 2 (Dutertre, 2014b). Ta-487

ble 1 gives an indication about the sizes of the translations, by means of the 5-numbers488

statistics for the domains evaluated (but for Stable Marriage, due to the sizes of the489

ground ASP programs). The 5 numbers appear in the last columns, while the first three490

columns of the table report the domain, the number of variables, and the translation,491

respectively. Detailed statistics can be found in Appendix, and all the resulting SMT492

formulas can be found at https://github.com/MarcoMochi/ASP2IDL. The tests were493

performed using a MAC M1 Pro machine, with 3.2GHz and 8 GB of RAM. Each solver494

was run imposing single-thread. The timeout was set to 600 seconds.495
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Instance asp2idl asp2idl+scc lp2diff clingo SAT?

0002 - - - - UNSAT
0004 71 89 30 6 SAT
0006 7 4 13 3 SAT
0011 - - - - −
0012 - - - 307 SAT
0015 268 183 240 56 UNSAT
0020 168 90 - - −
0027 34 20 26 10 UNSAT
0030 114 85 29 14 SAT
0032 13 5 10 4 UNSAT
0034 151 106 115 33 UNSAT
0038 120 94 113 30 UNSAT
0043 254 266 290 62 UNSAT
0045 - 593 - 134 UNSAT
0051 - - - 159 UNSAT
0052 - - - - −
0055 - - - 151 UNSAT
0056 - - - 260 UNSAT
0057 16 14 17 5 UNSAT
0058 - - - 262 UNSAT

Solved Instances 11 12 10 16

Table 2: Time (seconds) required to solve the instances in the Graph Coloring domain. A − means
that the solver (yices or clingo) was not able to find a solution in 600 seconds.

6.3. Results496

This subsection presents the results of our experimental analysis. First, results of497

tight domains are shown, then we move to the non-tight domains, in two separate498

paragraphs. For each domain, we present a table in which the results of the evaluated499

systems presented in terms of CPU time to solve each instance, rounded to the upper500

integer number, or “−” for timeout, are compared on the instances evaluated at the501

competition, highlighting the best result for each instance in bold. Then, a cumulative502

plot for translation-based approaches is shown, in which solved instances are ordered503

by solving times, and the time associated to an instance is the sum of the times for504

solving all easier instances, plus the actual.505

Tight domains. In Table 2 we start by analyzing Graph Coloring. The table is organized506

as follows: the first column contains the instance, the columns from the second to the507

forth contain the results of the translation-based systems, in seconds, for solving the508

generated SMT formulas. The fifth column contains the results obtained by clingo,509

as a reference, while the last column reports whether the instance is satisfiable or not.510

The last row contains the total number of instances solved within the time limit. From511

the table, we can see that asp2idl+scc solves 1 instance more than asp2idl, which512

in turn solves one instance more than lp2diff. The difference between asp2idl+scc513

and asp2idl can be ascribed to the smaller number of rules created, as can be seen514

from Table 1 (see Appendix for full details). clingo, instead, solves 4 instances more515

than the best translation-based approach. The cumulative plot in Figure 1 shows516

that lp2diff is slighly faster in solving its easier instances, but then it solves 1-2 less517

instances then the asp2idl-based approaches.518

19



0 200 400 600 800 1,000 1,200 1,400
0

2

4

6

8

10

12

Time (seconds)

In
st
an

ce
s
S
ol
ve
d

Graph Coloring Cumulative Solving Time

LP2DIFF
ASP2IDL

ASP2IDL+SCC

Figure 1: Cumulative time (seconds) required to solve the instances in the Graph Coloring domain by
the asp2idl, asp2idl+scc and lp2diff systems.

Table 3 then presents the results for the Hanoi Tower domain, in which all instances519

are satisfiable, thus the last column is omitted (and this will be the case for all the520

remaining domains). It can be noted that the three translation-based systems solve the521

same instances. Having a look, instead, at Figure 2 which contains cumulative times,522

it can be noted that asp2idl is the solver that takes the larger times for solving its523

easier instances, while then the picture changes for the hardest instances solved, where524

it is asp2idl+scc which takes more time.525

clingo is able to solve 3 additional instances than the translation-based approaches.526

The third tight domain analyzed is Visit-all. The results on the Visit-all domain can527

be seen in Table 4 and are similar to the previous domain, given that all translation-528

based solvers solve the same instances. However, here, as can be grasped from Figure 3,529

the version asp2idl+scc is faster. Similarly to the previous domain, clingo has better530

performance compared to the translation-based systems, solving 6 additional instances,531

though most of them are solved very close to the time limit.532

Regarding the Stable Marriage domain, we were not able to obtain any solution with533

the translation-based approaches, due to the very large size of the ground instances as534

mentioned earlier. clingo can solve only one instance.535

Non-tight domains. We consider now the non-tight domains. Regarding Labyrinth, the536

advantages of our system implementing the SCCs management emerge. From Table 5, it537

can be noted that the asp2idl+scc system is able to solve all the 20 tested instances,538

while asp2idl and lp2diff systems can solve only 8 and 6 instances, respectively.539

Moreover, the time required by asp2idl+scc to solve the instances is less than 10540
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Instance asp2idl asp2idl+scc lp2diff clingo

0001 432 79 96 21
0002 60 78 3 4
0003 27 7 27 5
0007 - - - 51
0009 25 10 7 2
0010 13 8 17 4
0011 9 78 5 16
0013 87 417 174 58
0015 32 403 100 127
0017 24 44 85 8
0020 47 14 44 12
0021 104 127 125 35
0024 18 22 64 2
0027 49 44 19 3
0029 9 4 1 2
0030 5 7 2 2
0031 11 9 1 2
0035 28 20 10 7
0037 27 5 8 3
0039 16 16 16 5
0040 23 12 27 3
0043 11 26 5 2
0044 22 6 9 1
0046 18 107 42 2
0048 20 9 53 3
0049 20 2 16 5
0053 187 371 120 8
0055 - - - 180
0057 - - - 342
0058 - - - -

Solved Instances 26 26 26 29

Table 3: Time (seconds) required to solve the instances in the Hanoi Tower domain. A − means that
the solver (yices or clingo) was not able to find a solution in 600 seconds.

seconds in all the instances, and the gap with respect to the other systems is evident541

also by looking at the cumulative results in Figure 4. Remarkably, in this domain542

asp2idl+scc is also much faster than clingo, which solves 15 instances with solving543

times generally much larger.544

Finally, in Table 6 there are the results on the instances of the Knight Tour with545

Holes domain, which is the second non-tight domain analyzed. All translation-based546

systems solve the same two instances (given the low number of instances solved, the547

plot is not reported), with asp2idl+scc having an edge over asp2idl and lp2diff548

in terms of performance. clingo solves 9 instances on this domain.549

The differences in performance in these two domains could be ascribed, at least550

partly, to the number of SCCs: indeed, while Labyrinth instances have a mean of ap-551

prox. 18 SCCs, all Knight Tour instances have just one SCC. Regarding the comparison552

among the translation-based approaches, it has to be noted that, differently from tight553

programs where the reduction is fully Boolean, on non-tight domains the lp2diff sys-554

tem requires a Boolean variable as well as an integer variable for each variable in the555

input program.556
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Figure 2: Cumulative time (seconds) required to solve the instances in the Hanoi domain by the
asp2idl, asp2idl+scc and lp2diff systems.

Instance asp2idl asp2idl+scc lp2diff clingo

0012 238 141 122 20
0019 - - - -
0020 - - - -
0029 124 159 75 11
0030 112 64 278 12
0031 56 75 225 13
0037 - - - 321
0040 - - - 520
0057 - - - 530
0059 - - - 351
0060 - - - -
0070 513 107 115 7
0071 252 75 194 11
0077 - - - 472
0078 - - - -
0080 - - - 515
0089 85 76 45 13
0099 - - - -
0100 - - - -

Solved Instances 7 7 7 13

Table 4: Time (seconds) required to solve the instances in the Visit-all domain. A − means that the
solver (yices or clingo) was not able to find a solution in 600 seconds.
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Figure 3: Cumulative time (seconds) required to solve the instances in the Visit-all domain by the
asp2idl, asp2idl+scc and lp2diff systems.

Instance asp2idl asp2idl+scc lp2diff clingo

0010 131 1 6 1
0014 - 9 263 31
0044 - 9 - -
0048 134 2 11 3
0063 49 2 2 2
0073 112 2 5 5
0092 49 4 18 2
0102 - 6 57 93
0124 103 2 77 2
0166 - 1 - 93
0203 - 6 - 515
0204 - 6 - -
0207 - 6 - 28
0210 - 6 - -
0224 - 7 - 15
0230 - 8 - -
0231 - 8 - 567
0237 - 8 - 453
0240 - 9 - -
0243 - 10 - 2

Solved Instances 6 20 8 15

Table 5: Time (seconds) required to solve the instances in the Labyrinth domain. A − means that the
solver (yices or clingo) was not able to find a solution in 600 seconds.
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Figure 4: Cumulative time (seconds) required to solve the instances in the Labyrinth domain by the
asp2idl, asp2idl+scc and lp2diff systems.

Instance asp2idl asp2idl+scc lp2diff clingo

044 - - - 7
054 - - - 2
067 - - - 3
092 - - - 4
111 - - - 4
114 - - - 4
117 - - - 12
122 - - - -
130 - - - -
169 - - - -
213 - - - -
215 - - - -
216 - - - -
218 - - - -
227 8 3 5 2
236 8 4 5 2
240 - - - -
282 - - - -
289 - - - -
296 - - - -

Solved Instances 2 2 2 9

Table 6: Time (seconds) required to solve the instances in the Knight Tour with Holes domain. A −
means that the solver (yices or clingo) was not able to find a solution in 600 seconds.
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7. Related Work557

As mentioned in the introduction section, there have been several characteriza-558

tions of stable models, with (possibly) corresponding reductions, and some of them559

are introduced throughout the paper. Here, we mention the main remaining charac-560

terizations/reductions to difference logic or other logic-based formalisms other than561

propositional satisfiability. Gebser et al. (2014) presented alternative target formalisms562

in which the acyclicity conditions can be checked using a linear representation, includ-563

ing difference logic (Janhunen et al., 2009). Such acyclicity conditions can be also564

linearly represented via SMT with Bit-Vector Logic (Nguyen et al., 2011) and Mixed565

Integer Programming (Liu et al., 2012). Liu and Truszczynski (2006) presented a re-566

duction of programs with monotone and convex constraints to pseudo-Boolean con-567

straints, based on loop formulas (Lin and Zhao, 2004; Lee and Lifschitz, 2003). The568

approach of Ferraris et al. (2007) is based on a syntactic transformation that turns569

a logic program into a formula of second-order logic similar to the formula from the570

definition of circumscription. Reductions have been also presented for CASP (Drescher571

and Walsh, 2010; Banbara et al., 2015), an extension of ASP with linear constraints572

(Baselice et al., 2005), but often limited to difference constraints due to their usefulness573

in, e.g., scheduling applications, in contrast to native approaches to handle such exten-574

sion directly (e.g., Banbara et al. (2017) and the solver clingo[DL]). Reduction-based575

approaches also include those implemented in ezcsp (Balduccini and Lierler, 2017)576

and ezsmt (Shen and Lierler, 2018), which rely on CSP or some SMT logics (includ-577

ing difference logic), respectively. Possible ways to realize reasoning extensions include578

propagators implemented on top of ASP systems (Kaminski et al., 2023; Cuteri et al.,579

2020) as well as the incorporation of theories supplied by SMT solvers (Lierler, 2023),580

where our reduction contributes to the range of solving tools.581

8. Conclusion582

In this paper, we provide a new, simple proof-theoretic characterization of stable583

models and a corresponding reduction from logic programs to difference logic, which584

does not require Boolean variables. We implement our novel translation by means of585

an SMT formula and run an experimental analysis on domains from the 2017 ASP586

competition. Results show that our approach is competitive to and often better than587

lp2diff, and that it can also be faster than clingo on non-tight domains.588

A current limitation of our reduction is that it considers the language fragment of589

the “Basic Decision” track of the ASP competition only, while the ASP-Core-2 stan-590

dard (Calimeri et al., 2020) defines a more general modeling language including, e.g.,591

aggregates, choice rules, and optimization statements. Such language extensions are al-592

ready supported by translations based on acyclicity conditions (Bomanson et al., 2016),593

and a corresponding generalization of our reduction to map the extended language to a594

linear SMT encoding is a relevant topic for future work. As SMT solvers readily provide595

reasoning support for theories beyond difference logic, another valuable addition would596

be to incorporate the available logics into our translation, in order to provide means597

for computing stable models subject to constraints encoded in SMT.598
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Dodaro, C., Galatà, G., Grioni, A., Maratea, M., Mochi, M., Porro, I., 2021. An652

ASP-based solution to the chemotherapy treatment scheduling problem. Theory and653

Practice of Logic Programming 21, 835–851.654

Drescher, C., Walsh, T., 2010. A translational approach to constraint answer set655

solving. Theory and Practice of Logic Programming 10, 465–480. doi:10.1017/656

S1471068410000220.657

Dutertre, B., 2014a. Yices 2.2, in: Biere, A., Bloem, R. (Eds.), Proc. of the Computer658

Aided Verification - 26th International Conference (CAV 2014), Springer. pp. 737–659

744.660

Dutertre, B., 2014b. Yices 2.2, in: Biere, A., Bloem, R. (Eds.), Computer Aided661

Verification, Springer International Publishing, Cham. pp. 737–744.662

Erdem, E., Gelfond, M., Leone, N., 2016. Applications of answer set programming. AI663

Magazine 37, 53–68.664

Erdem, E., Lifschitz, V., 2003. Tight logic programs. Theory and Practice of Logic665

Programming 3, 499–518.666

Fages, F., 1994. Consistency of clark’s completion and existence of stable models.667

Methods of Logic in Computer Science 1, 51–60.668

Falkner, A.A., Friedrich, G., Schekotihin, K., Taupe, R., Teppan, E.C., 2018. Industrial669

applications of answer set programming. Künstliche Intelligenz 32, 165–176.670

27

https://doi.org/10.3233/FI-2016-1398
http://dx.doi.org/10.3233/FI-2016-1398
http://dx.doi.org/10.1017/S1471068410000220
http://dx.doi.org/10.1017/S1471068410000220
http://dx.doi.org/10.1017/S1471068410000220


Ferraris, P., Lee, J., Lifschitz, V., 2007. A new perspective on stable models, in: Veloso,671

M.M. (Ed.), Proceedings of the 20th International Joint Conference on Artificial672

Intelligence (IJCAI 2007), pp. 372–379.673

Gario, M., Micheli, A., 2015. Pysmt: A solver-agnostic library for fast prototyping of674

smt-based algorithms, in: SMT Workshop 2015.675

Gebser, M., Janhunen, T., Rintanen, J., 2014. Answer set programming as SAT modulo676

acyclicity, in: Schaub, T., Friedrich, G., O’Sullivan, B. (Eds.), Proceedings of the 21st677

European Conference on Artificial Intelligence (ECAI 2014), IOS Press. pp. 351–356.678

Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T., 2019. Multi-shot asp solving679

with clingo. Theory and Practice of Logic Programming 19, 27–82. doi:10.1017/680

S1471068418000054.681

Gebser, M., Kaufmann, B., Schaub, T., 2012. Conflict-driven answer set solving: From682

theory to practice. Artificial Intelligence 187, 52–89.683

Gebser, M., Maratea, M., Ricca, F., 2020. The seventh answer set programming compe-684

tition: Design and results. Theory and Practice of Logic Programming 20, 176–204.685

Gebser, M., Obermeier, P., Schaub, T., Ratsch-Heitmann, M., Runge, M., 2018. Rout-686

ing driverless transport vehicles in car assembly with answer set programming. The-687

ory and Practice of Logic Programming 18, 520–534.688

Gelfond, M., Lifschitz, V., 1988. The stable model semantics for logic programming, in:689

Kowalski, R.A., Bowen, K.A. (Eds.), Logic Programming, Proceedings of the Fifth690

International Conference and Symposium, Seattle, Washington, USA, August 15-19,691

1988 (2 Volumes), MIT Press. pp. 1070–1080.692

Gelfond, M., Lifschitz, V., 1991. Classical Negation in Logic Programs and Disjunctive693

Databases. New Generation Computing 9, 365–386.694

Giunchiglia, E., Lierler, Y., Maratea, M., 2006. Answer set programming based on695

propositional satisfiability. J. Autom. Reason. 36, 345–377.696

Janhunen, T., 2004. Representing normal programs with clauses, in: de Mántaras,697
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Appendix748

Tables 7-11 contain full details about the sizes of the generated formulas. Each749

table is organized as follows: the first column reports the instance, the second column750

contains the number of variables, while the last two columns report the number of rules751

of asp2idl and asp2idl+scc. The number of variables is common to asp2idl and752

asp2idl+scc.753

Table 7: Number of variables and rules defined by using asp2idl with and without SCCs in the
Graph Coloring domain.

Instance # of Vars. asp2idl asp2idl+scc
# of Rules # of Rules

0004 10661 9593 5783
0038 12503 11085 6649
0056 13596 11973 7173
0051 14096 12269 7321
0045 13389 11709 7001
0006 10593 9561 5767
0012 11096 9989 6021
0032 13104 11421 6817
0015 11433 10193 6123
0034 12717 11189 6701
0052 13722 12045 7209
0055 13677 12025 7199
0030 11414 10297 6215
0020 11173 10025 6039
0002 10740 9645 5809
0058 14120 12261 7317
0057 14286 12373 7373
0027 12151 10757 6445
0011 11090 9973 6013
0043 13531 11781 7037

Mean values 12454 11008 6600
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Table 8: Number of variables and rules defined by using asp2idl with and without SCCs in the
Hanoi Tower domain.

Instance # of Vars. asp2idl asp2idl+scc
# of Rules # of Rules

0007 239961 260394 158848
0002 158089 171926 104873
0035 166364 180988 110483
0030 144374 157198 95958
0055 157568 171472 104673
0049 113588 123892 75623
0013 139976 152440 93053
0027 138825 151110 92173
0043 135578 147682 90148
0057 179558 195262 119198
0031 148772 161956 98863
0003 162905 177130 108048
0029 139976 152440 93053
0053 139976 152440 93053
0037 139976 152440 93053
0011 131180 142924 87243
0017 122384 133408 81433
0048 109190 119134 72718
0020 135578 147682 90148
0044 139976 152440 93053
0040 153170 166714 101768
0039 148772 161956 98863
0058 183956 200020 122103
0010 126782 138166 84338
0024 124377 135498 82648
0009 122384 133408 81433
0021 139976 152440 93053
0046 148772 161956 98863
0001 153273 166722 101698
0015 148772 161956 98863

Mean values 146467 159439 97310
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Table 9: Number of variables and rules defined by using asp2idl with and without SCCs in the
Visit all domain.

Instance # of Vars. asp2idl asp2idl+scc
# of Rules # of Rules

0100 1704271 156705 123302
0029 157100 25882 20452
0030 157100 25882 20452
0019 927268 85390 67244
0031 162868 26494 20912
0060 1103604 101364 79786
0012 147678 24159 19083
0040 1010302 93064 73280
0071 200994 32938 26002
0057 1103604 101364 79786
0009 145019 23881 18874
0070 193746 32166 25422
0077 1271232 116808 91930
0099 1688413 155735 122574
0089 270711 44413 35046
0020 918560 84860 66846
0037 1000814 92486 72846
0078 1259404 116086 91388
0080 1271232 116808 91930
0059 1103604 101364 79786

Mean values 752263 77892 61347

32



Instance # of Vars. asp2idl asp2idl+scc
# of Rules # of Rules

0092 203531 180128 138954
0231 460174 400827 308926
0224 397913 347288 267714
0204 341156 298615 230227
0207 341103 298593 230207
0237 460204 400847 308941
0124 136652 121960 94134
0044 529009 459746 354290
0073 136853 122026 94195
0243 529527 459934 354455
0014 528847 459654 354222
0010 86222 77846 60129
0203 341111 298573 230199
0240 460334 400879 308975
0102 340459 298341 229994
0063 167922 149191 115116
0166 109525 98261 75871
0048 136874 122036 94203
0210 340932 298515 230146
0230 459756 400663 308786

Mean values 325405 284696 219484

Table 10: Number of variables and rules defined by using asp2idl with and without SCCs in the
Labyrinth domain.
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Table 11: Number of variables and rules defined by using asp2idl with and without SCCs in the
Knight Tour with Holes domain.

Instance # of Vars. asp2idl asp2idl+scc
# of Rules # of Rules

044 257549 113822 100550
054 261377 115092 101670
067 332957 146170 129120
092 416229 181894 160672
111 509129 221688 195818
114 500741 219096 193531
117 510237 222010 196102
122 586153 257413 227380
130 593409 259708 229404
169 817950 356311 314725
213 1094145 473192 417948
215 1088565 471447 416409
216 1079193 468525 413832
218 1097406 474200 418837
227 1238553 535070 472598
236 1216193 527973 466339
240 1238317 535019 472553
282 1730833 745260 658232
289 1719265 741618 655020
296 1706873 737891 651733

Mean values 899753 390169 344623
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