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Abstract: This work presents an efficient computational framework that relies on surrogate modeling and 
machine learning methods to estimate seismic fragility parameters for different typologies of Unreinforced 
Masonry buildings (URM) subjected to different retrofitting scenarios. The presented model is part of a decision 
support tool that aims to assist various stakeholders in assessing different intervention scenarios for a city-
wide building portfolio. The model utilizes a Gaussian Process (GP) that is trained to map the URM capacity 
curves in their as-built and retrofitted states with parameters of fragility functions (median and standard 
deviation). Three hundred ninety capacity curves for different URM typologies (Un-retrofitted and retrofitted) 
are generated using the DBV-Masonry model, which was developed at the University of Genoa. The model 
belongs to the analytical-mechanical approach and, within the context of the MARS (MAps of Seismic Risk) 
ReLUIS project, has been extensively used in large-scale risk studies and validated against observed data 
from Italian seismic events. These capacity curves are then utilized to produce equivalent single-degree-of-
freedom models to represent the structural behavior. Fragility curves are then developed using nonlinear time 
history analysis and a modified cloud-based approach and used to train the GP model. Overall, deploying the 
proposed model can significantly improve the decision-making process for building portfolio management in 
seismic-prone regions by providing a fast and efficient way of evaluating retrofit strategies.  

1 Introduction 
In the past few years, there has been a shift in scholarly attention transitioning from just developing fragility 
curves for existing buildings to the assessment of interventions' influence on the enhanced performance of 
buildings and the consequent alterations in fragility curves. These studies are typically conducted at three 
different scales: the element level (Sistani Nezhad, Kabir and Banazadeh, 2022; Jafari and Mahini, 2023; 
Yurdakul et al., 2023), individual building/asset scale (Padgett and DesRoches, 2008; DA PORTO et al., 2022; 
Blasi, Perrone and Aiello, 2023) and the portfolio level (Ferreira, Maio and Vicente, 2017; Cattari et al., 2022; 
Hoyos and Silva, 2022; Kalakonas and Silva, 2022; Pietro, Veronica and Marco, 2023). This shift also 
manifested itself in practical projects; for example, the assessment of the potential reduction in risk through 
retrofit interventions has been addressed in the ReLUIS1 project called MARS (Seismic Risk Maps), carried 
out between 2019 and 2021. This investigation is currently ongoing through the MARS2 project, which extends 
from 2022 to 2024 (Follador et al., 2023). 
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Similar to the derivation of fragility curves, these studies can be conducted either through observations made 
after the earthquake event and evaluation of the performance of retrofitted buildings (Saretta, Sbrogio and 
Valluzzi, 2021) or using analytical methods. The former approach offers an improved understanding of the 
performance, potential advantages, and limitations of intervention measures, but the lack of available data 
limits its applicability to all building typologies and different earthquake intensities. Hence, there are some 
added values in using analytical approaches. Nevertheless, these methods also have some drawbacks. For 
example, they lack the characteristics necessary for seamless integration into a Multi-Hazard Decision Support 
Tool (DST) that requires fast assessment of various interacting hazard scenarios combined with dynamic 
vulnerabilities. 

The authors are currently developing a DST that aims to conduct comparative city-wide Multi-Hazard Risk 
Analyses by assessing the effectiveness of different retrofit strategies and their Synergies and A-synergies in 
a multi-hazard landscape. This paper elaborates on the masonry part of DST's Seismic Risk module that 
facilitates the portfolio scale risk assessment through Machine Learning (ML) based surrogate models. The 
purpose of the model is to substitute complex and time-consuming numerical Nonlinear Time History Analysis 
(NLTH) with a simple ML-based model. This substitution aims to reduce the computational load involved in 
city-wide risk assessment studies with different scenarios of structural interventions in which utilizing NLTH for 
all structures is impractical and where an approximate but dependable representation of the NLTH is 
satisfactory. We begin by providing a broad introduction to our metamodel, which consists of various 
subordinate models. Subsequently, we provide an in-depth explanation for each of these individual models. 

2 Development of metamodel 
As a general definition, a metamodel is a model comprising other models that are related to each other. In 
other words, a metamodel is itself a model, but it pertains specifically to a set of models deemed significant for 
the final goal. Within the context of this paper, the metamodel, as depicted in Figure 1, aims to predict the 
fragility function parameters of the retrofitted buildings using their enhanced capacity curves. The changes in 
the capacity curve will be identified by an Analytical-Mechanical Procedure named DVB-Masonry (elaborated 
in sec 2.1) and then fed into a Gaussian Process Regression module, which will predict the fragility parameters.  

Several models have been documented in the literature that can predict fragility curves for masonry buildings 
in their as-built and retrofitted condition. For instance DVB-Masonry (Cattari et al., 2021), Vulnus (Bernardini, 
Gori and Modena, 1990; Valluzzi, Follador and Sbrogiò, 2023), and the macroseismic-heuristic procedure 
(Lagomarsino and Giovinazzi, 2006), among others. However, when compared with other simplified methods, 
this surrogation model has some advantages. For example, due to its flexibility to be trained using different 
input parameters, it can be formulated to consider different Intensity measures (IMs) or Engineering Demand 
Parameters (EDPs). Furthermore, since it is trained using the results of Nonlinear Time History Analysis 
(NLTHA), it inherits the advantages that come with such analysis.  

The metamodel (Figure 1) encompasses three main models:  

1. An enhanced DBV-Masonry model, which is formulated using an analytical-mechanical approach. In 
this study, the DVB-Masonry model is chosen because (i) in addition to fragility curves, it provides 
capacity curves of the masonry buildings (which we have used in this study), and (ii) it considers the 
Out-of-Plane (OoP) mechanisms in defining the capacity curves and damage state limits, distinguishing 
it from other approaches. 

2. An Openseespy (Zhu, McKenna and Scott, 2018) subroutine to perform cloud (and Cloud to IDA) 
analysis (Jalayer, De Risi and Manfredi, 2015) on a series of equivalent Single Degree of Freedom 
oscillators (SDoF).  

3. Gaussian Process Regression models (Rasmussen and Williams, 2006) that are trained to map the 
capacity curve parameters to the fragility parameters.  

The components of the model are elaborated in the following subsections. 
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Figure 1. The procedure for training the GP model (red) and the final Surrogate mode (green) 

2.1 Analytical-Mechanical Procedure (DBV-Masonry) 
Model description 

This model, which is also implemented within the MARS project (Cattari et al., 2021), is an improved version 
of the original DBV-Masonry model (Lagomarsino and Cattari, 2014). The original model aimed to establish 
fragility functions assuming a box-type behavior of URM buildings concerning just the in-plane response of the 
walls. However, the enhanced DBV-Masonry model can also consider the activation of OoP mechanisms (DA 
PORTO et al., 2022). This is achieved by incorporating corrective coefficients that limit the displacement 
capacities corresponding to DL3 and DL4. These coefficients are a function of masonry and diaphragm types 
(Cattari et al., 2021). The model first establishes the capacity curve, which represents the structural seismic 
response and is defined using three variables: 

• The pseudo-elastic period of the structure, 𝑇𝑇𝑦𝑦. 
• The spectral acceleration at yielding, 𝑎𝑎𝑦𝑦, which is assumed to be constant up to spectral displacement 

associated with Damage state 3 (no hardening is considered). 
• The ultimate displacement capacity, 𝐷𝐷𝑢𝑢, which indicates the maximum displacement that the structure 

can withstand. 

In order to calculate these variables, in addition to assuming a fundamental mode shape, only a small number 
of mechanical and geometrical parameters need to be specified. However, the model employs over ten 
corrective factors (𝐾𝐾𝑖𝑖) to account for various constructive and morphological characteristics specific to different 
building types within a portfolio and different damage mechanisms. The original damage mechanism used to 
formulate the model (without corrective factors) is the Strong-Spandrels Weak-Piers (SSWP) mechanism. 
However, the model can consider other mechanisms, such as WSSP (Weak-Spandrels Strong-Piers) or any 
arbitrary intermediate behavior.  

Next, the model employs the concept of over-damped spectra to calculate the value of the Intensity Measures 
(IMs) that correspond to achieving various damage levels. This process also involves considering different 
types of uncertainties.  

Changes in capacity curves due to intervention  

In the DBV-Masonry, the effects of retrofit implementation are evaluated in two ways: 

•  Enhancing the mechanical properties of masonry through corrective coefficients, which are derived 
from Table C8.5.II of the Italian Circular 2019/01/21 (Italian Ministry of Infrastructures and Transports, 
2019). 
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• Increasing the overall ductility of the capacity curve for DL3 and DL4. This increase can be attributed to 
the positive impact these interventions have on OoP mechanisms in the case of irregular masonry or 
the expected improvement in drift thresholds for solid brick masonry. 

It should be emphasized that when multiple interventions are implemented, the coefficients are modified to 
consider the potential reduction in effectiveness that may arise from combining interventions. Additionally, 
since some of these interventions involve the incorporation of materials, it was estimated that there would be 
an average increase in the specific weight of masonry. In the case of stone masonry, the estimated increase 
is approximately 5%, while for solid and hollow brick masonry, it is around 4%. Figure 2 presents a schematic 
of intervention measures that were used in this study: (i) An intervention focused on improving connections 
(HQD-TR or HQD-RC); (iii) An intervention aimed at stiffening the floors (FLR). 

 
Figure 2. Schematic presentation of intervention methods considered in this study  

DBV Taxonomy 

As presented in Table 1, DBV considers a relatively detailed taxonomy with four groups of attributes (pertaining 
to as-built and retrofitted buildings). These typologies can later be aggregated to generate other taxonomies 
with smaller attributes.  

Table 1. Attributes of DBV Taxonomy 
 

Attribute Possible values Abbreviation  
Number of floors 1-4 - 

Construction details Low-Quality Details 
High-Quality Details with Tie Rods 
High-Quality Details with R.C. Ring Beams 

LQD 
HQD_TR 
HQD_RB 

Masonry types Regular 
Stone ashlar  
Soft Stone 
Block masonry 
Solid bricks  
Hollow blocks  
Modern masonry 
Fragile hollow blocks 
Irregular 
Rubble stone 
Stone ashlar  
Soft stone 

  
HSRC 
SS 
HS 
FB 
HC(L%) 
CMU or AAC 
HC(H%) 
  
HSRU 
HSUC 
SSUC 

Slab type Vaults 
Flexible 
Semi-rigid 
Rigid 

V 
F 
SR 
R 
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2.2 The SDoF models 
In this study, 390 SDoF systems were defined (presenting both un-retrofitted and retrofitted buildings). The 
capacity curve for each building is used to define the backbone curve of the SDoF. The hysteretic behaviour 
of the SDoF is characterized by pinching4 material model in openseespy (Zhu, McKenna and Scott, 2018). To 
calibrate the model parameters, the results of cyclic pushover of a URM building that has been modeled in 
TREMURI software (Lagomarsino et al., 2013) were used. Although the cyclic push results didn't demonstrate 
a severe pinching behavior, we used pinching4 for its ability to model strength and stiffness reduction abilities, 
its flexibility, and then adjust the pinching behavior according to the cyclic pushover results. The modifications 
of material properties, as well as analysis procedure and fragility derivations (section 2.4), are implemented in 
the freely available Vulnerability Modellers ToolKit (VMTK) (Martins et al., 2021) source code. 

2.3 Analysis method and derivation of fragility functions 
Fragility Derivation 

We started our investigation using original cloud method (Jalayer et al., 2017) which consists of (i) performing 
a large number of nonlinear dynamic time–history analyses and extracting Engineering Demand Parameters 
(EDPs) corresponding to the Intensity Measure (IM) of each record, (ii) constructing a probabilistic seismic 
demand model (PSDM) (Cornell et al., 2002) that expresses the relation between IM-EDP and follows a 
double-logarithmic linear distribution as expressed in Equation (1) that can be used to extract the median of 
fragility curve for different damage states; (iii) and finally the dispersion which is assumed as constant for all 
damage states is driven using the Equation (2). Since we were dealing with a SDoF system, maximum 
displacement was selected as EDP, and since we wanted our results to be applicable to a portfolio of buildings, 
Peak Ground Acceleration (PGA) was selected as IM. 

 𝐸𝐸[ln𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚|PGA] = ln𝑎𝑎 + 𝑏𝑏 lnPGA (1) 

Where 𝐸𝐸[ln𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚|PGA] is the expected value for the logarithm of maximum displacement (𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚) given PGA; 
ln𝑎𝑎 and b are parameters of linear regression; 

 𝛽𝛽𝑑𝑑 = ��(lnD𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖 − ln𝜇𝜇𝑑𝑑)2
𝑁𝑁

𝑖𝑖=1

/�(lnD𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖 − ln𝜇𝜇𝑑𝑑)2(𝑁𝑁 − 2)(𝑁𝑁 − 2)
𝑁𝑁

𝑖𝑖=1

 (2) 

𝛽𝛽𝑑𝑑 is the logarithmic standard deviation of 𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚 given the IM=PGA; 𝜇𝜇𝑑𝑑 is 𝐸𝐸[ln𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚|PGA]; D𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖 is the 𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚 
obtained from the i th record, and N is the number of records. 

This procedure, however, had some problems when analyzing very stiff and high-strength typologies. The 
cloud points demonstrated a bi-linear trend in log-log space, and fitting a linear relation (Equation (1)) to the 
cloud data resulted in unrealistic medians for higher damage states. Hence, we moved to a modified cloud 
method (Cloud to IDA procedure) (Miano et al., 2018). This method is a combination of Incremental Dynamic 
Analysis (IDA) and cloud analysis. Similar to IDA, the method drives the fragility curves using the PGA values 
corresponding to the displacement levels where the displacement is equal to the damage state threshold 
(𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = 1). For demonstration purpose the data points for different damage states pertaining a 3 story 
building is shown in Figure 3. 

In this method, unlike IDA, the starting point of analysis for each TH is the unscaled condition of that TH, and 
the algorithm is allowed to scale these THs with a limited scaling factor (in this study, we used 2.5). This 
procedure allows obtaining the IDA curves with very few analyses and, at the same time, doesn't have the 
problems of the original IDA method, which were caused by excessive scaling. For a given set of THs, there 
is always a trade-off between the maximum scaling factor and the number of THs that can cause the demand 
equal to the damage state threshold. The number of such THs will be even smaller for the highest damage 
states and stiff structures, which necessitate a relaxed scaling factor for such scenarios. 
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Figure 3. An example of final Cloud-to-ID points with a maximum scaling factor of 2.5  

Figure 4 presents a set of fragility curves that have been driven for one of the mentioned buildings using the 
bootstrapping method (Baraschino, Baltzopoulos and Iervolino, 2020).  

 
Figure 4. An example of a set of fragility curves and bootstrap realizations (in gray) 

These fragility curves are checked with the ones that have been used in seismic risk assessment of Italy (da 
Porto et al., 2021) and have acceptable agreement. It is worth mentioning that the standard deviation that 
results from this procedure is related to Record-to-Record variability (𝛽𝛽𝑅𝑅2𝑅𝑅) and it should be combined with 
other uncertainties (as required) to be applicable in the risk assessment procedure. This combined standard 
deviation (𝛽𝛽𝑇𝑇𝑇𝑇𝑇𝑇) usually can be calculated using Equation (3). 
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𝛽𝛽𝑇𝑇𝑇𝑇𝑇𝑇 = ��𝛽𝛽𝑖𝑖2 (3) 

Where 𝛽𝛽𝑖𝑖s are different uncertainties (for example, inter-building and intra-building uncertainties). 

Unscaled TH set 

In this study, time histories (THs) selected by (Manfredi et al., 2022) for stiff soil are utilized, which facilitates 
the derivation of site-independent fragility curves through a cloud-based methodology. The magnitude-
distance characteristics of the 125 earthquake events (AB set), along with their Acceleration Displacement 
Response Spectrum (ADSR) are depicted in Figure 5. The capacity curve of one building in pre- and post-
intervention scenarios are also depicted in the figure for demonstration purpose.  

 
Figure 5. Characteristics of selected THs (a) M-R distribution, (b) ADRS of all THs 

2.4 Gaussian process 
Gaussian process (GP) is a data-driven method that offers the ability to model intricate physical systems with 
exceptional flexibility, all while bypassing the need to assume a specific functional form. This model allows for 
the assessment of expected values and their corresponding uncertainties, which are dependent on input 
variables and exhibit heteroscedasticity. (Rasmussen and Williams, 2006; Zhong et al., 2020; Delaviz and 
Yaghmaei-Sabegh, 2023). GP has been used for different purposes in earthquake engineering, for example, 
for predicting Ground‐Motion Time Series (Tamhidi et al., 2022), spatial correlation of ground motion IMs 
(Kuehn and Abrahamson, 2020), or development of non-ergodic earthquake ground-motion models 
(Lavrentiadis et al., 2022). There are also some studies that have used this method to assess seismic risk or 
specifically to drive fragility parameters from structural parameters related to RC buildings (Minas, Chandler 
and Rossetto, 2018; Gentile and Galasso, 2020; Sarli et al., 2022), steel buildings (Fayaz et al., 2023), base-
isolated buildings (Zhong et al., 2020; Delaviz and Yaghmaei-Sabegh, 2023; Suarez et al., 2023) or for bridges 
(Zhong et al., 2020; Pang et al., 2021). 

With reference to Equation (4), a Gaussian process is a probability distribution 𝑃𝑃(𝑓𝑓) over continuous functions 
𝑓𝑓(𝒙𝒙), where any subset of function values 𝑓𝑓(𝒙𝒙) follows a joint multivariate Gaussian distribution with a mean 
function 𝑚𝑚(𝒙𝒙) and covariance matrix 𝑘𝑘𝑥𝑥𝑥𝑥′ = 𝑘𝑘(𝒙𝒙,𝒙𝒙′)(Rasmussen and Williams, 2006; Schulz, Speekenbrink 
and Krause, 2018).  

 𝑓𝑓(𝒙𝒙) ~  𝒢𝒢𝒢𝒢(𝑚𝑚(𝒙𝒙),𝑘𝑘(𝒙𝒙,𝒙𝒙′)) (4) 

The covariance function 𝑘𝑘(𝒙𝒙,𝒙𝒙′) encodes the properties of the function, such as smoothness, and can vary 
based on the chosen kernel and its parameters or hyperparameters (denoted as 𝜃𝜃). In order to explicitly 
indicate the reliance on 𝑘𝑘(𝒙𝒙,𝒙𝒙′)  on these (hyper)parameters (𝜃𝜃 ), the covariance function is commonly 
expressed as 𝑘𝑘(𝒙𝒙,𝒙𝒙′|𝜃𝜃) (MathWorks, 2023). 

As explained previously, GP is a prior distribution over possible functions. In the context of this paper, it is 
assumed that the median and standard deviation of fragility functions are functions of the capacity curve 
parameters. Due to the unknown and complicated functional forms, they are replaced with a set of GPs. To 
estimate the fragility parameters, the GPR is trained using the observed values, 𝑓𝑓, which represent the median 
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and standard deviation of fragility functions for different damage states as a function of capacity curve 
parameters 𝑋𝑋. Then, the prediction of fragility parameters (𝑓𝑓𝑛𝑛𝑛𝑛𝑛𝑛) based on a new capacity curve data 𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛, can 
be made using the Equation (5): 

 𝑓𝑓𝑛𝑛𝑛𝑛𝑛𝑛|𝑓𝑓,𝑋𝑋, 𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛 ~ 𝒩𝒩 (𝑚𝑚𝑛𝑛𝑛𝑛𝑛𝑛 ,Σ∗∗) (5a) 

 𝑚𝑚𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑚𝑚 + 𝑘𝑘𝑋𝑋𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛  𝑘𝑘𝑋𝑋𝑋𝑋−1  (𝑓𝑓 −𝑚𝑚) (5b) 

 Σ∗∗ =  𝑘𝑘𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛 −  𝑘𝑘𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛𝑋𝑋 𝑘𝑘𝑋𝑋𝑋𝑋−1 𝑘𝑘𝑋𝑋𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛 (5c) 

In which: 

The 𝑋𝑋 is the capacity curve parameters used for training, 𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛  is the input parameters of new capacity curve 
parameters for which fragility curve parameters are going to be calculated;  𝑘𝑘𝑋𝑋𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛 describes the covariance 
between the input capacity curve parameters and the new ones, 𝑘𝑘𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛  is the covariances of the new 
capacity curve parameters 𝑚𝑚 and 𝑚𝑚𝑛𝑛𝑛𝑛𝑛𝑛 are the prior mean vectors for the training and new capacity curve 
parameters, respectively. 

3 Model training and performance 
Training 

To train the model, a tenfold cross-validation approach is utilized, where the data is divided into ten mutually 
exclusive subsets through stratified sampling. This process ensures that each subset is used as a test set 
once, while the remaining nine subsets are used for training and reduce the probability of overfitting. The 
parameters are estimated on 90% of the data during each training phase. The results from the ten iterations 
are then averaged. In addition to the k-fold approach, the capacity curve data of 10 buildings with different 
characteristics were separated and used as test data after the training procedure.  

Covariance functional 

The output function of a Gaussian process exhibits smoothness, meaning that a slight change in the input will 
lead to a correspondingly small perturbation in the output. To ensure the smoothness of a Gaussian process, 
it is essential to define an appropriate covariance functional form that governs the relationship between process 
values at different input points. By carefully specifying this covariance structure, the Gaussian process can 
capture and model the underlying smoothness of the system, allowing for accurate predictions and insights 
even when faced with limited or noisy data. Usually, the selection of the covariance functional form or kernel ( 
𝑘𝑘(𝒙𝒙,𝒙𝒙′) in Equation (4)) is primarily driven by assumptions regarding the underlying function to be modeled. 
Similar works in the literature (Gentile and Galasso, 2020; Sarli et al., 2022) have adopted the squared 
exponential covariance function. However, In this study, the Matern 5/2 demonstrated a better performance. 

Model Performance 

To assess the model's performance, the Root Mean Square Error (RMSE) is employed, serving as a measure 
of the error rate of the regression model. A smaller RMSE value signifies a smaller deviation between the 
predicted and actual values. Additionally, the evaluation of the model extends to include other metrics as 
described here: 

• The coefficient of determination (R²) is utilized, which ranges between 0 and 1, with higher values 
indicating better fitting.  

• Mean Bias Error (MBE) is a metric used to measure the bias or systematic error in a model's predictions. 
It quantifies the average difference between the predicted values and the actual values in a dataset. In 
other words, it identifies whether the model tends to overpredict or underpredict and by how much on 
average.  

• Mean Absolute Error (MAE) measures the average magnitude of the errors between predicted values 
and actual values in a dataset. MAE gives equal weight to all errors, regardless of whether they are 
positive (overpredictions) or negative (underpredictions), which makes it less sensitive to outliers. 

By considering these metrics, a comprehensive evaluation of the model's accuracy and predictive capability 
can be achieved. Table 2 shows the error values for eight different GP processes. 
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Table 2. Validation and test error values for eight GPs (four fragility medians and four beta) 
 

GP 
Model Stage 

Med [PGA in g]  Beta 

RMSE 𝑹𝑹𝟐𝟐 MBE MAE  RMSE 𝑹𝑹𝟐𝟐 MBE MAE 

DS1 
Validation 0.0032 0.99 -0.0001 0.002  0.014 0.81 0.0003 0.01 

Test 0.0027 0.99 0.0006 0.002  0.012 0.92 -0.003 0.011 

DS2 
Validation 0.013 0.98 0.0003 0.008  0.01 0.94 0.0007 0.007 

Test 0.014 0.99 0.0004 0.01  0.011 0.94 0.002 0.009 

DS3 
Validation 0.003 0.99 -0.0002 0.002  0.006 0.98 0.0005 0.004 

Test 0.004 0.99 0.002 0.003  0.007 0.98 0.005 0.005 

DS4 
Validation 0.004 0.99 0.0002 0.003  0.006 0.98 0.005 0.004 

Test 0.007 0.99 0.003 0.004  0.007 0.98 -0.005 0.006 

4 Conclusion 
In this paper, we elaborated on the procedure and results of a ML-based surrogate model that can be 
implemented as a submodule in a Multi-Hazard Risk Management decision support tool. This model can 
assess the effects of different retrofit measures for URM buildings in terms of changes in fragility curves. We 
used the capacity curves of 390 buildings (un-retrofitted and retrofitted) that were developed by a robust 
analytical-mechanical procedure (DBV-Masonry) and performed a modified cloud analysis to drive their fragility 
functions. Then, eight Gaussian Processes (GP) were trained to map the capacity curve parameters to the 
fragility function parameters. The results are promising as they show an acceptable accuracy while requiring 
a very small computation power and time, which makes it a perfect solution for the evaluation of city-wide 
retrofit scenarios. There are, however, some areas that authors are currently trying to improve. First, the 
sensitivity of the results to record selection for cloud analysis and utilization of other Intensity Measures 
(considering that the results will be used to assess a city-wide portfolio of buildings) are being investigated. 
Furthermore, since the initial results of other ML methods (such as neural networks) are in an acceptable 
range, the possibility of combining several ML methods to cover each other's weaknesses is under 
investigation.  
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