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ABSTRACT Facial expressions are an essential part of nonverbal communication and major indicators of
human emotions. Effective automatic Facial Emotion Recognition (FER) systems can facilitate compre-
hension of an individual’s intention, and prospective behaviors in Human-Computer and Human-Robot
Interaction. However, FER faces an enduring challenge, commonly encountered in real-life, of partial
occlusions caused by objects such as sunglasses and hands. With the onset of the COVID-19 pandemic,
facial masks become a major obstruction for FER systems. The utilization of facial masks exacerbates the
occlusion issue since these cover a significant portion of a person’s face, including the highly informative
mouth area from which positive and negative emotions can be differentiated. Conversely, the efficacy of
FER is largely contingent upon the supervised learning paradigm, which necessitates costly and laborious
data annotation. Our study centers on utilizing the reconstruction capability of a Convolutional Residual
Autoencoder to differentiate between positive and negative emotions. The proposed approach employs
unsupervised feature learning and takes as inputs facial images of individuals with masks and without masks.
Our study puts particular emphasis on the transferability of the proposed approach to different domains in
comparison to current state-of-the-art fully supervised methods. The comprehensive experimental evaluation
demonstrates the superior transferability of the proposed approach, highlighting the effectiveness of the
unsupervised feature learning pipeline. Despite outperforming more complex methods in some scenarios,
the proposed approach is characterized by relatively low computational expense. The source code of the
proposed approach, along with the facial images created for this study, are accessible in HERE.

INDEX TERMS Facial emotion recognition, facial mask, partial occlusions, affective computing, unsuper-
vised pre-training, human-robot interaction.

I. INTRODUCTION
In the last two decades, several researchers proposed models
for automatic emotion recognition from nonverbal cues such
as voice activity [1], [2], [3], body motions [4], [5], [6],
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touch [7], as well as their combinations [8], [9]. However,
the most often considered indicators of emotional states are
facial expressions [10], [11], [12], [13]. In particular, emotion
recognition from facial images (referred to as Facial Emo-
tion Recognition (FER)) has attracted a tremendous number
of researchers [14]. FER is useful to design and develop
complex human-machine interfaces [10] for a wide number
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of applications such as social robotics [15], [16], therapy,
diagnosis, and health-care applications [17], virtual training
and serious games [18].
In recent years, the FER methods have attracted increasing

attention and achieved remarkable performance by integrat-
ing deep learning architectures [14], [19], [20]. Still, partial
occlusions of the face, e.g., by hands, hairs, sunglasses,
scarves, and so forth, are challenges for the FER systems and
make them less effective in some cases. Upon the presence
of the COVID-19 pandemic, facial masks have become a
major source of partial occlusions, and consequently, several
solutions were proposed to perform FER for the facial images
with masks [21], [22], [23], [24], [25], [26], [27], [28], [29].
Indeed, using facial masks creates a particularly challeng-
ing condition for FER since the masks typically cover half
of a person’s face, and importantly the mouth area from
which highly informative cues for emotion recognition can
be extracted [30]. Moreover, in the real world, while some
people may wear a facial mask, others may not be able to
wear it, or some might use the mask only for a limited period
and later take it off. Motivated by such cases, it is important to
develop a FER model that can deal with the images of people
wearing a mask (referred to as Fm throughout the paper) as
well as images of faces without a mask (referred to as Fum).
The success of FER predominantly reckons on the super-

vised learning paradigm in which the data annotation is
expensive and laborious. Importantly, obtaining highly reli-
able emotion labels is tough [8] since the perception of emo-
tional expressions depends on several factors such as gender
and culture [31]. There exists a few attempts to perform unsu-
pervised learning: Xiao et al. [32] apply Restricted Boltz-
mann Machines (RBMs), and Yu et al. [33] use Cycle Gen-
erative Adversarial Network (CycleGAN), for this purpose.

This paper tackles the FER problem in images of individu-
als who may or may not be wearing facial masks. It employs
Unsupervised Feature Learning (also called Unsupervised
Pre-training) [34] to address this challenge. The primary
advantage of our approach is the elimination of a time-
consuming annotation process for feature learning [8], [35].
The proposed method leverages the reconstruction capabil-
ity of a Convolutional Residual Autoencoder. The rationale
behind our proposal is to develop a model that can extract
informative features applicable to both masked (Fm) and
unmasked (Fum) facial expression recognition, as well as
mask detection, without the need for specific pre-training.
Furthermore, our approach is designed to be applicable in
real-life scenarios, as it does not strictly require the presence
of masks in the target images.

Our model and its application are majorly different from
the unsupervised learning-based prior arts [32], [33]. First,
none of them [32], [33] uses autoencoders. Furthermore,
RBMs applied in [32] have relatively less time efficiency
compared to the autoencoders (notice that the computation
remains intractable for regular-sized RBMs because its com-
plexity is exponential even in the size of the smallest layer,
see [36] for details). On the other hand, the approach in [33]

requires neutral facial images (and annotations) for image
generation, and suits only small-scale data as mentioned by
the authors. Importantly, neither of these works [32], [33] has
been tested on Fm images or in-the-wild large-scaled datasets
or in case of partial occlusions.

According to a widely employed model of emotions, emo-
tional experiences can be represented in a two-dimensional
(2D) space of valence and arousal [37]. In this model,
valence determines whether a state is negative (unpleasant)
or positive (pleasant), while arousal refers to the degree of
activation, ranging from low arousal (deactivated) to high
arousal (activated). Representing emotions along dimensions
offers several advantages, with the primary benefit being the
facilitation of constructing computational models [38]. The
2D model, in particular, is extensively utilized for emotion
recognition in domains such as human-computer interac-
tion and human-robot interaction [39]. In these contexts, the
knowledge of emotional valence is particularly critical for
guiding the progression of interactions, necessitating fast and
reliable detection [40]. Motivated by these findings, we uti-
lize our approach to distinguish between positive and negative
emotions. When comes to the human ability to perceive and
differentiate positive and negative emotions from the face,
several studies confirm that this is related to specific facial
areas. For instance, according to [41], positive emotions are
mainly perceived by humans from the motion of the lower
part of the face. It was also demonstrated that the presence of
facial masks decreases humans’ ability to perceive and rec-
ognize emotions from the face [42], [43], [44]. Such findings
make the problem of automatic discrimination of positive
and negative emotions from the facial images of people
wearing a mask particularly interesting. Therefore, we exam-
ine the effect of facial masks on the proposed method’s
performance such as examining if the positive emotion detec-
tion performance of the proposed method is relatively lower
in Fm images.
In this paper, we particularly study the transferability

of FER systems capable of recognizing emotions from
Fm and Fum images. Unsupervised feature learning has the
potential to provide a more robust adaptation to real-world
applications due to the fact that it does not require (labeled)
re-training when the domain changes [8], [35], [45]. In this
regard, we investigate the following cross-dataset scenarios
to evaluate whether:

• an unsupervised feature learning-based approach
(i.e., Ours) performs better than fully supervised meth-
ods (i.e., state-of-the-art (SOTA)) when the pre-training
model and classifier share the same domain, but the
testing dataset differs.

• an unsupervised feature learning-based method
(i.e., Ours) performs better than fully supervised
approaches (SOTA) when the pre-training domain dif-
fers from the domains used for training and testing the
classifiers.

The first case is particularly relevant for evaluating the
performance of methods in real-world scenarios where a
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domain gap often exists between the training data and the
deployment domain. This case helps assess the robustness
and generalization capabilities of the methods when faced
with variations in the testing dataset. On the other hand, the
second case assumes that during deployment, a portion of
the data becomes available for fine-tuning the pre-trained
models, whether they are supervised or unsupervised. This
scenario reflects a situation where some adaptation can be
performed on the pre-trained models using limited additional
data to enhance their performance in the specific deployment
domain. By considering both cases, we can gain insights
into the effectiveness of the methods in addressing domain
gaps and the potential for further fine-tuning to improve
performance in specific deployment scenarios.

The comprehensive experimental analysis conducted
demonstrates the superior transferability of our proposed
method compared to state-of-the-art (SOTA) approaches
in the aforementioned cross-dataset settings (refer to
Section IV-D). Notably, our method offers the added advan-
tage of lower computational costs compared to several SOTA
methods. This feature has been instrumental in integrating
our approach into a social robot as part of the EU Hori-
zon 2020 SPRING project (GA #871245)1, whose memory
is restricted, particularly, when performing several tasks at
the same time (Sec. V). Furthermore, when the proposed
method was evaluated with the traditional set-up i.e., the
pre-training, training, and testing splits are formed from the
same dataset, there exist some cases that the proposedmethod
performs better than more complex fully-supervised meth-
ods (e.g., having multi-head attention), which is remarkable
to spot given our model’s significantly lower number of
parameters and fewer FLOPs (Sec. IV-C). Notably, the pro-
posed autoencoder is also good at differentiating Fm images
from Fum images (aka face-mask detection) without requiring
additional pre-training different from the one applied for
FER (Sec. IV-F). The code of the proposed method and the
facial masked images curated within this study are accessible
in HERE.

The remainder of this paper is structured as follows.
Section II provides an overview of previous research on
Facial Expression Recognition (FER) methods capable of
recognizing emotions from masked (Fm) images. It also
reviews the datasets that have been used for evaluat-
ing such methods. The proposed method is introduced
in Section III, which outlines the design of the convolu-
tional residual autoencoder, and the inference stage, and
includes implementation details. Section IV presents the
experimental analysis, including the construction of datasets
and the obtained results. In Section V, we describe an
application of our method in a real-world scenario, where
our model is integrated into a PAL Robotics ARI robot
designed to provide assistance in hospital settings. Finally,
the paper concludes with a summary and discussions
in Section VI.

1https://spring-h2020.eu/

II. RELATED WORK
With the continuous advancement of deep learning meth-
ods, Facial Emotion Recognition (FER) systems have shown
remarkable performance improvements in recent times. How-
ever, the challenge of face occlusion has emerged as a signif-
icant concern due to the increased use of facial masks as a
precautionary measure during the COVID-19 pandemic. It’s
important to note that in some countries, the usage of facial
masks remains mandatory, while in others, it may be limited
to specific sensitive locations like hospitals. Nevertheless,
there are still individuals who voluntarily choose to wear
masks, especially in densely populated enclosed spaces.
Numerous studies have demonstrated a decrease in the human
ability to recognize emotions when a person is wearing
a facial mask [42], [43], [44]. These studies confirm that
individuals tend to focus primarily on the eyes rather than
the mouth for emotion recognition. However, the number of
studies that address automated FER in the presence of facial
masks remains relatively limited. In Table 1, we provide a
summary of such methods while discussing them in detail in
the subsequent sections.

A. FER SYSTEMS CAPABLE TO RECOGNIZE EMOTIONS
FROM MASKED FACES
To distinguish positive and negative emotions in Fm images,
Yang et al. [24] improved effectiveness of MobileNet [46]
and VGG19 [47] by fine-tuning them with relevant facial
images. That is the first study showing that i) FER can
feasibly be performed on the images with the generated
(simulated) facial masks, ii) masked faces decrease the
performance of the models trained on Fum images, imply-
ing that model fine-tuning with Fm images is needed, and
iii) MobileNet fine-tuned with Fm images performs better
than the VGG19 counterpart. However, it is also observable
that iv) the proposed solutions perform well only when the
front view mask is used and v) the models are insufficient for
small-size training data. The experimental analysis [24] lacks
differently shaped or colored masks and does not perform
training and/or testing on both Fm and Fum images unlike we
perform in this work. Barros and Sciutti [21] use FaceChan-
nel [48], which is an adaptation of VGG16 [47] with much
fewer parameters, composed of 10 convolutional layers with
batch normalization and ReLU, and 4 pooling layers. They
tested several pre-training and fine-tuning combinations for
the estimation of arousal and valence values. The results
show that the pre-training FaceChannel [48] on the original
AffectNet dataset [49], and then fine-tuning all layers of the
network with masked-AffectNet performs the best no matter
the testing data is masked or not. It is also highlighted that
supervised pre-trainingwithFum images improves the results,
and training the network from scratch with Fm images lowers
the performance significantly while it is also not sufficient to
only fine-tune the last convolutional layer. The model of [21]
was tested on a larger dataset compared to [24], and brought
in important findings. However, the experimental analysis
was limited to one dataset and one type of mask.
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TABLE 1. The summary of SOTA FER systems capable of recognizing emotions from Fm images. The preferable method would be independent to mask
detection and face segmentation, tested on multiple large-scale in-the-wild datasets (no role-play, no in-lab. settings), able to process both input types
Fm and Fum images, being trained on several mask types to potentially better generalize, and able to perform well both on small and large scale datasets.
DNN refers to deep neural networks. Sup. and Unsup. stand for supervised and unsupervised, respectively.

In [22], the authors propose a two-stage deep-attention
model to address the face mask problem in FER for three
emotions (positive, negative, and neutral). In the first stage,
a binary deep model recognizes whether an image contains
a mask or not, and generates attention heatmaps to roughly
distinguish the masked facial parts from the unobstructed
regions. The second stage of the method utilizes the binary
attention heatmaps and feature embeddings of the deepmodel
and further includes fully connected layers to perform FER in
the way that the model pays more attention to the unmasked
region but less to the masked region. The same authors
later on proposed a deep learning pipeline based on face
parsing and a vision Transformerwith a cross-attentionmech-
anism [29] motivated by the findings of [22], which shows
a performance increment upon injecting attention over the
mask area. The architecture in [29] consists of three com-
ponents: 1) unmasked facial region segmentation using a
pre-trained face parsing model, 2) feature map extractor of
pre-trained ResNet50 [50] followed by a multi-layer Trans-
former encoder, and 3) fusion of patches from the face mask
branch and the feature map patches with the classification
token ([CLS]) from the unmasked face branch with a Mul-
tilayer Perceptron. The results of [22] remarkably surpass the
performances of MobileNet and VGG19 presented in [24]
while the performance of [29] is the best out of all. As shown
in [29], the computational cost in terms of FLOPs and the
number of parameters, the model in [22] is 45 times and five
times higher than MobileNet of [24], respectively. Similarly,
the model of [24] is 18 times more than MobileNet [24] in
terms of FLOPs and seven times more than MobileNet [24]
in terms of the number of parameters. As reported in Sec. IV,
out of all methods, our proposedmethod is the most computa-
tionally efficient one. Additionally, different from [22], [29],
our method excludes the need of detecting the location of

the mask and it is able to perform FER in both Fm and Fum
images within a single model. Instead, [22], [29] requires
additional classifiers to perform FER on Fum images to
compensate for the performance, which would increase the
model complexity. Nevertheless, as shown empirically, our
unsupervised feature learning stage is able to learn relevant
features to be able to distinguish Fm and Fum images from
each other very effectively. Moreover, it is important to high-
light that [29] dependents on a face parsing model requiring
to be pre-trained on Fm images, includes two pre-trained
ResNet50 [50], a pre-trained transformer, and an MLP head
while we rely on a convolutional residual autoencoder, which
is pre-trained with an unsupervised manner and anMLP head
for classification. The model of [29] was tested on eight types
of facial masks, which is the highest number in the literature
but still majorly lower than what we tested in this paper.

Another study using a Convolutional Neural Net-
work (CNN) with an attention mechanism is [27]. In that
work, the authors additionally check whether the perfor-
mance of FER system processing Fm images is comparable
to humans’ performance. Similar to [22] and [29], their
model [27] requires a mask detector, which in their case is
a fine-tuned MobileNet [46]. If a mask is detected, then only
the part of the face around the eyes is kept as a Region Of
Interest (ROI) and that ROI is classified by a ResNet50 [50]
pre-trained on such cropped images. In case of a mask is not
detected, then, the entire face is considered as an ROI, which
is classified by another ResNet50 [50] to detect discrete
emotions (happiness, surprise, anger, sadness, fear, disgust,
and neutral). In conclusion, their FER system outperformed
humans. It is important to notice that [22], [27], [29] all
require additional models to perform FER on Fum images and
majorly focus on FER on Fm images. However, such a prefer-
ence can perform poorly, especially in real-world deployment
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in which the mask detectors fail to detect the existence of
a mask or localize the facial masks incorrectly. Therefore,
as performed in our study, we claim that a single model able
to learn feature representations from both Fm and Fum images
is beneficial in real-world processing, also promoting less
computational complexity. Shehu et al. [23] likewise com-
pared several pre-trained CNN architectures: VGG19 [47],
ResNet50 [50], and InceptionV3 [51] for discrete FER (anger,
disgust, fear, happy, neutral, sad and surprise) within four
settings of images: i)without a mask, ii)with a mask covering
the lower face, iii) a partial mask with a transparent mouth
window, and iv) with sunglasses. Keeping in mind that the
evaluation was performed on a single constraint dataset
(in terms of images, which were all captured frontally and the
number of instances): extended Cohn-Kanade (CK+) [52],
that study [23], in line with [27], shows that the aforemen-
tionedmodels can perform better than humanswhen the facial
area is covered more than 15%. Importantly, human mainly
confuses the neutral class with positive/negative emotions,
instead, the automated models are able to differentiate the
neutral class from emotion classes, but sometimes confuse
the negative and positive emotions [23].
To sum up, none of the SOTA has performed unsupervised

feature pre-training to develop a FER system capable of
recognizing emotions from both Fm and Fum images. We also
show that our autoencoder supplying feature representations
to perform FER can be used for mask detection without the
need for any alterations. Instead, in addition to requiring
labeled data, the more recent (and more effective) SOTA
involves several pre-trained models to detect the mask loca-
tion, and in some cases to perform FER in Fum images. The
proposed method’s transferability is the best as confirmed by
extensive experiments. Among all SOTA, we present one of
the most efficient architectures in terms of FLOPS and the
number of parameters. It is remarkable that our solution is
able to surpass several fully supervised SOTAwhile perform-
ing almost equally well on Fm and Fum images.

B. EXPERIMENTAL SETUP OF RELATED WORK
Several earlier approaches in the field have not been thor-
oughly tested on unconstrained, real-world datasets, as can
be noticed in studies such as [23] and [28]. Additionally,
some of these methods have not consistently been evalu-
ated using publicly available datasets, as seen in research
works like [22], [24], [29]. Furthermore, the experimental
analysis of these approaches often revolves around a single
dataset, limiting the breadth of their evaluation, as evident
in papers such as [21], [23], [24], [27], and [28]. Some
datasets used in the evaluation of [22], [24], and [29] were
collected in the laboratory environment, composed of a sin-
gle ethnical group, which might be a concern since a FER
system trained on one ethnical group might not generalize
well to others given that facial expressions might vary from
culture to culture [53]. It is also worth highlighting that there
is currently no widely adopted (masked) dataset used for
comparing the performance of SOTAmethods in this domain.

Consequently, we curated our datasets from existing in-the-
wild, large-scale FER datasets having valence annotations.

Similar to previous studies [21], [25], we incorporated
AffectNet [54], which is widely recognized as a large-scale
database for facial expression, valence, and arousal in uncon-
strained settings, into our evaluation. In addition toAffectNet,
we included two other unconstrained FER video datasets,
namely Aff-wild2 [55], [56], [57], [58], [59], [60], [61],
[62], [63] and AFEW-VA [64], [65], both of which provide
valence annotations. Similar to the approaches discussed in
the related work, we also employed synthesized masks in
our study. We conducted visual inspections to ensure that
the facial masks were correctly positioned, and we discarded
any images where the masks were improperly placed. It is
worth noting that different research groups used different
facial mask generators, such as those mentioned in [21],
[28], and [66]. Furthermore, it is important to highlight
that several studies only tested their methods on a single
type of mask [23], [24], [27], [48]. However, in our work,
we introduced a wide variety of masks for evaluation pur-
poses. While [29] stands out for using eight types of masks,
the number of mask variations used in their study is still
limited compared to the diverse range of masks we utilized
in our research.

Importantly, our experimental setup is different from
SOTA since we use both Fm and Fum images in training and
testing. We claim that such a scenario is more suitable given
the current evaluation of COVID-19 such that it is possible to
observe both masked and unmasked individuals in our daily
life. In terms of experimental analysis, we specifically focus
on the cross-dataset performance of our model with respect
to SOTA. This transferability has not been investigated by
earlier art before, however, we argue that it allows an under-
standing of the real-world robustness of the methods.

III. PROPOSED METHOD
The proposed Convolutional Autoencoder (AE), visualized
in Fig. 1-top is composed of an encoder having three main
residual blocks, each featuring three convolutions with ReLU
and amax-pooling operation. The input image of this network
is of dimension 64 × 64 × 3. A single residual block has the
2D-kernels 3× 1, 1× 3, 3× 1. The output of the encoder has
a size of 2048. The encoder employs residual connections;
particularly the first layer of each block is shared among the
block itself and the skip connection, the output of the block
is then summed with the output from the skip connection.

The decoder is the transpose version of the encoder
employing the same structure that takes as input the latent
space from the encoder reconstructing the original image.
Each decoder block uses a transpose-convolutional layer
with ReLU and batch normalization. A single transpose-
convolutional block has the 2D-kernels 3 × 1, 1 × 3, 3 × 1.
Decoder has also residual connections and we apply
max-unpooling at the beginning of each decoder block while
it should be noted that batch normalization is employed only
for the decoder.

90880 VOLUME 11, 2023



M. D’incà et al.: Unleashing the Transferability Power of Unsupervised Pre-Training

FIGURE 1. Proposed convolutional autoencoder trained with Mean Squared Error loss (top). Downstream task; positive/negative emotion
classification learned with an MLP using the features extracted from the frozen encoder of our convolutional autoencoder trained unsupervised
way (bottom).

The reconstruction objective function of our AE is the
Mean Squared Error (MSE):

LMSE =
1
2EX∼B

[
∥X − X̂∥

2
F
]
, (1)

where X is the input image, and ∥ · ∥F denotes the Euclidean
norm of the vector obtained after flattening the tensor X. The
MSE loss in (1) is minimized by using ADAM optimizer over
mini-batches B and the reconstructed data are defined as:

X̂ = Dθ ◦ Eϕ(X), (2)

The MSE loss has the learnable parameters θ, ϕ updated by
mini-batch gradient descent, where we estimate

Ex∼B [LMSE (θ, ϕ)] = Ex∼B
[
∥x − Dθ (Eϕ(x))∥2F

]
,

by averaging the MSE loss LMSE over the mini-batch B.

A. INFERENCE
Once the proposed AE is trained with MSE, without using
the labels of the data (aka unsupervised pre-training), fol-
lowing the representation learning literature, we freeze
the AE and use it only to extract features for the train-
ing/testing data, which are used to train/test a linear classifier
(see Fig. 1-bottom).
That linear classifier is a Multilayer Perceptron (MLP)

composed of two layers with parametrized ReLu as the
activation function, trained to perform the classification of
positive and negative emotions. The training of the MLP is
performed with Focal Loss [67] motivated by the fact that it
could be able to better handle the class imbalance problem,
if any.

B. IMPLEMENTATION DETAILS
The proposed AE was trained for 20 epochs using a combi-
nation of Real-World Masked Face (RMFD) and Real-World
Masked Face-V2 (RWMFD) datasets [68] and the FER
datasets described in Sec. IV-A. RMFD and RWMFD [68]
are two datasets containing real (i.e., not synthesized) images
of people wearing a mask. We used them in our unsuper-
vised pre-training to allow our AE to learn from real-world
Fm images since the FER datasets we used in this study
involve synthesized facial masks. Notice that RMFD and
RWMFD [68] were used only during the training of AE, but
not for training or inference with MLP. Following unsuper-
vised pre-training, the MLP was trained for 45 epochs. In all
our experiments, we exploited ADAM as the optimizer with
1e − 3 when the batch size was set to 256. During training,
we applied random rotation with a degree range of [−60, 60]
to augment the data.

IV. EXPERIMENTAL ANALYSIS
This section first describes the curated FER datasets used
for the evaluation of the proposed method and the state-of-
the-art models (SOTA) in Sec. IV-A. Then, we introduce the
implementation details of the SOTA in Sec. IV-B, which we
compare against the proposed method in Sec. IV-C within
the same-dataset evaluation setting. Sec. IV-D reports the
results of the cross-dataset analysis, which corresponds to
the main research questions sought that are with respect to
model transferability. Following that, we discuss our model’s
predictions in terms of positive and negative emotion classes
as well as on Fm and Fum images in Sec IV-E and highlight
our model’s capability for mask detection in Sec. IV-F.
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A. DATASETS AND EVALUATION METRICS
We utilized three large-scale, in-the-wild FER datasets that
provide valence annotations. These are: AffectNet [54], Aff-
wild2 [55], [56], [57], [58], [59], [60], [61], [62], [63]
and AFEW-VA [64], [65]. The AffectNet dataset [54] is
one of the largest image-based datasets for FER, includ-
ing 287651 training, and 4000 validation images annotated
manually. We follow the studies in the literature, e.g., [21],
[22], and [25] using the validation set for model evaluation.
The images from the AffectNet dataset exhibit variations
in size. The valence annotations provided in the dataset
are numerical values ranging between −1 and +1. In con-
trast to AffectNet [54], there is currently no other publicly
available large-scale (an important characteristic to train
deep models effectively) FER dataset that meets the cri-
teria of being image-based, collected in-the-wild, and pro-
viding valence annotations. To overcome the limitations of
available image-based FER datasets with valence annota-
tions, we curated our own datasets by extracting images
from two existing unconstrained, large-scale video-based
FER datasets: Aff-wild2 and AFEW-VA. The Aff-wild2
dataset [55], [56], [57], [58], [59], [60], [61], [62], [63] is
composed of 558 videos collected from Youtube including
458 subjects. The valence values are between −1 and +1.
Lastly, the AFEW-VA dataset [64], [65] contains 600 video
clips selected from movies including indoor and outdoor
scenes. That dataset provides a wide spectrum of facial
expressions, captured in various circumstances with natural
head pose movements, complex backgrounds, and severe
occlusions [64], [65]. The valence annotations are per frame
in a range between −10 to 10.
To ensure consistency in cross-dataset analysis, we dis-

cretized the valence annotations in both the AffectNet/Aff-
Wild2 and AFEW-VA datasets. We categorized values
smaller than zero as belonging to the negative class and
values greater than zero as belonging to the positive class.
While FER datasets may exhibit variations in the range of
valence annotations, the sign of the valence (positive or neg-
ative) is crucial for FER analysis, as emphasized in prior
work [54].

The Fm images were created from Fum images of the
original datasets by using the facial mask generation method
proposed in [69]. That mask generator [69] provides five
different mask types (surgical, N95, KN95, cloth, gas mask),
which we used all except the gas mask. It also provides
24 different patterns that can be applied to mask types while
it is also allowed to modify the color and intensity of the
mask color. To generate the masks, we randomly selected the
mask type, pattern, and color for each image in a dataset.
We also changed the intensity of the color randomly. This
resulted in 162 different facial masks. Since each mask type
has multiple templates based on angle, they cover a wide
range of face tilts, resulting in accurate Fm images [69]. Still,
we applied a manual visual inspection to discard the facial
images of having the mask misplaced. Sample Fm images are
given in Fig. 2. The datasets’ final curation is summarized as

FIGURE 2. Samples of Fm images obtained by applying Anwar and
Raychowdhury’s method [69] to the original Fum images.

follows and the numbers of Fm and Fum images in the training
and testing splits are given in Table 2.

a) Dataset 1: Its training and testing splits are composed
of randomly selected 50% of the original (Fum) images of
AffectNet combined with the Fm images generated from the
other 50% of the dataset. The training and testing instances
were kept the same as supplied by the original dataset.

b) Dataset 2: Once we removed highly similar faces from
the video clips of Aff-Wild2, which refers to faces appearing
in consecutive frameswith the same emotion type, we utilized
facial mask generation techniques described in [69] on the
remaining images. The original dataset’s provided training
and testing splits were retained. We ensured that if a certain
type of image (either Fm or Fum) appeared in the training set,
its corresponding counterpart would not be present in the test
set, and vice versa. Moreover, the identities across training
and testing splits are not overlapping.

c) Dataset 3: To create an in-the-wild image-based dataset
from AFEW-VA, we initially removed highly similar faces.
These were defined as faces appearing in consecutive frames
of the videos with the same emotion type. Subsequently,
we applied the mask generation technique from [69] to the
remaining images. Any facial images where the generated
mask was inaccurately placed were discarded from the group
of Fm images. However, their corresponding original images
were retained as Fum images. These images, although rela-
tively challenging, are still valuable for evaluation purposes.
Rather than completely excluding them from the evaluation,
which is the common approach followed by state-of-the-
art (SOTA) methods, including them as Fum images con-
tribute to a more comprehensive assessment. In this case, it is
possible for the same identities to appear in both the training
and testing splits, but with differences in head orientation,
emotion classes, and image types (Fm or Fum).

As observed in Table 2, Datasets 1-3 exhibit a slight
imbalance in the number of Fm and Fum images within their
respective training sets. This may pose an additional chal-
lenge for FER models. However, we deliberately avoided
manipulating the training splits to achieve balanced classes,
as imbalanced data is a common occurrence in real-world
applications [70]. We believe that the dataset curation under-
taken in this study is a valuable contribution, particularly
considering the absence of a standardized benchmark. The
effectiveness of the proposedmethod and SOTA aremeasured
with F1-score (F1).

B. THE STATE-OF-THE-ART METHODS
We adopted several fully supervised SOTA methods in order
to compare their efficiency and effectiveness against the
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TABLE 2. Details of the datasets used in the experimental analysis.

TABLE 3. Evaluation of the proposed method and the SOTA on Datasets 1, 2, and 3 in terms of F1-score. The best results are indicated in bold and the
second best results are given underlined. The symbol ↑ implies that a higher value is preferred.

FIGURE 3. Confusion matrices correspond to the proposed method trained and tested on Dataset 1 (left), Dataset 2 (middle), and Dataset 3 (right).

TABLE 4. Computational cost of the SOTA and the proposed method in
terms of floating-point operations per second (FLOPs) and the number of
parameters. ⋆ represents the results based on our implementation. The
number of parameters (# Params) of the knowledge distillation
methodology is given in terms of the sum of the teacher and the student,
respectively, while the FLOPs are given for the student model since it is
the one used in deployment time. The FLOPs of the proposed method
include the autoencoder and the MLP. In parenthesis, we state the MLP’s
FLOPs. The values are indicated in bold and the second best values are
given underlined. The symbol ↓ indicates that a lower value is considered
better.

proposed approach. Each of them was first pre-trained for
the mask detection task using the relevant real-world, large-
scale, in-the-wild datasets: RMFD and RWMFD [68] in line
with the proposed autoencoder’s pre-training. The further
implementation details are described as follows.

1) THE METHODOLOGY OF BARROS AND SCIUTTI [21]
We utilized the FaceChannel network [48] in our implemen-
tation, adapting its last layer to suit the binary classification
task (i.e., softmax). Following the implementation details
described in [21], we employed the same search space for
the number of layers and units per layer. The ADAM opti-
mizer [74] was utilized, with a learning rate of 1e − 3, and
the model was trained using cross-entropy loss.

2) PROPOSED KNOWLEDGE DISTILLATION
One can observe that several SOTA methods, e.g., [24]
and [29] adapted MobileNet while some other studies,
e.g., [23] showed the effectiveness of InceptionV3 to recog-
nize emotions frommasked faces. Eyiokur et al. [75] recently
showed SOTA results of InceptionV3 andMobileNet for face
mask detection in unconstrained environments. Motivated
by such studies, we developed a fully supervised method
performing knowledge distillation between InceptionV3 and
MobileNet. Knowledge distillation among neural networks
is wildly used for several applications when resource con-
straints are in place [76]. This is also valid for us since our
final aim is to integrate the FER approach into a Social Robot.
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However, knowledge distillation has not been tested before by
a relevant prior study. Given the final model’s efficiency by
being computationally less expensive (i.e., MobileNetV3 has
a lower number of parameters and fewer floating-point oper-
ations per second (FLOPs), see Table 3 for details) compared
to several SOTA, and its on-par performance against several
CNN-based SOTA, we argue that the proposed knowledge
distillation model is the fairest fully supervised counter-
part of the proposed unsupervised feature learning-based
method.

Knowledge distillation revolves around the utilization of
two neural networks, namely a student and a teacher. The
teacher network is designed to be larger, prioritizing high
classification performance without considering resource lim-
itations. On the other hand, the student network is a smaller
network specifically designed to meet low resource require-
ments while aiming to achieve similar results to the teacher
network. Our teacher, InceptionV3, was pre-trained on Ima-
geNet [77], while our student network, MobileNetV3, was
trained from scratch. The PyThorch implementations of
these networks were exploited by keeping their architectures
unchanged except for the classification layers which were
updated to fit our aim. The teacher network was fine-tuned
using the cross-entropy loss function. The student’s objec-
tive function was the weighted sum of a soft and a hard
loss. The soft loss has the goal to distill the knowledge of
the teacher via soft targets computed over the predictions
of the teacher (i.e., soft outputs). The soft loss function is
the Kullback-Leibler divergence of the soft outputs and soft
targets. The hard loss is the cross-entropy function between
the student predictions and the ground truth. Consequently,
the overall student objective function is: Ls = Lsoft · T 2

·

ws + Lhard · (1 − ws) where ws is the soft weight set to 0.9,
Lsoft is the soft loss and Lhard is the hard loss. It is important
to multiply the soft loss by T 2 (T stands for the temperature
value) when using both hard and soft targets. This ensures that
the relative contributions of the hard and soft targets remain
roughly unchanged if the temperature used for distillation
is changed while experimenting with meta-parameters [76].
For all corresponding experiments, ADAM [74] was used as
the optimizer with a 1e − 3 learning rate in line with the
proposed unsupervised feature learning-based method. The
input images were resized to several scales such as 64×64 or
224 × 224 (note that we did not observe significant perfor-
mance differences for the same dataset experiments). The
best results were obtained when the number of epochs and
the batch size were taken as 20 and 64, respectively, for the
InceptionV3 while MobileNetV3 was trained up to 30 epochs
with 64 batch size.

3) RESNET50
Another network that has been frequently adapted by SOTA is
ResNet50 [23], [25], [27], [29]. Moreover, since the autoen-
coder of the proposed method employs residual connections
(which as shown through the ResNet family, is an important
characteristic to avoid the problem of vanishing gradient

and mitigating the degradation problem, resulting in poor
learning for deep networks), we included that model into
the comparative study. We used the ResNet50 pre-trained
on ImageNet and employed softmax loss at the end of the
network. For training, we used 1e − 3 and 1e − 4 learning
rates and 0.0005 weight decay parameters. The optimization
was performed with ADAM [74] while the inputs were scaled
to 256×256. Training of the models was executed with batch
sizes from 64 to 256.

4) VISION TRANSFORMER (ViT) AND SWIN
TRANSFORMER (SWIN-L)
Since the attention mechanisms have been adopted by several
FER studies (see Sec. II for details), we also included the
Visual Transformers [71] and Swin Transformer [72] into
our comparisons following the implementation details given
in [24] and [78].

It is currently very well-known that the performance of
ViT majorly drops when it is trained from scratch compared
to being fine-tuned. The reason for this is its limited fea-
ture extraction capacity appearing in case of not using the
guidance of large-scale datasets. In other words, ViT has
less induction bias compared to a CNN, thus, it is harder
to train, and large-scale datasets help to compensate for the
performance gap [73]. A typical way to handle this situation
is to use a pre-trained CNN. In [78], it was shown that the
performance of ViT trained from scratch can be 38% less
than using pre-trainedCNN together withViT for FER. In this
study, we integrated a ResNet50 model (i.e., the pre-trained
model on ImageNet was further fine-tuned on RMFD and
RWMFD datasets [68] as mentioned at the beginning of this
section) to extract features from the last convolutional layer
of it, referring to the FER model in [78] as well as the FER
model for Fm images in [24]. The number of layers and the
head were set to 4 and 6, respectively for the multi-layer
transformer encoder in line with [24]. The hidden dimen-
sion of the MLP head was set to 1000 [24] or 3072 [78].
The learning rate was initialized as 5e− 3 [24], [78], fol-
lowing a warmup of 250 steps and a cosine learning rate
decay [24], [78]. The model was trained up to 300 epochs
with ADAM optimizer [74] with cross-entropy loss when the
batch size was varied between 64 to 256.

In the case of the Swin-L Transformer [72], we fine-tuned
it up to 50 epochs using a learning rate of 1e − 2 with the
ADAM optimizer.

C. COMPARISONS AGAINST THE STATE-OF-THE-ART
Even though our main focus is to study the transferability
of the proposed method with respect to other approaches,
we first report a comparative study across our model and the
prior art on the same-dataset setup to draw us an empirically
validated comparative method out of all SOTA (see Table 3
and Fig. 3).

The results highlight the better performance of ViT [71]
used together with pre-trained ResNet50, on average.
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TABLE 5. Cross-dataset analysis when the testing dataset is different from the pre-training and training datasets. The best results of each metric are
given in bold. Notice that the pre-training of the proposed method is unsupervised, i.e., without using the labels. The symbol ↑ implies that a higher value
is preferred.

However, our approach surpasses ViT with ResNet50 when
tested on datasets whose scalability is relatively smaller such
as the case of Dataset 3. For relatively larger datasets such
as Dataset 2, our model demonstrates the second-best perfor-
mance after ViT with ResNet50 by surpassing all other fully
supervised methods. Without using pre-trained ResNet50,
ViT [71] underperforms in all datasets. The proposed Knowl-
edge Distillation approach, overall, achieves better results
compared to Barros and Sciutti [21] and ResNet50 even
though its student component is much lightweight compared
to both approaches. Based on the confusion matrices, it is
evident that the proposed method exhibits a higher detection
rate for negative emotions compared to positive emotions in
Dataset 1. Conversely, for Dataset 2, the positive emotion
detection rate surpasses the negative emotion detection rate.
In the case of Dataset 3, the detection rates for each class
are relatively closer to each other, although negative emotions
still tend to be better predicted.

In terms of computational cost (see Table 4) and perfor-
mance trade-off, the best-performing fully supervisedmethod
is the proposed knowledge distillation model. Therefore,
we use that model to compare its performance against the pro-
posed method within the cross-dataset evaluations performed
to validate the transferability.

D. CROSS-DATASET ANALYSIS
The cross-dataset analysis includes two types of investi-
gation. In the first one, we evaluate the models’ perfor-
mances when the datasets used in the pre-training and during
the training of the classifier are the same, but the clas-
sifier’s testing dataset is different. Such experiments are
relevant given that there is often a domain gap between
the training/validation data and the testing domain in real-
world applications. The corresponding results are given
in Table 5.
Table 5 shows that the majority of the time the proposed

unsupervised feature learning-based model’s transferability
is superior to the proposed fully supervised knowledge dis-
tillation model. The only exception occurred when Dataset 1

was used as the training dataset and the testing is performed
on Dataset 3. Still, even in the further case, the perfor-
mance gap between the two models is lower than the former,
i.e., the proposed unsupervised feature learning-based model
surpasses the knowledge distillation. Overall, a drop in per-
formance is possible due to the domain gap between the
datasets. Particularly, training on either Dataset 1 or Dataset 2
significantly decreases the performance on Dataset 3 com-
pared to both training and testing on Dataset 3.

The second type of cross-dataset analysis is to evaluate
the models’ performances when the pre-training dataset is
different from the dataset the classifiers are trained and tested
on. Such a setting simulates real-world applications in which
one typically has models trained on one dataset (so-called
pre-trained models) but further needs to be fine-tuned on
another dataset whose distribution is the same as the testing
dataset but different from the pre-training dataset. We evalu-
ated the performance of the knowledge distillation model in
two settings:

(a) The teacher model was trained on the pre-training
dataset, and then the student network was trained on
the same dataset. Furthermore, the student network
was fine-tuned with the classifier’s training dataset and
tested with the classifier’s test set. All layers of the
student network were fine-tuned.

(b) The teacher network was trained on the pre-training
dataset, and then the student model was trained on
the same dataset. Consequently, the student network
was fine-tuned with the classifier’s training dataset and
tested with the classifier’s test set. Only the last layer
of the student was fine-tuned.

The corresponding results are given in Table 6. Herein,
we used Dataset 1 and Dataset 2 in pre-training, and Dataset 3
was used for the classifier’s training and testing. It is a
common practice that model pre-training is performed on
relatively larger datasets. In this vein, we did not perform
pre-training on Dataset 3 given that it is the smallest dataset
out of all (otherwise it is highly likely that a catastrophic
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TABLE 6. Cross-dataset analysis when the pre-training dataset is different from the dataset the classifier is fine-tuned and tested on. The best results of
each metric are given in bold. Notice that the pre-training of the proposed method is unsupervised, i.e., without using the labels. See the text for the
description of (a) and (b). The symbol ↑ implies that a higher value is preferred.

forgetting would happen, therefore the transferability can-
not be studied). Also in such cases, the proposed unsuper-
vised feature learning-based approach surpasses the proposed
knowledge distillation model for both settings (a) and (b),
once again proving its better transferability. It is notable that
pre-training on Dataset 1 slightly improves the results (from
95.4% to 95.8%) of our unsupervised feature learning-based
methodwith respect to the one given in Table 3 (i.e., the same-
dataset analysis) and pre-training on Dataset 2 improves the
results of proposed knowledge distillation with respect to the
same-dataset analysis (from 83.8% to 84.7%).

E. FURTHER ANALYSIS ON EMOTION CLASSES
Table 7 reports the F1 score of the proposed method for pos-
itive and negative emotion classes as well as its performance
onFm andFum images. Overall, the proposedmethod is better
at performing emotion classification on Fum images than the
Fm images. The average performances on Fum images and Fm
images do not have a significant gap.

Specifically, the performance of the proposed method on
positive emotions is better than the detection of negative
emotions when the test dataset is Dataset 2. This finding is on
par with the model in [27] showing that positive emotions are
better identified since they are more related to the eye regions
while negative emotions are mainly related to the mouth
region and therefore barely recognized. However, when the
test datasets are Dataset 1 or Dataset 3, we observe the
opposite results such that the negative emotions are detected
better than the positive emotions.

In general, these last two results obtained for our model
are consistent with the results on the identification of pos-
itive/negative emotions from Fm images by humans, which
are also unequivocal [43], [44].

F. MASK DETECTION
Given that several SOTA assume the input image includes a
facial mask to perform FER (e.g., [23], [24], [28]) or first
detect the mask location (e.g., [22], [27], [29]) and then
apply the corresponding FER network, we believe that it
is interesting to show the mask detection capacity of our
method. To do so, instead of training an MLP for emotion
classification, we train an MLP for a mask detection task,

importantly by keeping the unsupervised feature learning
stage unchanged across emotion recognition and mask detec-
tion tasks. We obtained 99.8%, 99.9%, and 99.4% F1 scores
for Datasets 1, 2, and 3, respectively.

V. CASE STUDY: HUMAN-ROBOT INTERACTION
Within the EU Horizon 2020 SPRING project (GA
#871245) the proposed unsupervised feature learning-based
method was integrated into the robot ARI developed by
PAL Robotics. The project focuses on Socially Assistive
Robots (SARs) and their applications in healthcare.

In one scenario, where robots are envisioned to serve
as receptionists and interact with humans, their role would
involve greeting human agents, gathering basic information
about the purpose of their visit, and guiding them to the appro-
priate specialist. Given that a single robot would interact with
numerous individuals, it is crucial for the embedded models
to demonstrate robustness in dealing with a wide variety of
facial images. Additionally, while mask requirements have
been relaxed in many countries, there remains a significant
number of individuals who continue to wear masks as a
precaution against respiratory diseases. Hence, it becomes
essential to handle both masked (Fm) and unmasked (Fum)
facial images equally well, ensuring optimal performance
across both categories.

For this scenario, it is essential that the robot is able
to detect the faces and then recognize as soon as possible
(i.e., nearly in real-time) the emotional states of a human
interaction partner, or at least the emotional valence (i.e.,
whether the person feels a negative or positive emotion). This
basic information about the emotional state of the human
agent can be crucial for the course of the interaction. It is so
because there exists a risk that the person might withdraw
from interacting with the robot when being in a negative
emotional state (see [79] for more information) or feeling not
at ease (e.g., she/he might feel offended or misunderstood by
a robot). In such cases, the robot should be able to detect
the negative valence and potentially modify its behavior to
maintain the interaction.

Fig. 4 shows a simulation of this use case. The robot
is interacting with a human agent wearing a mask. In this
demo, on the touchscreen, the images captured by the head
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TABLE 7. Positive/negative emotion discrimination of the proposed method together with its emotion classification performance (in terms of F1 score)
on the Fm and Fum images. P, T, and Te stand for pre-training, training, and testing, respectively. D1, D2, and D3 mean Datasets 1, 2, and 3.

FIGURE 4. An example of interaction between an ARI robot and a human agent. On the touchscreen, the images captured by the head
camera of the robot as well as the FER result per image are displayed.

camera of the robot as well as the detected emotion label are
displayed.

VI. DISCUSSION AND CONCLUSION
We have presented a method exploiting the reconstruction
capability of a Convolutional Residual Autoencoder to dif-
ferentiate between positive and negative emotions when
Fm and Fum images are the inputs. This method performs
unsupervised feature training, therefore, learns the relevant
latent features without using labeled data, which brings an
advantage since gathering relevant data annotations for emo-
tion recognition could be challenging. The detailed exper-
imental analysis demonstrates the better transferability of
the proposed method, which is an important property for
its real-world application. It is also important to highlight
that our method has lower computational costs compared
to several existing solutions, allowing us to integrate it into
a social robot that performs several tasks simultaneously.
When the proposed method was evaluated within the same
dataset setting, its better performance compared to more
complex methods such as Vision Transformers is noticeable
particularly when the quantity of data is relatively scarce
(e.g., around 13K training images). The proposed autoen-
coder is also good at differentiating Fm images from Fum

images, thus, performs mask detection without a need for
additional pre-training (i.e., pre-training different from the
one applied for emotion recognition) while recognizing emo-
tions mostly equally well in both Fm and Fum images.
To summarize, the contributions of this study are:
• The presented unsupervised pre-training leverages the
reconstruction property of autoencoders. The classifier
trained on top of the learned features is lightweight in
terms of the number of parameters and the FLOPs.

• Motivated by the SOTA, we propose an additional
FER method, which is fully supervised, and based on
knowledge distillation. That method is the best among
all prior SOTA given the performance and efficiency
tradeoff.

• The experimental analysis of the two proposed methods
(a) unsupervised feature learning-based and (b) knowl-
edge distillation-based show the better generalizability
of the unsupervised one.

• The proposed autoencoder, without any additional need
of training, can be effectively used for other downstream
tasks than FER such as mask detection.

• Overall, the proposed unsupervised feature learning-
based method performs equally well on Fm and Fum
images.
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• The datasets used in this study, containing theFm images
generated from existing in-the-wild, large-scale FER
datasets (Fum) having the valence annotations, will be
shared with the community to serve as a benchmark to
foster the following research.

• The effective performance and efficiency of the pro-
posed unsupervised learning-based method allowed us
to integrate it into a social robot.

Future work will adapt continual learning strategies and
focus on not only positive and negative classes but also the
classification of several discrete emotion classes. Another
future objective of us is to investigate the social acceptance
of a robot equipped with an automatic emotion recognition
capability, utilizing the proposed methodology.
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