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Abstract

The stiffness of a soft robot with structural cavities can be regulated by controlling the pressure of a fluid to
render predictable changes in mechanical properties. When the soft robot interacts with the environment, the
mediating fluid can also be considered an inherent information pathway for sensing. This approach to using
structural tuning to improve the efficacy of a sensing task with specific states has not yet been well studied.
A tunable stiffness soft sensor also renders task-relevant contact dynamics in soft robotic manipulation tasks.
This article proposes a type of adaptive soft sensor that can be directly three-dimensional printed and controlled
using pneumatic pressure. The tunability of such a sensor helps to adjust the sensing characteristics to better
capturing specific tactile features, demonstrated by detecting texture with different frequencies. We present the
design, modeling, Finite Element Simulation, and experimental characterization of a single unit of such a tun-
able stiffness sensor. How the sensing characteristics are affected by adjusting its stiffness is studied in depth.
In addition to the tunability, the results show that such types of adaptive sensors exhibit good sensitivity (up to
2.6 KPa/N), high sensor repeatability (average std <0.008 KPa/N), low hysteresis (<6%), and good manufac-
turing repeatability (average std = 0.0662 KPa/N).

Keywords: soft sensing, 3D printed soft sensors, active sensing, tunable stiffness sensors

Introduction

The information acquired through the tactile sensors
allows the robot to estimate relevant states to perform

delicate tasks and to deal with uncertainties.1 Research stud-
ies have been done extensively to replicate the sense of
human touch in an artificial system1,2 with approaches such
as capacitive,3 piezoelectric,4 piezo-resistive,5 and optical6

sensors. Recently, the growing attention to unstructured soft

interaction also raises the interest in developing soft tactile
sensors that can undertake large deformation.7

Manufacturing sensors that are as soft as human tissue
is challenging due to the limitation of the softness of the
transducers.1 High softness normally introduces high hys-
teresis and creep of the sensors.8 To some degree, sensors
based on computer vision can overcome such limita-
tions.9 However, those sensors are facing difficulties in
complex contact modeling, limited sampling rate, constraint
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geometry, and size. Another critical factor limiting the ap-
plication of soft tactile sensors is their adaptability and ro-
bustness when interacting with unstructured environments.10

A tactile sensor can be very sensitive for a particular low-
force range but easily saturate and damage when there is an
unexpected high force.3

Thus, this article proposes a soft but stiffness-controllable
sensor driven by pressurized air. The compressible media air
allows the sensor to be extremely soft. Moreover, the sensor’s
stiffness, sensing range, and sensitivity are controlled by the
driving pressure to match the specific task requirements.

Actuation and perception can be considered as an inte-
gration.10,11 When an object interacts with the environment,
the tactile measurements ultimately depend on the sensor
configurations, especially in soft sensors. In other words, the
physical property of the sensor/agent acts as a physical res-
ervoir that filters the tactile information for active sensing.
Such integration of perception and actuation is widely seen in
nature. For instance, humans change finger stiffness and be-
havior to maximize the gained tactile information for haptic
explorations.12 The active change of joint impedance helps
humans maintain safe interaction in high uncertainty tasks and
high precision in a more constructed environment. The ability
to vary the stiffness allows haptic information to be processed
with various interaction modalities for state optimization.13

Analogy, the mice, and rats also modulate their whisker
movement to perform active sensing according to a specific
environment by elaborately controlling the muscle of the
follicle to bias the range of sensing from low to high fre-
quencies.14 Incorporating actuation in perception shows
a new trend to develop robotic counterparts to understand
the environment more effectively.11 Another example can be
found in active haptic exploration to localize a nodule in soft
tissue with a tunable-stiffness robotic probe.15 Examining the
tissue with different stiffness of the probe can significantly
reduce the uncertainty of the measured haptic information,
thus, more effective in the detection.

While previous development of active sensing predomi-
nately relies on the stiffness and action change of the agent
where the tactile sensor is mounted on a probe, coupled ac-
tuation and perception can also be incorporated in the sensor
design itself.10 This approach is particularly useful, consid-
ering that many robots interact with the environment directly
with tactile sensors.

The ability to change the characteristics of the soft sensor
itself introduces three significant advantages. First, it can
favor the sensing region actively. A similar example can be
found in cameras that can change the focus. Second, it can
enable sensing with different sensitivities without the need to
use different sensors.16 Tactile information can be unreliable
when the contact is soft with large hysteresis. Sensing mul-
tiple iterations with different sensitivities would ultimately
increase the confidence level. Third, it can activate active
sensing where the sensor can enable different interaction
models by changing the contact stiffness. The mechanical
property change can introduce a filtering effect of environ-
mental noise and simplify further inference in information
clustering.17

The proposed adaptive soft tactile sensor (Fig. 1) presents
tunable stiffness and controllable sensing characteristics for
active sensing. The approach allows the sensors to be directly
three-dimensional (3D) printed with rubber-like materials

and a further adjustment on the compliance with internal
driving pressure. The online sensing characteristic change
during the adjustment improves the efficacy of a sensing task
with specific states. The tunability enabled a single sensor
to interact with an object with different contact dynamics.
The mechanical and associate sensing behavior changes are
characterized in this article by theoretical modeling, finite
element simulation, and experiments.

We compared the performance and analyzed the effect of
material stiffness on sensing. Two-mode of sensor stiffness
control can be achieved (1) offline-stage where the stiffness
of the sensor can be changed using multimaterial 3D
printing; (2) online-stage where sensor physical properties
are changed by tuning the internal fluid pressure. A texture
detection experiment is included to show the advantage of
having a tunable sensor, with results indicating that a single
sensor can be favored in detecting various textures by
controlling its stiffness. In general, results show that this
methodology developed tunable-stiffness sensors with
good sensitivity (up to 2.6 KPa/N), high sensor repeatability
(average std <0.008 KPa/N), low hysteresis (<6%), and
good manufacturing repeatability (average std = 0.0662
KPa/N of 6 groups of 18 samples).

Design and Modeling

Basic structure and working mechanism of the tunable
stiffness soft sensor

When a soft sensor actively interacts with a solid object,
both agents are subjected to external forces with deformation
associated with internal stresses and strains. Unlike soft sen-
sors with fixed features, where the material properties are
only characterized as the parameter to determine absolute
sensor responses,18 the proposed tunable stiffness sensor de-
termines the sensing model based on the physical property.
This active sensing framework is demonstrated by exploring
the inherited sensing characteristics with pressurized fluid,19

where significant sensing characteristics and stiffness change
are exhibited during inflation.

The proposed sensor incorporates a 3D printed soft mem-
brane to form a closed cavity that can be pressurized through
an air source (Fig. 1). Rubber-like materials with the PolyJet
3D-printing technique introduced controllable membrane
stiffness in the design phase (Object-260). Deformation of
the soft architecture is triggered when an external force is
applied to the soft membrane. According to Boyle’s law, such
changes in the cavity volume will be reflected using the
pressure variation. Thus, the pressure variation reflects the
exerted force between the tactile sensors and the environment.

In addition, the sensor’s mechanical properties and sensing
characteristics are controlled by the internal pressure. The
sensor exhibits different interaction models to the environ-
ment depending on whether it is soft (low driving pressure) or
stiff (high driving pressure). Two parameters for regulating
the sensor stiffness are defined as (1) the offline parameter
membrane stiffness (Tango+ and Digital materials [DM], see
Table 1 and Supplementary Data A)23,24 and (2) the online
parameter internal driving pressure.

Theoretical modeling

The sensor is modeled under the assumption of a hyper-
elastic membrane using three different states depending on its
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driving pressure and contact status. h is the distance to the
membrane from the origin. When the driving pressure P is
equal to P0 (atmospheric pressure), the sensor is considered
as a hemispherical membrane with an uninflated radius
R0 (h0¼R0) and initial thickness to(state 0, Fig. 2).

Considering that the sensor is driven by a positive internal
pressure PI (PI > P0), state I is inflated to a spherical cap
with the height of hI and base radius of R0 (Figure 2-I). State
II is considered when a rigid surface is coming in contact and

pressing the sensor symmetrically (Fig. 2-II). Constant cur-
vature of the noncontact part of the sensor membrane is
considered with an assumption of the curvature tangential to
the contact surface during the deformation. The membrane
of the sensor is modeled as homogeneous, isotropic, and in-
compressible material.20

The principal stretch ratios for the membrane are defined
as k/, kw, and kt, where k/ and kw are for the lateral direc-
tions and kt is the stretch ratio normal to the membrane.

FIG. 1. (a) A 3D printed soft sensor with Tango+ without contact and pressurization. (b) A 3D printed soft sensor with
Tango+ under compression with driving pressure of 0 kPa. (c) A 3D printed soft sensor with Tango+ under compression
with driving pressure of 20 kPa. (d) Sensor response with external force applied for a 3D printed soft sensor with Tango+
under 0 kPa driving pressure, a 3D printed soft sensor with 60-DM under 0 kPa driving pressure, and a 3D printed soft
sensor with 960-DM under 20 kPa driving pressure. A zoomed view of the detailed sensor response is shown. The sensor
response was recorded at 10 kHz. 3D, three-dimensional; DM, digital materials. Color images are available online.

Table 1. Material Properties

Material type Tango+ 40-DM 50-DM 60-DM 70-DM 85-DM 95-DM

Shore A (STD) 27.6 (1.0) 38.5 (1.5) 50.4 (1.6) 59.9 (2.0) 68.9 (1.4) 80.4 (1.6) 91.3 (2.1)
Shore A -after 1 year (STD) 29.5 (1.8) 42.4 (1.8) 51.1 (1.8) 60.5 (1.5) 68.2 (1.2) 76.0 (1.5) 87.0 (1.8)
p-Value <0.01 <0.01 0.2112 0.2648 0.0556 <0.01 <0.01
Shore A change -6.61% -9.2% -1.37% -1.03% 0.99% 5.8% 4.98%
Shear modulus (MPa) 0.17 0.27 0.55 0.91 1.64 4.00 5.33

The p-value is calculated with one sample and paired-sample t-test for the measured shore A hardness before and after 1 year, testing the
null hypothesis that the pairwise difference between the two measurements has a mean equal to zero. In this study, the density of all the
materials is modeled as 1.15 g/cm3 with the Poisson’s ratio of 0.49.

DM, digital materials.
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The right Cauchy–Green deformation tensor first and third
principal invariant with incompressibility condition20 are
given by:

IC
1 ¼ k2

t þ k2
/þ k2

w (1)

Assuming the silicone membrane material is incompressible
with equibiaxial deformation k/¼ kw, the principal stretch
ratios are determined by:

ktk/kw¼ 1 (2)

kt¼ 1
k2

/
¼ 1

k2
w
¼ t1

t0
¼ kI (3)

Where kI denotes the normal stretch ratio from state 0 to
state I. The volume of the fluid Vg within the sensor cavity is
obtained:

Vg¼ 1
6
phI 3R0

2þ hI
2

� �
(4)

Considering constant volume of the membrane Vm¼
VmI ¼Vm0¼ 2pR0

2t0¼ p R0
2þ hI

2
� �

tI

kI ¼ 2R0
2

R0
2 þ hI

2ð Þ (5)

The total potential energy Ep can be expressed as:

Ep¼
R

pdVgþ
R

wdVm (6)

Taking the assumption of neo-Hookean material, the strain
energy density function:

w¼C1 k2
I þ 2k� 1

I � 3
� �

(7)

Thus,

Ep¼�p1
6
phI 3R0

2þhI
2

� �
þ2pR0

2t0C1 k2
I þ2k�1

I �3
� �

(8)

Applying the principle of steady state minimum total po-
tential energy, assuming hI and p are only system variables, hI

can be solved with
dEp

dhI
¼ 0. The driving pressure p can be

expressed by pI ¼ k hIð Þ. Considering that the nonlinear
function k also depends on the types of hyperplastic material

model being used to obtain the strain energy function, neo-
Hookean material model is represented with reduced system
order to visualize the relation of the sensor geometry to the
driving pressure and material stiffness.

pI ¼ k hI , C1ð Þ (9)

Figure 3a shows the theoretical simulation of the sensor
during continuous inflation from state 0 to state I. The sensor
exhibits a clear maximum driving pressure during the infla-
tion due to the material hyperelasticity.21 This ‘‘snap buck-
ling’’ behavior is commonly observed in many rubber-like
materials where a punctuated reduction of pressure can be
observed once it reaches the peak internal pressure.21,22 The
‘‘snap buckling’’ effect happens when the sensor height hI

approaches 17.4 mm based on the given sensor geometry
(R0¼ 9:25 mm, t0¼ 1:5 mm). This peak hI at the maximum
driving pressure value is only affected by the original sensor
diameter regardless of the membrane stiffness. However,
softer material used for the sensor is subjected to larger
volume change under the same driving pressure.

A linear relationship between sensor diameter R0 and peak
hI can be observed, while the result shows no difference
between Tango+ and 70-DM (Fig. 3c). Ogden model (pa-
rameters from Abayazid and Ghajari25) was also used to do a
comparison to the neo-Hookean model, with neglected dif-
ference exhibited before the sensor reaches the peak hI

(Fig. 3b). For the ease of sensor characterization and mod-
eling, the sensor is only evaluated before it reaches the
maximum driving pressure (peak hI).

State I to state II is modeled by assuming an object with an
infinite area exerting an applied force F and a displacement
Dd¼ hI � hII . The deformation of the membrane is modeled
as an asymmetric discotic spherocylinder (Figure 2c).

Assuming 2D axisymmetric revolution and the axis origin
at the base center of the sensor, the volume of cavity is:

Vgt¼
RhII

0

p n zð Þ½ �2dz (10)

Where z represents the distance to the material point of the
sensor membrane in the z coordinate and the function n zð Þ
represents the x coordinate of the material point given by

n zð Þ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hII
2� R0�qð Þ2

2hII

� �2

þ R0�qð Þ2 � z� hII
2� R0�qð Þ2

2hII

� �2
r

þq

(11)

FIG. 2. Theoretical modeling of the sensor. State 0 is the neutral state of the sensor with internal driving pressure equal to
atmospheric pressure. State I is the pressurized state where the internal driving pressure is subjected to a positive pressure
higher than the atmospheric pressure. State II is the state where the sensor is subjected to external load when interacting with
a solid body. The material points of the membrane are defined with points M0, MI, and MII for the three states, respectively.
The extent of contact during the interaction is characterized by the radius of the contact q, shown with material point CII at
the edge of contact in the deformed membrane. Color images are available online.
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Considering constant material volume of the membrane
with the assumption of incompressibility:

p R0
2þ hI

2
� �

tI ¼ pq2tII þ 2p
RhII

0

n zð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ n¢ zð Þ½ �2

q
dztII

(12)

Thus,

kII ¼ tII
tI
¼ p R0

2 þ hI
2ð Þ

pq2 þ 2p
R hII

0
n zð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ n¢ zð Þ½ �2
p

dz
(13)

Again, consider the minimum total potential energy prin-
ciple and the neo-Hookean model:

E¢p¼ � pIIVgt þ 2pR0
2t0C1 k2

II þ 2k� 1
II � 3

� �
� FDd

(14)

Assume Boyle’s law pv is constant,

(pII þ pm)Vgt¼ pI þ pmð ÞVg (15)

the applied force is determined by:

F¼ pII pq2 (16)

then

E¢p¼ � pIVgþ 2pR0
2t0C1 k2

II þ 2k� 1
II � 3

� �

� pI þ pmð ÞVg

Vgt

� pm

� �
pq2 hI � hIIð Þ

(17)

Substituting (10) and (13) into (17), assuming
dE¢p
dhII
¼ 0 under

the boundary condition 0 < q < R.
The increase of pressure and force can be obtained with the

following nonlinear equations:

Dp¼ f pI , Ddð Þ (18)

And,

F¼u pI ,Ddð Þ (19)

FIG. 3. Theoretical model, FEM simulation, and experimental characterization of the soft sensors from state 0 to state I.
(a) theoretical modeling of the sensor under continuous inflation with Tango+ and all DM. Neo-Hookean model with shear
modulus used in Table 1 indicates the material stiffness. A clear ‘‘snap buckling’’ behavior can be observed during the
inflation with the peaks always exhibiting when hI ¼ 17:4 mm regardless of the membrane stiffness. The ‘‘snap buckling’’
presents with the maximum driving pressure, as it increases with the increase of membrane stiffness. The lowest maximum
driving pressure with the sensor made from Tango+ is around 42 kPa. A zoom view of the sensor geometry change
(theoretical) is also presented between driving pressure 0 to 22 kPa. (b) Comparing the Ogden hyperplastic material model
of Tango+ obtained from Abayazid and Ghajari25 with the neo-Hookean material model. (c) The theoretical model indicates
that the peak hI at the ‘‘snap buckling’’ point exhibits a linear relation to the size of the sensor. However, the peak hI is
independent of the material stiffness. (d) The geometry changes of the soft sensors with increased driving pressure, results from
FEM. The deformation of the sensors made from Tango+, 40-DM, 50-DM, and 95-DM at the driving pressure of 22 kPa is
shown. The color bar indicates the deformation in mm. (e) The geometry changes of the soft sensors with increased driving
pressure, results from experimental characterizations. FEM, finite element modeling. Color images are available online.
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Finite element modeling

Finite element modeling (FEM) with COMSOL 5.3a is
used in the study to simulate the soft sensor physical behavior
under positive pressure and estimate the change of sensing
characteristics reflected by internal pressure variations. In
contrast to the membrane model used in the theoretical sim-
ulation, the FEM is determined with a solid mechanics model
to reveal the contribution of structural stiffness. The FEM
simulation is performed in two studies: (1) the sensor is
pressurized freely with a defined driving pressure from state 0
to state I, and (2) a rigid indenter is introduced in state II to
exert regulated loading with step control. In study 2, the in-
ternal pressure is solved based on the result of study 1 and the
governing sensor deformation. See Supplementary Data B
for details of the simulation setup.

Experimental Characterization

Characterization setup

The sensor experimental characterization was conducted
with a 3-axis Cartesian robot, performing indentation tests
against a flat surface with the sensor mounted on the indenter
(Fig. 4). Details about the setup and data acquisition can be
found in Supplementary Data C.

Sensitivity and repeatability

To evaluate the sensitivity and repeatability of the sensor,
the characterization is conducted with robot position control.
The probe moved along the z-axis to a specified z-position
and stayed at the position for 4 s, and it returned to the initial
no-contact position. A step-increment (0.5 mm step) inden-
tation was repeated until the sensor reached the defined
maximum deformation (three-quarters of the original sen-

sor radius R0 to avoid damage). We repeated this test three
times for seven soft tactile sensors (Tango+, 40–95 DM) at
each driving pressure (*450 indentations for each sensor).
Between each indentation, we waited 30 s and reset the pres-
sure value to remove any hysteresis effect. The sensitivity S
of the sensors is defined as DP=DF, where DP is the internal
pressure variation and DF denotes the applied force.

Saturation, sensing range, and hysteresis

Previous tests set the maximum deformation as three quar-
ters of the sensor radius. In this part, we tested the soft sensor
until it saturates. The sensing range and hysteresis are also
evaluated with this test. All sensors (Tango+, 40–95 DM)
were tested with a comparison between driving pressure
0 kPa (soft state) and 12 kPa (stiff state). The tests were per-
formed with the same load-unload pressure cycle, as men-
tioned previously. However, the waiting time between each
indentation was reduced to 2 s, and the internal pressure was
not reset.

Results and Discussion

In the following section, we compared the results from the
theoretical study (solved numerically with Matlab 2020a),
FEM simulation, and empirical characterization. The sensor
stress relaxation, manufacturing repeatability, and the effect
of aging are also experimental tested (Supplementary Data D
and E).

Tunable stiffness

The sensor stiffness is the contribution of structural stiff-
ness and pressurization of the sensor cavity. The theoretical
model focused mainly on the effect of pressurization with a
membrane assumption, while the FEM simulation represents

FIG. 4. Setup for the sensor characterization. (a) The indentation setup with a Cartesian robot. (b) A closer view of the
soft sensor mounted on the indenter. (c) Schematics and dimensions of the soft sensor. (d) The 3D printed soft sensor is
mounted on a rigid connector (ABS, 3D printed) for testing. (e) The pneumatic connection diagram to control the sensor
driving pressure and record the internal pressure variation. Color images are available online.
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both contributions. Results of theoretical model, FEM, and
experimental characterization are reported in Figure 5a–c,
respectively.

A clear increase of the stiffness can be observed with the
increase of indentation depth denoting the nonlinear mechanical
property. The stiffness (shown in Fig. 5a) is defined as dF=dDh,
where F is the applied load on the soft sensor and Dh is the
indentation depth. Results from the theoretical model indicate
that the increase of driving pressure would increase the sensor
stiffness before the driving pressure reaches the maximum
driving pressure where hI ¼ 17:4 mm. With further inflation,
the sensor stiffness drops after the maximum driving pressure is
reached, representing the membrane ‘‘snap buckling.’’

Thus, we define the pressure region lower than maximum
driving pressure as the valid pressure-based control region for
tunable stiffness. FEM and experimental results also validate
the feasibility of controlling sensor stiffness with internal
driving pressure. However, it needs to be noted that when the
material stiffness is increased, the required change on driving
pressure to increase the internal driving pressure is also in-
creased significantly due to the increased structural stiffness.

Sensitivity and repeatability

The sensitivity S of the sensors is defined as DP=DF,
where DP is the internal pressure variation and DF denotes

FIG. 5. Selected results of sensor mechanical property change with both online (driving pressure) and offline (membrane
stiffness) parameters. (a) The theoretical modeling result. The color bar indicates the probing depth of the indentation. The
x-axis is the geometry data of the sensor with hI (state I) at a specific driving pressure. The y-axis is the sensor stiffness
characterized by dF=dDh. (b) The result from FEM studies. Indentation force with probing depth for sensors with increased
driving pressure. (c) The result from experimental characterization. Indentation force with probing depth for sensors with
increased driving pressure. All three-trial data on three identical sensors for each driving pressure are shown in the subplot
for Tango+, 40-DM, and 60-DM. Good repeatability of all sensors can be observed. The full set results for all materials can
be found in Supplementary Figure S3. Color images are available online.
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the applied force. The result of FEM simulation shows the
change of the internal pressure and applied force at each
indentation depth (Fig. 6a). Selected detailed result with a
clear linear relation of the sensitivity is shown in Figure 6d–f.
The estimated sensitivity with a linear model is shown in
Figure 6g. Sensors made from soft material Tango+, 40-DM,
50-DM, 60-DM show a decrease in sensitivity with the in-
crease of driving pressure, while sensors made from stiff
material exhibit a slight increase in sensitivity with increased
driving pressure. Sensor made from 70-DM shows neglected
change in sensitivity up to the driving pressure of 22 kPa. For
Full results see Supplementary Data F.

The theoretical result (Fig. 7a) shows decreases in the
sensitivity for the soft sensors with increased driving pres-
sure. However, minimum sensitivity region can be observed
in the model. This minimum region is assumed to happen

when the driving pressure is approaching the maximum
pressure, while a slight increase of sensitivity exhibits after
the snap-through. The model also indicates high linearity of
the sensor response between DP and DF, with R squared
values reported in Figure 7b.

The experimentally characterized sensor responses under
different driving pressures are reported in Figure 7c–e for
sensors fabricated with Tango+, 40-DM, and 60-DM, re-
spectively. Good linearity can also be observed for sensors
within the tested force range (determined as a maximum of
three-quarters of the sensor radius).

The highest sensitivity case S = 2.6 KPa/N happens at the
softest tactile sensor fabricated by tango+ under the lowest
driving condition. By increasing the material stiffness, the
sensitivity also drops monotonically, in which the trend is
aligned with the FE simulation result and mathematical

FIG. 6. Selected sensitivity results from the FEM study. (a) Result of the sensor made from Tango+ under 22 kPa driving
pressure, from state 0, I to II. The deformation, the von Mises stress on the surface, and the contact pressure are shown. (b,
c) Internal pressure and force data for all sensors made from different materials at the driving pressure of 22 kPa. (d–f) The
results of sensor response DP at different applied forces DF are shown in (d–f) for membrane materials of Tango+, 40-DM, and
60-DM, respectively. (g) The overall sensitivity changes of the soft sensors made from different materials with increased driving
pressure. The full set results for all materials can be found in Supplementary Figure S4. Color images are available online.
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model. It can be noticed that experimental and FEM simu-
lation results show different absolute values in sensitivity
with an average error of 37.94% at the driving pressure of
0 kPa and an average error of 37.96% at the driving pressure
of 22 kPa. Sensor made of 70-DM shows the smallest dif-
ference of the results with an average error of 3.81% between
the driving pressure of 0 to 22 kPa. Sensor made of 95-DM
shows the largest error among all the samples.

As anticipated, this difference results from the specific
characterization of the material sample. The material values

are obtained from literature, and it is known that there can be
differences between different samples of the same material.
In addition, the experimental characterization may also ex-
perience factors that are idealized in the FEM simulation, for
instance, the friction during the indentation. It also needs to
be noted that although the value of the sensitivity from the
theoretical model is not as accurate as the experimental and
FEM result, a similar trend can still be observed. The dif-
ference presumably results from the idealized modeling of
the soft membrane.

FIG. 7. (a) Theoretical result of the sensor sensitivity change with increased driving pressure. A zoom view of the
experimental tested low-pressure (<22 kPa) region is shown. Part of the curve shows two sensitivity values due to the
existence of material ‘‘snap bulking.’’ During inflation, the membrane will continue to increase its volume after the max-
imum pressure is reached, yet with reduced internal pressure. (b) Linearity of the sensor response with DP and DF is
represented with R squared value at each driving pressure. (c–e) Selected experimental sensor response with the three trials
of repetition on identical sensor samples for sensor made from Tango+, 40-DM, and 60-DM. A linear model is used to fit the
sensor response. (f) The overall sensitivity changes of the soft sensors made from different materials with increased driving
pressure. Standard deviation error shown for repeated tests on three identical samples. Average STD for Tango+ and 40–95
DM are 0.0051, 0.0035, 0.0022, 0.0035, 0.0138, 0.0109, 0.0108, respectively. The average STD for all sensors is 0.0071.
The full set results for all materials can be found in Supplementary Figure S5. Color images are available online.
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Overall, for tactile sensors that were fabricated by a softer
material (Tango+, 40-DM), the sensitivity drops when the
internal driving pressure increases. However, for tactile
sensors fabricated by stiffer material such as 85-DM and
95-DM, the sensitivity increases with the increase of internal
driving pressure. This is due to the fact that the material is so
stiff that the increase of sensor stiffness caused by an increase
of internal pressure is too small compared to the material
stiffness. Thus, the increase of stiffness can be neglected
unless the sensor is pressurized to a much higher region.

Without the contribution of material stiffness, the sensor is
more sensitive at higher pressurized conditions. By contrast,
the drop of sensitivity at higher pressurized conditions for
soft sensors caused by the increase of sensor stiffness (less
strain deformation for the same amount of stress) compen-

sates this increase of sensitivity caused by an increase of
internal driving pressure. The two phenomena fully com-
pensate each other for sensor fabricates by 70-DM, where a
flat line of sensitivity can be observed in Figure 7f for the
specific sensor. This behavior is in alignment with the FEM
simulation in Figure 6g. Figure 7j also included the standard
deviation of the sensitivity in three trials of characterization,
where excellent repeatability can be observed (average std
<0.008).

Saturation, sensing range, and hysteresis

The experimental results in Figure 8 show the sensor
response under repeated loading conditions upon satura-
tion with two selected driving pressures (0 and 12 kPa). The

a b c d

FIG. 8. Selected result of continuous loading tests. The result of sensors made from Tango+, 40-DM, and 60-DM is shown
in (a–c), respectively. All sensors are tested in three trials with the driving pressure of 0 and 12 kPa. Sensors are tested upon
saturation during the test. (d) Normalized hysteresis. The full set results for all materials can be found in Supplementary
Figure S6. Color images are available online.

FIG. 9. (a) The online tunable stiffness of the sensor is tested by detecting the texture of a multilayer lattice structure. The
sensor (fabricated with Tango+) is being inflated to two states during the tactile exploration. The driving pressure p = 0 kPa
for the soft state. The driving pressure p = 22 kPa for the stiff state. The sensor is first applied to the structure with the normal
force of 0.5 N for both states and then moved with a constant speed of 4 mm/s to detect the texture in the multilayer lattice
structure. PTFE lubricant is applied to the sensor surface to reduce friction. The multilayer lattice structure (3D printed with
J735; Stratasys Ltd.) is made of two materials. The dark-region material (Agilus30 is a soft and rubber-like material with a
quoted tensile strength of 2.1–2.6 MPa and Shore hardness of 30 A, Stratasys Ltd.) and the light-region material (Vero is a
rigid plastic-like material with a quoted tensile strength of 50–65 MPa and a Shore hardness of 83–86D). The distance of the
higher frequency surface pattern is around 3 mm. The distance of the lower frequency buried pattern is around 6 mm.
Considering the probing speed of 4 mm/s, the computed baseline frequency for the lower frequency pattern is around
0.75 Hz, and the computed baseline frequency for the lower frequency pattern is around 1.5 Hz. (b) The internal pressure
signal during the detection at its soft state with 0 kPa driving pressure (signal recorded at 10 kHz). (d) The internal pressure
signal during the detection at its stiff state with 22 kPa driving pressure (signal recorded at 10 kHz). (c) The result of the
continuous wavelet transform of the soft state sensor signal. A sharper detection of the higher frequency surface structure is
found around 1.5 Hz. (e) The result of the continuous wavelet transform of the stiff state sensor signal (analytic Morse
wavelet). A sharper detection of the lower frequency buried structure is found around 0.75 Hz. Both stiffer patterns 1 and 2
are detected with a sharper detection of pattern 2. Color images are available online.
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sensing range increased with the increase of driving pressure.
This effectively solved the issue that many soft sensors are
only sensitive at a low-force region while getting easily sat-
urated when the force increases.

In addition, the sensors made from Tango+, 40-DM, 50-
DM, 60-DM, and 70-DM exhibit neglected hysteresis (<6%).
The hysteresis is considerably low compared to many piezo-
resistive,26 capacitive3 sensors and sensors made of conductive
rubber27 reported from literature.1 Together with the high-
frequency sampling rate (10 kHz), the sensor shows good
potential in dynamic interaction. Indeed, the sensor hysteresis
increases with the increase of material stiffness. The hyster-
esis for the stiff sensors made from 85-DM and 95-DM is still
considerably low (<14%) compared to conductive polymer-
based soft sensors. For Full results see Supplementary Data F.

Online Tunable Stiffness in Soft Texture Detection

To demonstrate the advantage of tuning the sensor stiffness
during tactile exploration, a soft sensor (Tango+) is used to
detect the texture of a multilayer lattice structure. The ex-
periment is performed with the same setup introduced in
Supplementary Data C. Figure 9a shows the experimental
protocol with the multilayer lattice structure being examined.
The sensor is first inflated up to the defined driving pressure
(0 kPa as the soft state and 22 kPa as the stiff state) and then
performs an indentation with the normal force equal to 0.5 N.
The texture is then detected by probing the lattice structure
with the sensor at a constant speed of 4 mm/s.

The internal pressure signal during the probing is shown in
Figure 9b and d. By analyzing the sensor response in the
frequency domain with a continuous wavelet transform, the
result shows a significant change for the same sensor at its
soft and stiff state (Fig. 9c, e). Although the applied force is
the same for both states, the sensor at soft state shows a
sharper distribution in detecting the higher frequency surface
texture, while the sensor at stiff state shows a better perfor-
mance in detecting the lower frequency texture. Figure 9e
shows a clear distribution of both regions of buried texture
with a sharper detection of the stiffer pattern 2 since it is
closer to the surface. This experiment demonstrates the use of
online sensor stiffness tuning in better detecting various
features compared to sensors with only fixed characteristics.

Conclusions

In this article, we show that tunable stiffness soft sensors
help to estimate task-relevant states while filtering others.
Pneumatic-based soft sensing with elastomeric materials is
promising due to the low cost of pressure sensors, compact
size, and ease of integration in soft robotic systems. Con-
trolling the mediating fluid of such a sensor allows it to favor
its sensing characteristics to adapt to the environment as an
online parameter. If a soft sensor is only implemented with a
fixed sensitivity and mechanical property, multiple sensors
with different sensing characteristics are commonly needed
to detect different features. For instance, Interlink’s commer-
cial tactile sensors are developed with different sensing
ranges (0.2 to 20 N, 0.3 N to 50 N, and 0.5 N to 150 N).
Creating tunable contact dynamics in specific tasks also re-
quires the assembly of filters to a fix-property sensor.

Indeed, the proposed sensor can be designed in many
shapes and dimensions. We choose to test the sensor by

fabricating it in the hemispherical shape for the purpose
of ease on generalization, modeling, and characterization
(demonstrated in the Supplementary Video S1). A theoretical
model with membrane assumption, FEM with neo-Hookean
solid mechanics simulation, and experimental characteriza-
tion all validate the feasibility to tune the sensor mechanical
property and sensing characteristics with the combination of
online and offline parameters.

This study opens up new opportunities to integrate 3D
printed soft sensors for active perception. In contrast to pas-
sively relying on the static tactile information from sensors that
have large variability during soft interaction, the new direction
of active perception can actively decode the tactile information
by tuning its sensitivity and specificity with a tunable physical
reservoir that filters the signal. In future studies, we will focus
on the application of active sensing with the tunable stiffness
soft sensors in stiffness discrimination, texture recognition,
and designing the soft sensors in more diverse geometries to be
integrated with other soft robotic systems.
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