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Abstract: This paper focuses on the so-called “flange effect” in unreinforced masonry buildings when
the connection among walls is good, thus forming a 3D assembly of intersecting piers (with L-, C-,
T-, or I-shaped cross-sections). Given the direction of the horizontal seismic action, the presence of
such flanges (the piers loaded out-of-plane) can influence the response of the in-plane loaded pier
(the web) in terms of failure modes, maximum strength, and displacement capacity. Specific rules
are proposed in codes to evaluate the effective width of the flange, for the in-plane verification of
a single masonry wall. However, in the case of 3D equivalent frame (EF) modeling of the whole
building, all the intersecting piers should be considered entirely, to model the response in both the
orthogonal directions as well as the torsional behavior, but this may lead to overestimating the flange
effect if a perfect connection is assumed. This paper investigates the capability of simulating the
actual behavior in EF models by introducing an elastic shear connection at the intersection between
two piers using an “equivalent beam”, coupling the nodes at the top of piers. A practice-oriented
analytical formulation is proposed to calibrate such a flange effect on the basis of the geometric
features and material properties of the web and the flange. Its reliability is tested at the scale of
simple 3D assemblies and entire buildings as well. Finite element parametric analyses on masonry
panels with symmetrical I- and T-shaped cross-sections have been performed to investigate the axial
load redistribution between the flanges and the web and the consequent repercussion on the overall
performance of the web. The results have proven that, after a calibration of the shear connection, the
variation of axial force between the web and the flanges is correctly reproduced and the strength
criteria for 2D panels provide reliable results. Finally, in the conclusions, some practical hints for
simulating an imperfect wall-to-wall connection are also provided, since this case is relevant in
historic masonry buildings, which are characterized by different masonry types, transformations
over time, and already-cracked conditions.

Keywords: flange effect; masonry buildings; equivalent frame model; seismic response

1. Introduction

The modeling of existing unreinforced masonry (URM) buildings addressed to seismic
assessment is affected by many uncertainties. Those ascribable to aleatory variables (e.g.,
mechanical parameters, as discussed in [1]) are the ones most commonly included, but
epistemic uncertainties play a crucial role as well (see [2–5]). Examples of epistemic
uncertainties for URM buildings are the stiffness of diaphragms and their connection to
masonry walls, the effectiveness of the wall-to-wall connection, the actual efficiency of
structural aseismic devices such as tie-rods, etc. Although the accurate knowledge of the
building under examination constitutes the first essential requisite to properly address the
modeling choices [6,7], the capability of models to simulate the large variety of structural
details and configurations that may be observed in any single existing building is likewise
crucial to correctly transfer these data into numerical simulations.

Recently, [8] provided a comprehensive review of the critical aspects of the nonlinear
modeling of URM structures, covering various modeling strategies (i.e., equivalent frame
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(EF) approaches and 2D and 3D finite element (FE) procedures based on continuous,
discrete, and micro-mechanical approaches, as also classified in [9]) and various aspects
(i.e., in-plane and out-of-plane responses of masonry, the wall-to-wall connection, the
diaphragm’s role).

Among the latter ones, and particularly in the case of EF models, which this paper
focuses on, the modeling capability of properly accounting for the effectiveness of the
wall-to-wall connection emerged as one of the most relevant requisites. In fact, if the
connection between walls is good, a possible redistribution of forces among intersecting
piers may occur, generating the so-called “flange effect” (i.e., forming piers with L-, C-,
T-, or I-shaped cross-sections). This effect potentially affects both the in-plane and the
out-of-plane strength of URM walls, since both depend on the axial load, but this paper
focuses only on the repercussions on their in-plane response.

Various experimental campaigns conducted both at the scale of single masonry
panels [10–15] and at the structural level [16–19] highlighted potential issues associated
with the “flange effect”. In addition, various numerical investigations based on refined
FE models highlighted the relevance of the topic [20,21]. However, these works have
investigated the issue more at the scale of single components than from the perspective of
systematically assessing the repercussions at a global scale or for deriving simplified mod-
eling strategies to be implemented in EF models, as instead is the main goal of this paper.

One relevant outcome is that, especially in the presence of big flanges, it is not correct to
consider all the width as effective. Many contributions are present in the literature [22–24] that
are addressed in determining the effective flange width in shear walls made by reinforced
concrete and reinforced masonry, while very few are the ones focused on URM buildings.
In [25], a simplified expression has been proposed that aims to assess the compressive
length in the presence of flanged sections. In [26], a simple geometric approach based
on the “rule of the 45◦” has been outlined for the identification of the effective flange
width in URM walls. Instead, in [27], empirical rules have been proposed that establish
the effective width as “N” times the thickness of the web (s in Figure 1a), where the value
of N is differentiated as a function of the effectiveness of the wall-to-wall connection (if
poor, average, or good) and the position of the piers connected (if at a corner—leading
to an L-section shape—or at an internal intersection—leading to a T-section shape) (see
Figure 1a). Furthermore, indications are provided by the codes [28,29], which substantially
depend on the geometry of the interacting walls. Figure 1b illustrates those proposed in
Eurocode 6 [28] and adopted as a reference in this paper for the applications illustrated in
Sections 4 and 5. In particular, according to such criteria, the length of any interacting wall
that may be considered to act as a flange is the thickness of the shear wall plus, on each
side of it, where appropriate, the lesser of the following:

(i) htot/5, where htot is the overall height of the shear wall;
(ii) Half the distance between the shear walls (when connected by the intersecting wall), ls;
(iii) The distance to the end of the wall;
(iv) Half the clear height (h);
(v) Six times the thickness of the intersecting wall, t.

The numerical simulations available in the literature [4,5,30] confirmed that the adop-
tion of different approaches for modeling orthogonal walls in the EF models (i.e., perfect
coupling or total decoupling between them) may produce significant differences in results,
such as causing even different outcomes of the design/assessment; these differences are
mainly related to those consequent into the pushover curves generated by nonlinear static
analyses to interpret the global response of a 3D building. According to what has been
recently reviewed by [8] (where further details are provided), Figure 2 illustrates the al-
ternative modeling options commonly adopted in EF models to simulate the connection
among intersecting piers:

- Case (a)—the perfect kinematic coupling, by connecting the two piers to the same
node, thanks to a rigid offset (the result is a condensation of the total number of
degrees of freedom);
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- Case (b)—the use of a rigid link;
- Cases (c) and (d)—the adoption of “equivalent elastic beams”, which allow different

degrees of connection to be simulated;
- Cases (e) and (f)—the stiffness of the in-plane loaded pier is perfectly connected to an

orthogonal pier with an effective width, which is assumed to be the collaborating part
of the flange [27]; depending on the direction of loading, the “effective flange width”
considered collaborating with the “web” of the composite section may vary (as shown
in Figure 2, cases (e) for a shear force in the y-direction and (f) for the x-direction);

- Case (g)—the connection between the orthogonal walls is modeled through zero-
length elements; this is the approach adopted in the equivalent frame model proposed
by [31,32] and implemented in OpenSees [33].
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Among these alternative strategies, options (c) and (d) illustrated in Figure 2 appear
to be an effective and practice-oriented approach to managing this epistemic uncertainty,
because all piers are included in the EF model with the total size and the partial contribution
to the flange effect is not modeled by considering an effective width but by assuming
an elastic shear connection between the intersecting piers, through an equivalent beam.
However, there are no specific indications in the literature about how to properly calibrate
the stiffness of these beams, accounting for the geometry and materials of collaborating
masonry portions, nor whether this approach allows for proper reproductions of both the
stiffness and strength of the 3D configuration. In [5,30], some practical applications of
calibration are reported with the aim of defining the following: firstly, an “upper bound
value” of the stiffness of the equivalent beams able to reproduce the same solution obtained
in the case of perfect coupling; secondly, a “lower bound value” corresponding to the
case of fully decoupled walls. Once these limits values are defined, a sensitivity analysis
may be performed to quantify the influence of various levels of effectiveness of the wall-



Buildings 2023, 13, 462 4 of 28

to-wall connection on pushover curves’ results. In [5], it has been also proven that, if
consistent hypotheses are adopted, different software packages and alternative options
lead to analogous results.
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Such an approach presupposes that the strength verification of piers may still refer to
the rectangular section responding in-plane (a) by considering the influence of the flange
only for the computation of the normal stress redistribution. Moreover, a systematic con-
sideration of the effective width of flanges depending on their dimensions is not included
(b) and, in most cases, the full coupling is assumed by default options of the software pack-
age by considering that all of the flange may interact, regardless of its actual dimension;
this may produce an overestimation of the flange effect, since it is unrealistic to consider all
the width as effective, especially if it is significant. Indeed, hypotheses (a) and (b) are still
debated in the literature. For example, in [26] an analytical model to evaluate the in-plane
response of URM piers with single-flange and fixed-free conditions has been formulated.
According to this proposal, a specific model—based on a proper modification of that called
the “effective pier model”—is developed to investigate the effects of flanges on the lateral
strength of a non-rectangular section URM pier. Through this “modified” effective pier
model, the maximum strength is computed in the case of the cantilever pier on the basis of
four primary failure modes, namely rocking, bed-joint sliding, toe crushing, and diagonal
tension. This model was successively revised by [13] considering the case of piers with
flanges on both ends.

Within this general context, the goal of this paper is twofold. Firstly, the research
question on the suitability of using the in-plane strength criteria proposed in the literature
for piers with a rectangular section even in the presence of flanges is discussed (Section 3).
To this aim, the results of nonlinear finite element analyses of simple systems are used as
a reference (Section 2). Secondly, a practice-oriented analytical formulation is proposed
to assess the stiffness of the equivalent beam to be introduced for reproducing the flange
effect (Section 4). Finally, the effectiveness of such a formulation is tested by using both
simple systems (Section 5), characterized by piers with T- or I-shaped cross-sections and
complex 3D structures inspired by real URM existing buildings (Section 6). In all these
cases, nonlinear analyses are made by adopting equivalent frame models developed by the
Tremuri software package version 2.2.20 [34].
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2. Examined Configurations and Reference Solutions by Finite Element Modeling

The examined case studies (Figure 3) are represented by three I- and T-shaped sections,
hereinafter referred to as I-1, I-2, I-3, T-1, T-2, and T-3.
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Figure 3. Case study structures: I- and T-shaped flanged sections with varying lengths of the flange
(in meters).

The web panel always has the same geometry while the dimension of the flanges is
progressively increased passing from I-1 to I-3. As a consequence, the resulting sections are
characterized by different relative ratios of axial stiffness and flexural stiffness between the
flanges and the web.

All the introduced case studies were modeled using both of the following:

- In ABAQUS, by using the Concrete Damage Plasticity (CDP) model [35] and fully
integrated (2 × 2 × 2 integration points) 8-node linear brick elements;

- In Tremuri [34], by using the multilinear constitutive law for masonry panels proposed
by [36] and recently validated by simulating the actual response of complex buildings
in [37–39].

The CDP model is an isotropic model that uses concepts of damaged elasticity in
combination with tensile and compressive plasticity. The uniaxial stress–strain curves in
tension and compression represent the main input of the constitutive law (which depends
on the variables summarized in Table 1) and two distinct damage variables in tension (dt)
and compression (dc) are introduced. Although the model was originally developed for
concrete and isotropic quasi-brittle materials, since then it has been successfully used also
in many applications addressing the analysis of masonry structures [40–43].
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Table 1. Values of the analyzed compression levels.

(σ/fc)1 (σ/fc)2 (σ/fc)3 (σ/fc)4 (σ/fc)5 (σ/fc)6 (σ/fc)7
[%]

Cantilever - 1.8 3.4 5.0 8.3 14.7 24.4
Fixed–fixed 0.9 1.8 3.4 5.0 8.3 14.7 24.4

σ1 σ2 σ3 σ4 σ5 σ6 σ7
[N/mm2]

0.05 0.1 0.2 0.3 0.5 0.9 1.5

As highlighted in [44] and [8], a crucial point in using finite element models—especially
if used as a reference for a consistent comparison with other modeling strategies such as the
EF models—is the proper calibration of the parameters on which the adopted constitutive law
is based. In this paper, the calibration of parameters is based on the procedure outlined by
specific steps in [8] and in-depth exemplified in [45]. The calibration is made at the scale of
single panels characterized by a rectangular cross-section (panel 1, 1.12 × 0.16 × 1.35 m3 and
panel 2, 2.66 × 0.16 × 1.35 m3) and by assuming as “target behavior” for the calibration the
one predicted by simplified code-based strength criteria available in the literature [46,47] to
interpret the main failure modes that are expected to occur in masonry piers. The latter
are the ones usually implemented in the EF model that directly work at the panel scale. In
particular, the following strength criteria have been assumed as a reference in this research:
the one proposed by [48] for interpreting the diagonal shear cracking failure mode; the
one adopted in the Italian Structural Code [49] for interpreting the flexural failure mode.
These criteria are illustrated in Figure 4 together with their analytical expressions. Then, the
calibration procedure presupposes a comparison of the response of the pier simulated by
the FE model not only in terms of strength but also in terms of the elastic stiffness, post-peak
behavior, and displacement capacity estimated for different values of the applied axial load.
Interested readers are invited to refer to [45] for further details, while Figure 5 summarizes
the values herein adopted as resulting from such a calibration process. Moreover, in this
phase, a set of preliminary analyses aimed at assessing the influence of the mesh dimension
on the convergence process has also been performed. It led to the adoption of a geometry
of the brick elements approximatively equal to 10 × 10 × 12.5 cm, which provides almost
the same results in terms of base shear-displacement curves and occurred damage of a
more refined mesh, guaranteeing at the same time a higher computational efficiency.
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Figure 5. Uniaxial behavior for the compressive and tensile regimes determined through the cali-
bration for the CDP model and summary of adopted parameters (where ft—tensile strength of the
material and fch—uniaxial compressive stress corresponding to the point of initial yield; εcm—value
of uniaxial compressive strain corresponding to the reaching of the maximum strength; εcu—value of
the uniaxial compressive strain corresponding to the end of the softening branch).

Moreover, Figure 6 shows the outcome of such a calibration for the two panels, by
referring to both configurations of cantilever and fixed–fixed end rotation and varying the
axial load applied on the top of piers. The results show a very good agreement between
the numerical simulations carried out through the FE and EF models, demonstrating the
capability of the CDP model to correctly reproduce the failure domain of URM piers
without flanges.
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Once the calibration process was completed, the same parameters were adopted for
the numerical simulation of the simple schemes in Figure 3. Moreover, for them, both the
cantilever and the fixed–fixed end rotation configurations have been analyzed. Lateral
load monotonic analyses were performed under the assumption of control displacement
and by considering different increasing compression levels σ/fc. The applied values are
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reported in Table 1, in particular, in the case of the cantilever boundary condition, six values
((σ/fc)i, i = 1, . . . , 6) were explored; for the fixed–fixed scheme, a further value has been
considered to better investigate the region of the failure domain associated with flexural
failure. The vertical load was always applied only on the web; consequently, the flanges
bear just their weight.

3. Preliminary Analyses Made by the FE Models to Address the Legitimacy of Using
the in-Plane Strength Criteria for Piers with a Rectangular Cross-Section

This section debates the legitimacy of using the in-plane strength criteria proposed in
the literature for piers with a rectangular section.

To this aim, after the execution of the lateral load FE analyses on all configurations
introduced in Section 2, (see also [50] for some preliminary results on I-shaped systems),
the following entities were determined:

• The maximum total base shear (Vy,tot), as the sum of the reaction forces at the base of
the whole section (i.e., including flanges);

• The maximum base shear (Vy,W), as the sum of the reaction forces associated only with
the web panel.

Figure 7 illustrates the comparison between the failure domain of the web panel
and the values of Vy,tot (black dots) and Vy,W (white dots), respectively, as estimated by
the performed FE analyses. The failure domain is defined through the strength criteria
illustrated in Figure 4.

The values of Vy,tot and Vy,W represented in Figure 7 correspond to the axial load
value Napp evaluated as the sum of the axial load applied at the top section and half the
web weight. This is equivalent to assume that the vertical load applied at the top section
remains on the web panel without any redistribution between the web and the flanges.

From these graphs, the following emerges:

• The distance in the vertical direction between each black dot and the corresponding
white dot quantifies the contribution to the global strength given by the flanges. This
contribution is not always modeled in models based on the EF approach; therefore,
in this way, the associated error may be quantified. It comes out that, by accounting
also the contribution of the flanges, the maximum base shear increases, on average, by
15%; such a result is, in percentage, substantially similar for both the static schemes
and the different applied axial loads that have been investigated. However, it should
be highlighted that in the case of flanges with higher width (which is plausible,
for example, in the presence of old masonry buildings) this contribution may be
more significant. As also discussed in [5], the contribution of panels loaded “out-of-
plane” may be neglected for walls with thicknesses lower than 0.4 m, by providing
anyhow conservative results. Conversely, for greater thicknesses, such contribution
progressively becomes more significant; thus, neglecting it could lead to appreciable
variations in the pushover curve, in terms of the overall base shear capacity, initial
stiffness, and also ultimate displacement capacity.

• White dots correspond to the values of Vy,W, which are those that have to be compared
with the failure domain of the web panel represented in the graphs. In particular, it
is possible to observe that, in the initial part of the domain, they are higher than the
predictions of the flexural failure criterion. That especially happens for the I-2 and
I-3 configurations (where the flange is longer); conversely, it is less significant when
the flange is rather short (I-1). This phenomenon occurs in both the considered static
schemes, even if it is more pronounced in the presence of the cantilever boundary
condition, since in this case the part of the domain with a prevailing flexural response
is more extended.

• By examining the part of the domain mainly affected by the shear failure, the Vy,W
values are almost in agreement with the predictions of the shear failure criterion in the
case of the fixed–fixed static scheme, while they are always lower when considering
the cantilever boundary condition.
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In Figure 8, a different type of representation is proposed by way of example for the
case of the cantilever static scheme. More specifically, the values of Vy,W (white dots) are
represented in correspondence with the actual axial load acting after the application of the
vertical loads in the mid-section of the web panel (NW,eff). NW,eff was computed from the FE
model by integrating the vertical stresses on the mid-cross-section of the web. Conversely,
the values of Vy,tot (black dots) are still represented as in the previous graph and, therefore,
in correspondence of Napp. This explains the shifting between the black and the white dots,
which refer to the same analysis.

In this way, by examining the white dots, it is possible to see the actual axial load
and the actual maximum base shear referring to the web panel. That is of main interest in
the view of an EF approach where pier panels are modeled as in-plane elements and the
behavior of a flanged section addresses the correct estimate of the shear and the normal
force acting on the in-plane loaded panel.

The results in Figure 8 highlight the following:

• The distance in the horizontal direction between the white and the black dot, for a
fixed analysis, provides a measure of the difference between the actual axial load
acting in the mid-section of the web (NW,eff) and the axial load that would act in this
section if no redistribution between the web and the flanges occurred (NW,app). Since
this difference is not negligible, this result suggests that the axial load applied at the
top section of the web redistributes, moving in part to the two flanges. This effect is
visible for all the configurations, and thus for all the examined length of the flange;
however, it is slightly higher when considering I-2 and I-3 than in the case in which
the flange is shorter (I-1);



Buildings 2023, 13, 462 10 of 28

• By looking at the dots representing Vy,W, which are now referred to the correct value
of axial load acting on the web panel, it may be observed that they correctly reproduce,
in all the three examined configurations, the strength domain of the web panel. This is
particularly true when the highest values of applied vertical load are examined (i.e.,
where, according to the strength domain, the shear failure is expected);

• The discrepancies in the initial part of the domain already observed in the previous
graphs are still present and even emphasized. For low applied axial loads, the values
of Vy,W are higher than what was expected; that is particularly evident for the configu-
rations where the flange is longer (I-2 and I-3). In both these cases, they are closest to
the shear failure criterion instead of the flexural one.
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of NW,eff.

This last observation can be explained by considering that the presence of the flange
tends to inhibit the flexural failure of the web panel, avoiding the associated rocking
mechanism. Consequently, when applying low axial loads, the web is interested in the
development of shear cracks rather than pure flexural failures, which is interested only
by the base section partialization. This especially happens when the length of the flange
is higher (I-2, I-3); in fact, in these cases, thanks to its not negligible weight compared to
that of the web, the flange provides a more significant contribution to counterbalance the
overturning of the web panel. Conversely, when the length of the flange is significantly
lower than that of the web (I-1), the inhibition of the flexural failure does not happen. That
is confirmed by Figure 8, where the values of Vy,W (white dots) in the initial part of the
domain are substantially closer to the flexural failure criterion; the slight overestimation is
justified by the fact that the constitutive model employed in the FE analyses also includes
the tensile strength of the material, while the strength criterion adopted for the flexural
failure neglects this contribution.

These observations are confirmed by the damage pattern detected in I-1, I-2, and I-3
(cantilever static scheme), which is illustrated in Figure 9 for two different values of applied
axial load ((σ/fc)2 and (σ/fc)4). The results obtained for I-1 when applying (σ/fc)2 point out
a pure flexural failure occurs, with the partialization of almost all the base section.
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This is consistent with the fact that, as already observed, the associated value of Vy,W
is substantially close to the predictions of the flexural strength criterion (Figure 8). Moving
to I-2 and I-3, it is worth noting that, even for the lowest applied vertical load ((σ/fc)2),
which corresponds to the very beginning of the failure domain, the web panels are already
interested in the development of shear cracks, and a pure flexural failure does not occur;
this is due to the flange subjected to tension that minimizes the rocking phenomenon and
the partialization of the base section of the web. For a higher level of applied axial load
((σ/fc)4), in I-1 shear cracks start to develop, but the partialization of the base section is still
evident and still interests quite a significant part of the base section; conversely, in I-2 and
I-3 an almost vertical crack develops starting from the center of the panel.

The results examined in this section stress that, by assuming to the ability to effectively
capture the actual axial load acting in the web panel, the strength criteria currently adopted
in the EF models for the in-plane loaded panel can almost correctly predict its maximum
strength. Therefore, the main issue to be addressed is the actual EF model’s capability of
evaluating the actual vertical load acting on the web panel after the redistribution that
occurs between it and the flanges. That is important and of primary relevance after the
application of the dead loads and, possibly, also during the analysis. The second part of
this paper is addressed to deepen this issue.

Finally, the results suggest that, when the flange is sufficiently long compared to
the in-plane loaded panel, the flexural criterion is likely to not develop and only the one
describing the shear failure should be used, also for the lower values of the applied vertical
load. A more in-depth investigation of this aspect is out of the scope of this paper, but
these results outline useful directions for orienting experimental tests in the future. As a
confirmation of that, other works from the literature confirm this result [14].
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4. Proposal of the Practice-Oriented Analytical Formulation

This section proposes a practice-oriented analytical formulation to calibrate the equiv-
alent stiffness of the shear connection between two orthogonal piers, simulated by beams in
an equivalent frame model. This shear connection depends on the relative size and position
of the two piers, and it is not rigid even in the case of a complete masonry interlocking,
since the complex 3D assembly of the piers should not behave as a single beam with the
conservation of a plane section. This shear connection may be obtained by the equivalent
beams introduced in Figure 2 (cases (c) and (d)).

In the case of the minimum assembly constituted by two orthogonal piers (character-
ized by width—l - and thickness- t), depending on the horizontal load direction, one will
act as a web (the one mainly behaving in-plane) and the other as a flange. Figure 10 depicts
some possible configurations of connected piers, typical of piers at the intersection of exter-
nal and internal walls (case (a)), at the corner intersection (case (b)) or at the intersection of
two internal walls (case (c)). Of course, in the more general case, piers can be connected to
another wall at the other end. The problem also depends on the distance d between the
centroid of the web (pier that is loaded in-plane) and the middle plane of the flange. In the
following, the flange effect refers to the systems of Figure 10 loaded along the X direction.
If the direction Y is considered, a flange effect should be considered for cases (b) and (c), by
assuming d = dy and considering the flange and the web are exchanged.

Buildings 2023, 13, x FOR PEER REVIEW 13 of 29 
 

4. Proposal of the Practice-Oriented Analytical Formulation 
This section proposes a practice-oriented analytical formulation to calibrate the 

equivalent stiffness of the shear connection between two orthogonal piers, simulated by 
beams in an equivalent frame model. This shear connection depends on the relative size 
and position of the two piers, and it is not rigid even in the case of a complete masonry 
interlocking, since the complex 3D assembly of the piers should not behave as a single 
beam with the conservation of a plane section. This shear connection may be obtained by 
the equivalent beams introduced in Figure 2 (cases (c) and (d)). 

In the case of the minimum assembly constituted by two orthogonal piers (character-
ized by width—- l - and thickness- t), depending on the horizontal load direction, one will 
act as a web (the one mainly behaving in-plane) and the other as a flange. Figure 10 depicts 
some possible configurations of connected piers, typical of piers at the intersection of ex-
ternal and internal walls (case (a)), at the corner intersection (case (b)) or at the intersection 
of two internal walls (case (c)). Of course, in the more general case, piers can be connected 
to another wall at the other end. The problem also depends on the distance d between the 
centroid of the web (pier that is loaded in-plane) and the middle plane of the flange. In 
the following, the flange effect refers to the systems of Figure 10 loaded along the X direc-
tion. If the direction Y is considered, a flange effect should be considered for cases (b) and 
(c), by assuming d = dy and considering the flange and the web are exchanged. 

 
Figure 10. Possible configuration of connected piers: (a) intersection of external and internal walls; 
(b) corner intersection; (c) intersection of two internal walls. 

An analogy may be established between the overall flexural behavior of the 3D as-
sembly of two piers and the case of a composite beam, made by a beam coupled by a slab 
fixed by shear connectors. In the following, reference has been made to the formulation 
originally introduced by [51] to analyze the structural behavior of composite wood–con-
crete beams with flexible shear connectors. The problem was solved by imposing the equi-
librium and congruence equations to the composite section of Figure 11a, where the tim-
ber beam constitutes the original existing floor and the thin concrete slab is introduced as 
a strengthening solution. Figure 11b summarizes, from a kinematic and static point of 
view, the behavior of such a composite section. Under the hypothesis of linear elastic be-
havior, the differential equations may be expressed as a function of the classic three gen-
eralized displacements of the 2D beam, with the addition of the relative displacement δ 
between the timber and concrete sections. In [51], such an equation has been solved by 
assuming proper boundary conditions and obtaining a closed-form solution to design the 
steel shear connectors to be used to guarantee the proper coupling of the two parts. 

In the case of a pier with a flange, the question is to evaluate the property of the shear 
connection (shear stiffness of the beam to be implemented in the equivalent frame model) 
that can simulate the actual behavior of the 3D assembly of piers. An analogy is estab-
lished between such a timber–concrete composite section and the web–flange system 
made by interacting piers; in this case, δ is the relative vertical displacement between the 
two piers at their intersection, but it represents—as concentrated—the actual deformation 
of the web and flange piers, which do not maintain a plain section. 

Figure 10. Possible configuration of connected piers: (a) intersection of external and internal walls;
(b) corner intersection; (c) intersection of two internal walls.

An analogy may be established between the overall flexural behavior of the 3D assem-
bly of two piers and the case of a composite beam, made by a beam coupled by a slab fixed
by shear connectors. In the following, reference has been made to the formulation originally
introduced by [51] to analyze the structural behavior of composite wood–concrete beams
with flexible shear connectors. The problem was solved by imposing the equilibrium and
congruence equations to the composite section of Figure 11a, where the timber beam consti-
tutes the original existing floor and the thin concrete slab is introduced as a strengthening
solution. Figure 11b summarizes, from a kinematic and static point of view, the behavior of
such a composite section. Under the hypothesis of linear elastic behavior, the differential
equations may be expressed as a function of the classic three generalized displacements
of the 2D beam, with the addition of the relative displacement δ between the timber and
concrete sections. In [51], such an equation has been solved by assuming proper boundary
conditions and obtaining a closed-form solution to design the steel shear connectors to be
used to guarantee the proper coupling of the two parts.
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Figure 11. (a) Timber–concrete composite section studied in [51]; (b) kinematic and static variables
that regulate the system by referring to an infinitesimal length Dz of the beam.

In the case of a pier with a flange, the question is to evaluate the property of the shear
connection (shear stiffness of the beam to be implemented in the equivalent frame model)
that can simulate the actual behavior of the 3D assembly of piers. An analogy is established
between such a timber–concrete composite section and the web–flange system made by
interacting piers; in this case, δ is the relative vertical displacement between the two piers
at their intersection, but it represents—as concentrated—the actual deformation of the web
and flange piers, which do not maintain a plain section.

Let us introduce Kz, which expresses the stiffness of the “equivalent” shear connection
between the two piers, i.e., the stiffness affecting such a vertical relative displacement. By
changing such a stiffness, it is possible to pass from the condition of full coupling ( Kz → ∞ )
to the limit case of almost independent piers (Kz = 0). In general, the value of Kz depends
on the stiffness of the two piers, the web and the flange, and the distance from the latter
to the centroid of the web. Similarly to what was introduced in [51], the dimensionless
parameter ω is then introduced to regulate this transition and to account for the geometrical
and mechanical variables playing a role in the phenomenon:

ω =
Kzh2

EF AF

(1 + ζ)(EW JW + EF JF) + d2EF AF
EW JW + EF JF

=
Kzh2

EW AW

1 + ζ

ζ
+

12d2

l2
W

(
1 + EF JF

EW JW

)
 (1)

where h is the interstory height; AW and JW are the area and moment of inertia of the web
(tW lW and 1

12 tW l3
W , respectively); AF and JF the area and moment of inertia of the flange

(tFlF and 1
12 lFt3

F, respectively); EW and EF are the Young’s moduli of masonry characterizing
the two piers; d, as already introduced, is the distance between the centroid of the web and
the middle plane of the flange; and finally, ζ = EF AF

EW AW
is a dimensionless factor. Since the

thickness is usually limited—if compared to the width of piers whose flange effect may be
relevant (EF JF � EW JW)—and by considering that sometimes the out-of-plane stiffness is
neglected, the term EF JF/EW JW may be reasonably assumed to be equal to 0. Under this
specific assumption, it results in the following:

ω =
Kzh2

EW AW

(
1 + ζ

ζ
+

12d2

l2
W

)
(2)

Section 4 illustrates some parametric analyses carried out on simple systems to address
reference values to be adopted for ω.

In practical applications made by numerical models, such a shear stiffness is modeled
through the equivalent beam connected to the nodes at the top of the web and flange piers;
it simulates the interlocking spread along the overall interstory height h. According to the
beam theory, the shear stiffness of this beam may be expressed as follows:

Kzh =
5GW AB

6lB
(3)
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where lB and AB are the length and the transversal area of the equivalent beam, respectively.
The equivalent beam is assumed as made by the same material of the web (shear modulus GW,
Poisson coefficient νW). It is then possible to compute the area AB from Equations (1) or (2):

AB = lBω
12(1 + νW)AW

5h

(
1+ζ

ζ + 12d2

l2
W

(
1+ EF JF

EW JW

)
) ∼= lBω

12(1 + νW)AW

5h
(

1+ζ
ζ + 12d2

l2
W

) (4)

The value of AB thus depends on the following: the geometrical features of intersecting
piers; the distance between the nodes that the beam is connected to (which defines its length
lB); and, through the ω parameter, the degree of connection that has to be introduced in
order to consider that the 3D assembly does not behave as a single beam with a flange.

The moment of inertia of the equivalent beam must be very high to make the contri-
bution of the flexural deformability negligible. To this aim, the ratio between flexural and
shear stiffness should be assumed to be higher than 10 (ψ = 12EW JB

l2
B

5
6 GW AB

> 10):

JB > 0.3l2
B AB (5)

As mentioned in the Introduction, the equivalent frame modeling of masonry build-
ings usually assumes a rigid connection between piers at the intersection of masonry walls,
but this overestimates the global stiffness and determines an incorrect estimate of the
generalized forces in the two piers, with consequently a wrong evaluation of the failure
conditions. Therefore, it is necessary to provide a proper shear connection between the two
piers when the flange effect is expected to be relevant, that is, in the following cases:

(i) If the web (pier loaded in-plane) is characterized by large dimensions;
(ii) If the distance d is large (in cases (a) and (b) of Figure 10);
(iii) The flange area is “big” compared to that of the web.

For the evaluation of the proper shear stiffness of the equivalent beam, Equation (4)
provides the area, which depends on the geometry and material properties of the 3D
assembly, but it is necessary to assume the correct value of the dimensionless parameter ω.
In the following section, it is demonstrated, by a comparison between the results for FE
and EF models, that a constant reference value of ω may be assumed for all relevant cases.

It is worth noting that in most of the 3D assemblies of masonry piers the calibration of
the connecting equivalent beams should be evaluated in both directions, where the web
and the flange are exchanged. In the end, only one equivalent beam may be introduced, by
adopting as the shear stiffness the lower or the average between the values of Kz in the two
directions X and Y, evaluated by Equations (1) or (2).

5. Application of the Formulation to Simple Masonry Piers with Flanges

In the following, the results obtained on the I-shaped 3D assemblies introduced in
Section 2 are first examined. It is worth recalling that the FE numerical model simulates a
condition of good wall-to-wall connection, and all models refer to the cantilever scheme.

The comparison between the FE and EF models is carried out by adopting different
representations to investigate the axial load redistribution effects, namely, the following:

• Figure 12 shows the evolution of the axial load (N) on the three piers of the I-shaped
assemblies (I-1, I-2, and I-3), i.e., the web (in blue) and two flanges (in orange, the
compressed one, and in red, the one subjected to tension), versus the horizontal
displacement applied on the top of the system (dtop). The solid line refers to the
reference FE solution, while the various dotted lines illustrate the sensitivity of the
results to increasing values of ω (i.e., 1, 3, 5, and 100). The results are illustrated for
two of the examined compressive stress states (i.e., the ones induced by the axial loads
applied on the top of the web corresponding to an average stress σ equal to 0.2 and
0.5 MPa).



Buildings 2023, 13, 462 15 of 28

• Figure 13 depicts the percentage error of the axial force on the web computed by the
EF model just after the application of vertical loads (dtop = 0) versus the reference
value obtained by the FE model. This error is illustrated, for different values of ω, as a
function of the investigated average compressive stress.

• Figure 14, analogously to Figure 13, illustrates the percentage error in the estimation
of the axial force by also considering its variation until the attainment of the maximum
shear on the web panel. The error is estimated by considering the average value within
the range of horizontal top displacements from 0 up to 6.75 mm.
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This first set of results addresses the issue concerning the definition of the reference
value of ω associated with a good wall-to-wall condition and ability of reproducing the
most reliable redistribution of axial forces between the web and the two flanges.

Figure 13 highlights a not negligible effect of ω; thus, the calibration of the equivalent
beam may potentially significantly affect the results. It emerges that the reference value
of ω, which minimizes the error, just after the application of the vertical load, is 3. Values
higher than 10 and lower than 1 significantly alter the initial redistribution of axial forces
alternatively producing a strong underestimation (even higher than 40%) or overestimation
(up to 20%) of the axial load acting on the web.
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It has been verified that the value of ω = 100 exactly reproduces the condition of
perfect connection, illustrated in Figure 2 by cases (a) and (b). Indeed, in this case, the axial
load acting after the application of the dead loads in the web (NW,0) and the flanges (NF,0)
may be easily and analytically estimated as a function of the axial stiffness of each panel:

NF,0 = NTOT
AF

AW + 2AF
(6)

NW,0 = NTOT
AW

AW + 2AF
(7)

where NTOT is the total axial load acting at the base section (including the applied vertical
load and the total weight of the 3D assembly), AF is the area of the cross-section of one
flange and AW is the area of the cross-section of the web. Similarly, the bending moment
acting on one flange MF,i, considering the i-th step of the incremental analysis, may be
obtained as follows:

MF,i = Vih
JF

JW + 2JF
(8)

where Vih is the total bending moment (Vi is the base shear and h the height of the piers), JW
is the moment of inertia of the web panel, with respect to its centroid, and JF is the moment
of inertia of the flange (by considering only the transfer contribution). By considering that
MF,i can be expressed also as the product of the axial load variation ∆NF,i occurring in one
flange with respect to NF,0 multiplied by its distance with respect to the centroid of the
section (lW/2), it is possible to also make explicit the value of ∆NF,i and thus estimate the
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value NF,i of the vertical load acting on the two flanges of the I-shaped cross-section at the
i-th incremental step of the application of the horizontal load:

NF,i = NF,0 ± ∆NF,i = NF,0 ±
6lFVih

l2
W + 6lFlW

(9)

From Figure 12, it emerges that, regarding the transfer of axial forces, the error obtained
by considering ω equal to 100 is in particular very relevant from the web to the flange in
which the axial force is reduced by the application of the horizontal force. This effect is
more evident as the flange increases.

When considering the results referring to the compression level σ = 0.2 N/mm2

(Figure 12a), the redistribution of N between the web and the flange in compression is, for
all the examined case studies, higher than when applying a more significant axial load
(Figure 12b). For example, by examining what happens to I-1, it may be noted that, when
considering the lower compression level (σ = 0.2 N/mm2), the significant redistribution
between the web and the flange (approximatively occurring for dtop between 1.5 mm and
2.5 mm) is due to the partialization of the base section of the web panel, which produces
a consequent increment of the axial load in the compressed flange. After that, due to a
significant concentration of compression damage in the flange (crushing), the axial load
comes back to the web (dtop > 2.5 mm). On the contrary, when applying σ = 0.5 N/mm2,
since the rocking mechanism is no more activated, the axial load acting at the base section
of the web is almost constant during the analysis and the main redistribution occurs
between the two flanges. Such a transfer of actions, which occurs in the case of a low
compressive load being applied, is not captured by the EF model; therefore, for low values
of σ more significant percentage errors are founded, regardless of the assumed value of ω
(see Figure 14).

By summing up, the adoption of a rigid connection produces results in the redistri-
bution effects, which are still acceptable only when the dimension of the flange is limited
with respect to the dimension of the web (percentage error with respect to the reference
FE solution equal to almost 15%). However, when the dimension of the flange increases
with respect to the dimension of the web, this strategy leads to an overestimation of the
axial load acting on the flanges and, consequently, to an underestimation of the one acting
on the web: the percentage error of the EF approach with respect to the reference solution
increases up to 50%. This may imply repercussions appreciable also in the simulation of
the seismic response of complex systems as discussed in Section 6.

Figure 15 illustrates the base shear (VW) versus horizontal top displacement (dtop)
curve varying the examined I-shaped systems and the assumed values of ω; the base
shear only refers, for both FE and EF models, to the contribution of the web. This figure
aims to highlight the repercussions of the estimate of axial load on the strength capacity
of the in-plane loaded pier. In the graphs, the dotted orange lines are the equivalent
bilinear idealization of the pushover curve obtained by the FE model, just to also refer to a
representation more similar to the one provided by the EF model. This idealized curve has
been derived by evaluating the following: (i) the initial stiffness at a base shear equal to
0.7 times the maximum value; (ii) the equivalent yield base shear under the hypothesis of
imposing the equivalence of the areas under the original curve and the equivalent bilinear,
up to a displacement equal to the attainment of the ultimate drift of web (dtop = 6.75 mm).
As it is possible to observe, by using the value of ω equal to 3 or 5, the strength capacity
is also well captured, as a logical consequence of what is already discussed in Section 3.
Figure 16, similarly to Figures 13 and 14, illustrates the percentage error of the estimate
of the base shear provided by the EF model computed with respect to the maximum base
shear (a) or the equivalent yield base shear (b) of the FE model. Once again, the figure
highlights that the adoption of the above-mentioned values for ω allows for also reducing
the error in the estimate of the shear strength capacity. Please consider that in the case
of low values of the average compressive stress σ, i.e., where the error is still significant
regardless of the value adopted for ω, the inconsistency is due to the fact that in the EF
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model the strength capacity is estimated as the minimum between the flexural and shear
strength criterion while the results discussed in Section 2 suggest that the presence of the
flange may alter the occurrence of the pure flexural behavior.
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Finally, Figures 17 and 18 illustrate some results for the case of the T-shaped 3D
assemblies. The format adopted is analogous to Figures 12 and 13. The results substantially
confirm what was already discussed in the case of the I-shaped system, although for the
T-shaped one the influence on the ω choice appears relevant only on the initial axial force
estimate. Moreover, in this case, the reference value, which allows for the reproduction of
the redistribution of the FE model, is between 3 and 5.
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6. Application of the Formulation to Complex Systems

The strategy outlined in the previous sections has been implemented for the pushover
analysis of two complex buildings with the aim of exemplifying how the proposed value of
the parameter ω is appropriate for the calibration of the flange effect in EF numerical models
aimed to the seismic assessment of existing URM buildings. The case studies, namely the
Pizzoli’s town hall and the former courthouse of Fabriano (Figure 19), consist of two
structures instrumented by a permanent accelerometric monitoring system [52,53], which
were hit by the Central Italy 2016/17 earthquake. Very accurate data on the structural details
and the actual seismic response were available for both buildings, which are dominated by
a box-type behavior and characterized by a good wall-to-wall connection. The two-story
Pizzoli’s town hall is made by cut stone with running bands in solid bricks and floors made
by steel beams and hollow flat blocks with r.c. infill; moreover, r.c. ring beams are present
at both levels. The four-story former courthouse of Fabriano presents an irregular plan;
the walls are made of regular masonry of three different typologies (stone masonry, solid-
brick masonry, and stone masonry with an external brick face, named as M1/M2/M3 in
Figure 19), while the horizontal diaphragms are of four typologies, which mostly combine
H steel beams with various types of hollow brick elements and RC slabs. For both buildings,
EF numerical models were available, previously developed by the authors through the
Tremuri software [34].

Figure 20 illustrates the equivalent frame idealization of some walls of both numerical
models, where the equivalent beams connecting the piers with the flanges are also visible.
The masonry panels where the nonlinear behavior is concentrated are the elements in
orange (the piers, vertical elements) and green (the spandrels, horizontal masonry coupling
beams), while the cyan portions correspond to rigid nodes. Further information is available
in [39,54,55] for the Pizzoli’s town hall and in [38], for the former courthouse of Fabriano.
In particular, an in-depth investigation of the various aleatory and epistemic uncertainties,
which intrinsically may affect the numerical modeling and the validation of models against
the available experimental data (i.e., ambient vibration measurements and recordings of
real seismic events), has been carried out. Starting from these models, in this paper, the
shear connections between intersecting piers are estimated by adopting the analytical
approach presented in Section 3 and by verifying the sensitivity of achievable results to
different values of the parameter ω. Of course, once the proper modeling of the flange
effect is obtained, on the basis of the geometric and structural details of the 3D assemblies,
a further refinement of the model calibration would be necessary to improve the structural
dynamic identification, but this is out of the scopes of the paper.
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Figures 21 and 22 illustrate the sensitivity of the dynamic properties of numerical
models in terms of either error on the natural frequency estimate and Modal Assurance
Criterion (MAC, [56]), for the first five modes; for both comparisons, the target reference
consists of the data available from the ambient vibration measurements carried out by
the Department of Civil Protection once the monitoring system was installed and made
available in previous research [53]. It is worth recalling that values of MAC as close as
possible to 1 indicate a good match between experimental and numerical data. In particular,
the following values of ω have been investigated:

• The value 100, which has proven equivalent to the limit case of rigid link coupling
elements or full vertical coupling (in fact, it has been verified that achieved results
are analogous to this modeling option). This value may potentially be responsible for
overestimating the flange effect;

• The value of 5, which is the reference value proposed to be representative of a good
wall-to-wall connection, on the basis of the results discussed at Section 4;

• The value of 1, which is assumed as the first tentative value for the case of a poor
wall-to-wall connection;

• The value of 0.1, which has been proven equivalent to the limit case of the full decou-
pling of intersecting elements (in fact it has been verified that a further decrease does
not affect the results more).
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Figure 21. Errors on the estimate of natural frequencies of first five modes varying the ω value from
100 to 0.1: (a) Pizzoli’s town hall; (b) former Fabriano courthouse.

As already mentioned, the actual structural details of the two buildings justify the
adoption of a good wall-to-wall connection; thus, it is expected that the assumption of ω
equal to 5 is the more reliable for these case studies. As a confirmation of that, this value
is the one that minimizes the error and maximizes the MAC values. This is particularly
evident for the former courthouse of Fabriano, for which moving away from 5 makes the
results worsen significantly, both in terms not only of frequency errors but also of modal
shapes. The Pizzoli’s case study appears less sensitive to ω at least in the elastic range; that
emerges particularly from the check on modal shapes, which are almost insensitive to ω.

Figures 23 and 24 instead show the sensitivity to ω in the case of nonlinear static
analyses (pushover curves) carried out in X and Y directions, respectively, and by assuming
a horizontal load pattern proportional to masses. It may be observed how the base shear
strength capacity of Pizzoli’s case study is significantly affected by the degree of flange
connection. The amount of variation in the results depends also on the specific architectural
configuration of the buildings and on the role of piers mostly affected by the flange effect
in equilibrating the external forces. To better investigate this issue and by referring to the
Y direction, Figure 25 shows the results of the case studies of Fabriano’s (a) and Pizzoli’s
(b), respectively:
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• On the top, the variation on the axial force acting on the piers after the application of
vertical loads in the cases in which ω is equal to 100 (in red) or 0.1 (in blue) measured
with respect to the case of ω = 5;

• On the bottom, the rate of the horizontal forces equilibrated by each pier (computed in
correspondence of the maximum base shear of the pushover curve).
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The results of Figure 25 highlight how in the case of Pizzoli’s town hall the piers
mostly affected by the axial force redistribution induced by the flange effect are also those
carrying most of the shear forces.
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7. Conclusions

Firstly, the interpretation of the results obtained on simple flanged systems by the FE
approach allowed the demonstration that the failure domains employed for describing
the maximum strength of in-plane loaded panels are still effective even if reference is
made to the rectangular cross-section of the web. This is valid under the assumption to be
able to correctly capture the vertical load redistribution between the web and the flanges
and so to correctly estimate the axial load acting on the web panel. The results suggest
that further investigations on the reliability of strength domains are only necessary in the
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case of low values of axial load and significant dimensions of the flange, since in these
situations the rocking phenomenon in the web panel may be altered. In these cases, the
maximum strength detected in the web panel does not follow the failure criterion referring
to the flexural failure in the associated strength domain but is closer to the shear failure
criterion. This suggests that only the criterion for shear failure should be considered if a
compressed flange is present. However, this topic should be further investigated before a
robust proposal for practice-oriented applications.

The above-mentioned outcomes have suggested the possibility of modeling the flange
effect in EF models by connecting intersecting piers by an equivalent beam with a prop-
erly calibrated shear stiffness, to reproduce the correct vertical load redistribution and,
consequently, the shear strength.

A practice-oriented analytical formulation has been proposed to evaluate the stiffness
of the equivalent connecting beam, as a function of the geometric features of the web and
the flanges of the 3D assembly of masonry piers. An extended parametric analysis has been
performed to validate the effectiveness of the proposed formulation, through a comparison
with accurate nonlinear FE analyses of different 3D assemblies. The dimensionless ω
parameter is the key factor to correctly redistribute the vertical load, and the reference
value equal to 5 may be used in all cases.

It is worth noting that the proposed formulation is aimed to calibrate the contribution
of flanges connected to masonry panels (piers) that are in-plane loaded, in the case of a
good interlocking between the intersecting piers. A rigid connection would overestimate
the flange effect (when the flange is very big with respect to the web) while the proposed
elastic stiffness of the equivalent beam can account for the contribution provided by the
“so-called” effective width of the flange.

The sensitivity of the global response of masonry buildings to the quality of the
wall-to-wall connection was also investigated since, in old masonry buildings, a bad or
intermediate interlocking between intersecting piers is often present, since masonry walls
are often of different types (i) or made at different times (ii) or already cracked (iii). Typical
examples of (i) and (ii) consist of perimetral walls made of irregular masonry (e.g., by stone
blocks) and internal walls of regular masonry (e.g., made by solid or hollow bricks). Instead,
cracks typical of the case (iii) may be the consequence both of foundation settlements or
damage induced by seismic events (in some cases also of low–moderate entity). To model
this issue, the shear stiffness of the connecting equivalent beam should be reduced with
respect to that provided by the proposed formulation. This may be obtained by introducing
a second shear stiffness, in series with the one of Equation (3), or by properly reducing the
dimensionless parameter ω. The preliminary investigations made in this paper suggest the
adoption of a value equal to 1 for the case of intermediate–poor connections and 0.1 for
simulating the condition of perfect decoupling.

The results here obtained allow us to provide some useful directions that could be
considered in the EF models and towards which the future development of this research
will be addressed. Parametric analyses have been performed on piers with symmetrical
I-shaped cross-sections, but the piers included in a real masonry building may also have
C-, L-, and T-shaped cross-sections; therefore, these situations should also be investigated
to further confirm or extend these considerations.
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