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Abstract

In the last decade, we have faced the rise of mobile devices as a fundamental tool in our
everyday lives. At the time of writing, there are more than 4.2 billion active mobile users,
and 71% of them take advantage of the Android operating system. The functionalities of
smartphones are enriched by mobile applications through which users can perform every
operation that in the past has been made possible only on computers or web applications.
Although this introduces advantages and conveniences for the end users as they can per-
form operations from the comfort of their mobile devices, it also presents several security
challenges. In particular, Android devices and applications become a desirable target for
large-scale malware distribution. Thus, malicious applications have constantly evolved,
becoming increasingly sophisticated and stealthy. The aim of malware authors is twofold.
They aim at fooling as many final users as possible to install their malicious applications
and they pay special attention to flying under the radar of analysis tools to avoid manual and
automatic detection to operate undisturbed. The response from the community was swift,
and many researchers have ventured to defend this system, constantly proposing protection
methodologies or novel and more robust analysis techniques.

This thesis aims to contribute to this cat-and-mouse game by analyzing some of the open
problems affecting different security aspects of the Android ecosystem. This thesis starts
with analyzing modern repackaging attacks – widely used by malicious actors to distribute
malware samples stealthily – and introduces a novel anti-repackaging scheme that considers
the security requirements a protection technique should follow.

Then, this thesis focuses on the security analysis of modern anti-analysis and protection
techniques exploited by Android applications. In particular, it focuses on revealing the role
of native (C/C++) code in malware samples and the evasive techniques used by both benign
and malicious applications. To those aims, this thesis also proposes a novel methodology to
reverse engineering Android applications focusing on suspicious patterns related to native
components and a probe-based sandbox – a dynamic analysis system – which circumvents
evasive techniques thanks to a substantial engineering effort, making the applications under
analysis believe they are running on an actual device. Our results depict typical behaviors
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of modern malware and its evolution and reveal insights about the anti-analysis techniques’
purpose, differences, and relationships between legitimate and harmful behaviors.

Finally, the analysis of the native layer brought to light a novel state inference attack that
can be abused by modern malware to carry out more complex attacks, such as phishing. This
thesis also highlights how there still needs to be a system in place to allow applications to
protect themselves against this novel attack vector.
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Chapter 1

Introduction

With over 3 billion active users and a market share covering almost 71% of smartphones,
Android is today one of the most widely used operating systems in the world [205, 206].
Most of this success is due to two different aspects. The first one is related to the open-source
nature that allows different vendors to produce devices based on Android. The second
one is the more straightforward application development process compared to other mobile
operating systems: Google currently offers a plethora of platforms that support the developers
in designing, implementing, testing, and sharing their applications [100]. This success can
also be seen in how many products and services are now available in the several app stores
(e.g., Google Play Store, Samsung App Store), which vary from email clients to banking
applications. All this allows the user to perform more operations from the comfort of their
smartphones.

From a security standpoint, however, this high market share makes Android a desirable
target for malware authors, allowing them to reach many mobile users. Since August 2010,
when security companies detected the first Android malware [121], Android has attracted
more and more attackers. In addition, attack vectors previously used only to compromise
other platforms (e.g., computers and web applications) have also been adapted to the mobile
ecosystem, creating new types and categories of attacks that are Android-specific [129].
Phishing attacks are a primary example. In a standard web-based phishing attack, a malicious
actor aims to trick users into doing “the wrong thing”, such as clicking a bad link in an
email that will download the malware or re-direct them to a phony website. Conversely, as a
first step in the Android phishing attack, an attacker must install the malicious application
on the victim’s device. Then, when the user opens the target application, the malicious
one (identical to the original) pops up on top of the UI instead of the original application.
However, installing the malware is insufficient for an attacker to access and exfiltrate sensitive
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data: the malicious actor has to find a way to infer when the user interacts with the target
application to understand the exact moment she can carry out the overlay attack.

The spread of these attacks has pushed researchers to study new countermeasures to
improve the security and privacy of users, devices, and applications. In contrast, malicious
samples have constantly evolved, reacting to these remediations and becoming increasingly
sophisticated to fool the final users into installing and using them. Thus, malware authors
and security researchers engaged in a constant arms race, of which app repackaging is a clear
example (recent malicious repackaged examples are [233, 193, 197, 59]). App repackaging
refers to the process of customizing an existing mobile application and re-distributing it
in the wild to deceive the final user into installing the repackaged sample instead of the
original one [149]. In this scenario, since an Android application is publicly available in
an app store, an attacker can easily retrieve the app bundle (i.e., the APK file, which is
an archive containing the application’s content), reverse engineer it, inject some malicious
code, and re-distribute a modified version of the original sample. Thus, an attacker does
not have to develop an application from scratch (she only generates the malicious payload),
and the repackaged sample inherits the widespread market share and the popularity of the
original legitimate application. To protect from this trend, modern Android samples employ
repackaging protection techniques (also known as anti-repackaging), which insert proper
integrity controls into the application such that a repackaged version of that sample would
not work correctly. However, a novel and growing trend in repackaging attacks exploits
the Android virtualization technique [50], in which malicious code can run together with
the victim application in a virtual container. In such a scenario, the attacker can directly
build a malicious container capable of hosting the victim sample instead of tampering with it,
avoiding being detected by the current anti-repackaging schemes.

Alongside the repackaging threat, modern malicious samples must fly under the radar of
analysis tools, remaining undetected to operate undisturbed. To this end, malware authors
developed new techniques to make static analysis challenging (e.g., obfuscation) or even
impossible (e.g., removing some code portions and loading them at runtime). For instance,
while allowing native (C/C++) code in Android applications has a strong positive impact
from a performance perspective, it dramatically complicates the analysis of a sample because
bytecode and native code need different abstractions and analysis algorithms, and they thus
pose other challenges and limitations. Moreover, malware authors try to avoid dynamic
analysis by putting in place evasive controls to understand whether their applications are under
analysis. However, all these techniques are also adopted by benign samples to make reverse
engineering harder and protect themselves from a plethora of attacks (e.g., repackaging).
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Every program that contains both a secret – e.g., the intellectual property for goodware
and the malicious payload for malware – and any technique for preventing an attack against
this secret (e.g., evasive controls) is known as surreptitious software [153]. Surreptitious
code is part of a middle “gray area” between malware and goodware: anti-analysis techniques
are typical behavior of malicious Android applications, whose goal is to remain undetected
by users and security software to perform harmful activities covertly. On the other hand,
goodware could also adopt surreptitious code implementing anti-analysis techniques to
protect, for instance, users’ privacy and data security or the developers’ intellectual property.
Thus, such techniques do not necessarily imply maliciousness: they are typically concerned
with preventing others from exploiting the intellectual effort invested in producing a piece of
software, regardless of whether the effort is for uncovering malicious purposes.

This middle layer is crucial in the cat-and-mouse game between malware and goodware.
To avoid detection, malware tends to exhibit behavior more and more similar to goodware,
which, in turn, has adopted anti-analysis and protection techniques typically developed and
used by malicious authors. The scientific literature has also proposed many novel anti-
analysis techniques and investigated their impact, but some critical aspect still needs to
be studied. In particular, differentiating and correctly investigating how samples (ab)use
surreptitious code could shed light on their real nature, such as in a malware classification
task scenario. Moreover, modern benign applications often leverage ineffective protection
techniques, making them easy to attack by malicious actors. For instance, state-of-the-art anti-
repackaging protections are inefficient against specific attack scenarios (e.g., virtualization-
based attacks); thus, an attacker can easily bypass and deactivate the protection mechanisms.
The goal of benign actors is not only to implement protection techniques but also to ensure
adequate controls. In fact, according to the OWASP Mobile Top Ten, one of the main issues
in securing Android applications is improper and insufficient binary protections [164].

In conclusion, shedding light on such aspects is essential because it allows malware
analysts and industry experts to improve both malware understanding and the protection of
benign samples, making the Android world safer for its billions of users.

1.1 Research Contributions

The research presented in this thesis has been guided by several key questions relevant to
understanding the usage or improving the effectiveness of surreptitious code in Android
applications. For instance, anti-analysis techniques sit in the gray area – a no-man’s land
– between malicious code and legitimate conventional software. Such controls are heavily
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adopted by both malware and goodware, but their use is for intrinsically different purposes.
On one hand, malware samples aim to avoid detection by flying under the radar of static and
dynamic analysis tools. At the same time, benign applications protect their code from reverse
engineering and specific client-side attacks or ensure that the users’ sensitive data (e.g., bank
access tokens) are not stored, for instance, in a rooted device [149, 195, 29].

Over the years, researchers studied anti-analysis and protection mechanisms from both
the benign and malicious points of view (e.g., [29, 149, 57, 151, 27, 4]); however, nowadays,
a comprehensive analysis and categorization of them is still needed. Thus, this thesis started
by collecting and categorizing all documented techniques for protecting Android samples –
benign and malicious – from static and dynamic analysis techniques. In particular, it focuses
on introducing a comprehensive per-purpose taxonomy of evasive controls – i.e., application
techniques to prevent the runtime inspection and analysis of their behavior – for the Android
ecosystem. However, this categorization is just the first step: my research has also looked
to understand and measure their different usage and security implications. Alongside the
measurements, this thesis documents a significant engineering effort to support Android
security experts in their work and develop new security techniques or make the existing ones
more secure, effective, and practical.

In the following paragraphs, I briefly illustrate the principal contributions of this thesis.
In the first part, I explored how to make Android applications safer, raising the bar

for attackers who want to compromise them through a repackaging attack. Android app
repackaging refers to a man-at-the-end attack in which a malicious user analyses and modifies
the content of the APK file to redistribute a modified version of the original application [149].
Thus, anti-repackaging techniques try counteracting this attack by adding logical controls at
compile-time (i.e., in this form of surreptitious code, the secret to protect is the applications’
code from being tampered with). However, such protection schemes are ineffective against
novel attack vectors: repackaging attacks through app-level virtualization. Only two solutions
have been specifically designed to address virtualization-based repackaging attacks. Still,
their effectiveness could be improved since they rely on static taint analysis, thus unable
to evaluate code dynamically loaded at runtime. Hence, this thesis proposes MARVEL, a
virtualization-based anti-repackaging scheme that limits both standard and virtualization-
based attacks. MARVEL deploys a mutual integrity verification mechanism between the
trusted container and the plugin and strongly relies on the virtualization technique to build
a secure virtual environment where only protected applications can run and be checked at
runtime. Moreover, this thesis also demonstrated the strengths of the proposed methodology
against the repackaging threat compared to the other state-of-the-art solutions.
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In the following parts, this thesis investigates several aspects of surreptitious code in
malicious and benign samples and highlights their different management and purpose.

First, this thesis proposes a novel methodology to reverse engineering Android appli-
cations focusing on suspicious patterns related to native components. Briefly, Android
applications are written in high-level languages (Java and Kotlin), but thanks to the Java Na-
tive Interface (JNI), Android also supports calling native (C/C++) library functions. Contrary
to Android high-level languages, native code is architecture-dependent, and every application
has to ship an ELF file (in the form of a Shared Object) for each architecture it wants to
support. Moreover, JNI serves various purposes; for instance, it can interact with the Android
RunTime (ART), instantiate new objects, and perform low-level operations. This versatility
and the additional complexity of its analysis have led malware authors to increasingly use the
native layer to hide malicious code and perform suspicious (or even malicious) operations.
For instance, if malware authors knew that specific antivirus solutions support only x86-based
architectures, they could limit the malicious logic to ARM and insert a harmless code into
the x86 library. Thus, the sandbox only loads the x86 library, and the malicious component
would avoid examination. Still, the malware would behave as intended (maliciousness) when
run on an actual ARM-based device. Moreover, this chapter shows how the static module of
many Android anti-malware engines ignores the presence of native components or performs
only straightforward controls, highlighting the lack of knowledge of these engines on how
malware exploits native code. Thus, to improve the understanding of the native layer, we
performed the first longitudinal analysis of the native code in Android malware over the past
ten years and compared the recent malicious samples with actual top benign applications on
the Google Play Store. The results depict typical behaviors of modern malware, its evolution,
and how it (ab)uses the native layer to complicate the analysis, especially with dynamic code
loading and novel anti-analysis techniques.

Second, the native layer analysis contributed to the discovery of a novel and undoc-
umented state inference attack on Android that enables a malware author to build more
complex attacks (e.g., a phishing one) from her malicious application installed on the victim’s
smartphone. In detail, the attacker abuses the inotify API, a mechanism for monitoring file
system events, to infer the application opened by the user. State inference attacks are the
basic block of the phishing one because they allow an attacker to infer the exact time to
perform the phishing attack through, for instance, an overlay technique. Moreover, phishing
attacks are particularly problematic for mobile platforms because Android does not provide
enough information for a user to reliably distinguish a legitimate application from a mali-
cious one that spoofs the user interface. Thus, this part of the thesis studied the impact of
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such a new attack concerning different Android versions in which the malware runs and
the permissions granted to the malicious sample at runtime. It is worth noticing that this
vulnerability has existed but has remained hidden for several years. The most disturbing
finding is that if the attacker knows the installation path of the target application, all Android
applications are vulnerable, regardless of the system version. At the time of writing, all
Android versions and devices are vulnerable to this attack. Getting the installation path is,
nowadays, a capability that is only protected by a normal permission, and to make matters
worse, there are workarounds to get it even without such permission. Moreover, the analysis
demonstrated that this attack is not limited to only the standard Android operating system:
every Android-based custom ROM tested is vulnerable.

Finally, while the scientific literature has proposed many evasive techniques and inves-
tigated their impact, one aspect still needs to be studied: how and to what extent Android
applications, both malware and goodware, use such controls. Thus, as a last contribution,
this thesis fills this gap. A dynamic analysis system (known as sandbox) is needed to execute
and analyze the samples. The term “sandbox” in the context of malware analysis is typically
used to describe a dynamic analysis tool that operates in a secure environment for analyzing
and monitoring potentially harmful code without endangering the host or the network. Given
that state-of-the-art sandboxes do not make such an analysis possible, this thesis proposed
DroidDungeon, a novel probe-based sandbox, which circumvents evasive techniques thanks
to a substantial engineering effort, making the applications under analysis believe they are
running on an actual device. To the best of our knowledge, currently DroidDungeon is the
only solution providing anti-evasion capabilities, maintainability, and scalability at once.
Using this sandbox, this chapter studies evasive controls in both benign and malicious An-
droid applications, revealing insights about their purpose and differences. It also analyzes
how the execution of an application differs depending on the presence or absence of evasive
countermeasures, highlighting the types of operations that malware typically hides under
evasive behaviors. The main results is that 14% and 4% of malicious and benign samples
refrain from running in an analysis environment that does not correctly mitigate evasive
controls. This proves once and for all that, today, it is necessary to consider Android-specific
surreptitious code and these gray area-related aspects to improve the malware detection and
classification task.

1.2 Thesis outline

The thesis consists of a total of 7 chapters.
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Chapter 2 presents the necessary background knowledge on Android to understand the
main contributions of the thesis. Moreover, it proposes a comprehensive taxonomy of all the
documented techniques for protecting Android applications, dividing them based on their
objective. Even if this part discusses a new per-purpose categorization of evasive controls, it
might be seen as part of the common background of the thesis as it considers only well-known
anti-analysis techniques.

Chapter 3 investigates the virtualization-based repackaging threat and introduces MAR-
VEL, the first anti-repackaging scheme able to react to this problem dynamically. It is based
on the paper “Repack Me If You Can: An Anti-Repackaging Solution Based on Android Vir-
tualization” published at the Annual Computer Security Applications Conference (ACSAC)
2021, in joint work with Alessio Merlo and Luca Verderame of the University of Genoa,
and Eleonora Losiouk and Mauro Conti of the University of Padua [183]. The MARVEL
implementation has been submitted for the artifact evaluation of the conference; I received
the REUSABLE badge, and MARVEL won the best artifact award.

In Chapter 4, this thesis introduces a comprehensive methodology to analyze all aspects
of the surreptitious native code in Android applications. Moreover, as a use case, it discusses
the impact of the analysis results by developing a malware classification technique based
on native-related features. This highlights that the proposed methodology can be helpful to
both humans and machines, and the results are useful for categorizing surreptitious native
code facets in modern malware samples. This chapter is based on the paper “The Dark
Side of Native Code on Android” currently under submission at the ACM Transactions on
Privacy and Security (TOPS) j.w.w. Alessio Merlo of the University of Genoa, and Andrea
Possemato, Savino Dambra, Simone Aonzo, and Davide Balzarotti of EURECOM [184].

Chapter 5 presents the inotify-based state inference attack, its impact, and the coun-
termeasures Android or a vendor should take to limit this issue. Moreover, it describes a
practical use case, showing how an attacker can build a phishing attack without permission.
This chapter is based on the paper “Android, Notify Me When It Is Time To Go Phishing”
published at IEEE European Symposium on Security and Privacy (EuroS&P) 2023 j.w.w.
Alessio Merlo of CASD – School for Advanced Defense Studies, and Andrea Possemato,
Dario Nisi, and Simone Aonzo of EURECOM [185].

Chapter 6 describes DroidDungeon, a novel Android sandbox that jointly meets the
anti-evasion, scalability, and maintainability requirements and enables us to perform the first
analysis of evasive controls in modern Android applications. This chapter is based on the
paper “Unmasking the Veiled: A Comprehensive Analysis of Android Evasive Malware”
accepted to the ACM Asia Conference on Computer and Communications Security 2024
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that will take place in July 2024 j.w.w. Alessio Merlo of CASD – School for Advanced
Defense Studies, and Dario Nisi, Savino Dambra, Simone Aonzo, and Davide Balzarotti of
EURECOM [186].

Finally, Chapter 7 concludes the summary and provides possible future research direc-
tions.



Chapter 2

Android: Background & Protection
Techniques

This chapter introduces the background concepts needed to fully understand the technical
contributions provided in the follow-up of the thesis. Since this thesis spans very different
Android topics, ranging from Android app-level virtualization to anti-analysis techniques,
this section focuses on notions common to every field, leaving a more detailed cover of the
needed technical background to the individual chapters when necessary.

In the first part, this chapter introduces the primary block of the Android ecosystem:
the application (hereafter, app). This section discusses the app’s main components and the
lifecycle from the developing phase to the installation on a user device. From the security
standpoint, Android apps and the operating system are the two main objectives of malware
authors: they mainly deliver the attacks through malicious apps that target the security
posture of the entire device (e.g., gaining the superuser rights by, for instance, exploiting a
vulnerability of the operating system) or the user by attacking other apps. Thus, it introduces
and highlights different security aspects and challenges related to the Android platform and
its apps.

In the second part, this chapter discusses the state-of-the-art mechanisms that an app –
benign or malicious – could exploit to protect itself from static and dynamic analysis. It also
proposes a comprehensive taxonomy of all evasive techniques. In detail, it provides a novel
high-level per-purpose categorization of all documented anti-behavioral controls. Given
that this part discusses only well-known techniques collected through blog posts, malware
writeups, and scientific papers and does not aim at proposing novel protection techniques, it
could be considered as part of the common background needed for the rest of the thesis.
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2.1 Dissection of Android Apps

Android is an open-source, Linux-based software stack created for various devices (e.g.,
smartphones, tablets, TVs) and form factors. The Android ecosystem is much more complex
than one may think: it comprises numerous layers and actors that cooperate to produce the
final result, from kernel manufacturers to app developers. In general, all Android-based
devices are built on top of the Android Open Source Project (AOSP), which is the free and
open-source core of Android and provides the base features of the operating system. However,
most devices run on the proprietary Android version developed by different vendors (e.g.,
Google, Samsung), which ship additional proprietary apps and customizations.

Apps are the cornerstone of the Android ecosystem and represent the primary vehicle for
developers to provide new features to users. At the same time, apps are also the primary way
malicious actors harm and attack the final Android users.

Regardless of the Android device, each app – system or third party ones – lives in its own
Application Sandbox, a security mechanism to isolate every app from the others and protect
them and the whole system from malicious actors. To do this, Android takes advantage of the
underlying Linux kernel and user-based protection: Android assigns a unique user ID (UID)
to each Android app and runs it in a separate process (each process has its virtual machine,
so an app’s code runs in isolation from other apps). Android sets permissions for all the files
that belong to an app; thus, only the user ID assigned to it can access them. In this way,
the kernel enforces the security between different apps and the system at the process level
through standard Linux facilities, such as user and group IDs assigned to apps. By default,
apps cannot interact with each other and have limited access to the OS. It is worth noticing
that all software layers above the kernel (e.g., OS libraries, system, and third-party apps) run
within the Application Sandbox.

2.1.1 Android Apps’ Anatomy and Lifecycle

Anatomy of an app. An Android app is usually developed in Java or Kotlin1 and leverages
XML files to represent the graphical user interface (UI) or describe the metadata of the app.
However, today, there are other ways to develop Android apps, for example, hybrid apps: they
are mainly built on top of web technologies and run over a WebView. While very versatile,
all these technologies are generally not optimal for performance-critical tasks or low-level

1From now on, we will explicitly refer to Java code, although the same considerations are valid also in the
case of Kotlin-based apps.
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interactions with the device hardware. To deal with this shortcoming, the Android Software
Development Kit (SDK) also allows writing portions of an app through native (C/C++) code.

Although Android supports Java Virtual Machine-based (JVM) languages, Android apps’
compilation process differs from regular Java apps. On Android, the Java code is first
compiled into the corresponding Java bytecode, then compiled into the Dalvik-bytecode
DEX (.dex extension). For the native component, instead, the Android system provides the
Android Native Development Kit (NDK), a set of tools containing compilers, debuggers, and
build systems that allow the developer to compile native code for their Android apps. At
the end of the compilation process, the NDK generates native libraries as Executable and
Linkable Format (ELF) files in the form of Shared Object (.so extension). Contrary to the
DEX file format, which is architecture-independent, Android apps must ship a native library
for each architecture they should support. The interaction between the Java bytecode and the
native libraries, and vice versa, is made possible thanks to the Java Native Interface (JNI).

When all the code has been compiled, it is embedded in an Android app PacKage
(APK), an archive containing all the necessary files to run the first execution of the app:
DEX files and native libraries, images, and UI-related resources, and the Manifest file. The
Manifest provides valuable information about the app, such as its unique package name (on
Android, you cannot install two apps with the same name on a single device) and the required
permissions.

Finally, each APK is signed with its developer’s private key and contains the correspond-
ing public certificate. This mechanism grants the APK file’s integrity but cannot provide
any authentication, as a trusted certificate authority does not need to issue the developer
certificate.

Android permissions. Permissions allow Android to protect sensitive data (e.g., system state
and a user’s contact information) and prevent potentially dangerous actions (e.g., connecting
to a Bluetooth device or recording audio). Android permissions are ranked into different
protection levels [98] according to the sensitivity of the resource they protect. While the
system automatically grants normal permissions (i.e., those that present minimal risk to the
user’s privacy) at installation time, dangerous (or runtime) permissions need explicit runtime
authorization by the user. Each time an app tries to access a resource or perform an action
protected by dangerous permissions, the user is prompted with a UI message detailing the
type of resource/action the app attempted to access and asking whether to grant or deny it.
Finally, the highest protection level is the privileged one. Permissions with this level have an
impact on the overall security posture of the device. Thus, the user has to manually grant
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them through a multistep procedure in the System Settings app, during which the system
warns her about the risks of this permission.

App distribution. Android apps are mainly delivered through proper software repositories,
known as app stores, which allow developers to publish their APK files. While iOS relies on
a single and centralized market (i.e., the Apple App Store), which Apple directly controls,
Android allows the distribution of the same app on dozens of different app stores beyond the
official one (i.e., the Google Play Store). The most popular app stores differ from region to
region. For instance, in Europe and the US, the Google Play Store has the most significant
market share, while in China, its market share is less than 4%, and MyApp (Tencent) currently
holds 25% of the market. Moreover, Android allows the distribution and installation of APK
files directly (e.g., through email or URLs) without uploading the apps to an app store.

App installation. Whenever a user wants to install an app, Android performs a soft check on
the app certificate before installation (recall that the developer must sign an APK with her
certificate). It is worth noticing that Android continues the installation even if the signer of
the developer certificate is unknown or it is self-signed. Therefore, Android performs only
primary verification on the APK structure and its integrity, thereby leaving the decision to
install the app (and, consequently, to trust the source of the app) to the final user.

Then, at installation time, Android assigns a new user and group ID to the app and creates
a dedicated directory for it in /data/app/ folder in which the system copies the original
APK, renaming it as “base.apk”. This directory’s name – also known as installation path –
consists of the app package name and a random string since Android 8.0 [94]. The random
component prevents a malicious app from trivially determining another app installation path
and accessing its private files. Thus, according to the Android documentation, the only
supported way to obtain a third-party app installation path is through the getPackageInfo
API of the Package Manager, which is subject to the permission mechanism.

For example, suppose to install an app whose package name is com.example on a
device with an x86 CPU. A legit installation path could be /data/app/com.example-

Bd6GIb47XTzpL16==/. In this location, the system copies the app’s APK (renaming it
base.apk file) and creates a subdirectory named lib/x86/ that contains all the native
libraries (SO files) for the x86 architecture.

Finally, when the APK is installed on an Android device, another compilation step – that
only affects DEX files – takes place on the device: dalvik-bytecode files are Ahead-Of-Time
(AOT) compiled to generate an executable app for the target device architecture. In particular,
since Android 5.0, Google introduced the Android RunTime (ART) to replace the Dalvik
Virtual Machine (DVM). While Dalvik just-in-time (JIT) compiles framework code and



2.1 Dissection of Android Apps 13

apps on demand, ART uses a hybrid approach that combines AOT, JIT, and profile-guided
compilations. After the first execution and when a device charges, ART performs the AOT
compilation of all frequently used code based on a profile generated during the first runs.
Thus, during the next executions, ART uses the profile-guided code and avoids doing JIT
compilation at runtime for methods already compiled. Methods that get JIT-compiled during
the new runs are added to the profile, which the following compilation will pick up. It is
worth noting that ART performs AOT compilation also for the framework libraries. However,
in this case, the amount of compiled code depends on configuration options specified when
the framework is built [99].

This approach brings numerous improvements in terms of performance and battery life
at the price of having longer installation times and more extensive storage requirements:
since the bytecode has been compiled, the app will not require extensive CPU usage for
just-in-time optimizations.

The AOT compiled code is saved in a particular file format named OAT, a custom ELF
executable that includes two special sections: oatdata to store headers and info about the
compiled DEX files, and oatexec to store the compiled code. It is worth noticing that the
OAT file format changes between Android versions, and no official documentation tracks
those changes.

Native libraries, on the other hand, are not affected by this additional optimization step;
in fact, they are already compiled for the architecture(s) in which the app will run. This
means that if an app wants to be installed on several devices that differ in Application
Binary Interface (ABI) and Instruction Set Architecture (ISA), it must contain native compo-
nents compiled for each target architecture it wants to support. To date, Android supports
the following ABIs: armeabi-v7a, arm64-v8a, x86, x86_64; however in the past, it
supported also ARMv5 (armeabi), and 32-bit and 64-bit MIPS, but they are no longer
supported [95].

Zygote & app startup. Zygote is the parent process of all Android apps, and the init process
creates it during the system boot. This process initializes the first instance of DVM and
pre-loads all framework classes the apps should use very often. Each new app process is
a fork of the Zygote process, which is used as a template, thus saving the time required to
load these resources into its address space. In this way, the memory address space of the
Android framework and the native libraries are the same for all Android apps (inherited from
the Zygote).
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2.2 Anti-analysis techniques

An evasive control is a technique used by an app to prevent the runtime inspection and
analysis of its behavior. The MITRE Malware Behavior Catalog [46] classifies this as a
malware objective under the name of Anti-Behavioral Analysis. It is essential to distinguish
it from other forms of code protection (e.g., code obfuscation and Dynamic Code Loading)
that are instead classified as Anti-Static Analysis2. While the anti-behavioral techniques aim
at concealing the action performed by a sample, anti-static analysis techniques focus on
protecting the app code by making it more complex to analyze. As such, they do not affect the
app’s runtime behavior, which continues to execute similarly in any environment. Therefore,
the two objectives – evasive controls and static analysis protections – are orthogonal and
often combined together [175]. For instance, Denuvo Mobile Game Protection jointly uses
evasive checks (e.g., anti-debugging to verify the presence of a debugger) and dynamic code
loading to protect Android apps from repackaging [116].

2.2.1 Anti-static analysis

Anti-static analysis refers to behaviors and code modifications that prevent or hinder static
analysis of a sample. Briefly, static analysis directly analyzes the compiled file (i.e., DEX
or ELF files) or APK’s features, such as embedded strings, header information, or the apps’
code’s control flow and call graphs. Thus, anti-static analysis techniques aim to complicate
an app’s manual and automatic reverse engineering process without introducing any anti-
tampering check: they modify code portions or remove hard-coded strings and identifiers.

Code obfuscation. Obfuscation approaches modify an app’s bytecode or source code without
changing its behavior to make some manual or automatic analysis more difficult. There
exist a lot of off-the-shelf obfuscation tools, both open source (e.g., [17]) and commercial
(e.g., [110]). Obfuscation comprises many techniques that have different objectives in
protecting the APK. For instance, code or resource encryption aims to hide some APK’s
metadata or resource, such as hardcoded string, by replacing them with their encrypted value
(decrypted only during the app execution). Conversely, the reflection technique hinders
the creation of a call graph by static analysis tools, replacing direct method invocations
with a reflective version. It is worth noticing that a user can combine different obfuscation
techniques (e.g., reflection and encryption) to ensure greater robustness against static analysis.

2The Malware Behavioral Catalog currently focuses mainly on Windows malware and does not contain
specific checks for Android. However, it is helpful to adopt its naming scheme to present the work better.
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Code virtualization. Code virtualization is a specific obfuscation scheme in which parts
of the original executable code are mapped to and transformed in semantically equivalent
virtual instructions. At execution time, the bytecode is emulated by an embedded virtual
machine on the actual device. The new instructions can be designed independently; thus, the
bytecode and interpreter significantly differ from those in every protected instance. In this
way, the program’s original code never reappears.

Two different approaches are proposed in [112] and [250]; the first works at the DEX
level, while the latter focuses on native libraries.

Dynamic Code Loading & Modification. DCL is the practice of allowing an app to load
additional code at runtime and execute it. Such behavior allows bypassing the 64K reference
limit [53] imposed by the DEX file format3. Also, the loaded code could be remotely fetched
or locally unpacked, and it is not part of the APK’s initial codebase; thus, static analysis can
not consider this code as it is not static available. Despite several benefits (e.g., high code
reuse and performance improvements as the code is only loaded when necessary), from a
security standpoint, dynamic code loading drastically complicates the analysis of Android
apps. Therefore, the combined use of DCL and evasion techniques allows malware samples
to dynamically load malicious code only when they are sure they are not under analysis.

On the other hand, dynamic code modification refers to the self-modifying code practice
in which the app alters its instructions during the execution. Thus, dynamic code is generated
(or modified) at runtime instead of being fixed at compile-time, bypassing static analysis
techniques.

2.2.2 Anti-Behavioral Analysis

Over the years, researchers studied different aspects related to evasive controls, such as their
adoption in benign samples [210, 29, 149, 48] or their impact on malware classification [168,
147, 57, 212, 151, 27, 144, 4, 47, 26]. Moreover, novel and more sophisticated anti-behavioral
techniques have been routinely presented year after year [227, 187, 119, 198, 249, 128, 196,
200, 60, 189, 73, 58, 33, 152, 109, 52].

Thus, at the beginning of this work, we collected all the documented evasive techniques
by searching through blog posts, malware writeups, and scientific papers.

A first attempt to propose a taxonomy of protection techniques used in Android apps
was recently published in 2023 by Faruki et al. [63]. However, the authors considered only

3The Android app bytecode can reference up to 65,536 methods, among which the Android framework
methods, the library methods, and the app’s methods



2.2 Anti-analysis techniques 16

a small subset of the techniques outlined in this section, focusing mainly on obfuscation.
As already explained, this thesis follows the MITRE classification instead and, therefore,
does not consider obfuscation as part of the anti-behavioral controls but includes it in the
anti-analysis techniques. Thus, to better study evasive techniques, this thesis proposes a
novel categorization based on the purposes of the controls. The rest of this section presents
the list of evasive behaviors covered in this study by grouping them into three high-level
macro-categories: Environment verification, APK tampering verification, and High-level

verification.

Environment verification

Environment checks aim to detect the reliability of the environment in which apps are
installed.

Root detection. The Android design does not require users to use the root account; therefore,
such an account is disabled by default. A method known as rooting allows an end user
to get super-user access to an Android smartphone. Super-users can alter system settings,
access private areas in the primary memory, install specialized apps, or use a debugger or
dynamic analysis tool. Therefore, the presence of executables that require root permissions
may indicate that a sample is executed in an instrumented environment, such as a sandbox.
Of all the possible tests that can be used for root detection, the most common look for the
presence in the file system of the su or busybox executables or test whether well-known
paths that are usually read-only have write permission [191, 196, 210].

Debugging detection. A debugger introduces changes to the memory space of the target
process and may impact the execution time of certain code snippets [29, 149]. Thus, anti-
debugging techniques can detect (by looking for specific artifacts or side effects) or prevent
the app from being debugged.

Hook detection. Anti-hooking controls aim to detect dynamic binary instrumentation tools
(e.g., Xposed [111] and Frida [157]) that can hook and tamper with the execution flow of
an app. The simplest way to detect their presence is by scanning package names, files, or
binaries and looking for well-known frameworks’ resources. In addition, each dynamic
analysis framework works differently and may require specific detection techniques. For
instance, Xposed is an Android app that applies modules directly to the Android OS ROM
and requires root privileges. Contrary, Frida injects instead a JavaScript engine into the
instrumented process.
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Emulator detection. Anti-emulation techniques try to detect whether the app is not running
on an actual device. For instance, the Android emulator is built on top of the QEMU [40]
emulator, and an emulator may not provide the same hardware functionalities as an actual
phone. (for instance, for sensors like gyroscope and accelerometer), or some particular
artifacts may or may not be present (e.g., different files or file content, Android system
properties). In addition, some emulators do not fully support the Google Play Services (e.g.,
Genymotion [77]) or require some changes in the system property (e.g., ro.build.tag).

Memory integrity verification. This type of evasive control aims to verify the integrity
of the app’s memory space against memory patches applied at runtime [196]. For instance,
hooks to C/C++ code can be installed by overwriting function pointers in memory or patching
parts of the function code (e.g., inline hooks that modify the function prologue). Thus, an
app can check the integrity of its memory regions to detect any alteration.

App-level virtualization detection. Android virtualization is a recent technique that enables
an app (container) to create a virtual environment in which other apps (plugins) can run
while fully preserving their functionalities [214, 139]. The container app acts like a proxy,
intercepting each request from the plugin app to the Android operating system and vice
versa to fool the OS into believing that the container issued the request. Anti-virtualization
techniques aim to detect whether the app is executed within these virtual environments [247,
198, 141, 239, 50]. This could be done in different ways, for instance, by verifying its own
UID, the number of running processes, or the object instance of the Android API clients.

Network artifact detection. This type of evasive control aims to inspect the network
interfaces to detect artifacts, such as unusual interface names or ADB connected over the
network. Moreover, since sandboxes often intercept and analyze the app’s network traffic to
understand its behavior, evasive apps may also check for the presence of VPNs or proxies.

APK tampering verification

Anti-tampering (AT) techniques detect any modification on the original app during its
execution [29, 149]. If modifications are detected, the app can take evasive actions, such as
turning off certain features or terminating its execution.

Signature checking. Given that APKs are digitally signed, this control checks if the
certificate is the expected one.

Code integrity. These checks verify whether some code or resource has been tampered with
by computing its signature at runtime and comparing it with pre-computed and hardcoded
values.



2.2 Anti-analysis techniques 18

Installer verification. Since API level 5, the Android Package Manager stores information
on which ‘installer’ app (e.g., Google Play Store or Samsung Store) was used to install any
given app. These evasive check retrieves the package name of the installer app to verify
whether the app has been installed from the expected app store. Tampered apps are more
likely to be distributed on unofficial app stores that differ from the original ones. Moreover,
an APK can also be downloaded directly from a website, and thus, in this case, the installer
app can be a browser or a file manager.

High-level verification

SafetyNet attestation & Integrity API. SafetyNet [104] is a platform security service
offered by Google that provides a set of APIs to help protect apps against security threats,
such as device tampering and other potentially harmful apps. For instance, to verify the
integrity of a device, an app leverages the Attestation API by invoking the attest method
of the SafetyNet client, while to check if malicious apps are installed on the device, an app
can invoke the listHarmfulApps API.

Starting January 2023, the SafetyNet attestation is deprecated and replaced by the Play
Integrity API [102]. It offers an enhanced security mechanism that verifies the app’s integrity
to defend against tampering and redistribution of your app and the environment in which it
is running. Also, it consolidates multiple integrity offerings (including the ones offered by
SafetyNet) under a single API.

Human Interaction. Even sophisticated Android malware sandboxes often neglect to mimic
realistic user behavior and interaction. In 2022, Kondracki et al. [128] have shown how
user-related artifacts (e.g., number of photos and songs, list of contacts) can be abused to
distinguish an actual device from a sandbox environment.



Chapter 3

Repack Me If You Can: An
Anti-Repackaging Solution Based on
Android Virtualization

3.1 Introduction

The Open Worldwide Application Security Project (OWASP) is a non-profit foundation for
improving software security. It operates under an open community model, meaning anyone
can participate in and contribute to OWASP-related online chats and projects. The OWASP
Top Ten, first published in 2003, aims to raise awareness about app security by identifying
some of the most critical risks facing organizations, and it is regularly updated every about
three or four years. Three of the top ten mobile risks in 2016 are related to man-at-the-end
issues, such as reverse engineering and code tampering [165]. Those attack vectors are
merged in a single threat named ‘Insufficient Binary Protections’ in the top ten list in 2023.
In this scenario, besides collecting security-relevant information (e.g., commercial API keys
or hardcoded cryptographic secrets), attackers could also manipulate app binaries to access
paid features for free or to bypass other security checks; thus, attackers carry out what is
nowadays known as repackaging attacks.

Traditional repackaging attacks aim to lure the user into installing a malicious app that
looks legitimate. In particular, such attacks revolve around the following steps: reverse
engineering the target app, injecting malicious code, recompiling and distributing the mod-
ified app on the app markets or through other channels. Given the similarity between the
repackaged and the original apps, the user cannot distinguish between them and can be fooled
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into installing the malicious one. Once the malicious app runs on the victim’s phone, it can
start executing the attacker’s code.

A recent growing trend concerns the exploitation of the Android virtualization tech-
nique [50] to generate and distribute malicious repackaged samples more efficiently than
traditional repackaging attacks. Android virtualization enables an app (i.e., container) to
create a virtual environment, separated from the Android default one, in which other apps
(i.e., plugins) can run while fully preserving their functionalities.

The container has complete control over its plugins. In detail, it can execute any app
in its virtual environment (i.e., even apps not installed on the actual device) and control
its runtime behavior and interaction with the Android framework API. Thus, a maliciously
crafted container could inject arbitrary code inside the running plugins and modify - or even
block - their API calls, passing unnoticed to the apps.

The popularity of the virtualization technique, confirmed by the number of downloads
of the virtualization apps on the Google Play Store [217, 115, 216], is given by its primary
use case scenario, i.e., running multiple instances of the same app on a single device. For
instance, if a user has two separate Telegram accounts and wants to use them simultaneously,
she can run the first in the Android environment and the second in one of the virtualized
contexts. Besides legitimate uses, the virtualization technique has already paved the way for
threatening attacks [249, 247, 198, 50].

Concerning traditional repackaging attacks, virtualization-based ones are easier to setup.
The former requires the attacker to I) decompile the APK of the victim app, II) detect and, in
case, remove anti-repackaging protections, III) inject some malicious code, and IV) recompile
it. Instead, virtualization-based repackaging attacks allow the attacker to make the container
execute the original victim app and some malicious code without modifying the original
APK. The malicious code can be part of the container logic or another plugin running in the
same virtual environment as the victim app. Two examples of virtualization-based malware
have already been detected in the wild [23, 25]. In the first one, the malware targets the
Twitter app and aims to support the app’s dual-instance execution. The user logs into his
second Twitter account inside the dual-instance app, which can also hijack user input besides
creating a virtual environment. The second malware aims to distribute an updated version of
the WhatsApp app, similar to the original one, besides the malicious code crafted to steal
users’ sensitive data. The virtualization technique is confirmed by the presence of a file called
WhatsApp.apk inside the malicious container APK, which is loaded at runtime as a plugin.

To defend against malicious usage of the virtualization technique, researchers have
put forward some anti-behavioral solutions [239, 198, 50, 247, 141, 199], known as anti-
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virtualization techniques (refer to Section 2.2). Most of them are distributed as a library that
plugins must embed to detect whether they run in a virtual environment at runtime. Limi-
tations of such approaches are twofold: the checks they rely on can be easily bypassed [9],
and they cannot distinguish between benign and malicious usage of the virtualization tech-
nique. On the contrary, only two solutions [247, 199] have been proposed to defend against
virtualization-based repackaging attacks specifically. Both of them rely on a static analysis
approach to find, first, any usage of the virtualization technique and, then, the purpose of its
use. Being designed as static analysis tools, they are affected by well-known limitations (e.g.,
missing evaluation of code dynamically loaded at runtime).

Given the number of malware samples designed on top of the virtualization technique,
there is an urgent need to provide a reliable defense methodology that can I) prevent any
repackaging attack (both traditional and virtualization-based) and II) be adopted by any
Android user straightforwardly. To this aim, this chapter presents MARVEL (i.e., Mobile-app
Anti-Repackaging for Virtual Environments Locking), the first dynamic anti-repackaging
solution based on the virtualization technique. MARVEL relies on a trusted container that
creates a virtual environment where plugins equipped with proper anti-repackaging controls
run. Plugins cannot run in the native Android OS due to our anti-repackaging checks based on
APK tampering verification, environment evaluation, and anti-debugging techniques. Thus,
we extended such controls to fail if they are not executed on the trusted container, which
is in charge of unlocking the anti-repackaging checks. It is worth noticing that MARVEL

combines anti-static and anti-behavioral techniques to hide the anti-repackaging controls.
To experimentally evaluate the feasibility of MARVEL, it has been implemented in a tool

(i.e., MARVELoid) to test the methodology against a dataset of 4,000 apps. In particular,
each app is protected with 24 different configurations of the protection parameters, ending up
with 96k different protected samples. The tool achieved a 97.3% success rate and required -
on average - only 98 seconds per app to introduce the protections. Moreover, MARVELoid

evaluated the protected apps at runtime, measuring the number of failures in their execution
and the overhead introduced by MARVEL regarding CPU and required memory. The results
showed that MARVEL introduces a limited overhead concerning traditional virtualization
techniques, i.e., an increment - on average - up to 4.7 percentage points (pp) in the CPU
usage and 0.2 pp for the consumed memory.

In summary, this study has advanced research in the area of application security through
the following contributions:

• MARVEL, the first anti-repackaging solution that dynamically prevents any repackaging
attack and protects Android users by running on mobile devices;
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• MARVELoid, a tool to enforce the MARVEL protection and experimentally evaluate its
effectiveness;

• a thorough empirical evaluation of the proposed methodology over 4,000 apps, achiev-
ing a 97.3% success rate in protecting the apps and introducing an average increment
up to 4.7 percentage points (pp) in the CPU usage and 0.2 pp in consumed memory
concerning existing virtual environments.

3.2 Background

This section introduces the threat model of the traditional repackaging attack, the state-of-
the-art protection mechanisms, and the internal details of an Android virtual environment.

3.2.1 Android App Repackaging

A repackaging attack aims to distribute a modified version of an app that contains a malicious
payload to, for instance, unlock some premium features or distribute malicious code. The
victim is a general Android user, enjoying her mobile device and regularly downloading apps
from any app store (e.g., Google Play Store and Samsung App Store).

The threat model for traditional app repackaging involves three actors: the developer,
the attacker, and the final user. In a utopian (i.e., attacker-free) scenario, the developer
implements and delivers the app to the users through one or more app stores. Thus, the
user fetches the app and downloads it. At installation time, Android verifies the signature
and the integrity of the APK file and installs it on the user’s device without ensuring any
authentication mechanism.

Nonetheless, in a real scenario, the developer applies some anti-repackaging protection
schemes during the app development to deter the attacker who tries to repackage the app.
Anti-repackaging techniques may inject APK tampering verification controls that ensure the
legitimacy of the APK file and other evasive controls to make the runtime analysis of the app
more challenging. Thus, to carry out the traditional repackaging attack, the attacker must
encompass the steps illustrated in Figure 3.1.

From her side, the attacker accesses the APK file directly from the app store, behaving
like any regular user: she downloads the app from an app store, analyzes and reverses the
APK through static and dynamic techniques (Step 1), and tries to detect and turn off potentials
anti-repackaging controls (Step 2). If at least a match is found, the attacker needs to try
deactivating the protections (Step 3); otherwise, she can directly move to the next step. Then,
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Figure 3.1 Threat model for the standard app repackaging attack.

once all the detected anti-repackaging techniques are disabled (if any), the attacker adds
some malicious payload to the app or modifies its content (Step 4) and builds and signs the
Repapk APK file, a repackaged version of the original app (Step 5). Finally, the attacker tests
whether Repapk works properly: if this is the case, the attacker redistributes the repackaged
app both on app stores and through side channels (e.g., by email, web servers or leveraging
phishing attacks), aiming to force the user to install it instead of the original app (Step 6).
Otherwise, the attacker must conduct further analysis and repeat Steps 1 to 5 (the “try and
error cycle”) to detect and turn off other anti-repackaging protections on the original APK.

Defence mechanisms against repackaging. In recent years, researchers proposed several
techniques [133, 149] to discourage attackers from repackaging apps. Such techniques can
be divided into two main categories based on their purposes, namely repackaging detection

and anti-repackaging (also known as repackaging avoidance or self-protection).
The first group of techniques aims to recognize apps that have already been successfully

repackaged and delivered to app stores or users’ devices. Common repackaging detection
solutions rely on app similarity, which is evaluated through a two-step process: each app
is first profiled according to a set of distinctive features (e.g., call graph and control flow
graph [142]), and then, apps feature profiles are compared to each other and, if their similarity
is higher than a given optimal threshold (calculated according to some machine learning
techniques, either supervised [222] or unsupervised [80]), the apps are considered clones,
thereby indicating that one is probably the repackaged version of the other one.
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The latter group (i.e., anti-repackaging) comprises techniques to make the repackaging
process more difficult for an attacker. In particular, the app developer injects detection nodes

that implement APK tampering controls to verify the authenticity and the integrity of the
sample, for instance, by leveraging tampering verification controls and checking the metadata
of an app (e.g., the APK signature or its package name). If the anti-tampering controls fail
at runtime, the AT mechanism commonly throws a security exception to force the app to
crash [29]. Thus, an attacker has to find and turn off all detection nodes to repackage the app
successfully.

In addition, anti-repackaging solutions can further enhance protection by preventing
the reverse-engineering of the detection nodes by combining evasive techniques (e.g., anti-
debugging) with anti-static analysis mechanisms (e.g., obfuscation). Among those, some
approaches rely on logic bombs, practices regularly used in malware. The logic bomb pattern
proposed by [246] protects (i.e., hides) AT controls by encrypting their code using constant
values contained in the program as encryption keys, exploiting the differences between an
attacker and the developer’s knowledge. Moreover, the encryption keys are removed from the
code and replaced with the corresponding pre-computed hash values. Thus, the protection of
the logic bomb is granted by the one-way property of cryptographic hash functions, which
makes it hard for the attacker to retrieve the original value (i.e., the decryption key) from its
hash. To this aim, an attacker must leverage both static and dynamic analysis techniques to
execute all bombs, intercept the decryption keys, get access to the anti-tampering controls,
and remove or deactivate them.

Overall, an ideal anti-repackaging scheme never allows the attacker to obtain a working
repackaged app; however, actually, an anti-repackaging technique is considered reliable if
the complexity for the attacker to remove all protections in an app is more time-consuming
than developing the same app from scratch. As a final observation, repackaging detection
techniques are instead applied on the app store and, sometimes, on the mobile device to
detect already repackaged apps.

3.2.2 Android App-level Virtualization

The Android virtualization technique enables an app – known as container – to create a virtual
environment where other apps – plugins – can run. A user can install several containers,
which generate their corresponding virtual environment, in which the user can execute several
plugins independently from the underlying Android OS and other virtual environments.
DroidPlugin [214] and VirtualApp [139] are the two most well-known frameworks supporting
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the generation of Android virtual environments and share a common design. A virtual
environment can run any Android app, single or multiple apps at a time, and apps not
installed on the device. Furthermore, it does not require any additional privileges enabled on
the device (e.g., root privileges).

The virtualization technique relies on Dynamic Code Loading and Java dynamic proxy [161].
The former enables an Android app to load external code from a DEX, JAR, or even APK file
of another app. On the other hand, the Java dynamic proxy allows the creation of a wrapper
object that intercepts all method calls toward a specific object instance, eventually adding
some functionality.

Figure 3.2 shows the internal architecture of an app generating a virtual environment
for a plugin. The architecture involves the following components: the Container App (i.e.,
container), the Plugin APK (i.e., plugin), the Dynamic Proxy Module, and the ClassLoader.

Figure 3.2 The internal structure of an Android virtual environment.

First, the container extracts the bytecode from the APK of the plugin app (i.e., the
classes.dex file(s)) and loads them into the ClassLoader of the container. Then, it forks
its process (i.e., pid0) into a new process to host the plugin (i.e., pid1). It is worth noticing
that the container and the plugin share the same UID (i.e., uid0); thus, they share the same
security policies and permissions. At runtime, the ClassLoader resolves classes and methods
(i.e., Mi) for the plugin by returning the appropriate code (CMi). Moreover, the container has
to manage the lifecycle of all the plugin components. In detail, Android apps contain several
components (i.e., Activities, Services, Broadcast Receivers, and Content Providers), which
must be declared in the Manifest file so the Android OS can register them at the installation
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time. The management of each component involves an interaction between the app and
the Android operating system: for example, to show an Activity (A) on the screen of the
smartphone, an app has to send a request to open that Activity (startActivity(A)) to the
Android OS, which, in turn, has to receive a reply containing the details of the device where
the app is running (e.g., the dimension of the screen). When the plugins run in a virtual
environment, the Android OS receives all requests from the container. Thus, the container
must declare the same components as the plugins running in its virtual environment. To this
aim, the container declares a generic number of stub components. Then, it can rely on the
Dynamic Proxy Module to intercept each request (or reply) going towards (or coming from)
the Android OS to dynamically change the component’s name. In the example of Figure 3.2,
the Proxy module creates a Stub Activity (SA) and sends the modified call to the Android
OS (startActivity(SA)). Then, the result of the invocation (Res[SA]) is mapped back to
the original component (Res[A]). Concerning permissions, the container requires all existing
Android permissions to handle generic plugin apps.

3.3 Related Work

This section briefly summarizes the related works on anti-repackaging based on internal
anti-tampering controls, and then it discusses details on anti-virtualization behaviors. Finally,
it discusses some limitations of the proposed techniques concerning virtualization-based
repackaging attacks.

Anti-Repackaging. The first anti-repackaging technique for mobile apps was proposed in
2015 by Protsenko et al. in [173]. The main idea is to encrypt the classes.dex files in the
APK and dynamically decrypt them during the app execution. In 2016, Luo et al. in [140]
proposed SSN, which injects a set of detection nodes into the app code (i.e., through the
Java bytecode). The detection nodes hide a stochastic function that aims to detect tampering
and, in case, force the app to crash. In 2017, Song et al. [201] proposed an app-reinforcing
framework named AppIs. The main idea is to create a graph of security units (i.e., detection
nodes), which performs I) AT controls to detect repackaging and II) integrity checks of other
security units. In 2018, Chen et al. [38] proposed a SDC scheme, encrypting pieces of code.
The ciphered portion of code is decrypted and executed at runtime only if the app is not
repackaged. Each piece of code is encrypted with a different key, which is related to the
anti-tampering controls that are activated at runtime. In the same year, Zeng et al. [246]
designed BombDroid, a defending technique that leverages logic bomb as an anti-repackaging
protection for Android apps. Similar to SDC, BombDroid hides different AT controls inside
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the encrypted code of a logic bomb. In 2019, Tanner et al. [213] proposed an extension of
BombDroid, which aims to implement the logic bombs in the native code. In 2021, Merlo et
al. [149] defined some guidelines for reliable anti-repackaging techniques and proposed a
new anti-repackaging methodology, i.e., ARMAND [148] that leverages a pseudo-stochastic
criterion to inject multiple types of logic bombs both in the Java bytecode and in the native
code.

Anti-Virtualization. Malicious exploitation of the virtualization technique [249, 247, 198,
50] has motivated researchers towards the design of possible defense mechanisms in the
form of anti-behavioral analysis techniques [239, 198, 50, 247, 141, 199], which, to some
extent, might also defend from virtualization-based repackaging attacks. Most are designed
to detect whether an app runs in a virtual environment. To achieve this aim, such solutions
are included as a library that evaluates specific features of the protected app at runtime.

A virtual environment provides the plugin with a different context concerning the native
Android OS that affects the following elements: permissions, number and name of the
components, processes name, organization of the internal storage of a plugin, and private
data sharing among plugins. For example, a plugin can be granted more permissions than
the declared ones since sharing the UID between the container and the plugin also involves
sharing permissions. Another example refers to the number and names of the components
the container declares, which uses stub components to wrap the plugin ones. This design
implies that the Android OS is only aware of the existence of the container components (i.e.,
the components of the plugins go unnoticed). All existing defense mechanisms against the
virtualization technique check the features mentioned above by either evaluating the return
value of specific Android APIs or by inspecting the OS itself (e.g., the proc directory) and
force the plugin to crash if the return values or the Android OS features are not the expected
ones.

So far, only two solutions [247, 199] have been specifically designed to detect virtualization-
based repackaging attacks. Both share the same purpose: first, identifying whether an app
uses the virtualization technique and, then, whether its usage is for malicious purposes. Al-
though specific detection mechanisms differ, both solutions rely on a static analysis approach.
The authors of [247] identify a virtual environment according to the similarity among the
declared components (containers usually declare components - named stub components -
having a very repetitive structure). On the contrary, [199] relies on control-flow graphs to see
whether a plugin component is eventually replaced by a stub one. Both approaches also differ
in the way they recognize a malicious use of virtualization: while the authors of [247] search
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for a mismatch in the signature of both the plugin and the container, [199] check whether
there is any stealthy loading of code.

3.3.1 SOTA vs. Android app-level Virtualization

First, all the proposed anti-repackaging schemes allow for protecting apps from traditional
repackaging to different extents. Still, they could be more effective against repackaging
through virtualization-based techniques (as discussed in Section 3.4).

Second, the anti-virtualization solutions discussed above are ineffective against a mali-
cious container. Due to its proxy role, the container can intercept any call from the plugin
(thus, from the library executing within the plugin) towards the Android OS and tamper with
the response, sending back the expected value instead of the original one. Consequently, the
same solutions do not protect from virtualization-based repackaging attacks.

Moreover, even though addressing virtualization-based repackaging attacks, the only two
solutions designed for this attack (i.e., [247, 199]) share common limitations. First, being
static analysis tools, they cannot evaluate dynamically loaded code at runtime, although they
can detect the usage of the dynamic loading technique. In addition, their usage requires a
non-negligible manual effort for the setup and configuration, thus limiting their adoption in
the wild. Finally, state-of-the-art approaches focus on detecting already repackaged apps,
i.e., the ones equipped with anti-repackaging mechanisms that attackers have successfully
bypassed. On the contrary, MARVEL aims to prevent repackaging attempts by protecting the
apps.

3.4 Assumptions and Requirements

This section presents the threat model for repackaging attacks through app-level virtualization
and highlights the differences concerning the original ones. Then, it defines the security
requirements for a reliable anti-repackaging scheme to meet w.r.t. a general – traditional or
virtualization-based – repackaging attacks.

3.4.1 Virtualization-based Repackaging Attacks

Along with the traditional attack version, nowadays, an attacker can exploit the app-level
virtualization to carry out a new repackaging attack. To achieve her purpose, we assume
the attacker can own a mobile device, eventually a rooted/customized one, and can rely on
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static and dynamic analysis techniques, as well as network traffic analysis ones, to inspect
the behavior of the victim app.

A virtualization-based repackaging attack is depicted in Figure 3.3. This attack is far
less complex than the traditional one and much more powerful. A container can execute
any external app as a plugin without modifying its APK file, thus passing undetected to
traditional anti-repackaging schemes and anti-tampering controls. Furthermore, its proxy
capabilities allow intercepting all the API invocations to the Android OS and tampering with
the responses (or the requests), thus overcoming the existing anti-virtualization solutions [9].

Figure 3.3 Threat model for virtualization-based repackaging attack.

To carry out a virtualization-based repackaging attack, the attacker analyzes the APK file
of the victim app (Step 1) and builds a container to run it (Step 2). Then, she customizes
the container to meet her purposes, such as stealing sensitive data from the victim app or
unlocking some premium features (Step 3). Finally, the attacker tests the execution of the
victim app in the customized container (Step 4) and distributes it by uploading the malicious
APK to an app store (Step 5).

3.4.2 Security Requirements

The inner design of the virtualization-based repackaging attacks allows bypassing all the
existing defense solutions: similarity checks fail since the malicious container dynamically
loads the victim app at runtime, thus bypassing any static analysis. In the same way, anti-
repackaging solutions fail since the malicious container I) does not modify the code of
the victim app, thus neglecting tampering checks (e.g., signature verification), and II) can
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intercept and tamper with any interaction with the Android operating system, bypassing
dynamic environment controls (e.g., anti-virtualization techniques).

To overcome previous limitations, we advocate that a solution able to prevent and
detect both traditional and virtualization-based repackaging attacks reliably should meet the
following requirements:
(R1) Preventing the attacker from being able to statically analyze an app to fully reconstruct

both the code and the protection controls.
(R2) Preventing an app from being executed in a malicious container that bypasses traditional

AT checks.
(R3) Detecting an intermediate malicious container run in the container’s virtual environ-

ment and executing a plugin.

3.5 The MARVEL Protection Scheme

MARVEL is an anti-repackaging protection scheme that leverages the virtualization tech-
nique to prevent both traditional and virtualization-based repackaging attacks. Furthermore,
MARVEL fulfills the security requirements discussed in Section 3.4.

First, this section provides an overview of the MARVEL anti-repackaging scheme and,
then, details its building blocks, namely code splitting and the Interconnected Anti-Tampering
(IAT) controls. Finally, it discusses how MARVEL works at runtime.

3.5.1 Overview

MARVEL encompasses a mobile device running any recent version of the Android OS (i.e.,
Android API level >= 26) and a container. Furthermore, MARVEL requires that the protected
apps can be successfully executed only as plugins in a Trusted virtual Container (TC), which
is responsible for unlocking the anti-repackaging protections. In our scenario, we suppose
that the container is a service that does not require root privileges, like the Google Play
Services (GPS) [101]: during the first execution, an app verifies if the trusted container
is installed (e.g., apps use the isGooglePlayServicesAvailable method to verify the
availability of GPS) and, if this is the case, it requires to be executed by the trusted container.
Mobile vendors already adopted a similar approach; for instance, Samsung Knox [190] is a
commercial solution for Mobile Device Management that exploits a pre-installed trusted app
that manages corporate data and apps.
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MARVEL protects plugins through code splitting and interconnected anti-tampering
controls. The former allows removing portions of code from the original plugin app, thus
introducing mitigation against static analysis inspection (i.e., requirement R1). The latter
involves improving anti-behavioral controls, evaluated during the interaction between the
container and the plugin. Thus, the controls fail if the plugin is not executed in the expected
container (i.e., requirement R2) or the container cannot communicate with the intended
plugin (i.e., requirement R3). Furthermore, MARVEL enables the use of combined protection
patterns, e.g., the injection of an IAT in the code of a method extracted using code splitting.
Such a composition increases the difficulty of bypassing the protections, as the attacker is
forced to execute and reconstruct the entire package before trying to locate and deactivate all
the IAT controls.

3.5.2 Code Splitting

The code splitting techniques allow the partitioning of computations of programs on different
nodes to relieve resource-constrained nodes from heavy calculations [177] or to avoid the
disclosure of sensitive code/results [10]. In particular, code splitting suits a client-server
environment, where the remote server is usually the preferred node for sensitive computations.
At the same time, only authenticated clients are allowed to access the results [36, 72].

MARVEL applies code splitting between the trusted container and the plugin(s) to fulfill
the R1 requirement. Figure 3.4 shows the transformation process of a piece of code to which
the code splitting technique is applied. MARVEL selects some methods of the plugin and
copies them in a separate external class (e.g., external_class in Step 1). Then, in Steps 2
and 3, MARVEL replaces the body of the selected methods (i.e., the or_code) with some
fake instructions (i.e., in our example, a new RuntimeException) and it compiles each
extracted method in an external DEX file. At the end of the procedure, there are as many
distinct DEX files as the number of removed methods. The goal of the fake instructions is
to break the flow and the logic of an app, avoiding this being recognizable by an analysis
tool or a reverse engineer expert; thus, the more reasonable and varied the bogus code is, the
greater the resilience to analysis techniques is.

The DEX files (i.e., the external_class-es) are not saved in the plugin APK, as they
are directly dispatched to the trusted container through a secure channel (e.g., downloaded in
an encrypted form from a remote, trusted server) during the installation of the plugin. At
runtime, the container restores the original code of the removed methods only on-demand
(i.e., before their execution). Thus, an attacker should extensively execute the protected app
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to trigger all the removed methods, retrieve their external DEX files, and reconstruct the
original app’s logic.

Figure 3.4 The MARVEL code splitting transformation process.

3.5.3 Interconnected Anti-Tampering Controls

To address both the R2 and the R3 requirements, MARVEL extends the traditional anti-
behavioral controls (e.g., APK tampering verification) techniques to protect both the container
and the plugin from repackaging attacks. In particular, we designed interconnected anti-
tampering checks, which are novel integrity control systems based on a challenge-response
protocol between the container and the plugin. The container leverages its intrinsic role to
work as a proxy between the plugin and the Android operating system.

MARVEL supports two different types of IAT: base IAT and IAT with encryption. In the
former, the plugin verifies the response from the container against a set of pre-computed
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hashes. In contrast, in the latter, the plugin uses the response from the container as a
decryption key for a ciphered portion of its code.

Base IAT allows the injection of controls, which are less CPU-demanding than IAT
with encryption (i.e., hash verification versus code decryption). Moreover, the presence of
two IATs increases the entropy of the protected APK since the attacker has to detect and
deactivate two different types of control. Finally, it is worth noticing that the extracted code
of a code-splitting technique can hide one or more IATs, further increasing the difficulty of a
successful repackaging attack.

Figure 3.5 shows the transformation steps in creating an IAT with encryption. In particular,
MARVEL first generates a challenge-response pair (Step 1). Then, it replaces the original code
of the method with its encrypted form generated using R – the response to the challenge – as
the encryption key (Step 2). The procedure injects the challenge vector (i.e., an Android API
such as getPackageInfo) in the body of the method (Step 3), which contains the challenge
value (C) as a parameter. Finally, MARVEL adds the logic to perform the decryption with the
response value sent by the container and the execution of the decrypted code thanks to the
Dynamic Code Loading (Step 4).

Figure 3.6 depicts the injection process for a base IAT. Unlike the previous case, MARVEL

does not encrypt the or_code. Furthermore, in Step 3, the procedure adds the logic to verify
the response obtained by the container against a pre-generated hash of R (i.e., HASHR).
Similar to logic bombs, the protection of a base IAT is granted by the one-way property of
cryptographic hash functions, which makes it extremely hard for the attacker to retrieve the
original value (i.e., the response) from its hash.

MARVEL stores the pre-generated pairs of challenge-response for a plugin app in an
external resource (e.g., a JSON file), which needs to be delivered to the trusted container at
the first execution of the plugin.

3.5.4 Runtime Execution

Figure 3.7 summarizes the MARVEL architecture and the interactions between the trusted
container and the protected plugin sample(s). At the startup of a plugin app, the container
performs some APK tampering verification checks over the plugin app to verify some of its
metadata (e.g., the signature of the plugin APK file). If the checks fail, the container does not
execute the plugin. In the same way, the plugin carries out, during its execution, an evaluation
of the running virtual environment (i.e., anti-virtualization-like controls), for instance, by
checking the class name of the proxy object injected by the container. If this check fails, the
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Figure 3.5 The MARVEL IAT with encryption transformation process.

app crashes immediately. Such integrity controls enable a further detection of a tampered
environment, preventing the runtime execution of the plugin in an untrusted - or malicious
- container. Afterward, the MARVEL container manages the additional anti-repackaging
controls, i.e., code splitting and IATs.

Code Splitting. At runtime, the container detects whenever the plugin loads a fake method
(i.e., a method with bogus code) and replaces it with the correct one. To this aim, the
container injects a Custom ClassLoader (CCL) in the plugin process to intercept the loading
of any new class in the current DVM memory. Once the loading event occurs (e.g., method
Mi in Figure 3.7), the CCL resolves the requested class, and if it contains a fake method, the
CCL injects the original method’s code (i.e., retrieved from the DEX file DEXi) in the plugin
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Figure 3.6 The MARVEL base IAT transformation process.

memory instead of the fake one. It is worth noticing that this operation is transparent to the
plugin, which receives the resolved method (i.e., CMi).

IAT Controls. When the plugin executes any IAT, it first calls an Android API with the
challenge value inside the request (e.g., getApplicationInfo(C)). The proxy module of
the container intercepts the API call and searches for any challenge value in its CR pairs list.
If a match is found, the container does not forward the API invocation to the Android OS
and replies to the plugin with the corresponding response value (Res[C]).

Upon receiving the response, the plugin executes the IAT control. In the case of a base
IAT, the app verifies if hash(Res[C]) is equal to the pre-computed hash (HASHR) and if
this is not the case, the IAT raises a security exception and terminates its execution. In case
of an IAT with encryption, the plugin uses Res[C] as the key to decrypt or_code_enc. If
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Figure 3.7 The MARVEL architecture.

the key matches the expected value (i.e., R), the plugin can execute the original method;
otherwise, (if the decryption fails), the IAT terminates its execution and throws a security
exception.

3.6 Implementation of MARVEL

We implemented the MARVEL protection scheme in a prototype tool called MARVELoid,
which injects the protection in the plugins. Furthermore, we extended the VirtualApp
framework [139] to develop the trusted container responsible for enforcing the runtime
protection. It is worth highlighting that, given the standard design, MARVEL can also be
ported on DroidPlugin (or, in general, other app-level virtualization frameworks). The source
code of MARVELoid and the trusted container are available at [225].
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3.6.1 MARVELoid

MARVELoid is a Java-based tool devoted to generating the protected plugin starting from
the original app. The tool leverages the Soot framework [108] to analyze and modify the
bytecode of the Android app and on Jarsigner [159] to sign the output APK file with a valid
certificate.

MARVELoid requires three input parameters, namely the probability to I) replace a
method through code splitting (Prepl), II) inject a base IAT control (Pbase_IAT ), and III) inject
an encrypted IAT (Penc_IAT ). Overall, the probability of introducing a protection is given by:

Pprotection = (1−Prepl)(1−Pbase_IAT )(1−Penc_IAT ),

which is calculated as the product of the mutual independent probabilities that refer to the
non-introduction of each protection.

Also, MARVELoid requires the package name (PN) that identifies the part of the app’s
bytecode (i.e., the group of classes) to include in the protection process. The default value of
PN is the app’s package name, which is specified in the Manifest file of the APK.

Given an app, MARVELoid unpacks the APK file to extract the DEX file(s) (i.e., the
classes.dex files) and translates the Java bytecode into an intermediate representation
(i.e., Jimple) by leveraging the Soot framework. Then, the tool scans the code and, for each
method, computes the probability of protecting it according to the input percentages. Thus,
for each method, MARVELoid calculates the chance to inject each protection (i.e., code
splitting, base IAT, and IAT with encryption). To this aim, it creates three objects that extend
the BodyTransformer class of the Soot framework. These objects execute concurrently and
compute the probability of protecting a method with their specific protection type; in this
way, according to the input probability, a method can be protected with multiple protection
types in a random order, depending on the scheduling of the objects.

Code Splitting. Concerning the code splitting procedure, MARVELoid replaces the body of
a plugin method with a fake one. In detail, the tool creates a new external_class with a
method that has the same signature as the original one (i.e., the same parameters and return
type) and the same logic (i.e., instructions from the original method are removed and injected
into the new one). The new class is then saved into a DEX file, while a new body replaces
the original one of the plugin; in our implementation, we injected a throw statement of a
RuntimeException. MARVELoid stores all the created DEX files (one for each replaced
method) outside the original APK to be delivered to the trusted container. In this way, if the
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plugin is executed outside the trusted container, it crashes as the execution of the replaced
method throws an exception.

IAT Controls. To inject an IAT into a method of the plugin, MARVELoid first generates a
challenge-response pair (i.e., C and R values) of 32-bit each and stores them in an external
JSON file.

In the case of a base IAT, the tool injects a call to the getPackageInfo API, adding the
value of the challenge into the request. Then, it includes the code to verify the response value
against the hash of the pre-generated challenge value.

In the IAT with encryption, instead, MARVELoid extracts the body of a method (i.e.,
or_code) and encrypts it using the AES256 ECB algorithm and the R value as the encryption
key. The result is saved into a byte array (i.e., or_code_encr), and the tool injects a call to
getApplicationInfo API, adding the C value into the request. Finally, MARVELoid adds
the code to decrypt and execute or_code_encr. MARVELoid keeps track of each challenge-
response pair to guarantee that the container has the information required to compute the
response to a specific challenge.

Moreover, regardless of the IAT type, MARVELoid could also inject evasive controls to
enhance the robustness against static and dynamic analysis.

At the end of the protection process, MARVELoid recreates the classes.dex file(s),
builds the APK, and re-signs it with a valid certificate. Also, it extracts the metadata
information of the resulting APK (e.g., the sha256 hash and the APK signature) required by
the container to perform the integrity checks on the plugin.

3.6.2 Trusted Container

The trusted container is an extension of the VirtualApp framework in charge of offering
the virtualized environment to execute the plugins and enforcing the MARVEL protections.
In detail, the container I) performs the integrity checks of the plugin, II) interacts with
them through the IAT, and III) restores the original content of the fake methods (for the
code-splitting mechanisms).

In our prototype, the container retrieves the protection data of the plugin (i.e., metadata,
challenge-response pairs, and the set of external DEX files) directly from the device’s internal
memory. However, the container may download that information from a remote and trusted
server in a real scenario.

Code Splitting. To keep track of the loading of a fake method, the container injects a
custom ClassLoader (CCL) into the plugin process. The CCL is an instance of the dalvik.-
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system.DexClassLoader and overloads the loadClass method. In particular, the CCL I)
resolves the requested class, II) checks if it contains some fake methods, and III) in case of
fake methods, it replaces them with the correct ones.

The container leverages the DCL (i.e., Dynamic Code Loading) to load the original
instructions into the plugin process and ART instrumentation [24] to inject the correct
bytecode into the method’s memory. To implement the ART instrumentation inside the
trusted container, we leveraged the YAHFA hooking framework [166]. With the support
of YAHFA, we can overcome the limitations of the Java Dynamic Proxy that restricts the
hooking only to object instances of classes with at least one interface. In detail, ART
instrumentation allows the modification of the ArtMethod object instance that the DVM
exploits to manage Java methods internally. The container overrides the value of the entry-
PointFromQuickCompiledCode, which is the pointer to the compiled code of the interpreter
(i.e., the DEX file of the plugin), with a pointer to the loaded code of the replaced method
(included in a DEX file during the MARVELoid process).

IAT Controls. The container scans all Android API calls from the plugins to detect the
challenge values. The trusted container leverages the Java Dynamic Proxy to modify the
proxy object of the Android Package Manager. From a technical standpoint, we replaced
the proxy class generated by VirtualApp for the getPackageInfo API (used by the base
IATs) and getApplicationInfo API (used by the IATs with encryption) with our custom
logic. In particular, the container verifies the content of the request. If it matches a challenge,
the container retrieves the correct response value and returns it to the plugin instead of
forwarding the request to the Android framework. MARVELoid supports the configuration of
multiple APIs to deliver the challenge of the IATs and thus could be customized.

3.7 Experimental Evaluation

We empirically assessed the performance of the MARVEL methodology by I) applying
MARVELoid over a dataset of 4,000 apps. The dataset’s apps were downloaded from the
Google Play Store in December 2020, have an average rating of 4 stars on the Google
Play Store, and belong to more than 30 categories. The experimental campaign aims to
evaluate I) the distribution of the protection values according to several combinations of
input percentages (i.e., static evaluation), and II) executing a subset of 45 randomly selected
apps (with the best sets of input parameters) to evaluate their compatibility with virtualized
environments and the introduced runtime overhead (i.e., runtime evaluation).
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Static evaluation. The experiments were hosted on a virtual machine running Ubuntu 20.04
with eight processors and 32GB RAM. All experiments were conducted using the default
value of the PN input parameter of MARVELoid (i.e., the package name of each app). We
conducted tuning tests to detect the on-average best combinations of input percentages (i.e.,
Prepl , Penc_AT , and Pbase_IAT ) to ensure a reasonable trade-off between the protection overhead
values (i.e., space and time overhead) and the protection level (i.e., the number of injected
protections). In particular, we computed the protection overhead and protection values for 24
combinations (i.e., the permutations of [5,10,20,30]).

MARVELoid was able to apply 96,000 protections (i.e., 4k apps for each permutation) in
nearly 109 days and 14 hours (i.e., 9477578 seconds) of computation; thus, the protection of
a single app took, on average, 98 seconds.

MARVELoid worked successfully in 97.3% of the cases (i.e., cases in which it generated
a valid protected APK). At the same time, the remaining 2.7% (i.e., 2624) failed due to
well-known bugs of the adopted libraries (such as a Soot bug [127]) or crashes during the
tool transformation process.

Figure 3.8 shows the distribution of the success percentage for each permutation. Al-
though the value slightly decreases with higher values of Prepl , it is worth noticing that its
range always sits between 96% and 98%.
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Figure 3.8 Percentage of apps successfully protected by MARVELoid.

Then, we calculated the average percentage of space overhead of the protected APKs
compared with the original ones in each permutation. Figure 3.9 shows the results for the 24
combinations of the input values. The value distribution suggests that the space overhead
is directly proportional to Penc_IAT : such behavior is reasonable because MARVELoid adds
some auxiliary code to handle the decryption and execution of the encrypted IAT. In the
worst case, the space overhead introduced by the protection is always less than 18% of the
original APK size.
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Figure 3.9 Space overhead introduced by MARVELoid.

Finally, Figure 3.10 shows the average number and distribution of the injected protec-
tions (i.e., the average number of replaced methods, IAT with encryption, and base IAT,
respectively) for each permutation of the input probability values. During the experimental
activities, MARVELoid was able to inject a minimum of 68 and a maximum of 135 protection
elements in the protected apps regardless of the input parameter permutation.
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Figure 3.10 Distribution of the average protection values inserted by MARVELoid.

Runtime evaluation. The last set of experiments is aimed at evaluating the effectiveness and
usability of the proposed protection scheme. To this aim, we randomly selected 45 apps from
the dataset of 4k apps that reported at least 5,000,000 downloads on the Google Play Store
in December 2020.
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In the first part of the runtime evaluation, we assessed the compatibility of traditional
Android apps w.r.t. virtualization and the overhead introduced regarding CPU and memory
usage. Then, we evaluated I) the effectiveness of MARVELoid by running the protected
apps inside the trusted container and II) the corresponding overhead (using the results of the
standard virtualization as reference values).

For the testing phase, we used a set of emulated Android 8.0 devices equipped with a
dual-core processor and 2GB of RAM and ARES [181]. This black-box tool leverages Deep
Reinforcement Learning to stimulate Android apps automatically.

To evaluate the compatibility with the virtual environment, we installed and executed the
45 apps directly on the emulator to check their proper functioning and resource usage. Then,
we ran the apps in a standard VirtualApp container; in this step, we collected the overhead
introduced by the Android virtualization in terms of CPU and memory usage. At the end of
this phase, we identified five apps that triggered an exception due to the virtual environment.
Thus, we discarded such apps from the rest of the experiments.

Then, we applied the protection to the remaining 40 apps with two different combinations
of input percentages. To define the best combinations, we computed the average number of
methods inside the default package name of the apps. Then, we calculated the parameters that
allowed injecting at least 50 protection elements in each app. Being 600 the average number
of methods per app in the dataset, the combinations are Prepl = Pbase_IAT = Penc_AT = 10%
(Setup10%) and Prepl = Pbase_IAT = Penc_AT = 15% (Setup15%).

The protection phase introduced, on average, 111 protections (i.e., 32 replaced methods,
38 IAT with encryption, and 41 base IAT) for Setup10% and 175 protections (i.e., 51 replaced
methods, 58 IAT with encryption, and 66 base IAT) for the second setup. Moreover, we
executed every app ten times for each combination for 4 minutes to verify its correct execution
inside the trusted container and the introduced overhead.

During the experiment, 22 out of 40 (with Setup10%) and 25 out of 40 (with Setup15%)
apps executed successfully. The remaining apps (i.e., 18 and 15) threw new exceptions,
crashed, or became unusable. We manually investigated such problems to discover the
following causes:

• 8 apps (Setup10%) and 7 apps (Setup15%) crashed due to a well-known Soot bug [21,
224]. The bugs affect the transformation process from the bytecode to Jimple of
third-party libraries included in APK files, causing the final app to crash during the
execution.
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• 4 apps (Setup10%) and 4 apps (Setup15%) triggered a timeout defined by the UiAu-
tomator2 library, used by ARES to test the application. Unfortunately, after a deeper
investigation, we discovered that such timeout is hardcoded and cannot be modi-
fied [155]. It is worth noticing that these apps did not crash due to the protection but
were terminated by the library.

• Finally, six apps (Setup10%) and four apps (Setup15%) threw new exceptions directly
related to the protection process.

Concerning the last point, the root cause analysis of the crashes caused by MARVELoid

led to the discovery of two issues of our prototype implementation. The first one is related to
an incorrect referencing of the Context object of the app; in several cases, the plugin raised a
null pointer exception due to the absence of the correct reference. The second bug occurs if a
replaced method is loaded in the CCL. In such a case, a crash can occur because the CCL
does not inject the correct body of the method, causing a runtime exception.

Simple container Setup10% Setup15%

C
PU

min. -1.1 -0.4 -0.3
avg. +0.9 +1.7 +4.7

st.dev. 1.3 2.7 4.6
max. +10.9 +7.6 +24.5

M
em

or
y min. +3.8 -0.1 -0.5

avg. +4.4 +0.2 +0.2
st.dev. 1.9 0.1 0.2
max. +6.1 +0.6 +0.7

Table 3.1 CPU and memory usage overhead in percentage point (pp).

The dynamic testing phase allowed us to monitor the overhead introduced by traditional
virtualization and our solution on 45 apps. Table 3.1 shows the minimum, maximum, average,
and standard deviation of the overhead values expressed in percentage points (pp). A positive
value means that the apps used more resources than the reference value, while a negative is
the vice versa. Moreover, a value of X means that the app used X more or less (depending on
the sign) resources in that environment compared to the reference value. In the first column,
we compared the execution of apps in the virtual environment with the traditional execution
method (i.e., the app directly installed on the actual device). For the protected apps (i.e.,
second and third columns), we computed the overhead compared to the execution in a clean
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virtual environment. In this way, we can discriminate the virtualization overhead from the
one introduced by our protection scheme. Since the execution of an app under virtualization
is composed of two processes (i.e., container and plugin), the overall amount of CPU and
memory is given by the sum of the overhead of these two processes.

The average overhead the virtualization introduces is negligible regarding CPU usage
(i.e., an increase of 0.9 pp). On the contrary, the memory overhead is 4.4 pp. Also, the
negative minimum value for the CPU overhead denotes that the virtual environment app can
adopt CPU optimization strategies at the cost of a higher memory footprint.

The analysis for the protected apps with Setup10% shows that the average overhead
introduced by the protection is negligible, i.e., an increase of 1.7 pp for the CPU usage and
0.2 points for the memory. In the worst-case scenario, the CPU overhead reached 7.6 pp.
We advocate that such an increase is caused by the overhead required by the CCL and ART
instrumentation to load and inject the fake methods.

The results on the memory overhead are confirmed by the analysis of the protected apps
with Setup15%. In particular, on average, the memory overhead is negligible, with a peak
of 0.7 percentage points in the worst case. On the contrary, the CPU overhead is 4.7 pp,
reaching, in the worst case, an increase of 24.5 pp.

3.8 Discussion

From a security point of view, MARVEL is effective. Concerning the repackaging attacks
presented in Section 3.4.1, MARVEL provides preventive anti-repackaging protection in both
repackaging attack scenarios (i.e., traditional and through virtualization).

First of all, the analysis of the victim app APK (i.e., Step 1 in Figure 3.1) becomes
more challenging for the attacker due to the code splitting and the IAT with encryption,
which removes or encrypts some portions of code from the protected app. Concerning
the identification and neutralization of the repackaging protections the victim app might
be equipped with (Step 2 and Step 3 in Figure 3.1), the mutual collaboration between the
trusted container and the plugin makes this goal harder to achieve for the attacker: she has
to investigate the runtime communication between the TC and the plugin through dynamic
analysis techniques, to retrieve the CR pairs or the original code after code splitting. Moreover,
since a method can be concurrently transformed by several protection mechanisms (e.g.,
an extracted method can contain an IAT), the attacker has to recursively resolve the nested
protection once she has disabled the external one. Finally, the customization of a container to
set up a virtualization-based repackaging attack (Step 2 and Step 3 in Figure 3.3) is prevented
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by MARVEL thanks to the mutual integrity checks between the trusted container and the
plugin, which stops the execution of the latter in case the environment is detected to be not
secure. Overall, MARVEL makes virtualization-based anti-repackaging attacks as complex
as traditional ones.



Chapter 4

The Dark Side of Native Code on Android

4.1 Introduction

Since its very first version, Android has supported Java Native Interface (JNI), a mechanism
to connect the Java language, which typically runs inside a virtual machine, and C/C++
languages, which are instead compiled into native libraries. While using JNI by benign apps
has brought numerous advantages in performance and resource consumption, it has also
introduced multiple challenges when used by malicious software. While apps written in
Java are not dependent on the device’s architecture, the same cannot be said for the native
components that use JNI. This, combined with the fact that today the Android system can
run on many architectures, introduces numerous challenges for a malware analysis pipeline.
Moreover, JNI serves a variety of different purposes. For instance, it can interact with the
Android runtime and instantiate new objects or modify their fields. It can also perform
low-level operations or be used as a trampoline to jump back to the ART. This versatility and
the additional complexity of its analysis have led malware authors to increasingly use the
native layer as a protection mechanism to hide malicious code, perform suspicious operations,
or complicate static and dynamic analysis [174, 235, 236]. In addition, benign actors leverage
native code to implement more robust protection techniques; for instance, in [148], authors
exploit the compiled code to implement more sturdy APK tampering verification controls.

Currently, JN-SAF [236] and JuCify [188] represent state-of-the-art solutions to analyze
apps with native code to detect data leaks statically. However, these tools only focus on
detecting data leaks through Java and native code. In addition, they rely on Angr’s symbolic
execution [230], which often incurs a path explosion that prevents it from completing the
analysis. However, despite the native code’s growing popularity, no previous work has
documented how Android malware uses and abuses the native layer. Furthermore, current
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Android anti-malware engines pay little attention to the native components. For instance,
we created and submitted to VirusTotal some malicious samples with well-known publicly
available exploits in the native code: half of the samples went undetected, and the remaining
were detected by just one engine.

This chapter presents a new approach to studying Android malware to fill this gap. It
provides a methodology to reverse engineer Android apps that use native code, considering all
suspicious patterns that can be used for malicious purposes. The methodology is implemented
in ANDani, a framework to detect and tag suspicious and surreptitious native code usage in
Android apps. These tags are handy because they can be imported into reverse engineering
frameworks and highlight portions of (native) code that the analyst needs to focus on, as they
may conceal malicious behaviors.

We decided to follow a different approach w.r.t. the state-of-the-art, and we developed
our analysis infrastructure by combining two components. The first is an extended version
of the Soot framework for bytecode analysis; we improved the entry points detection and
managing concurrent execution. The second is an architecture-independent Ghidra plugin
for the native code analysis that can handle JNI data structures and propagate inferred types
from JNI methods’ signatures through various functions.

To study the evolution of surreptitious native code patterns over the years, compare the
use of native functionalities in benign and malicious apps, and understand the underlying
motivation behind possible discrepancies, we analyzed with ANDani a total of 113,476
APKs that include native code. Such APKs are divided into two different datasets: 97,829
malware from AndroZoo [12] spanning from 2010 to 2021, and 15,647 benign apps from
the most downloaded apps of the Google Play Store.

In particular, the measurement aims to answer the following five main research questions.
RQ1: For what purpose do malicious apps use native libraries?
RQ2: Which operations are hidden in the native layer?
RQ3: How has the usage of native code in malware evolved?
RQ4: How do malware and goodware differ in using native code?
RQ5: Is native code information useful in the “war” against malware?

The results led to numerous insights into using native components: malware is more
likely to trigger the native component without user interaction, especially during the app
startup and while reacting to Broadcast Receivers. For example, waiting for the mobile
phone to be charged can indicate the right time for malware to perform intensive operations
that would typically lead to excessive battery consumption and raise the victim’s suspicion.
Native components are often employed for obfuscation by dynamically loading and executing
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Java and other native code. In particular, the malware goes native to dynamically load and
invoke methods of the Android framework that require dangerous permission to get the
user’s sensitive information in a twisted way. This creates leaps between these two different
code “worlds”, making the analysis particularly difficult. Moreover, we also report an
undocumented strategy: malware exploits JNI mechanisms to load malicious or harmless
code at will, depending on evasive controls. Such new trends are bridging different functions
between the Java world to the native one or including two libraries with the same name but
different functionality. Finally, we found that malicious native libraries are often re-used
among samples for several years without the authors changing their hash.

The measurement study also highlighted differences in how benign and malicious apps
use native code. To prove the usefulness of ANDani and the reliability of the tags that can
be extracted from its output, we used them to train and test a Random Forest algorithm to
classify goodware and malware. Our results are promising: the classifier can distinguish
between the two classes, leveraging only the native features with an average error of 0.02 and
achieving an F1-score of 0.97. The output of the classification task allowed us to discriminate
suspicious behaviors that are more correlated to malware and whose presence can hint at
potential malicious patterns, thus providing valuable information to the malware analysts.
For example, we found that how native components are triggered through JNI contributes
nearly 50 percent of the accuracy.

In summary, this chapter makes the following contributions:

• a detailed methodology to assist analysts in reverse engineering native code by An-
droid apps, which focuses on the disclosure of suspicious (and potentially harmful)
operations;

• ANDani, a static analysis tool for Android apps to perform an in-depth behavior
analysis of all aspects related to the native code;

• the first longitudinal analysis on Android malware, specifically focusing on native
code, over the past ten years and in current ‘top apps’ on the Google Play Store to
investigate the security impact of the native code and understand its behavior;

• novel anti-analysis techniques, against both static and dynamic analysis, that we found
in malware and goodware;

• a concrete use case of suspicious tags usage: it obtained remarkable performances in a
binary classification task as a sole feature.
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4.2 Android JNI Internals

This section discussed the details of the native code usage in Android apps. In particular, the
Android system allows an app to invoke and use native code through four primary techniques,
whether in the form of shared objects or executable files.

4.2.1 Native Library Loading

To allow the interaction between Java code and native components through JNI, native
libraries (in the form of SO files) must first be loaded into the app’s address space. An app
can load these libraries by using the load or loadLibrary methods, which are present in
both java.lang.System and java.lang.Runtime classes. For both implementations, the
difference between the load and loadLibrary implementations is that the first method
requires the library name to be specified as an absolute path. In contrast, the second requires
that the name passed as an argument not contain a file extension or path, as the library will
be automatically searched in the default path under the installation folder (see Section 2.1.1).

When the library is loaded, the linker calls the initialization functions. The ELF file format
defines three sections that contain code (or pointers to code) that are in charge of initialization
procedures: .pre_initarray, .init, and .initarray. The linker searches them in this
order and runs the code of the present ones. In Android, the .pre_initarray section is
ignored for shared libraries [103]. Finally, the linker invokes a JNI-specific initializer, the
JNI_OnLoad function.

4.2.2 Bridging Functions

Since the JNI allows the interaction between Java and native components, it is possible to
invoke a native function defined within a shared object from a Java method. Vice versa,
the native component, always via JNI, can interact freely with the Java counterpart. For
example, the native component can create objects, invoke methods of the Android framework
or defined within the app itself, or even modify field values: all these operations are possible
thanks to the use of JNI Callbacks.

In the Java code, the methods declared with the keyword native represent the functions
defined and exported within the native shared libraries accessible from the app. The redi-
rection of the execution flow and the mapping between the native method definition and its
implementation are all handled via JNI. In particular, when a native library is loaded, the JNI
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tries to resolve the native methods dynamically and map them into the corresponding defined
Java method [163].

These steps are possible thanks to the fixed structure in the naming convention of the
native methods. The name of the function, translated from Java to native, is made of three
parts: the “Java_” string, concatenated with a mangled fully-qualified class name of the
related Java class, and the name of the method. For instance, in the following example

1 package xx . yyy ;
2 class Clazz {
3 public n a t i v e S t r i n g t e s t ( int x ) ;
4 }

the class Clazz declares a native method test. When the shared library containing the
function is loaded, the system will search for the symbol corresponding to the function name:
Java_xx_yyy_Clazz_test(JNIEnv*, jobject, jint) .

Furthermore, the definition of native methods requires the first additional argument
always to be a pointer to JNIEnv. Then, in the case of a static method, JNI requires the
second argument to be a pointer to the corresponding Java class (i.e., an object of type
jclass); on the other hand, a pointer to the corresponding Java object (jobject). The first
and the second arguments are implicit, and the developer does not directly handle them.

The third and last argument of the example, the type int defined in the Java method
signature, matches the native type jint. For a complete list of Java primitive types and their
machine-dependent native equivalents, please refer to [160].

The JNIEnv type – a struct when the shared object is written in C, or a class in C++ –
contains pointers to functions that allow the interaction between the native component and the
Android framework or the app itself. These functions are called JNI callbacks, and the most
relevant are NewObject, FindClass, GetMethodID, GetStaticMethodID, and the Call*

family (e.g., CallVoidMethod). Through these functions, the native code can respectively
instantiate objects, find a reference to a class or a method, and then call a method.

Moreover, the JNIEnv provides the RegisterNatives function to dynamically map
a Java method defined as native to its implementation in the shared library at runtime.
However, following a fixed naming convention is not required in this case. For a complete
listing of all the JNI functions, please refer to [162].
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4.2.3 Native Activity

Developers who require their app to have high performance in terms of execution speed or
that need to interact with low-level system components may decide to develop the entire

app natively. For this, the NDK introduces and supports the concept of “Android Native
Activity”. The native code implements the Android activity component, and its methods are
invoked according to the activity lifecycle functions (e.g., onCreate, onDestroy [85]).

If the app does not contain any Java code, a (Java) “stub” is created at compile-time with
the sole task of loading and running the native code since it is released as Shared Objects
and, therefore, must follow the loading process described above.

There are several requirements for the developer to create a native app: it must tar-
get an API level greater than eight and specify whether it contains Java code via the an-

droid:hasCode attribute of the Manifest. Then, each Activity defined as native must indicate
in which library it is located: the name of the shared library is specified in the android:name
attribute of the activity tag in the Manifest file.

It is worth noticing that the Activity is the only component that can be fully developed in
native code. The others (i.e., Services, Broadcast Receivers, and Content Providers) must be
defined in Java, and then they can interact with the native counterpart.

4.2.4 Process Execution Methods

Shared Objects are not the only types of ELF that can be executed within Android apps. The
Android framework allows apps to execute shell commands, scripts, or ELF executables in
a separate process through the Runtime class, with its exec methods, or via the Process-
Builder class and its start method. These methods allow the app to execute binaries that
do not contain any JNI components. The execution of these new processes takes place in a
different process, and therefore, the interaction between the native component and the app is
not handled by JNI.

4.3 Motivation & Methodology

In the first part, this section shows a practical example of the limitations of the current
antivirus engines in analyzing native code. Then, it defines what “suspicious” means and
illustrates the proposed methodology guided by an example, highlighting how the native
layer can be abused for malicious purposes.
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4.3.1 Native Components and Antivirus Software

To begin with, this section shows how the static module of many Android anti-malware
engines completely ignores the presence of native components or performs only fundamental
controls. In this respect, we collected well-known exploits (CVE-2011-1823 [41, 215], CVE-
2014-3153 [42, 215], CVE-2016-5195 [43, 117], and CVE-2019-2215 [44, 34, 120, 54])
from public repositories from 2015, 2016, and 2019. It is worth noting that those do not
simply contain a proof-of-concept for a given vulnerability but working exploits. Moreover,
anti-malware engines are aware of these exploits; for example, the malicious app cdde1 is
labeled with the exploit name or the associated CVE (i.e., CVE-2016-5195 is also known as
DirtyCow).

Then, we created a native (x86 and ARM32) Android app for each exploit. Each app loads
and runs the exploit immediately at startup: it loads the library in the static constructor of
the Application class. It calls the function running the exploit directly from JNI_OnLoad,
making the program flow to reach the exploit straightforward and trivial to analyze. The apps
were signed with the default debug key and did not use any form of obfuscation or shrinking.
The resulting six apps were uploaded to VirusTotal and scanned with at least 61 engines. At
the time of the analysis, three apps were detected by only one engine (i.e., samples 7383,
e088, and 1f26), and we obtained no detections for the remaining three (i.e., samples 5bd3,
858e, and f7b9). Since we used only publicly available and well-known exploits (with no
changes), our experiment reveals an explicit limitation in the existing commercial solutions
to which this chapter hopes to contribute.

4.3.2 Suspicious Pattern

The proposed methodology comprises seven different Steps to analyze native-code execution
flows and identify suspicious patterns effectively.

We define a suspicious pattern as any use of native code that shows characteristics of
surreptitious code [153] (e.g., obfuscation and anti-tampering). It is worth emphasizing that
suspiciousness does not necessarily imply maliciousness. Such techniques typically prevent
others from exploiting the intellectual effort invested in producing software, regardless of
whether the action is for uncovering malicious purposes. Therefore, when using the word
‘suspicious,’ we refer to a code snippet that needs further investigation without binding our
definition to a particular technique or malicious behavior.

1Due to the ease of readability, this thesis reports only the first four bytes of the apps’ sha256; while the
complete list is in Table A.1 in the Appendix.
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4.3.3 Running Example

Listing 4.1 JNI example – Java side
1 package com . xmp ;
2 public class M a i n A c t i v i t y e x t e n d s AppCompatAct iv i ty {
3 static {
4 System . l o a d L i b r a r y ( "xmplib" ) ;
5 }
6
7 public n a t i v e b o o l e a n fun1 ( int a , int b ) ;
8 public static n a t i v e S t r i n g fun2 ( O b j e c t obj , b o o l e a n b ) ;
9

10 public S t r i n g g e t S u b s c r i b e r I d ( ) {
11 return "no_id" ;
12 }
13
14 @Override protected void o n C r e a t e ( Bundle b ) {
15 s u p e r . o n C r e a t e ( b ) ;
16 A c t i v i t y M a i n B i n d i n g b ind =

A c t i v i t y M a i n B i n d i n g . i n f l a t e ( g e t L a y o u t I n f l a t e r ( ) ) ;
17 s e t C o n t e n t V i e w ( b ind . g e t R o o t ( ) ) ;
18 S t r i n g s = fun2 ( g e t S y s t e m S e r v i c e ( C o n t e x t . TELEPHONY_SERVICE) ,

fun1 ( 2 , 1 ) ) ;
19 b ind . sampleTex t . s e t T e x t ( s ) ;
20 }
21 }

To better present our methodology, this section continues the discussion guided by
the code given in Listing 4.1, which shows an example of an Android app that displays
a string to the user in a blank Activity. The string is generated [line 4.1.18] from two
native functions, fun1 [line 4.1.7] and fun2 [line 4.1.8] implemented in the xmplib library
(loaded at [line 4.1.4]). The C code (reported in Listing 4.2) declares three functions: JNI_-
OnLoad [lines 4.2.22-28], Java_com_xmp_NatClass_fun1 [lines 4.2.1-4] and sensitive

[lines 4.2.6-16]. The native functions reachable from the Java code are those that respect the
JNI naming convention [163] or the ones that are registered through the RegisterNatives
callback. In particular, the JNI_OnLoad binds at runtime, through the RegisterNatives,
the Java method fun2 to the native function sensitive [line 4.2.26]. Instead, the function
fun1 leverages the JNI name convention to register it and returns a boolean depending on
comparing its two integer parameters. Lastly, the sensitive function, depending on the
value of its boolean parameter, uses FindClass to get the reference to the user-defined
MainActivity class or the TelephonyManager of the Android framework, and, finally,
invokes the getSubscriberId method of such class. In this example, fun2 is called with
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Listing 4.2 JNI example – Native side
1 extern "C" JNIEXPORT j b o o l e a n JNICALL
2 Java_com_xmp_MainAct iv i ty_fun1 ( JNIEnv * env , j o b j e c t t h i z , j i n t a ,

j i n t b ) {
3 return a>b ;
4 }
5
6 static j s t r i n g s e n s i t i v e ( JNIEnv * env , j c l a s s j c l a z z , j o b j e c t obj ,

j b o o l e a n b ) {
7 char* cName ;
8 if ( b )
9 cName = "android/telephony/TelephonyManager" ;

10 else
11 cName = "com/xmp/MainActivity" ;
12
13 j c l a s s f c l a z z = env −> F i n d C l a s s ( cName ) ;
14 jmethodID method = env −>GetMethodID ( f c l a z z , "getSubscriberId" ,

"()Ljava/lang/String;" ) ;
15 return ( j s t r i n g ) env −> C a l l O b j e c t M e t h o d ( obj , method ) ;
16 }
17
18 static JNINat iveMethod na t_me thods [ ] = {
19 {"fun2" , "(Ljava/lang/Object;Z)Ljava/lang/String;" ,

( void *) s e n s i t i v e } ,
20 } ;
21
22 j i n t JNI_OnLoad ( JavaVM* vm , void* r e s e r v e d ) {
23 JNIEnv * env = n u l l p t r ;
24 vm−>GetEnv ( reinterpret_cast<void **>(& env ) , JNI_VERSION_1_4 ) ;
25 j c l a s s c l a z z = env −> F i n d C l a s s ( "com/xmp/MainActivity" ) ;
26 env −> R e g i s t e r N a t i v e s ( c l a z z , na t_methods , 1 ) ;
27 return JNI_VERSION_1_4 ;
28 }
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a True argument (because fun1 with such arguments returns True) to obtain the IMSI via
getSubscriberId. However, more complex flows could dynamically load a DEX file that
calls fun2 passing False as an argument, thus making it possible for the getSubscriberId
of the MainActivity to be invoked.

4.3.4 Anatomy of the Analysis

The execution order of runtime code is crucial to preserve when reverse engineering an
Android app that uses the JNI. To closely follow the execution flow, we have broken down
our analysis pipeline into the seven main steps in Figure 4.1.
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Figure 4.1 JNI behaviour

The very first step, Step #0, extracts the possible entry points of the app from its Manifest
file to understand the Android components (i.e., Activity, Service, Broadcast Receiver,
Content Providers) and their lifecycles. Such information is fundamental to identifying all
the app components that can be triggered and could potentially reach the JNI. For example,
malware can gain persistence by registering a Broadcast Receiver for the BOOT_COMPLETED
intent filter to start each time the device boots and loads the malicious native component. In
the running example, the onCreate method of the MainActivity [line 4.1.14] class is an
entry point.

In Step #1, the Java code loads a native library. Calls to load methods mainly occur in the
class’s static constructor containing the native methods (e.g., line 4.1.4). It is worth recalling
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that the load method (of both classes java.lang.System and Runtime) allows the code
to load a native library from the filesystem, not necessarily located in the default folder. In
contrast, the loadLibrary requires that the name passed as an argument does not contain a
file extension or path, as the library will be automatically searched in the default path. From
a malicious perspective, the load method can hide which ELF file is loaded. This type of
analysis can reveal (e.g., sample 04CE) whether a native library is not present in the APK but
is downloaded at runtime once specific conditions are met (e.g., after some evasive controls)
or whether the app loads a file that is not supposed to contain executable code (e.g., loads
a PNG file as ELF file). Moreover, this approach can uncover the author’s will to hide the
library loaded by the app if the string passed as an argument to the load method is not defined
in the code but computed at runtime.

In Step #2, JNI automatically loads the correct library according to the device architecture.
However, malware can ship libraries with the same name, exposing and implementing
functions with different names or semantics. For instance, if malware authors knew that
specific antivirus solutions run the app in x86 emulators, they could avoid detection by
restricting the malicious logic to the ARM architecture and placing a harmless code into
the x86 library. The malicious component would evade the analysis since the sandbox only
loads the x86 library. However, when executed on an actual device that supports ARM, the
malware would show its actual behavior.

In Step #3, the dynamic linker first invokes the initialization functions of the ELF file (e.g.,
.init_array), and then, JNI automatically calls the JNI_OnLoad function (e.g., line 4.2.22).
A malicious actor can hide the logic to perform evasive checks in the initialization functions.
For example, we found samples (e.g., 019E) using the ptrace function as an anti-debugging
technique when it is loaded in memory (i.e., the check is done in the JNI_OnLoad method).

Furthermore, in Step #4, the JNI_OnLoad is used to dynamically link the JNI methods
through the RegisterNatives API (e.g., line 4.2.26). In this way, the mapping between
Java methods and native functions is not statically explicit anymore but is performed at
runtime. Thus, an attacker can perform environment checks and use the RegisterNatives
to map different functions depending on their results (e.g., 7900, discussed in Section 4.6).

At this point, in Step #5, the Java methods can call the native functions of the loaded
library (e.g., line 4.1.18). This transition is crucial as it is impossible to determine the
mapping between methods and functions statically and as different architectures result in
different semantics. For this reason, we designed three specific Steps (#6A, #6B, #6C in no
particular order) to be followed once the execution moves from Java to the native library.
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Step #6A tracks the native reflection, which allows native code to manage Java objects
through the JNI callbacks (e.g., create Java objects, invoke Java methods, or modify object’s
fields). For example, the sensitive method of the Listing 4.2 [lines 4.2.6-16] uses the
JNI callbacks FindClass, GetMethodID, and CallObjectMethod to get a reference of
the object TelephonyManager and call its method getSubscriberId. This possibility
significantly complicates the analysis because it makes it only possible to statically determine
which code will be executed by resolving the arguments of such methods. In addition, it
is also worth noting that the native reflection can also use Java reflection features to hide
methods or accessed fields. For instance, sample 4E4B uses the getDeclaringClass method
of the java.lang.reflect.Method class to dynamically retrieve the class representing
an object. Then, it leverages the native reflection (e.g., FromReflectedMethod callback
function) to retrieve the corresponding method from the reflected object.

In Step #6B, the native code can dynamically load and invoke exported functions of other
libraries by relying on the dlopen and dlsym functions. This technique aims to conceal the
usage of a particular shared library from static analysis, given that it is no longer present in
the dependencies. Even if the system should prevent loading or linking those libraries since
Android 7, we found multiple samples (e.g., 1306) that use dynamic loading to load and call
functions from a library not present in the APK.

The last step to consider, Step #6C, is using library functions that can affect secu-
rity, for example, running exploits against specific subsystems or performing environment
checks (e.g., debugger detection). We divided them into nine categories: Dynamic Loading
(e.g., dlopen), Execution (e.g., system), File Permission (e.g., chmod), Kernel Interaction
(e.g., ioctl), Identity (e.g., geteuid), Memory Protection (e.g., mprotect), Network (e.g.,
gethostbyname), Open Special File (e.g., open("/proc/version")), Process Manage-
ment (e.g., ptrace), and Monitoring (e.g., inotify_add_watch). Table 4.1 reports the
complete list.

4.4 Suspicious Analysis Framework

This section describes ANDani, a cross-architecture analysis framework that implements
our methodology. The first part presents a general overview of the framework, and then the
section describes each module in detail.
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Table 4.1 Security-relevant library calls

Category Library Calls
Dynamic Loading dl(v)sym, dl(m)open
Execution exec*, system, popen
File Permission *chmod*, *chown*, access
Kernel Interaction ioctl, syscall
Identity get(e)uid, get(e)gid
Memory Protection mmap, mprotect
Network socket, listen, connect, gethostbyname
Open Special File *open* <special_file_path>
Process Management kill, ptrace, fork
Monitoring inotify_*

4.4.1 Overview

ANDani receives as input an APK file. It first unpacks and extracts its DEX, JAR, and ELF
files. This operation recursively occurs on all the archives (e.g., ZIP, TAR) inside the APK. It
also parses the Manifest file to extract relevant information, such as the Android components,
the required permissions, and the various intent filters.

Then, ANDani starts the analysis by computing an Inter-Procedural Control Flow Graph
(IPCFG) for both the Java and the native code. First, it computes the IPCFG of every code
file, then merges them into a single IPCFG, keeping track of whether the code file was found
in a standard or non-standard location within the APK. This information is crucial to identify
malicious code in non-standard locations (e.g., in an archive file).

The IPCFG is based on two types of nodes: code blocks that are the traditional basic
blocks interrupted by function calls, and call blocks that represent the function calls or method
invocations. Moreover, our analysis also considers that from a call block of a Java native
method, we can have multiple edges to different native functions of different architectures.
In the same way, when we deal with the native reflection (see Step #6A of Section 4.3) where
the function can take multiple arguments (e.g., lines 8-15 of Listing 4.2), the graph can also
have different edges to Java methods.

The Bytecode module handles the IPCFG for all the bytecode components, and it is
built on top of the Soot framework [226, 108]. For the native components, the analysis is
performed by the Native module, which leverages the Ghidra [79] API to process the ELF
files.
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4.4.2 Bytecode Module

The Bytecode module performs the analysis of DEX and JAR files. It is written in about 1814
lines of Java code and based on the Soot framework. The module starts by translating the
bytecode into Jimple, a three-address code [7] intermediate representation that Soot needs to
build the preliminary IPCFG.

Soot suffers from many known limitations in the case of parallel and asynchronous
Java classes, i.e., those that extend or implement Thread, Runnable, AsyncTask, or Timer.
Such drawbacks make the IPCFG incomplete; therefore, we had to add the necessary code –
complete with test cases – to handle them.

Once the IPCFG is computed, our system continues the analysis by identifying the calls
to the load methods that allow loading native libraries. Each time a call is found, it tries
to resolve the argument (a string) to identify which native library is loaded. For this, we
perform a backward intra-procedural taint data analysis. This is sufficient in most cases
because, as previously mentioned, calls to load methods almost always occur in the class’s
static constructor containing the native methods, which also references the plaintext string
with the library’s name.

The system then repeats this procedure for each DEX and JAR file, and at the end of this
phase, it produces the IPCFG of the whole bytecode found in the APK. Then, the analysis
identifies the entry points of the app by combining the information from the Manifest file
(e.g., the onCreate method of the main Activity) and the list of entry point methods of
previous studies [22, 234]. As the last step, the system identifies all native methods and
extracts their signatures, which serve as input to the next module.

Example of Thread handling. Listing 4.3 shows a simple Java snippet where the run()

method of a Thread subclass is executed through the Thread.start() call. The code
contains two Thread classes, respectively MyThreadA and MyThreadB, but only the first one
is used. The Bytecode module has been designed to consider the call’s context and propagate
the arguments. In this example, contrary to other state-of-the-art tools, the bytecode module
can create an edge from Main.start_thread to MyThreadA.run method, ignoring the
MyThreadB class.

Listing 4.3 Executing a new sample thread in Java.
1 class MyThreadA e x t e n d s Thread {
2 void run ( ) {
3 System . o u t . p r i n t l n ( "My Thread A - called" ) ;
4 }
5 }
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6
7 class MyThreadB e x t e n d s Thread {
8 void run ( ) {
9 System . o u t . p r i n t l n ( "My Thread B - never called" ) ;

10 }
11 }
12
13 class Main {
14 static void s t a r t _ t h r e a d ( Thread t ) {
15 t . s t a r t ( ) ;
16 }
17
18 static void main ( S t r i n g [ ] a rgv ) {
19 s t a r t _ t h r e a d ( new MyThreadA ( ) ) ;
20 }
21 }

4.4.3 Native Module

The Native module is written with almost 5200 lines of Java code, and it uses the Ghidra
reverse engineering framework API to perform headless analysis of all ELF files. The
analysis leverages the Ghidra P-code intermediate representation to model the behavior of
many architectures. Since the signatures of the Java native methods are fundamental to
propagating types of information in the native code properly, this module is executed after
the Bytecode module. The output of the Native module is the final, complete, and merged
IPCFG.

The analysis performed at this stage can be divided into three different phases.

I) ELF information and JNI entry point identification. Given an ELF file, the module
extracts generic information from the ELF header (e.g., architecture, sections, segments,
symbols, strings), and it initializes the set of the JNI entry points, i.e., the native functions that
can be reached by Java code. To start, we consider as JNI entry points the functions whose
symbol name respects the JNI naming convention – i.e., symbol name starts with Java_ or
JNI_ – and all ELF initializers. If we consider the example shown in the previous section,
the entry points are: JNI_OnLoad [line 4.2.22] and Java_com_xmp_MainActivity_fun1

[line 4.2.2].

II) Entry point arguments type definition. The module iterates the entry points: for
JNI_OnLoad and ELF initializers, if present, it creates an edge from the respective Java load
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method to the first of these being called, and the others are propagated. For the Java_-

functions, given the signatures of Java native methods collected from the Bytecode module,
it creates an edge from the corresponding Java method. It applies the proper JNI data type
to all the input parameters. If the corresponding Java_ function is not found, it just applies
the JNIEnv* type to the first one. Once the argument types are updated in the JNI entry
point, the module propagates them to the called functions. If we consider our initial example,
in that case, we have two edges: the first one from the loadLibrary [line 4.1.4] to the
JNI_OnLoad [line 4.2.22] and the second from the Java method fun1 [line 4.1.7] to the
Java_com_xmp_MainActivity_fun1 native function [line 4.2.2].

However, in case the native functions are dynamically registered through the Register-
Natives (e.g., [line 4.2.26]), the function names may not start with Java_, as it is the case
in our example for the sensitive function. To handle these cases, the module searches
for all RegisterNatives calls in the code of the entry points, and, for each of them, it
performs a backward taint data analysis again on its second and third arguments. The second
argument of the RegisterNatives is a jclass object obtained from a call to the method
FindClass of the JNIEnv. The FindClass takes a string with the corresponding Java class
name; it is marked as tainted and the string is searched backward. The third argument is a
JNINativeMethod object that contains the mapping between the Java methods and native
functions. Lastly, after this procedure, the module re-iterates the JNI entry points to apply
the correct data types. This phase is crucial to get the correct types, especially JavaVM and
JNIEnv since they expose all the JNI callbacks.

Following the example, after correctly resolving the arguments, the module can now
create an edge from the Java method fun2 [line 4.1.8] to the sensitive native function
[line 4.2.6] and apply the correct type to its arguments.

III) Graph construction. At this last stage, since all the entry points and the types of their
arguments have been retrieved, the module can create and merge the final IPCFG. This
is done by following the call blocks with a depth-first strategy, propagating the types of
arguments to the called functions each time. However, we are not just interested in JNI
callbacks but also specific Android system library calls, as their arguments can reveal helpful
information about the app’s capabilities and its suspicious behavior.

Once the module finds an argument of interest, it marks it as tainted, and it performs a
recursive backward taint analysis on the tainted arguments to resolve them. For example,
ANDani would try to resolve the path of each opened file to detect suspicious accesses to
Linux special files, such as /proc/version to retrieve the version of the Linux kernel [123]
(sample 0259). For more complex cases, such as the one in our running example in which
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the argument is not unique [lines 4.2.8-11], this part of the analysis considers all the values
that the variable can take (among those that were able to recover). In the example, the graph
construction would add two edges from the CallObjectMethod to the getSubscriberId
method: the first to the TelephonyManager class, and the second to the MainActivity

class.

4.4.4 Suspicious Tags

At the end of the analysis, the tool visits the IPCFG, and if it finds a match with one of the
patterns described in our methodology, it assigns a tag to the corresponding node where the
violation occurs. A tag comprises the concatenations of two strings (the category and the
title) with the symbol “-”. Referring to Section 4.3.4, the categories are each of the steps
presented in Figure 4.1, while a title is a short description of a suspicious pattern of the
methodology.

Table B.1 in the Appendix reports all the tags. To give an example, a node tagged
with NR_FINDCLASS-JAVA_REFLECTION (category: “NR_FINDCLASS”, title “JAVA_REFLEC-
TION”) denotes that ANDani found a call to the FindClass callback (native reflection), that
it was able to resolve the argument, and such argument refers to a Java class related to
reflection.

These tags serve three purposes. First, they can assist a human analyst by showing
precisely which parts of the code need to be inspected because they might hide, for example,
some evasive technique, malicious behavior, or protection mechanisms. Second, it provides
automated analysis systems with target locations that could be investigated using more costly
but precise analysis routines (e.g., symbolic execution or dynamic analysis). Finally, the
suspicious tags can improve classification tasks, revealing the most distinctive features of
malware samples, as shown in Section 4.7.

4.5 Dataset

To perform our analysis, we built a comprehensive dataset of Android apps, divided into
malware samples collected over the past ten years and a goodware dataset of benign apps.
All malicious samples are downloaded from AndroZoo [12]. In addition to the APK file,
AndroZoo also provides: I) the date associated with the APK file, II) the number of antivirus
(AV) engines that detected the app as malicious on VirusTotal (VT), and III) the date on
which the app was submitted to VT. However, according to their documentation, most apps
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from Google Play have 1980 as the APK date. Therefore, we assigned each app to a year
by applying the following procedure: if a year was present and had a plausible value, i.e.,
other than 1980 and between 2010 and 2021, we consider that to be the year. Otherwise, we
assign the year of the app as the year in which the first scan in VT was performed. On the
other hand, benign apps were collected among the most downloaded apps from the Google
PlayStore until April 2021 for each of the 50 categories [96]: 15 categories are related to
Games while the remaining 35 vary from Communications to Social.

Since this research focuses on the usage of the native component via JNI by Android
apps, our dataset consists only of apps that make use of this technology. Therefore, each
app in our dataset respects at least one of the following two constraints: it must contain a
DEX file with a declaration of at least one native method that is not defined in the standard
Android libraries, or it must contain an ELF Shared Object file with a JNI entry point method.

Malware. First, we considered “malware” all samples with at least five AV detections. Since
Androzoo does not indicate the family the samples belong to, we downloaded the respective
report from VirusTotal and determined the family via AVClass2 [192]. From a preliminary
analysis, we found that the eligible samples, grouped by year, are overrepresented by a few
families (e.g., among 10k random APKs, 41% of the malicious samples in 2014 belong to
just three families). Therefore, we opted to group samples by pair of years, with a maximum
of 5% for each family, and the sha256 hash of each sample belongs to just a couple of years
(namely, the intersection between the samples for each pair of years is empty).

We ended up with 97,829 native malicious apps, whose distribution is summarized in
Table 4.2, where we report the percentage of the three most frequent families. It is worth
noting that the number of malware that AVClass2 cannot assign to a family (Singleton) has
increased over the years. This is because the number of AV engines has increased, and
there are more inconsistencies in the naming convention of family labels; furthermore, we
observed that in the Androzoo dataset, the average number of detections (also by referring to
updated VirusTotal reports) in recent malware is lower than the old one.

Goodware. We collected the package names of the 500 most downloaded free apps for each
of the 50 official Google Play Store categories. We extracted this information using Google

Play Scraper [61], and we downloaded the samples with Playstore Downloader [78]. The
tool was able to download 27,665 apps successfully. After our pre-filtering, which only
retained apps that use native components, we were left with 15,647 samples. The fact that
more than half (57%) use a JNI component is a clear sign that, nowadays, the native layer
constitutes a fundamental part of the Android userspace ecosystem.
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Table 4.2 Distribution of the suspicious samples taken from AndroZoo

Detection Range

Year Fam. 1 Fam. 2 Fam. 3 Singleton Total
2010/11 5.0% 5.0% 5.0% 8.4% 5,065
2012/13 5.0% 5.0% 5.0% 7.0% 15,458
2014/15 5.0% 5.0% 5.0% 16.5% 19,127
2016/17 5.0% 4.8% 4.4% 37.3% 20,268
2018/19 5.0% 5.0% 4.3% 48.5% 19,610
2020/21 3.7% 0.5% 0.5% 84.3% 18,301
Total: 97,829

4.6 Results

This section presents and discusses the results of the longitudinal measurement conducted
over the malware and the goodware datasets and answers to the first set of research questions.
To better understand why malware uses, and in particular abuses, native code and how it is
tied to the app’s lifecycle, the results will be reported according to the seven main steps of
our methodology (discussed in Section 4.3.4). Moreover, at the end of this section, the work
summarizes the main takeaways that the measurement revealed concerning using native code
in malicious and benign samples. Since malware is grouped into pairs of years, we will refer
only to the highest year (e.g., 2011 refers to the pair 2010/2011) to improve readability.

ANDani Performances. On our machine, an Ubuntu 20.04 with 64 CPUs (Intel Xeon 8160
@ 2.10GHz) and 128 GiB of RAM, we measured an average execution time of 614 seconds
(std. dev. 182) for a single APK. Such variance is because the analysis duration of ANDani

grows proportionally with the code (i.e., ELF or DEX files) in the APK.

4.6.1 App Lifecycle

The first question to answer with this measurement is when apps invoke JNI methods, i.e.,
whether the native component comes into play immediately after the app starts or is only
invoked when specific conditions are met.

For each of the native functions, ANDani first visits the Java IPCFG to verify if a native
method is reachable (a method is considered to be reachable if there is at least one block
of the IPCFG that calls such method) and, if it is, it extracts all the possible entry points of
the different paths that lead to it. This first analysis shows that among goodware, 91% of
the native functions are reachable from nearly all (99.8%) of the DEX files in the standard
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location. Thus, the code invoking the native component is easy to identify, not obfuscated
or dynamically loaded. Moreover, it is essential to highlight how 94% of these functions
are reachable only under specific user interaction with the app, such as a click on a GUI
item. Among the remaining, 4.4% of the native functions are reachable from the lifecycle
methods of Activity components, and the remaining (1.2%) is triggered at the app’s startup,
from static constructors, or other Android components (i.e., Service, Broadcast Receiver, and
Content Provider).

The picture is utterly different for malware. In fact, among malicious apps, the average
number of reachable native functions has decreased from 81% in 2013 to 21% in 2021.
Moreover, the number of reachable native code only from DEX files not located in the
standard position is always higher than 2%. These results suggest that malware uses resources
loaded at runtime to invoke native methods. Furthermore, since 2017, more than 34% of the
native functions have been reachable at the startup (i.e., directly from the Application class),
with a peak of 53% in 2021. This observation is significant because it shows how malware,
unlike goodware, tries to start the native component as quickly as possible. Comparing the
2021 percentages for both malware and goodware, we observe that for the malicious apps,
55.4% of the entry points are Application (53%) or Activity (2.4%) lifecycle methods, and
only 44% are related to user interaction. This again highlights that current malware mainly
invokes native code at the beginning of the process and does not wait for the user to interact
with the app.

Another interesting aspect that differentiates the use of alternative entry points used by
goodware and malware concerns Broadcast Receivers. Although their use is very limited
in percentage, our data shows that malicious apps are more prone than goodware to use
broadcast receivers to invoke native functions when they are notified that the user is present,
an existing app has been added or removed from the device, an external power has been
(dis)connected to the device, or the device boots.

The final analysis measured when an app declares Java native functions that shared
libraries do not expose and vice versa, namely exported JNI entry points not declared in the
Java code. Our results show that these discrepancies are much more prevalent in malware than
in goodware. For instance, in 2017, 49% of malicious apps exported JNI entry points were
never declared in the Java code, and it grew over the years until 84% in 2021. In goodware,
this behavior only appears in 21% of the apps. One possible explanation, confirmed later in
this section, is that malicious apps dynamically load Java code from native and then use this
new Java code to invoke other exported native functions. This redirection cycle between Java
and native layers is a form of obfuscation that complicates static analysis.
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4.6.2 Load Methods

Android apps can load native libraries through the load and loadLibrary methods. We
recall that the former accepts the full path of the library, while the latter takes only the
library’s name, which is loaded from the default folder.

The 86% of loading operations in the goodware dataset load shared libraries directly
from the standard location using the loadLibrary method. Until 2013, this was also the
preferred method among the malicious samples, with more than 89% of such operations
relying on loadLibrary and only 11% on the load method. From 2013 to 2021 instead,
this percentage steadily decreased, and today, the load method accounts for more than 42%
of the loading operations against 14% in goodware.

A second crucial aspect is when these libraries are loaded to make the native methods
accessible. The JNI common practice suggests loading the libraries within the static con-
structor so that native methods will be immediately available and exposed to the rest of
the app’s methods. We measured this from 2011 to 2015: more than 69% of malware was
loading libraries from a static constructor. However, from 2017, we observed a change that
saw samples loading libraries in other points of the app’s execution until 2021 when 80%
of the malware loads native libraries from other code locations. Goodware reinforces this
phenomenon by loading libraries from different entry points, but still, almost half of the
loading operations are performed by static constructors.

Other exciting aspects of the Application Lifecycle analysis concern user interaction
and response to specific system events. In the first case, the experiments show that 52% of
goodware loads native libraries only in response to user interaction, while malware performs
this behavior only in 16% of the samples. Moreover, malware tends to use broadcast receivers
to load native libraries in response to particular events, such as an external power has been
(dis)connected to the device, an external media is (un)mounted, or the device boots.

Finally, we analyzed the names of the libraries that goodware and malware load. Our data
shows that, throughout the years, malware loads significantly more native libraries related
to packing (e.g., jiagu [1]), obfuscation, encoding/encryption, or audio recording. On the
other hand, a high percentage of goodware includes libraries from well-known frameworks,
such as Unity [218] and Flutter [68].
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Table 4.3 Supported architectures by goodware and malware sets over the years [%]

ARM
32-bit

ARM
64-bit x86 x86_64

MIPS
32-bit

MIPS
64-bit Others

Good ’21 80.49 81.26 59.32 43.27 11.18 6.71 0.15
Mal ’11 99.98 1.68 7.65 0.68 4.05 0.10 0.00
Mal ’13 99.99 0.33 8.92 0.13 2.59 0.04 0.01
Mal ’15 99.99 3.52 38.42 1.77 12.29 1.53 0.00
Mal ’17 99.99 30.93 65.49 22.86 17.86 9.97 0.18
Mal ’19 99.96 46.42 69.98 29.31 8.90 5.36 0.50
Mal ’21 99.54 78.51 87.97 45.69 2.19 1.20 1.43

4.6.3 ELF files

To support different architectures, APKs include ELF libraries in lib folder, which are
divided into different subfolders, one for each architecture supported by the app. Table 4.3
details the evolution of the architectures supported by malware and goodware.

Google Play introduced the App Bundle [86], a new publishing format to generate and
serve optimized APKs for each device configuration. This ensures that new apps that use
native libraries do not have to ship their APK with multiple versions of the same native
library since the correct version will be directly shipped at installation time. Despite this
new feature, we observed that 75% of the goodware still ships the same library object for
multiple architectures, and more than 11% still includes MIPS – even though it is no longer
supported [95]. In comparison, almost all malware samples include ELF files for ARM32,
and the number of samples with multiple architectures grew over the year, from 9% in 2011
to 74% in 2021. Since 2017, malware samples also contain few ELF files that target different
architectures (e.g., SPARC and PowerPC), which grows up to 1.4% in 2021. We also observed
a small percentage (about 0.1% every year) of ELF files with a broken header section, while
none of the goodware had this peculiarity. By inspecting some of these cases manually, we
identified a common technique to prevent static analysis: the authors have removed a part of
the ELF header from the libraries, and the missing part is only restored at runtime.

Afterward, we analyzed where the ELF files are located in the APK. Most of the goodware
(78%) contain ELF files only in the standard lib folder, while 10% ships ELF files only
in non-standard (e.g., assets folder or archives) locations. On the other hand, about 85%
of the malware contains ELF files in a non-standard location, which reflects the high usage
of the load method in malware. Moreover, malicious APKs also embed native libraries in
archives or try to disguise the analyst by hiding the executable with a wrong and harmless
extension name (i.e., different from .so). In particular, more than 5% of ELF files in the
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malware samples were extracted from an archive or had an extension that did not match the
file type. PNG, JAR, SDK, and LIB are the most common wrong extension names.

We also found another interesting phenomenon: since 2017, more than 1% of malware
contains multiple ELF files with the same name that target the same architecture in the
standard folder and a non-standard location. This phenomenon is almost negligible among
goodware (less than 0.1%). Therefore, we manually examined those ELF files with the same
name and architecture. We computed the Jaccard similarity coefficient between the set of
JNI entry points and obtained an average index of 0.7 when there should be no difference.
It indicates that the two files have very different entry points. For instance, sample 213c

contains an ARM library in both the lib and the assets folders. The ELF library under the
assets folder exports one entry point more than the one in the lib folder, and such an entry
point is in charge of executing a well-known exploit [215] to escalate privileges and obtain
root capabilities. In general, from 2015, more than 6% of such libraries (with a peak of more
than 30% in 2019) implement the JNI_OnLoad entry point only in the non-standard location.

Finally, we searched how many ELF files are shared among different malware samples
and found that the percentage of native libraries shared between at least two malicious APKs
is 46% (60,895/131,325). Among the top 1,000 shared ELF files, 59 (almost 6%) have
more than four detections, and some have up to 41 detections in VirusTotal. Interestingly,
among the top shared ELFs in a non-standard location (e.g., asset folder), more than 10%
has a VT detection higher than five. Moreover, 7% of the shared ELFs are contained in
different places depending on the malware. It highlights how malware tends to include the
same malicious executables not in the lib/ folder, reinforcing the results of the previous
sections that malware leverages the load method to get libraries from various locations. For
instance, the 6c6e ELF file is shared among 293 APKs and loaded from the res/ folder. We
then measured the years these malicious ELFs were observed in our dataset and obtained a
median of four years. The most extreme case is d867 shared by 54 APKs from 2011 to 2021
and has 32 detections on VT. As it turns out, malware authors are not too concerned about
antivirus software and do not even try to change the hash of the malicious components they
keep reusing year after year.

Last, our data shows that 6% of the ELF files are shared between at least one malware
and one goodware sample. This highlights how malware provides goodware-like features to
fool the final user (e.g., repackaged apps) or goodware developers try to protect their code
with the same obfuscation techniques of malware apps.
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4.6.4 Initialization Functions & JNI_OnLoad

When the dynamic linker loads a native library, it first calls the initialization functions defined
in well-known ELF sections. Samples in both datasets – malware and goodware – have
the same percentages of initialization functions distributed across sections, while the .init
section is used by less than 1% on average, .init_array is more prevalent, being present in
roughly 30% of the apps.

After the ELF initialization functions are executed, JNI calls the JNI_OnLoad function.
An exciting trend is related to the fact that while the usage of JNI_OnLoad in the goodware
dataset is around 60%, the percentage of malware that uses it had been steadily increasing
over the years until 2017, after which it remained stable at 92%. This brings another
important observation: JNI_OnLoad is the function where usually the RegisterNatives

is used to register native methods dynamically, thus hiding the mapping between Java and
native functions. Therefore, malware may use this construct more frequently to prevent
the detection of which native methods are executed by the sample. During the years, the
percentage of such malware that exports only the JNI_OnLoad as JNI entry point decreased
from 48.1% to 18.1%, while, for goodware, it is stable at around 42%. This shows that
malware authors jointly use both techniques to register the JNI entry points to hide the
mapping for specific functions. Moreover, we measured the average number of branches of
the JNI_OnLoad: for malware, it grew up over the years until 91 (std. dev. 131) in 2021,
while, for goodware, it is only 44 (std. dev. 110); a clear sign that malware authors often
abuse this function and must be analyzed with particular care.

ANDani tries to resolve which methods are dynamically registered by computing the
arguments of the RegisterNatives calls. The usage of this callback in malicious apps
has increased over the years up to 71% of samples, while it accounts only for 30% of
the goodware samples. We recall that the RegisterNatives dynamically maps a Java
method defined as native to its implementation in the shared library at runtime, accepting
two distinct input parameters: the Java class and the function method mapping. ANDani

resolved the mapping in 88% of the cases for benign samples, thanks to goodware often
using hardcoded values. For malware, the percentage decreases to 78% averaged over the
years as a consequence of the fact that these samples tend to obfuscate the parameters’ value.
Conversely, resolved Java classes are approximately 60% for goodware and 55% for malware
since 2019. For the arguments we were able to resolve, we inspected whether the related
classes were defined within the code of the APK, the framework, or if they were not present
in either. We identified how the number of Java classes used in the RegisterNatives

not present in the APK is higher in malware. In goodware, 78% of the resolved classes



4.6 Results 70

point to defined references (and all the other points to Android framework classes, such
as androidx.renderscript.RenderScript), while for malware since 2019, this only
accounts for 36% of the classes. The remaining resolved classes (64%) for malicious samples
were not in any DEX file.

We also noticed that malware samples perform various checks (e.g., environment verifi-
cation controls, anti-debugging checks, etc.) and map different functions depending on their
results. For example, we identified one APK (7900), which loads a native library (32cd), and
it leverages this technique to invoke the RegisterNatives callback and to map different
Java methods depending on the context in which it is analyzed. A more detailed manual
analysis revealed that the sample decrypts a string, and if a class with the same name exists,
it maps the native functions to such class; otherwise, if the check fails, it decrypts another
string and repeats the procedure.

4.6.5 Native Behavior

Finally, the native libraries are executed (steps #6A, #6B, #6C of our methodology presented
in Section 4.3). The goal is to investigate how malware can abuse legitimate actions a shared
library can perform. To measure this aspect, ANDani processes the IPCFG of the native code,
focusing on the analysis of the edges from native to Java and native to native (e.g., call to
functions exported by other shared libraries).

Native reflection. A shared library might leverage the JNI callbacks to communicate with
the Java world. Our measurement revealed that malware samples, especially the most recent
ones, adopt this behavior more often than goodware.

Over the years, the usage of native reflection by malicious apps significantly increased,
reaching over 90% in 2021. On the other hand, adopting JNI callbacks in benign software is
present in 57.1% of the apps that use native components. In particular, among the several JNI
callbacks available, we noticed that the usage of the FindClass and GetMethodID callbacks
are about 35% higher in malicious apps than in goodware. In addition, ANDani succeeded
in recovering over 81% of the arguments for goodware for both the callbacks. At the same
time, it resolved less than 68% of FindClass and 70% of GetMethodID for malware from
2017. In half of the cases, both goodware and malware apps access classes and methods of
the Android framework, while the remaining involve app-specific classes. About goodware,
over 72% of these custom classes are present in the APK, whereas, in malware, this happens
only in 21%. This second result could indicate how malware communicates natively with



4.6 Results 71

Java components, not plain within the APK. These classes are in obfuscated files, retrieved
online, and loaded at runtime.

We investigated further the classes and methods of the Android framework accessed with
the native reflection, and we noticed a significant difference between the apps of the two
datasets. In order of frequency, the native reflection is used by malicious apps to load a DEX
or a JAR file through the DexClassLoader (or its superclass ClassLoader) class, get a
handle to a system-level service such as with the getSystemService method of the Context
class, interact with Android managers, inspecting incoming exceptions, and perform crypto
and encoding operations. Adopting such techniques is approximately six times more frequent
in malware than goodware, which is less than 4%.

Concerning the analysis of the Android managers, our result shows that malware mainly
interacts with PackageManager to retrieve app information or verify the permission through
the checkPermission method, WifiManager to check the connection, and TelephonyMan-

ager to retrieve sensitive information, such as getting the IMEI and IMSI with getDeviceId

and getSubscriberId methods. Collecting unique identifiers for the device (IMEI) and
SIM card (IMSI) is a well-known procedure malware uses to profile the victim or implement
anti-emulator evasive techniques. However, these techniques are typical of the Java world,
and malware samples moved this logic into the native layer over the years.

Moving to exploit the ClassLoader from native code, we noticed how recent malware
loads the target Java classes by directly invoking Java methods, such as loadClass. This tech-
nique can replace the FindClass JNI callback, making the analysis much more complicated.
Besides, we notice that malware in 2021 tends to leverage the Java reflection technique in the
native code; for instance, the ToReflectedMethod and FromReflectedMethod callbacks
are used four times more in malware than goodware.

Moreover, it is interesting to highlight how the malicious apps natively retrieve and
handle the stack trace, using the getStackTrace method of the Throwable class to inspect
its content. This technique is applied as a form of anti-hooking: by looking at the content of
the stack trace, an app can detect the presence of either the Cydia Substrate or the Xposed
framework (e.g., sample 4a7e), as both manipulate the call stack [28].

Finally, whenever we found a native reflection pattern, we applied the technique described
by Aafer et al. [2] to check if the invoked Java method needed no, normal, or dangerous
permission. If the argument of FindClass could not be statically retrieved, we used the
argument of GetMethodID. The Android framework method names are often unique, and
in case we found multiple matches (like read or open), we excluded these cases from the
analysis. First, more than 10% of malware, regardless of the year but with a gradual increase
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in such a percentage over the years (up to 16% in 2021), invokes methods that require
normal/dangerous permission; on the other hand, this percentage is negligible for goodware.
Then, on average, comparing recent malware and goodware, we obtained respectively: 84%
(vs. 94% for goodware) of the methods required no permissions, 8% (vs. 3%) required
normal permissions, and 6% (vs. 3%) required dangerous permissions. This shows how
malware samples abuse native reflection to perform privileged operations and, in particular,
invoke methods for reading SMS, accessing the location, and reading contacts.

Library function. An ELF file might rely on external functions exposed by other shared
libraries, in which symbols are dynamically resolved or included in the ELF file during
the compilation (i.e., statically linked ELF files). Our analysis reveals that almost all the
apps in the goodware and malware datasets import libc.so (which in Android include also
libpthread.so and librt.so), libm.so, and liblog.so libraries. The only noteworthy
relevant difference is related to libz.so (a compression/decompression library), used by
90% of malware and 6% of goodware. This discrepancy is because malicious apps often
decompress components that will be used at runtime (e.g., sample 05b4).

We identified several discrepancies between goodware and malware in the prevalence
of usage of security-relevant functions (the ones summarized in Table 4.1). For instance,
in 2011, only 3% of the malicious apps used chmod, and 7% used mprotect, which are
respectively used to change the owner of a file and the permission of a mapped area in the
memory. The use of these functions has grown steadily over the years to the point where,
nowadays, more than 59% of the malicious samples in our dataset use the first function, and
87% use the second. On the other hand, these percentages are less than 15% for goodware

Moreover, the results highlight a sharp increase (more than half of the malware since
2019) in the usage of inotify* functions in recent malware; thus, we manually investigated
their usage, identifying two common use cases: an anti-debugging technique and a trick
to execute code when the app is uninstalled. For instance, fcd4 monitors the files in the
/proc/<pid> folder, such as mem and pagemap to check in real time a change in the memory
mapping of the app’ process and detect the presence of a debugger. On the other hand,
5264 monitors an empty custom file inside its installation folder to identify when its app is
uninstalled and, as a result, opens a web page.

Then, we investigated the files opened through the *open family. In the first case,
malware uses native code to open or access the files under the /dev and /proc folders more
often than goodware. For instance, in 2021, 54% of malware and 2% of goodware opened the
/proc/version. Another common target in the proc folder is /proc/self/maps, which
describes the virtual memory in a process, and it is used by 84% of malware and only by
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the 10% of goodware. Checking the contents of the maps file by an application can provide
information about injected libraries, and it is a known technique used especially by malware
to identify frameworks such as Frida (refer to Section 2.2). On the other hand, identifying
access to device drivers located under /dev is another crucial aspect over the years; numerous
vulnerabilities have affected that subsystem (e.g., the recent Use-After-Free vulnerability in
the Android Binder [83]). The results highlight how recent malware is more prone to open
drivers, such as /dev/tty to read the output of processes or /dev/ashmem to share large
quantities of memory among processes, in which vulnerabilities have been found over the
years [81].

Furthermore, some malware checks device-related information or open system-shared
libraries, while the number of goodware is negligible (< 0.1%). For instance, in 2021, 10%
of malicious apps verify if an SELinux policy is enabled accessing the /sys/fs/selin-

ux/enforce file, and 9% of malware explicitly interacts with the /system/bin/linker

to load and run a dynamic executable, even if they are contained in a ZIP file. These new
techniques have grown in the last years, performed by malware to detect the environment
where they are executed or evade anti-malware controls.

Finally, for what concerns the analysis of the program executed through the exec*

functions, it reveals that malicious apps leverage command line programs two times more
than goodware to collect information related to or manage the running processes (e.g., ps,
pause) and logs (e.g., logcat), or running shell scripts through a new bash (e.g., sh).

Dynamic loading. Dynamic loading refers to the ability to load and invoke functions of
other shared objects at runtime without the need to link the library to the executable. In
particular, this technique is based on two specific library functions: dlopen to load the
library and dlsym to retrieve a pointer to the target function. The prevalence of this technique
has increased over the years, from 2011, when 24% of malware employed it, until today,
when the percentage is over 90%. In comparison, around 55% of benign apps in our dataset
perform dynamic loading.

Looking at libraries and functions invoked with such technique, we found that for
goodware, half of the loaded shared objects are well-known Android libraries, while more
than three-quarters are for malware. Among the remaining quarter, most of the libraries
are not included in the APK – we suppose these libraries are present in obfuscated files
or retrieved from the internet and loaded at runtime (a manual analysis of some random
samples confirms this). The most common libraries that are dynamically loaded are related
to (de)compression and decryption/encryption operations; for example, the uncompress

function of the libz.so library is dynamically loaded from over 90% of malware but only
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from 0.4% of goodware apps. This finding again reinforces our idea that malware uses native
components to prepare resources used at runtime to evade static analysis.

Even if some Android libraries are widely loaded from both goodware and malware, on
average, their usage is very different, and this can be used to pinpoint suspicious operations.
For instance, the libc library is loaded though dlopen by more than 30% of goodware and
malware. However, malicious apps rely more on dynamic loading to invoke libc functions
such as __system_property_get to retrieve the value of device-related properties and
chown to modify the owner of some resource. In addition, we found an unconventional and
rather peculiar use of these functions by malicious applications in which a few apps called
dlopen and dlsym to obtain a function pointer to dlopen and dlsym themselves, and use
that later on in the execution. Lastly, we observed how at least 9% of the recent malicious
apps load Dalvik and ART runtime libraries, namely libdvm.so and libart.so, but this
phenomenon occurs in less than 2% of goodware. It is crucial because such libraries can be
(ab)used to bypass Android Runtime restrictions [220].

4.6.6 Main Takeaways

This section summarizes the main takeaways of our measurement of native code usage in
Android apps, answering the first four research questions.

RQ1 & RQ2. Even before executing specific exploits, the primary purpose of native code in
malicious samples is to implement evasive techniques and exploit its complexity to avoid the
detection of analysis tools. For instance, investigating the JNI_OnLoad function is crucial in
analyzing Android malware. In particular, using RegisterNatives with different hidden
arguments, based on environment checks, to map different functions at runtime can be
considered an anti-analysis technique for static and dynamic analysis – that, to the best of
our knowledge, has not yet been documented.

In addition, malware exploits JNI and the native code to jump between Java and the native
layers, making analyzing and identifying harmful patterns more challenging. Malware also
leverages native code to protect itself from reverse engineering. For instance, the inspection
of the native reflection confirms and brings to light new techniques for malware executing
Java dynamic code loading, exploiting the native layer. Malware, therefore, tends to move
malicious techniques from Java to the native layer (such as anti-hooking or accessing sensitive
user information), and they start to replace JNI callbacks with a direct invocation of Java
methods from the native layer.



4.6 Results 75

RQ3. The results highlight how malware increasingly abused native code over the years as a
protection mechanism against static and dynamic analysis tools by implementing evasive
controls and harmful operations into the native layer. Also, they are moving Java layer-
specific operations in the native code.

Malicious samples have adapted to support more and more architectures. This can
indicate many factors, the first of which is how today malware samples exploit native code
for their malicious purposes, trying to be effective on as many devices as possible. Using the
same name for different libraries is a clear sign that the dispatch (Step 2 of Figure 4.1) might
change depending on some checks, and changing the file’s extension is a trivial and old trick,
but nowadays, it is still common.

Finally, we have noticed that the reuse of malicious native libraries is a frequent practice
that has lasted over the years, showing carelessness in concealing it.

RQ4. The analysis reveals that goodware is much more adherent to good practices, while
malware tends to exploit native code for security-relevant actions, indicating operations that
require further investigation.

First, the native functions declared by benign apps are reachable in most cases from the
main apps’ code, and the trigger for their execution is very often dependent on user interaction.
Conversely, malware exposes a significantly different trend: the average number of reachable
native functions from the main app codes has decreased dramatically, consequently implying
a solid presence of DCL. Moreover, we noticed how the invocation of native methods is
almost immediate and occurs mainly without user interaction.

Second, goodware is much more prone to load libraries via the loadLibrary method,
thus making the analysis easier – given that they are loaded from a single location and must
be present in the APK. This was the same trend observed in malware until 2015, while it is
changing in favor of using the load method. This fact brings numerous problems to static
analyses as it may not be possible to know what library will be loaded or where it is located
in advance.

Regarding the operations done by native code, malware is more prone to call security-
relevant library functions. We highlighted the high discrepancy in using libz for (de)-
compression and network-related functions retrieving resources at runtime. In addition,
malware often reads the content of some particular files to perform environment controls
(e.g., emulator verification), interacts with low-level components (e.g., linker) to bypass
standard checks, and runs command line programs more frequently than benign samples.
Most malware also abuses the dynamic loading of DLLs (i.e., dlopen and dlsym), and, very
often, the loaded library is “generated” at runtime, while goodware does the opposite. This
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reinforces the consideration that malware is more prone to prepare resources (e.g., decrypt or
download code) from native code in an evasive way. Moreover, most loaded functions could
hide suspicious operations, such as (de)compression or permission management.

Finally, the analysis of the native layer shows how malware and goodware have native
components in common to protect their code from reverse engineering (e.g., protector or
packer), whose use requires a more in-depth analysis to shed light on this grey area.

4.7 Use case: binary classification

The previous section discussed the many facets of native code execution in Android apps and
highlighted core differences between how benign and malicious apps use native code. In this
section, we test to what extent the suspicious tags assigned by our system can be used and
whether they are useful for malware detection tasks. Moreover, this section verifies which
malware characteristic is more relevant to detection. For this task, we built a dataset using
all the 15,647 goodware at our disposal and sub-sampling the same amount of malicious
apps collected in 2021. We selected all samples classified as “Singleton” (15,427) (those
for which AVClass2 could not determine the family), and we sampled the remaining 220
malicious apps one per family to avoid bias towards particular families. We extracted the
suspicious tags defined in our methodology for each sample and created a vector of 74
features (62 booleans and 12 floats). Table B.1 in the Appendix reports each tag with the
data type used in the vector.

In detail, we used a Random Forest classifier because it handles numeric and categorical
features without needing encoding. We set the split criterion of the algorithm to be the Gini
impurity and tune the remaining hyperparameters (such as the number of trees, their depth,
and the number of features to consider when splitting a node) by using the Out Of Bag (OOB)
error computed during the training phase. As reported in Figures 4.2 and 4.3, the optimal
OOB error is obtained when considering 141 trees with depth 32 and the sqrt as a metric
to define the number of features to test when extending a node. The optimal value for the
number (of trees for Figures 4.2 and depth for Figure 4.3) has been chosen using the Elbow
method after calculating when there is no performance improvement.

We used a 10-fold cross-validation approach to train and test our classifier, each round
training the model on k-1 folds and testing its performance on the remaining fold – different
for each round – to measure how well the classifier generalizes on unseen samples and limit
the bias introduced by the model. Table 4.4 summarizes the average performance obtained
on the test sets, including accuracy, precision, recall, and F1-score. Even though we opted
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Figure 4.2 OOB error defining the optimal number of trees and features.
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Figure 4.3 OOB error defining the optimal depth of trees.

for a simple classification scheme, our results were surprising. In fact, by simply leveraging
the suspicious tags to distinguish between goodware and malware, the average error rate was
2.21%, with an accuracy, respectively, of 0.99 and 0.96 and a mean F1-score of 0.97.

Feature importance. We ranked the features used in the classifier based on their Mean
Decrease Impurity (MDI). We reported in Table 4.5 the top 10 of them together with their
relative importance normalized as a percentage.
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Table 4.4 Left: confusion matrix; right: classification report
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Goodware Malware

99.01 0.99 Goodware

3.43 96.57 Malware

Prediction outcome

Metric Goodware Malware

Precision 96.57 99.02
Recall 99.01 96.57
F1-score 97.77 97.78
Accuracy 99.01 96.57

Accuracy 97.79

Table 4.5 Top 10 features sorted by MDI score

Tag Category Tag Title MDI score (%)

J_NATIVE_METHODS NO_REACHABLE 15.88 %
J_LOAD_METHODS APP_LIFECYCLE_EP 13.17 %
J_NATIVE_METHODS APP_LIFECYCLE_EP 11.50 %
J_LOAD_METHODS PATH_LOAD_METHOD 8.87 %
STRING PROPERTIES 7.15 %
J_NATIVE_METHODS ACTIVITY_LIFECYCLE_EP 5.90 %
SUSP_LIB_CALL MEMORY_PROTECTION 4.02 %
SUSP_LIB_CALL PROCESS_MANAGEMENT 3.65 %
SUSP_LIB_CALL IDENTITY 3.45 %
SUSP_LIB_CALL PERMISSION 2.83 %

Average 1.35 %
Standard deviation 0.24 %

The tags belonging to the categories J_NATIVE_METHODS and J_LOAD_METHODS (the
first two steps of our methodology, which capture native/load methods in the Java code and
the entry point from which they can be reached) accounts for almost 50% of the total feature
relevance. This shows that the insights gleaned in Section 4.6.1 and 4.6.2 represent the most
discriminating traits for the classification of goodware and malware; namely, our results
suggest that a reliable indicator of malicious behavior is when an app reaches the native code
without user interaction and such native code is not statically available. Although we observe
higher importance for the first two features, the average relevance suggests that each part
contributes to the classification task, reflecting the importance of combining suspicious tags
to identify malware and goodware.

Furthermore, four of the top-10 entries belong to the category SUS_LIB_CALL, which
denotes the use of security-relevant functions within the native code. Interestingly, the most
impactful is the ‘Memory Protection’ calls mmap and mprotect, a prerequisite to executing



4.7 Use case: binary classification 79

dynamically loaded code. Finally, the fifth entry indicates the presence of build.prop key
strings. The build.prop is a file that contains build properties and settings in the format
key=value. Some contents are specific to the device or manufacturer, while others vary
according to the operating system version. Retrieving these values significantly impacts
security because attackers can fingerprint the device and engage in evasive behavior or select
a valid exploit for the system.

Classification errors. In the last part of our analysis, we investigated the root causes of
classification errors and whether those were attributable to any particular characteristics of
the samples. In our setting, we define a false positive (FP) as a classification error in which
a benign sample is labeled as malware; vice versa, the classifier produces a false negative
(FN) when predicting malware as goodware. We repeated our classification task 100 times
by using independent folds for each experiment, thus resulting in training and testing 1K
different classifiers. The rationale behind this choice is to isolate those samples that are
always mispredicted as FPs (0.5% - 81/15,647) or FNs (3.1% - 483/15,647). These samples
were further investigated by analyzing the tags extracted with our methodology and resorting
to manual reverse engineering for a subset.

When narrowing down to FNs, we detected that the model errs when the malicious logic
(e.g., sample c227) is fully contained in classes.dex files – which is out of the scope of
this work, and it includes well-known legitimate native libraries. For example, sample 58b3
only ships two open-source libraries in the standard location, namely LAME, to manipulate
MP3 files and a second one that provides WebRTC capabilities. However, many samples
contain the definition of some native methods in the Java code but do not contain the relative
ELF file in standard or non-standard locations. The respective sample is then characterized
by the sole presence of the NO_ELF_NAME tag (J_LOAD_METHODS category), whereas almost
all the other tags are missing. In such a case, the model needs more information for an
accurate classification.

On the other hand, we discovered that misclassifications of goodware (FPs) are mainly
due to the heavy usage of Dynamic Code loading (DYNAMIC_LOADING category) or suspicious
library calls (Table 4.1). In particular, almost all FPs are samples with native libraries that
try to protect the intellectual properties of the developers with integrity checks, obfuscation,
or packing techniques. By nature, such techniques generate exactly surreptitious code that
represents the core of our analysis.

RQ5. The understanding of the native layer is a crucial aspect in the cat-and-mouse game
between malicious and benign actors for the detection of Android malware. The most
noteworthy result is that the significant differences in how malware and goodware samples
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interact with the native code heavily affect the classification task, even more than their
operations. Moreover, the most important native features are related to how the native
libraries kick into the execution of an Android app.

4.8 Related work

There are mainly two areas of work relevant to this chapter: the analyses focusing on the Java
layer and those considering JNI. This section discusses both and highlights the differences
between our methodology and ANDani.

Java layer analysis. In 2013, Octeau et al. [158] implemented Epicc, an analysis framework
based on Soot – a Java optimization framework proposed by Vallee et al. [226] – to resolve
Inter-Component Communication (ICC) in Android apps. In 2014, Arzt et al. [22] proposed
FlowDroid, a dataflow analysis framework for taint detection of the Java code of an Android
app. A context, object, and flow-sensitive taint analysis considers the Android app lifecycle.
FlowDroid extends the Soot framework and creates an app-level dummy Main class to collect
all Android system events. In the same year, Wei et al. [234] proposed Amandroid to conduct
static analysis for security vetting of Android apps. It builds a context and flow-sensitive inter-
procedural control flow graph (ICFG) of the whole app and computes the point-to information
to detect several security-related problems. In 2015, Li et al. [131] proposed a new static
taint analyzer to detect privacy leaks among components in Android apps, named IccTA. It
propagates the context information among different components to resolve call parameters
and return values. In the same year, Gordon et al. [107] proposed DroidSafe, a static analysis
framework able to resolve ICC and Remote Procedure Call calls to detect potential data leaks
by tracking information flows. Then, Yang et al. [244] proposed AppContext, a static analysis
approach to extract context security-sensitive behavior to assist the app analysis focusing
only on the Java layer. In 2021, Wu et al. [237] proposed BackDroid, an inter-procedural
analysis of Android app, with the primary goal of improving the performance of the static
analyzer described earlier by implementing a novel technique named on-the-fly bytecode

search which searches the disassembled app bytecode text just in time when a caller needs to
be located.

JNI analysis. In 2012, Yan et al. [243] proposed DroidScope, an emulation-based Android
malware taint-analysis engine used to analyze the Java and native components (x86 and ARM
architectures) of an Android app to track information leakage. In 2014, Qian et al. [174]
performed the first large-scale study on information flows using JNI. This study leverages
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NDroid, a novel dynamic taint propagation tool based on QEMU, which tracks JNI and
system library functions in Java and native code. Alfonso et al. in 2016 [3] performed
an extensive analysis on the adoption of the native code on Android apps, highlighting
potential usage of JNI, and proposed a new method to generate a native code sandboxing
policy automatically. The same year, Sun et al. [209] proposed TaintART. This customized
ART compiler inserts the taint logic and retains the original ahead-of-time optimizations
that perform taint analysis to track data flow. Rasthofer et al. [176] proposed Harvester, a
hybrid analysis tool that combines static backward slicing to identify interesting code with
the execution of the code for extracting runtime values. In 2017, Alam et al. [8] proposed
DroidNative, a static Android malware detector based on the analysis of the native code. It
introduces the Malware Analysis Intermediate Language (MAIL) concept to create a high-
level representation of the native code, which is then used to build a behavioral signatures
template.

Xue et al. [242] presented Malton, a dynamic analysis platform built on Valgrind for
malware detection based on information flow tracking on Java and JNI code. In 2018,
Wei et al. [236] presented JN-SAF to conduct static cross-language dataflow analysis of
Android apps to track information leaks through the Java and the native parts. JN-SAF
builts the analysis of the Java part of the app on top of Amandroid [234]: the study of the
native components instead – for both 32 and 64-bit versions of ARM, MIPS, PPC, and
Intel architectures – relies on the Angr’s symbolic execution engine [230], In 2019, Lee
Sungho [130] proposed a novel JNI program analysis technique that combines the analysis
of Java and C code separately to extract semantic summaries of C code from JNI programs.
In 2020, Andarzian et al. [13] proposed the CTAN framework, which extends JN-SAF to
improve its performance. The same year, Fourtounis et al. [70] proposed an approach to
recover JNI callbacks in the native code: disassemble native binaries, recover static symbol
information, and produce a model for statically linking the native callbacks. In 2021, Samhi
et al. [188] proposed JuCify, a framework that combines Android bytecode and native code
into a unified model to detect data leaks. The native code analysis is built on top of Angr,
while the Java code analysis and the unified model rely on the Soot framework.

4.8.1 Comparision with state-of-the-art tools

During the design phase of ANDani, we investigated the state-of-the-art tools for static
analysis to understand which technologies are best to rely on.
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Most works focus on the Java layer and do not handle native code. However, we no-
ticed that there is a tool in common among the most cited works (e.g., Epicc [158], and
Flowdroid [22]): the Soot framework [226], which is still under active development [108],
and therefore it was our choice since the alternatives are no longer supported (e.g., Aman-
droid [234]). However, as already discussed, we had to improve the analysis of some
typical Android mechanics, namely, the detection of entry points and concurrent execution
management.

Then, for inter-language analysis, JN-SAF [236] and JuCify [188] are the most recent
ones; however, these tools perform taint analysis between different code layers to detect data
leaks. As for the analysis of the Java layer, the former is based on Amandroid, while the
latter is based on Soot. On the other hand, they both use Angr [230] to analyze the native
code.

We tested Angr with the same configuration of JuCify. However, from several preliminary
tests on native Android libraries taken from real-world goodware apps (the same we used in
Section 4.5), we discarded it because the one-hour timeout was often reached (because of the
path explosion typical of symbolic execution), thus making it unsuitable for our large-scale
measurement. Moreover, JuCify’s approach is not suitable for our needs. Using Soot, they
lift Java code to Jimple, a three-address intermediate representation provided by Soot; then,
they extended Angr to lift native code to Jimple so they could reason on a unified model. The
issue is that we are interested in every single instruction in the native code, as we need as
much precision as possible; instead, JuCify considers call instructions because its purpose
is to create a call graph while we need the interprocedural control flow graph. Regarding
JN-SAF, it is no longer maintained and does not investigate specific aspects of native code
we are interested in (e.g., library calls and their arguments). Given that it is also based on
Angr, we did not investigate further and then decided to write the analysis of native code
from scratch.

4.9 Discussion

This work significantly differs and complements all state-of-the-art tools that deal with native
code for the type of analysis performed and the study’s goal. In particular, ANDani is not
limited only to a Java to native dataflow analysis: it also analyzes all aspects of the native
components, from the entry point analysis and the triggering condition of JNI methods to the
suspicious library function invoked by the native code. This design can improve or make
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the automatic detection of Android malware in a binary classification task more robust by
including the native-related features extracted by ANDani.

However, the ANDani implementation has all the intrinsic limits of the static analysis,
particularly the backward taint data analysis [132]. In addition, if the code that is dynamically
loaded is not present in the APK, we are not able to analyze it, and given the current spread
of droppers in the PlayStore [221], it is an issue that will need to be addressed.



Chapter 5

Android, Notify Me When It Is Time To
Go Phishing

5.1 Introduction

The complexity of the native layer in Android apps is heavily abused by malicious authors
and benign actors as a protection mechanism to make analyzing their apps more challenging.
Also, the native layer exposes powerful features that several malware samples exploited
(and continue to exploit) to attack both the Android operating system and other apps. Of all
available services, the inotify [136] APIs allow a userspace program to monitor and react to
file system events (e.g., file accesses, deletions, and modifications), targeting either singular
files or entire directories and filtering only specific events. Starting from version 2.6.13, the
Linux kernel includes inotify, and Android has fully supported it since the early versions
(API Level 1 [92]). In such a scenario, apps can watch file system events – employing the
inotify terminology – from the native code through the standard inotify APIs, and the Java
layer, using the FileObserver class.

While providing powerful primitives to implement new features, the inotify infrastructure
has also played a role in Man-in-the-Disk (MitD) attacks [138]. These attacks are possible
when the program’s logic depends on the content of a file that an attacker can access and
modify. Inotify proved perfect for this task. By watching for a specific event on the target file,
the attacker can timely and opportunistically replace its legitimate content with malicious
data. The consequences may be more or less severe depending on the tampered data.

For example, in 2018, Google security researchers revealed that the popular game Fortnite
for Android was vulnerable to such attacks [31]. In particular, the app distributed on the
app stores did not contain the game code but was downloaded from the publisher’s website.
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During the download phase, the app stores the partial data in the device’s shared storage,
moving it to its private directory once the download is completed. By relying on inotify, an
attacker could seize the right moment and tamper with the partial game code file to inject
a malicious payload, effectively fooling Fortnite into installing a fake app instead of the
intended one. In this way, an attacker can gain the code execution privilege in the context of
the original app.

In 2016, Ahn et al. [6] showed that particular file system events’ occurrences allow the
detection of a specific UI screen transition. Once again, inotify made it possible to monitor
specific file system patterns, this time for perfectly timing a phishing attack by starting an
activity that resembles the original one. While inspiring, this work relies on capabilities that
attackers can no longer obtain under reasonable threat models (e.g., Android does not allow
third-party apps to list running apps and their PIDs).

Given its history of misuse for malicious purposes, an aspect has been understudied. This
work assesses whether the inotify subsystem can still play a role in state inference attacks

in modern Android malware despite the tight security models the Android developers put
in place. This attack class aims to determine the state of another app and pave the way to a
large class of attacks, including phishing. In particular, this work focuses on determining
when an app starts, which, at the same time, is the most valuable for an attacker and the most
practical to analyze automatically. From an attacker’s perspective, determining when the
user willingly launches an app maximizes the chances to lure him into providing account
credentials to a phony UI interface. It is not by chance that banking malware often monitors
apps’ startup for phishing purposes [232, 126]. By choosing to study the app’s startup and
not any generic UI transitions, we do not need heavy human intervention to select and trigger
valuable ones (e.g., login screens). The concept behind our approach is straightforward: if an
app always generates a unique file system event at startup (among other apps installed on the
device) and an attacker can monitor such an event with inotify, she can easily infer when the
user has just opened the app.

First, we manually tested the feasibility of such an attack by creating a vulnerable target
app that reads a world-readable text file when its main activity starts and a malicious app that
monitors these events with inotify. When the vulnerable app was executed, the malicious
app was “notified”; thus, it could perform a phishing attack by pushing a new “phishing”
activity if the attacker has enough permissions. Picture the scene: the user taps on the target
app icon, and the new fake spoofed activity that looks like the original one is displayed on
the screen; this leaves no trace to the victim, who has no way of noticing the deception and
distinguishing between the original and the malicious apps.
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However, this precise attack is limited by a privileged Android permission (SYSTEM_-
ALERT_WINDOW) that requires a slightly more complicated procedure to get it from the
victim. Although this does not stop modern malware authors from using it (according to our
measurements, 57% of malware requires it, while this percentage plummets to 9% for benign
apps), the attack can still be performed by popping up a fake notification that seems to come
from the target app.

For this reason, this chapter investigates the conditions surrounding the feasibility of this
attack, trying to answer the following research questions:
RQ6: Are malware authors already exploiting inotify?
RQ7: What capabilities (e.g., permissions or information) must an attacker have to carry out

this attack?
RQ8: To what extent does the Android version affect this attack and the attacker’s capabili-

ties?
RQ9: Are the attacker’s capabilities realistic to carry out this state inference attack and

mount a phishing attack?
RQ10: How is the security posture of other vendors concerning this attack?
RQ11: Which mitigations can stop this attack for good?

First, due to Section 4.6 showed that malicious samples natively abuse inotify to react to
some specific events, we investigated the usage of inotify among modern Android malware
samples to assess the novelty of our attack. Our results on over 10,000 of malware in 2021
show that they abuse inotify only for implementing anti-debugging tricks or executing code
when they are uninstalled. In the other cases, we detected inotify just from analytics libraries.
Therefore, no existing Android malware implements the presented attack pattern.

Then, we investigated the conditions for carrying out this attack. Given that the attacker’s
capabilities depend on which files the apps use when started and if she has permission to add
an inotify watch on such files, we developed inoTool, a tool to dynamically analyze Android
apps and monitor their interactions with the file system.

With inoTool, we analyzed a heterogeneous dataset of 4,863 benign Android app, created
by collecting the most downloaded free apps over the 50 categories in the Google Play Store.
We found that an attacker can generate a kind of “signature” that uniquely identifies which
files her target app opens at startup, enabling her to launch a phishing attack by monitoring
one of such files. This attack is feasible on a large scale, and during our investigation, we
uncovered some design issues that improve the likelihood of success. For example, we
discovered an information disclosure vulnerability through which one can get a partial list
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of the apps installed on a device, despite the recent changes in Android strongly restricting
package visibility, namely, querying for information about the other apps.

We identified three attack models by analyzing the results and the mechanisms involved.
As the main finding of our work, in the most potent model (in which an attacker is assumed
to know the installation path of its target app), all Android apps are vulnerable, regardless
of the Android version (till now). Moreover, the only capability needed to implement this
attack is protected by a single, normal permission automatically granted at installation time.
Although Google is aware of the risks deriving from this permission and performs capillary
checks on its Play Store, we will also show that the current Android security model presents
several loopholes that make obtaining this permission unnecessary.

The second attack model assumes that an attacker can no longer obtain the installation
paths of the apps installed on the device. Under these circumstances, we show that an attacker
still manages to implement the attack on a limited number of apps. The third and last model
refines the strategy further and manages, on average, to target half of the apps installed on a
typical device.

Finally, this chapter shows how different remedies defeat these types of attackers. How-
ever, in some cases, the specific behavior of the target app, in combination with the apps
installed on the device, still leaves a small window for successfully carrying out the attack.

To sum up, this chapter provides the following contributions:

• a novel methodology to perform phishing attacks on the Android ecosystem based on
file system-based signatures that uniquely identify the startup of every app;

• inoTool, an analysis tool for Android apps that compute their signatures based on file
system events. In the spirit of open science, we released the source code we developed
during this study [182];

• a deep analysis of the likelihood of a successful attack concerning the capabilities of
an attacker and the version of the Android operating system in which the malicious
app is running.

5.2 Background

This section provides the additional technical background for the rest of the chapter. It starts
by presenting the relevant details of the Android operating system, and then it continues by
introducing the inotify subsystem of the Linux kernel.
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Mandatory Access Control & SELinux. Security Enhanced Linux (SELinux) is a manda-
tory access control (MAC) system for the Linux operating system, and it was introduced in
Android 4.3. A MAC system differs from Linux’s discretionary access control (DAC) system.
Indeed, with a DAC system, an owner of a particular resource controls access permissions
associated with it, while on a MAC, there is a central authority for a decision on all access
attempts. In Android, DAC and MAC coexist: a user can interact with a resource if she has
enough permissions (DAC) and the security policy allows it (MAC).

In detail, SELinux adds opaque pointers to potentially sensitive kernel objects (e.g.,
files, network interfaces) and mediates access to such objects by placing hooks functions
to determine if an action (known as permission, such as read or write) should be allowed.
The decision is made according to the policies, which are a set of rules that guide SELinux
in the choice based on the labels of the resources. Every object (e.g., files, directories,
processes, etc.) has associated a security context (or label) that specifies its security-related
information, i.e., SELinux user, role, type, and sensitivity. In particular, Android relies on
the Type Enforcement (TE) component of SELinux, in which the policies are enforced based
on the type of subjects and objects. By default, SELinux denies all requests except the ones
that respect the current policy. In addition, on Android, a third-party app is assigned to the
context with the type untrusted_app.

A SELinux policy rule comes in the form allow source target:class permis-

sions. This rule allows a subject (of type source) to access the object (of type target). The
class field specifies the kind of the object (e.g., file, socket, etc.), while the set of involved
operations is specified by the permissions field. For instance, the allow untrusted_app

app_data_file:file {read write} policy specifies that untrusted apps are allowed to
read and write files labeled “app_data_file”. Finally, Android provides a set of macros to
handle the most common cases to simplify the rule definition. For instance, it defines the
permission rw_file_perms, which automatically includes all the operations needed to read
and write a file.

Android external memory. Handling external memories (especially SD cards) in Android
has changed a lot between versions. In the past, /sdcard/ folder was used for this purpose,
while today it is a symbolic link to the /storage/self/primary/ folder, which in turn is al-
ways (counterintuitively) a symbolic link to /storage/emulated/0/. However, regardless
of the presence or absence of a physical external mass memory device (i.e., SD card), the An-
droid system always “emulates” an external device under the folder /storage/emulated/,
where it mounts a partition of its internal memory.
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When a user inserts an SD card, the system offers her two configurations. The first,
named portable, manages the memory space on the SD card so the user can remove and use
it on other devices. When a new SD card is plugged in, the system creates the mount point
/storage/<sdcard_ID>/. Instead, the internal configuration extends the device’s internal
memory. Under the hood, the system mounts the SD card in the emulated external storage,
i.e., under /storage/emulated/. The SD card cannot be transferred between different
devices in this scenario.

Inotify in Linux and Android. Many user apps in modern computer systems need access to
the file system beyond simply reading/writing files. Take a remote directory synchronization
utility as an example. This utility must monitor the target directory to detect file creations,
deletions, and modifications to operate automatically. While possible, implementing this type
of monitoring by employing traditional file system operations (e.g., listing the directory every
second by relying on a busy-waiting model) is not efficient. For this reason, modern operating
systems provide dedicated APIs for implementing low-overhead file system monitoring.

One such API is the inotify subsystem of the Linux kernel, which provides an event-driven
interface to intercept file system events. The canonical inotify workflow starts with a program
creating an inotify instance through the inotify_init syscall and specifying what type of
events to monitor through the inotify_add_watch syscall. The inotify instance can then be
queried with the read syscall that blocks the program execution until one of the monitored
events occurs.

The Android operating system wraps this workflow in the FileObserver abstract class,
which programmers can use as a base class to implement file system monitoring. This class
constructor takes the file paths to monitor as input, while two more methods start and stop the
file system monitoring. Finally, the app can specify the event handling logic by implementing
the onEvent abstract method that the framework invokes each time an event involving the
monitored paths occurs.

5.3 Related Work

In 2011, Felt et al. [64] first discussed the risk of phishing attacks on mobile platforms
and provided a set of techniques to carry out such attacks. As the authors pointed out,
an essential ingredient of a successful phishing attack is to intercept the execution of a
legitimate app promptly and to overtake the UI to present the user with a faithful copy of
the interface of the intended app. When facing a seemingly familiar interface, the user
is lured into providing sensitive information, such as credentials. While back in 2011, it
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was relatively easy to determine when an app started (any app could list all the processes
running on the system and implement a poll-like wait behavior), things became much harder
once phishing attacks became prevalent. As a result, process listing was soon forbidden,
forcing attackers to find new ways to detect when the user launched an app. These new
techniques are commonly known in the literature as State Inference Attacks. Researchers
showed that real-world malware [126, 154, 232] employ state inference as the first stage in
their attacks, either for phishing or to monitor and profile the user. Several research works
have studied and documented techniques to reliably determine when an Android app is being
executed [39, 179, 65, 71, 203, 204, 16, 172]. Possemato et al. [172] grouped all existing
vulnerabilities into two macro-categories:

I) File system layer. The proc file system (i.e., procfs) is a pseudo-file system that provides
an interface to kernel data structures. The files in the procfs contain sensitive information,
such as the program’s name currently executed. Several works [30, 39, 203] discussed
different techniques that allow a malicious user to build state inference attacks leveraging the
procfs information. In addition, Spreitzer et al. [203] proposed a fully automated technique
to assess the procfs information leaks.

II) Android System Services layer. Android apps use the System Services APIs of the
Android framework to access Android-specific features or interact with hardware compo-
nents. To interact with privileged components, Services interact with the system_server,
which runs as the privileged system user. A vulnerability in some Service APIs can lead
to the disclosure of sensitive information, opening the door for state inference techniques.
Many works [65, 204, 172] investigated these aspects, showing many vulnerabilities of
the Android components. For instance, Possemato et al. [172] detected several vulnerabil-
ities, among which one that allows an app to collect statistics of other apps through the
getProcessMemoryInfo API of the ActivityManager without any special permission.

To mitigate these attacks, Google has deployed several patches and countermeasures.
First, Android strengthened the data returned from the APIs, removing other apps’ sensitive
information. For instance, the getRunningTasks and getRunningServices APIs of the
ActivityManager class returned the list of the tasks and services currently running in a
device. These methods have been deprecated from Android versions 5.0 and 8.0; nowadays,
they return only the information of the caller app (and well-known non-sensitive data). In
Android 7.0, access to procfs is limited to very few harmless files. As a result, to our
knowledge, all documented file system-based state inference attacks no longer work on
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modern versions of Android. However, despite these mitigations, some recent works have
shown that phishing attacks are still feasible [16, 35].

On the defensive side, some works have been proposed over the years. [238, 145, 180]
tried eradicating the phishing problem on Android, preventing a malicious user from spoofing
the UI. The authors do not avoid a malicious app to perform the state inference attack on
which the phishing is based but block or react to malicious UI that seems legitimate. Only
“LeaveMeAlone” [248] tries to detect and block a malicious app that performs inference
attacks (or tries to steal sensitive data) by analyzing shared resource usage. This tool leverages
static information (e.g., permissions) and the procfs files to monitor the device apps, but it
will not work on Android 7.0 and newer due to the enforcement of the procfs.

Finally, in 2016, Ahn et al. [6] proposed inishing, an inotify-based user interface (UI)
phishing attack, which at the time of writing is the work most closely resembling ours. They
show how malware can monitor access patterns (i.e., a sequence of file system events),
enabling it to detect the transition from one UI screen to another. Once the access pattern
events are triggered during a screen transition, the malicious app needs to check whether
the target app generated it. The authors retrieved the PID of the target app through the
getRunningAppProcesses API (assuming it is already running). They verified whether it
is in the foreground by inspecting the files in the procfs. However, since Android 7, Google
has significantly restricted access to the procfs folder, and only system apps can obtain the
list of the running processes (and their pid). These restrictions make this attack infeasible,
but as we will show, there is still room to abuse inotify.

5.4 The use of inotify among malware

To verify the novelty of the inotify-based state inference attack, this section investigates if
and how current malware exploits inotify. To this aim, we collected and analyzed 10,000
Android malware of 2021 from AndroZoo [12]. We considered malicious the samples with
at least five anti-malware detections on VirusTotal.

For this type of study, it is crucial to distribute the malware families as uniformly as
possible; therefore, we considered a maximum of 5% for each family. Given that Androzoo
does not indicate the family of the malicious samples, we downloaded each sample’s Virus-
Total report and leveraged AVClass2 [192] to determine the corresponding family. Finally,
AVClass2 classified 140 families and 8400 samples as Singleton – the term used to define the
samples for which it could not determine the family. We report the percentages of the five
most frequent families and the Singletons in the second row of Table 5.1.
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Table 5.1 Distribution of the malware families used to verify the novelty of the inotify-based
state inference attack

Dataset # of Samples # of Families Fam1 Fam2 Fam3 Fam4 Fam5 Singleton

10,000 140 5.0 0.8 0.8 0.7 0.5 84.0
Java layer 744 65 4.8 3.9 2.4 2.1 2.0 57.8
Native layer 769 30 0.23 0.19 0.12 0.09 0.08 98.7

As explained in Section 5.2, an app can install an inotify watch from both the Java
and the native layers. To account for either case, we used two software components to
analyze Android apps statically. The goal of these components is to resolve the arguments –
performing a backward iter- and intra-procedural taint data analysis – of the API functions
that interact with inotify to determine the path of the file that will be monitored.

Java layer. The first component is an extended version of the Soot [226] framework to
analyze the DEX files and resolve the constructor’s argument of the FileObserver objects
that takes in input the path of the file to monitor. When the tool resolves a java.io.File
object, it performs a backward taint analysis until it reaches an Android API method invo-
cation (e.g., getExternalFilesDir) or a string. This procedure is repeated recursively if
it finds another File constructor. The output of this component may be a string with the
full file path or a combination of Android-specific APIs. For instance, if an app installs an
inotify watch on the file named example in its folder on the external memory, and it uses the
getExternalFilesDir method (of the android.content.Context class) to retrieve the
path of the external memory, the output is the concatenation of the Android API and the file
name: android.content.Context.getExternalFilesDir()/example.

The analysis reveals that 7.4% (744/10,000) of our malicious apps, distributed over 65
different families, instantiates FileObserver objects. Among the 744 samples, we measured
57.8% (430/744) Singleton, and we did not observe a predominant family (as reported in the
third row of Table 5.1).

Most resolved paths depend on Android APIs to return the path of the “private” folders,
where the app can place persistent files it owns. We also investigated which Android APIs
are used to retrieve the path(s) of the private folder in the external memory. Table 5.2 reports
all the “tainted” APIs we found in malware, that is, the ones involved in generating the path
passed as input to the FileObserver class.

Given that in almost all these cases, the malware installs a watch on a file under these fold-
ers, there is no particular interest in monitoring files of other apps. Manually looking at folder
and file names, we found that these cases are mainly analytics libraries. For instance, the
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Table 5.2 Tainted Android APIs that affecting the FileObserver constructor in malware

Path %

android.content.Context.getFilesDir 11.32
android.content.Context.getNoBackupFilesDir 7.84
android.content.Context.getExternalFilesDir 4.35
android.content.Context.getDir 1.74
android.os.Environment.getExternalStorageDirectory 0.44

Yandex [20] analytics library monitors the crashes of an app watching the file appmetrica_-
crashes in the app’s file directory (i.e., android.content.Context.getFilesDir()/-
appmetrica_crashes). The most common target is the folder /data/anr, which was
detected in 22.2% (165/744). When the UI thread of an Android app is blocked for too long,
Android stores logs of the “App Not Responding” (ANR) errors in that folder.

The only pattern we found where the samples seem to monitor file system events generated
by folders shared with other apps was present in the 4.2% (31/744) of the samples across
eight families – disregarding the Singletons, the most prevalent (5/31) is the trojan triada.
Such samples retrieve the path of its folder in the external memory and install an inotify
watch for all the parent folders. However, this code belongs to the Vungle [229] library for
advertising and monetization.

Finally, in some cases, the tool could not recover the path because I) the sample concate-
nates strings at runtime (26.7%), II) it is passed through an (external) Intent (0.3%), or III)
it is read from the shared preferences (0.1%). Therefore, we manually reverse-engineered
some samples, one for each family, and then moved to the Singletons. During this manual
investigation, we did not find any new malicious pattern.

Native layer. As a second component, we leveraged ANDani to analyze the native libraries,
identify the calls to the inotify_add_watch API, and resolve their inputs. In the malware
dataset, 87.4% (8,742/10,000) of the samples contain native code, and the analysis revealed
that 77.0% (6,731/8,742) of the malware samples use the inotify API in just 339 different
native libraries. Given that we did not find a predominant family (fourth row of Table 5.1),
this low number of libraries w.r.t. a high number of samples is because these samples share
such libraries. Most analytics libraries, such as Umeng [245], monitor files in their private
directory to identify app failures.

The analysis of native libraries proved to be more complicated than the Java one; our tool
failed to resolve the argument to the inotify_add_watch function in more than 40% of
cases because the string was not statically available. Therefore, we resorted again to manual
reverse engineering, using the same strategy discussed above, stopping when we did not
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notice new patterns emerge. With this mixed manual and automatic approach, we uncovered
two “malicious” cases (already introduced in Section 4.6.5). First, an anti-debug strategy
that we often (but not only) found implemented in the Jiagu packer. To give a practical
example, we analyzed one sample (e.g., sample 9f02 – refer to Table A.1) that creates a
new thread, and from this thread, it uses inotify to monitor the mem and pagemap files in the
/proc/<pid> folder. In this way, it checks in real-time a change in the memory mapping of
the app process to detect the presence of a debugger.

Second, we observed some apps that monitor if specific files inside their installation
folder are deleted (e.g., the base.apk). This way, they can identify if the app is about to
be uninstalled and run extra code; for instance, some samples (e.g., 5264) open a web page.
Interestingly, this technique is the one that comes closest conceptually to what we found in
our results, and this shows again that allowing to monitor files within the installation path
opens the door to state inference.

RQ6. Malware uses inotify in both Java and native code, but in most cases, we observed non-
harmful operations, such as reacting to an app crash. We have encountered this phenomenon
because malware is often produced by repackaging popular apps with malicious components.
Therefore, we mainly detected the use of inotify by analytics libraries that can also be found
in goodware. Only 4.2% of the samples try to monitor file system events generated by folders
shared with other apps, but this behavior is again related to a famous advertising library. We
found no samples installing an inotify watch on a file inside the installation folder of another
app; in general, we found no cases suggesting the use of inotify for a state inference attack.
However, we found again two interesting cases in native code where malware abuses inotify:
an anti-debug technique and a “last resort” to execute code when they are uninstalled.

5.5 Analysis Methodology & Implementation

While comforting from an end user’s perspective, the fact that malware does not leverage
inotify for state inference attacks poses exciting questions. For example, have malware
authors never come up with this attack idea, or do they instead not implement it because it
does not work in practice?

While answering such questions on malware authors’ behalf is rather tricky and far
beyond the scope of this work, we can evaluate the feasibility of employing inotify for state
inference at scale.

To this aim, this section introduces inoTool: a tool, written in about 2k lines of Python,
that can prove whether an Android app is vulnerable to inotify-based state inference. inoTool
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exposes three functionalities that capture and analyze an app’s file system behavior, as
discussed in the remainder of the sub-section.

5.5.1 Function #1 – logEvents

This function takes as input an APK file and computes the list of the file system events
(from now on, we will refer to this list as FSFootprint) generated by the APK during its
entire execution. A file system event is represented as the pair (event_type, path), where
event_type is the inotify event corresponding to the file system action performed on the file at
path (e.g., the event IN_MODIFY encodes a file content modification). Furthermore, inoTool

stores the mappings between the app’s package name and its FSFootprint.
At first, inoTool installs the app to analyze, and runs it for the first time without any

monitoring. The idea behind the first “dry-run” of the app is to avoid capturing file system
activities that are just the result of some post-installation setup operations. For example, an
app that uses a SQLite database stored on the device’s file system. The app likely creates
this database only once, when it starts for the first time. If we considered the first run
representative of the subsequent execution, we would wrongly expect it to create the SQLite
file each time.

It is only while running the app a second time that inoTool collects the file system
behavior of the app over 5 minutes. During this second run, inoTool also stimulates the app
user interface, thus increasing its code coverage. For this purpose, it leverages ARES [181],
a black-box tool that uses Deep Reinforcement Learning to test and explore Android apps.

The file system events monitor is developed as an eBPF program that hooks all the system
calls – syscalls – related to file system events that can generate an event. Table 5.3 reports
the complete list of monitored syscalls. eBPF (extended Berkeley Packet Filter) [122] is an
in-kernel virtual machine that provides an interface to extend the capabilities of the Linux
kernel with user-provided code. It has been available in Linux since version 4.4 and provides
two advantages compared to adding new code directly in the kernel. First, the eBPF code
can be updated without recompiling the entire kernel. Second, the eBPF VM code does not
support potentially dangerous constructs (e.g., loops with non-fixed iteration counts) and
undergoes a strict verification phase before execution, making it less prone to bugs. eBPF
programs are event-driven: the eBPF code is executed only in response to specific events that
include syscalls, making it a powerful tool for the syscall-based monitoring of Android apps.

The eBPF program is written in about 1,100 lines of C code and leverages kernel
tracepoint and kretprobe subsystem for monitoring syscalls. Tracepoints allow the eBPF
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Table 5.3 Inotify event to system call

Inotify event System call

read
execveIN_ACCESS
execveat
chmod
fchmod
fchmodat
utimensat
setxattr
lsetxattr
fsetxattr
chown
fchown
lchown
fchownat
utime
utimes

IN_ATTRIB

futimesat
IN_CLOSE_(WRITE|NOWRITE) close

mkdir
mkdirat
link
linkat
symlink
symlinkat
bind
mknod

IN_CREATE

mknodat
rmdir

IN_DELETE(_SELF)
unlink
write
truncateIN_MODIFY
ftruncate
open

IN_OPEN
openat
rename
renameatIN_MOVE_(SELF|FROM|TO)
renameat2

program to intercept the beginning of each syscall and parse its input parameters. Kretprobes,
instead, are used to monitor the return values and track the opened/closed files for each
process, which is crucial because it allows inoTool to interpret syscalls that accept file
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descriptors as input parameters. For instance, the first parameter of the read syscall is the
file descriptor of the file from which to read. Our eBPF program keeps track of the mapping
between file descriptors and file paths for each process in the system during the app under
analysis runtime.

To start and stop the eBPF program each time a new app runs, we created a second
program that registers/unregisters the kernel hooks and queries the eBPF program to retrieve
the recorded events and save them into a JSON file. The second program is written in Golang
(about 700 lines) and leverages the libbpfgo library [194] for interacting with the eBPF
programs from userspace.

Finally, the function analyzes the syscalls recorded so far and converts them to a list of
file system events (i.e., FSFootprint).

While, in most cases, mapping a syscall to an inotify event is straightforward (such
mapping is reported in Table 5.3), three event types represent interesting exceptions: file
closing, moving, and deleting. The first event type occurs when a process closes a file
descriptor and distinguishes two cases. If the process had opened the file descriptor in
writing mode, then an (IN_CLOSE_WRITE) event would arise; on the contrary, inotify returns
an (IN_CLOSE_NOWRITE) event if the process did not open the file descriptor for writing.
To correctly handle these two events, inoTool keeps track of the opening options for each
file descriptor. The move event class distinguishes three different events. The first one –
IN_MOVE_SELF – happens when the moved file is the program that spawned the process that
moves the file. The other two – IN_MOVE_TO and IN_MOVE_FROM – arise when the file is
moved to or from the monitored directory, respectively. Similarly, the delete event class
depends on whether the watched file/directory was itself deleted (IN_DELETE_SELF) or the
file/directory deleted from the watched directory (IN_DELETE).

5.5.2 Function #2 – generateSignatures

This function takes as input a set of apps K (cardinality |K|) and their respective FSFootprint

generated by the logEvents function. It returns the FSSignatureK for each app, that is, the set
of file system events that our tool recorded uniquely for the startup of that APK; namely, it
considers all the unique startup events of that APK’s FSFootprint w.r.t. the other APKs in the
set K. Notice that the choice of the apps in K determines how reliably an attacker can use
the FSSignatureK . By tailoring K to the apps installed on the device, she targets this specific
configuration to ensure that a file system event uniquely identifies an app’s startup in that
device.



5.5 Analysis Methodology & Implementation 98

Determining an app startup. Since our attack aims at identifying an app startup while
constructing the FSSignatureK , we want to consider only those events generated during the
startup phase. However, determining when an app startup ends presents several challenges,
and today, it is still an open issue. Naive approaches like monitoring the screen until
the user interface stops changing are not an option because apps showcase very different
UI when they start (e.g., some have long-loading screens with animations, while others
show advertisements). Relying on triggers in the app’s code is also not feasible due to
the heterogeneity in the UI frameworks Android apps use (e.g., Cordova, Xamarin, Flutter,
WebView, etc.). For this work, we resorted to an experimental human-in-the-loop approach
to determining when an app finishes loading. In particular, we randomly selected and ran 100
apps in our emulated environment while recording the emulator’s screen. We then manually
inspected the recordings and marked in each of them the time at which, according to our
human understanding of the app’s context, the startup process ended. The minimum startup
time (rounded down) we measured was four seconds, which we then used to mark the end of
the startup process for all the apps. We chose the shorter time conservatively to ensure we do
not consider already started apps.

More precisely, the FSSignatureK (S) of the n-th app is computed as:

Sn = F+
n \

⋃
i ̸=n

Fi ∀e ∈ F+
n , te ≤ 4 seconds

where Fk represents the FSFootprint of the k-th app, and F+
k its subset that contains only the

startup events (i.e., events that occurred in the first four seconds). It is worth noticing that to
compute the FSSignatureK , from the F+

k , we filter out all the events in the FSFootprint of
the other apps in K, regardless of whether they occurred at the startup or during the apps’
runtime. This procedure allowed us to avoid the case when a file operation performed by
app A at its startup is also performed by app B at its runtime. Therefore, if an app has a
non-empty FSSignatureK , monitoring one event of its signature is an excellent indicator to
infer when it is starting up.

5.5.3 Function #3 – signatureVerifier

By construction, the FSSignatureK of an app contains those unique events recorded during
its startup only; i.e., the same events did not occur during other apps’ execution. This means
that an attacker capable of intercepting any event in an app’s FSSignatureK can mount an
unambiguous state inference attack, using such events as an oracle.
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This function, which takes as input an APK and its FSSignatureK , aims to assess whether
it is indeed vulnerable to inotify-based state inference attacks or, in other words, whether
an attacker can leverage an app’s FSSignatureK to mount a state inference attack. We
accomplish this by mimicking an attacker’s behavior using an a posteriori approach: we
refine the FSSignatureK using the events we can confirm that can be used in the attack. Thus,
the result of this function is FSSignature∗K , a subset of the FSSignatureK , which contains
only the file system events that an attacker can monitor. In the end, if the FSSignature∗K is
not empty, we declare such an app as ‘vulnerable’.

We implemented our attack in an Android app we named appSignVerifier that attempts to
intercept any event in an app’s FSSignatureK . Under the hood, appSignVerifier uses inotify
through the FileObserver class. Before registering an inotify watch, appSignVerifier checks
whether the target file exists. If so, the watch is registered directly on the file. In contrast, if
the file does not exist, appSignVerifier registers the inotify watch on its parent directory to
intercept the file creation.

The entire verification stage adopts the following workflow. Similarly to logEvents, the
signatureVerifier installs the app under test and starts it for the first time. It then provides
the app’s FSSignatureK and installation path to the appSignVerifier, which sets an inotify
watch on the events in the app’s signature. appSignVerifier needs the installation path
because events in the FSSignatureK may be related to files in this directory; however, this
path may change across two installations. The function starts the target app for a second
time, allowing the appSignVerifier to collect the inotify events. After the app startup, it
stops the appSignVerifier, which dumps the collected file system events on mass storage.
Then, it prunes the list of recorded file system events of any entry not in the FSSignatureK .
This allows filtering out those events that the appSignVerifier accidentally recorded while
monitoring any file creation event in a directory. For example, if the FSSignatureK of an
app contains the path /example/uniq.txt, but this file does not exist before the app starts,
appSignVerifier monitors the folder /example/, in which, however, other uninteresting file
system events may occur. These events should, thus, be discarded.

At the end of the analysis, inoTool produces three sets of file system events for each app,
for which the following relationship holds: FSFootprint ⊆ FSSignatureK ⊆ FSSignature∗K .
The cardinality of an app’s FSSignature∗K equals the number of file system events in its
FSSignatureK that our appSignVerifier was capable of intercepting. Therefore, an app’s
FSSignature∗K is not the empty set if and only if at least one of its file system events arises
during its startup only (that is, the same event does not take place during any other app’s
execution in a set K) and an untrusted app can effectively intercept such event.
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5.6 Experimental Evaluation

This section presents the setup under which we tested a dataset of 4,863 Android apps using
inoTool, as well as a preliminary and coarse-grained analysis of our findings.

5.6.1 Experimental Setup and Dataset

The analysis system is based on an Android emulator and runs Android version 12.0 (API
level 31), equipped with the latest Google Play APIs, thus implementing all the latest security
features. We equipped the emulator with a dual-core 2.10 GHz x86-64 processor, 2 GB of
RAM, 32 GB of internal storage, and a 16 GB emulated SD Card. To execute the eBPF
program, we had to recompile the Android Linux kernel from the source code to enable
the CONFIG_KPROBES*, CONFIG_BPF_SYSCALL, and the CONFIG_IKHEADERS configuration
options.

We built the dataset of apps to test by collecting Android applications that are valuable
and widespread among Android users and that implement a relatively heterogeneous set of
functionalities. The first two characteristics make these apps appealing targets for attackers,
which may profit from a vast user base. On the other hand, the variety of functionalities
ensures that the app we analyze shows different behaviors. This prevents our results from
being skewed toward one particular type of app and more representative of the average user’s
device. As reported by Google [93], Android users install, on average, at most 35 apps spread
over different categories.

We collected the 100 most downloaded free apps for the 50 categories in the Google Play
Store [96]. Some of these categories are particularly valuable, especially for phishing attacks,
such as finance and social media apps. In total, we could install 4,863 apps because some of
them were incompatible with our emulator.

5.6.2 Preliminary Analysis

Table 5.4 Cardinality statistics with |K|= 4,863

Set Min Max Avg Stdev Median

FSFootprint 17 3087 463.2 192.1 457
FSSignatureK 3 784 65.1 74.2 28
FSSignature∗K 2 61 6.8 2.6 7
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Table 5.4 shows aggregate data about the FSFootprint, FSSignatureK , and FSSignature∗K
that inoTool generated for each app.

On average, the cardinality of an app’s FSFootprint is seven times that of its FSSignatureK .
As one may expect, most of the file system activity during an app’s startup does not depend
on the app itself but rather on the implementation of the app startup process. For example, to
bootstrap any apps, the Android system must load and read the /system/framework/x86_-
64/boot-framework.art and /apex/com.android.art/javalib/x86_64/boot.art files,
which contain the ahead-of-time compilation result of some framework classes. Nonetheless,
roughly one in four file system events are unique to the app, leaving room for inferring which
app is starting based solely on the file system activity.

While significantly (roughly ten times) smaller than the FSSignatureK , the FSSignature∗K
of an app contains, on average, 6.8 file system events. As a reminder, these are file system
events that are not only specific to the app but can also be monitored by a third-party
application using the inotify system. To our surprise, the lowest cardinality among the
computed FSSignature∗K is two, meaning that all the apps in our dataset have a non-empty
signature and are susceptible to inotify-based state inference attacks.

Upon further analysis, we found some file system events common to the startup process
of all the apps we tested. Since they stem from the app startup process implemented by the
Android system, we define these events as system-dependent.

An example of a system-dependent file system event is the opening of the base.apk,
located in the app’s installation directory. It is accessed by the Android OS to retrieve
its resources (e.g., the Manifest), resulting in an IN_OPEN and an IN_ACCESS file system
events. Our analysis demonstrated that any program in the system that knows an app’s
installation path could intercept these two events on such a file. This is possible because of
this file’s permissive access control rules. From a DAC point of view, any app’s base.apk is
world-readable, while SELinux MAC rules explicitly allow it.

Other system-dependent events concern the base.odex and base.vdex files, also located
in the app’s installation path. These files are the byproduct of the ahead-of-time compilation
process implemented in the Android RunTime that translates the app bytecode into machine
code at installation time. As such, the Android framework has to access and load these files
in the address space of the newly spawned app; in fact, the former contains the machine-
compiled code, while the latter stores data designed to speed up the execution.

App-dependent events represent the other side of the coin compared to system-dependent
ones. These file system events are tightly related to an app’s behavior rather than the
implementation of the bootstrap process in the system framework. App-dependent events
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may concern files located anywhere on the file system. Table 5.5 presents the distribution of
app-dependent events of our dataset throughout an Android file system. Specifically, each
row in the table represents a path in the Android file system, defined in top- and second-level
(first and second column, respectively) directories. The third column provides the share of
apps in the dataset whose FSSignature∗K contains at least one event in the corresponding
directory.

Table 5.5 Path distribution of files in FSSignature∗K

Root Depth=1 Percentage %

/data 17.20
/app 17.20

/storage 1.5
<sdcard_ID> 0.68
/emulated 0.84

/sys 0.06
/devices 0.06

/system 0.03
/priv-app 0.03
/lib64 0.02

/etc 0.02
/passwd 0.02

/product 0.02
/overlay 0.02

Although not as common as their system-specific counterparts, the most common location
of app-dependent events is still the app’s installation directory (/data/app row in Table 5.5),
in which 17.2% of apps generate at least one event. Examples of such events are those related
to native libraries shipped with the app and placed in the lib directory in the installation
path.

1.5% of apps generate at least one event in the /storage/ top-level directory – also
known as external storage – which contains app-specific sub-directories where apps can
place their persistent files. Notably, external storage comprises two parts. The first is a mount
point at which the Android system mounts external mass memory devices (e.g., SD cards),
which account for roughly 45% of the events inoTool detected in the external storage. On the
other hand, the second is not backed by any external memory device and is created by the
system to provide external storage functionalities without external memory support. This
second part accounts for most of the events inoTool reported in external memory.

File system events in other subdirectories are generally less common and affect less
than 1% of the total apps in our dataset. Nonetheless, an attacker can leverage them to
mount for state inferencing purposes. Interesting examples of events in these paths concern
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the /system top-level directory. A peculiar case is that of an app that interacts with the
/system/priv-app/InputDevices/InputDevices.apk file to check if a particular input
device is available.

5.7 Attacker Models & Attack Scenarios

Analyzing the results obtained by testing the 4,863 apps through inoTool, we identified three
distinct sets of capabilities that an attacker needs to perform an inotify-based state inference
attack. In this context, a capability may be an Android permission or information about
the installed apps. In general, obtaining a specific capability may depend on I) the version
of the Android system and II) the API level that the malicious app targets. The impact of
the former on the attacker’s capability is relatively intuitive: different versions of Android
implement slightly different functionalities and security models. To fully appreciate the
latter’s role, one needs to consider how Android deals with the app’s backward compatibility.
At compilation time, an app developer can choose which version of the Android framework
the app is intended to run. If the targeted version is “too old,” the OS will refuse to install
the app. On the other hand, if the targeted version is still supported, the system emulates the
targeted version’s behavior and security model. For instance, more than 68% of the apps in
the dataset target API 30, even if, at the time of writing, the latest Android version is 13 (API
33). As such, most of the apps we analyzed are not subject to the latest and more restrictive
security model.

In the remainder, this section will assume that the attacker has paved the way to install
her malicious app on the victim’s device – a basic premise for any state inference-based
phishing attack. While this may happen in various ways and represent an exciting research
field in its own right, we will only develop this topic further as we consider it orthogonal to
the research questions this work addresses. However, we assume the malicious app to be
a regular Android app, thus subject to the Android security model for untrusted apps with
restrained access to the device’s resources.

5.7.1 Attack #1

As we saw in Section 5.6, while starting any app, the Android system accesses the app’s
specific files (e.g., the base.apk) in its installation directory. In other words, an attacker
able to monitor those files can target any app on the system. Luckily, an app’s installation
path is not known a priori (part of its name is randomly generated at installation time), and,
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at least in theory, it can only be retrieved through the Package Manager service (as discussed
in Section 2.1.1). Before Android version 11, interacting with this service did not require
any permission, allowing all apps on the device to access each other’s installation path. To
limit Software Discovery [45] (i.e., listing installed apps and their metadata), Android 11
introduced the concept of package visibility [97]. In practical terms, under the new security
model, an app must either list the metadata of all third-party apps it needs to access (through
the <queries> tag in its Manifest) or request the QUERY_ALL_PACKAGES permission. From
a malicious actor’s perspective, both mechanisms could be better. For what concerns the
first option, an app whose Manifest targets many apps is rather suspicious and incurs higher
risks of being banned by the marketplace. Similarly, requesting the QUERY_ALL_PACKAGES
permission is not a sustainable plan for an attacker. Google states that any app requesting
this permission must undergo manual scrutiny before being accepted on the Google Play
Store [97].

However, there are two loopholes that a malicious app can leverage. The first takes
advantage of Android’s backward compatibility system. The package visibility mechanism
does not apply to apps targeting API level 30 or lower, which can retrieve the installation
path of any app in the system without any permission. The second technique consists in
(ab)using one feature of the <queries> tag that gives access to any app that implements a
particular intent filter [87], as shown in Listing 5.1.

Listing 5.1 queries tag to interact with all applications
1 < q u e r i e s >
2 < i n t e n t >
3 < a c t i o n a n d r o i d : name="android.intent.action.MAIN" / >
4 < c a t e g o r y a n d r o i d : name="android.intent.category.LAUNCHER" / >
5 </ i n t e n t >
6 </ q u e r i e s >

This allows querying all the apps with a “launchable” activity – i.e., those presenting one
entry in the Android launcher UI – which is the case for practically every commonly used
app. While conforming to the documentation, this stratagem contradicts the app separation
principle at the core of the Android security model. We also reported this bug to Google,
which acknowledged its security implications and said the issue had already been reported
but has yet to be made public.
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5.7.2 Attack #2

The second attacker model we envisage assumes that the loopholes we introduced in Attack #1
are no longer available, making monitoring the apps’ installation path impossible for an
attacker.

In this new scenario, the attacker chooses a dataset of large and heterogeneous apps and
similarly analyzes them to that presented in Section 5.6, embedding each app’s FSSignature∗K
in her malicious app. In analyzing what an attacker can achieve by implementing this generic
strategy, we will refer to the data we collected using inoTool. The files in the FSSignature∗K
generated in our experiments can be divided into two categories: those that can be accessed
via the READ_EXTERNAL_STORAGE permission and those that are world-readable, i.e., they
do not require any permission to be monitored.

READ_EXTERNAL_STORAGE permission. Earlier Android versions used this permis-
sion to restrict access to external storage. Android 10 (API 29) introduced a new file system
paradigm called scoped storage [88] that divides the external storage into private and shared
portions. As the names suggest, while the former is app-specific, the latter contains data
shared across all the apps in the system and is further divided into media and non-media
content. The new paradigm redesigned the READ_EXTERNAL_STORAGE, allowing an app to
read only other apps’ shared media content. Consequently, obtaining the permission in
question drastically changes the benefit an attacker gains. While on older versions of Android
(API < 29), this permission allows identifying apps that access any file in the external storage,
on newer versions, it only allows detecting those that access shared media files.

Based on our dataset, this discrepancy translates into roughly ten times fewer apps being
vulnerable while running in Android 10 or newer (0.7% of the dataset) w.r.t. older versions
(18.1%). These figures do not include world-readable files (discussed below), so they can be
considered the permission’s contribution.

World-readable files. We discovered something peculiar by analyzing the world-readable
files appSignVerifier managed to exploit. While on paper, files in an app’s “private” storage
are accessible exclusively by the app itself, in practice, it is still possible to monitor some
of them through inotify. In particular, our analysis shed light on the fact that apps’ private
folders in the portable configuration of an SD card could be monitored using the inotify API
(contrary to what an attacker can do in the internal memory).

To make things worse, unlike the installation directory, an app’s private storage path
does not contain any randomly generated part, making it trivial to infer. In other words, in a
bizarre turn of events, the scoped storage’s implementation breached the tight access control
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that regulated the external storage in previous versions of Android. In our dataset, 0.9% of
apps are vulnerable to state inference attacks that do not require any particular capability
from the attacker. Among such apps, we find two famous instant messaging (WhatsApp
and JioChat) and a money transfer (Venmo) app. They have large user bases, having been
downloaded at least 10M times each; therefore, unauthorized access to user accounts on
these platforms may have severe privacy and financial repercussions.

5.7.3 Attack #3

The main advantage of the Attack #2 attack strategy is that the pre-computed FSSignature∗K
can be embedded in a single malicious app and shipped as is to the victim’s device. Moreover,
it represents the most generic attack possible. This strength, however, comes at the expense
of overapproximating what the vulnerable apps are on an actual device. When computing
the file system signatures on a dataset K as large as the one we used in our experiment,
the attacker implicitly assumes that all the apps in the dataset could be installed at once
on the targeted device. This is different for the average Android device that, according to
Google [93], tends to have around 35 apps installed at a time.

Intuitively, narrowing down the cardinality of K increases the number of apps with a
non-empty FSSignature∗K . The sweet spot for an attacker is to choose K as the set of apps
installed on the target device. Doing this maximizes the number of apps vulnerable to state
inference attacks on that specific device.

Thus, the third attack strategy consists of scouting the apps installed on the infected
device, computing the apps’ FSSignature∗K accordingly with the aid of a remote endpoint,
and employing them to perform state inference attacks.

The sole capability the attackers must acquire to implement this strategy successfully
is obtaining the list of installed apps on the device. Similarly to what is described in
Section 5.7.1, nowadays, the most trivial way to do that would be through either the QUERY_-
ALL_PACKAGES permission – which is too suspicious to be considered a viable option – by
defining the queries tag or targeting API level 29 or below. One last option at the attacker’s
disposal is leveraging an information disclosure vulnerability, like the one we discovered in
our research.

Information Disclosure Vulnerability. The introduction of scoped storage loosened the
access control on external storage, allowing otherwise unprivileged apps to mount state
inference attacks. In particular, we noticed that the paths where each app saves its private
files are predictable, following the pattern <external storage path>/Android/data/-
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<package name>. For example, on our test device, the private files of the famous Discord
app (whose package name is com.discord) were located in the /storage/emulated/-

0/Android/data/com.discord/ directory. Unlike the app’s installation path, the private
storage path contains no aleatory component, making it trivial for an attacker to infer.
Simply invoking the getExternalStorageDirectory API (which does not require any
permission), an app can retrieve the <external storage path>. In contrast, the target
app’s package name can be determined by statically analyzing its APK available on the
marketplaces.

What makes private storage vulnerable, however, is the fact that the app’s files are at
predictable locations and the permissive access control rules that the system applies to
them are not enough. The data directory in the external storage is marked as not readable,
not writable, but executable for any untrusted app. Under the POSIX convention, this
combination of flags denies anybody but the directory’s owner and group to list its content
and create files. However, the executable attribute allows anybody to traverse the directory.
Therefore, an untrusted app – even without the READ_EXTERNAL_STORAGE permission – can
check if a specific file exists in the data directory using of the newfsstat syscall or, more
conveniently, through the java.nio.file.Files.exists Java method. More specifically,
when querying for an existing file, the syscall (and the wrapper) returns successfully. To an
extent, this primitive can circumvent the lack of listing privilege on the directory. Thus, an
attacker can maintain a list of package names of apps they want to target and systematically
probe each of them.

Suppose such a folder is in the data directory. In that case, the attacker is sure that
the corresponding app is installed on the device because all its private folders are removed
whenever an app is uninstalled. In addition, the system creates the app’s private folder
on the external storage whenever it invokes one of the several methods to retrieve its pri-
vate location for the first time, such as android.content.Context.getFilesDir and
android.os.Environment.getExternalStorageDirectory methods. Table 5.6 reports
the complete list of such methods and the prevalence in our dataset of benign apps.

By statically analyzing the apps in our dataset, we discovered that almost the entire
dataset (> 99%) imports at least one of these methods. In particular, the android.-

content.Context.getFilesDir method is the most prevalent and can be found in 98.7%
(4,632/4,863) of the apps in our dataset. However, the static analysis does not guarantee
that every one of these apps invokes any of these methods. This result should be considered
an upper bound of the share of apps that use external storage and are thus vulnerable. To
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Table 5.6 Android APIs usage to interact with the external memory.

Path %

android.content.Context.getFilesDir 98.73
android.os.Environment.getExternalStorageDirectory 97.15
android.content.Context.getExternalFilesDir 91.35
android.content.Context.getExternalFilesDirs 90.34
android.content.Context.getExternalCacheDirs 90.06
android.content.Context.getExternalCacheDir 88.10
android.content.Context.getExternalMediaDirs 87.07
android.content.Context.getObbDirs 74.73
android.content.Context.getObbDir 61.96

estimate a lower bound, we measured the number of apps for which inoTool registered a file
system event in the corresponding private folder, and we obtained 49% (2,383/4,863).

In conclusion, we can estimate that 49-99% of the apps in our dataset can be detected
on a device without permission. This information disclosure vulnerability partially thwarts
Google’s efforts to restrict third-party apps from Software Discovery.

Performance of the refined attack. To estimate the likelihood of success of an attack
tailored to the apps installed on a device, we relied on random sampling apps from our
dataset and computing the number of vulnerable apps in each case. For each simulation,
each app’s chance to be selected depends on the downloads from the Play Store, so the ratio
between the two apps’ download counts equals the ratio of their chances to be chosen. For
example, the eToro and FlyerMaker apps have been downloaded by 10M and 1M users,
respectively; thus, the former is ten times more likely to be selected than the latter.

We varied the cardinality of the sampled apps from 15 to 100, increasing it by five each
time. We created 5,000 unique app sets for each cardinality, i.e., 5,000 sets of cardinality i.
For each set, we executed the generateSignatures and signatureVerifier functions of inoTool to
measure the number of vulnerable apps to our attack with this particular device configuration.

Figure 5.1 shows the results of this experiment, divided according to the permissions
and Android version required to monitor files with inotify. The lines are averages of the
percentages of vulnerable apps, while the faded areas are the standard deviation.

As expected, the number of vulnerable apps decreases with the number of apps in-
stalled. Alarmingly, on devices with an average number of installed apps (35, according to
Google [93]) running modern Android versions, an attacker can successfully target half of
the apps, even without declaring any permission. While performing slightly better when
targeting API level < 29, under modern security models, the READ_EXTERNAL_STORAGE
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Figure 5.1 Capability for different Ki values

does not significantly affect the likelihood of carrying out the attack w.r.t. to targeting
world-readable files only.

5.7.4 Final Considerations

The following is a summary answering RQ7 and RQ8. We identified three types of attacks,
which differ according to the attacker’s capabilities. If an attacker can monitor a system-
dependent file system event (Attack #1), the opening of the base.apk is the best candidate.
To this aim, she needs to know the installation path, and the only ways to get it are: by
requiring the QUERY_ALL_PACKAGES permission, abusing the queries tag, or targeting SDK
≤ 29. This attacker is the most powerful because it works with 100% of apps regardless of
the Android version and the device configuration.

In case an attacker cannot retrieve the installation path, she can pre-compute a FSSignature∗K
with a large K analyzing as many apps as possible to find peculiar behaviors that enable
an attacker to perform an inotify-base state inference attack (Attack #2). Our evaluation
with |K| = 4,863 found that an attacker can target 0.9% of the app by monitoring only
world-readable files. Obtaining the READ_EXTERNAL_STORAGE permission, the number of



5.7 Attacker Models & Attack Scenarios 110

vulnerable apps increases to 1.6% and 18.8% for Android 10 or newer and older versions,
respectively. However, these values also consider the contribution of the world-readable file
since an attacker can always monitor them. Thus, the actual contribution of this permission
is 0.7% on Android 10 or newer and 18.1% on older versions. Despite these low values, this
is the most general scenario: an attacker can always attempt to use this approach to search
for peculiar events in the FSFootprint of the target app.

Attack #3 is a refinement of the previous attack strategy that an attacker can adopt if
she can get the list of installed apps, e.g., by using the information disclosure vulnerability
we reported. Our experiments suggest that in a typical device with 35 apps installed on
average [93], the attacker can target almost half of the apps without any permission.

Finally, the Android version largely influences the number of vulnerable apps and the
attacker’s capabilities. First, the metadata of the installed apps (e.g., the installation paths)
can be obtained without permission on a device running Android < 11; on Android ≥ 11, an
attacker has to update the Manifest file appropriately. Second, the number of apps vulnerable
requiring the READ_EXTERNAL_STORAGE permission strongly depends on the version of the
operating system.

We summarized the workflow of the different attacks in the flowchart in Figure 5.2,
and for each case, we report the percentages of the vulnerable apps in our dataset. The
percentages reported for Attacker #3 consider the average case of the typical device with 35
apps installed, as described above.

5.7.5 Use Case with Contextual Notification

To demonstrate the impact of an inotify-based state inference attack, we developed a toy app
implementing a full zero-permission phishing-like attack targeting the eToro (package name:
com.etoro.openbook) app. According to the Play Store, this app counts tens of millions
of installations and provides access to a trading platform, making it the perfect target for a
malicious actor.

The FSSignature∗K we computed for this app contains the file system events for opening
(IN_OPEN) and reading (IN_ACCESS) the /system/framework/android.test.runner.-
jart file. The corresponding file is accessible by any app on the system, including unprivi-
leged apps, without permission.

Figure 5.3 shows the attack flow in three steps. Our malicious app registers an inotify
event at the beginning of its execution, using the FileObserver API. When the user launches
the eToro app (Step 1 in Figure 5.3), the inotify callback is triggered. At this point, our
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Figure 5.2 Flowchart summarizing the attack models of inotify-base state inference attack.

malicious app does not immediately create an activity that mimics the eToro’s one as it
does not have the needed permission. In the modern Android system, starting an activity
without the user’s interaction is strictly regulated since this type of action has long been
used to implement UI hijacking. The only viable way to implement such behavior is by
obtaining the SYSTEM_ALERT_WINDOW permission, which has been ranked as privileged (refer
to Section 2.1.1) after previous works demonstrated its malicious potential [71]. This fact
did not stop malware authors from using it; in fact, 56.9% of the samples (5,692/10,000)
among the malware we used in this study (Section 5.4) require it, while in the case of benign
apps (Section 5.6) 8.6% (431/4,863). However, implementing our phishing attack using this
permission differs from our purpose of showcasing how a complete permission-less phishing
attack could work.

Xu et al. already proposed using the notification service on a mobile phone to launch
phishing attacks [241], and we decided to refine this idea. Instead of requiring the abovemen-
tioned permission, our malicious app opts for displaying a contextual notification (Step 2),
trying to lure the user into initiating a fake update process for their eToro app. A contextual
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Figure 5.3 Flow of the attack with a contextual notification

notification, while unexpected, is not necessarily suspicious from the user’s perspective. In
this case, the app may have found an available update while loading and asked permission to
install it.

Since it mimics the target’s look&feel, it is tough for the user to distinguish our malicious
update prompt from a regular eToro notification. Step 2 also shows how legitimate and
phony notifications render when the malicious app targets different Android operating system
versions. In the first case targeting an older version of Android, the forged notification is
practically impossible to distinguish from a legitimate one because the attacker has complete
control of the notification’s UI. While targeting Android 12, instead, the user’s only chance
to understand that the notification is not genuine involves expanding the notification. Starting
with Android 12 (API level 31), apps can no longer create fully custom notifications [91],
and the system applies a standard template instead. As the Figure shows, under these
circumstances, the user can read the name of the apps that generated the notification – which
is, nevertheless, attacker-controlled, as we emphasize in our example.

Once the user clicks on the contextual notification (Step 3 in Figure 5.3), our malicious
app can effectively take control of the UI system and finally create the activity that asks the
user for their credentials.

RQ9. During our analysis, we discovered several loopholes that grant an attacker different
capabilities to perform a state inference attack and mount a practical phishing attack. More-
over, we highlighted that a malicious actor can still perform this attack without particular
capabilities by monitoring world-readable files and presenting the user with a contextual
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notification. An attacker can mount the attack assuming that she controls an untrusted app
with no permissions, as we showed with our malicious app.

5.8 Mitigations

Even if this work demonstrated that our attack also works in case the attacker cannot
monitor files in the installation path, this capability is the cornerstone of our work that
Google has acknowledged. Therefore, it is evident that the primary fix is to avoid untrusted
apps from watching files in the installation path, even on their own, because we have also
noticed malware abusing it to execute code when uninstalled. To propose a solution to
this vulnerability, it is imperative to understand the root cause that allows an attacker to
exploit it. Given that Android uses SELinux to enforce MAC, which uses a “default-deny”
approach, as explained in Section 5.2, there must be rules that explicitly allow monitoring of
the installation folder.

Watching the installation path. As a first step, we inspected the file where SELinux kernel
hooks are defined to determine whether there was any filtering related to inotify syscalls [84].
We identified that SELinux sets up the selinux_path_notify hook for handling these
syscalls. In particular, the hook verifies if the context of the subject contains the watch and
watch_reads SELinux permissions. The difference between the two lies in the fact that
watch_reads is only related to read-like events.

Then, we proceeded to check if any SELinux rules would allow a third-party app (running
in the context of untrusted_app) to use inotify (i.e., allowing watch or watch_reads)
on files or subfolders of the /data/app/ (which are labeled as apk_data_file). It is
worth noting that, on Android, the untrusted_app context inherits all the appdomain

rules. After retrieving the compiled SELinux policies from our emulator (namely, the
/sys/fs/selinux/policy file), we searched for these rules, and our hunch turned out to
be correct. We found two rules that allow the appdomain (thus, untrusted_app) to use
both watch and watch_reads on files and directories labeled as apk_data_file (i.e., files
and directories in /data/app). A deeper analysis allowed us to identify how both watch and
watch_reads permissions are defined in the r_file_perms and r_dir_perms macros [90].

As mitigation for this vulnerability, acting at the SELinux level is the best choice as it
ensures a strong level of security and controls its granularity simultaneously. For example,
removing the POSIX world-readable permission on the base.apk would be wrong. A
typical use case is antivirus software, which should be able to read this file for its analysis.
Therefore, we propose to create a new macro (e.g., r_file_perms_nowatch) with the same
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permissions of r_file_perms but without watch and watch_reads. Then, this new macro
can be used to define the permissions of appdomain, and thus consequently untrusted_app,
for operating on apk_data_file. This way, we can prevent an untrusted app from listening
for inotify events on files or directories labeled apk_data_file without limiting access to
this file. However, we can always allow third-party apps to use inotify, for instance, on files
or directories belonging to their sandbox, which are legitimate uses and scenarios. This
mitigation effectively eliminates the main vulnerability we found while not compromising
the stability and usability of the system and introducing a highly fine-grained level of control
on which processes can use inotify and where.

We implemented this mitigation by modifying the AOSP source, and our emulator works
correctly but without allowing monitoring files within the installation path with inotify.
However, only Google has the resources to test if this change negatively impacts the whole
ecosystem.

Third-party vendors – RQ10. Since Possemato et al. [171] have shown a significant
difference in the security posture of AOSP concerning the Original Equipment Manufacturers,
we investigated if their flagship smartphones allow using inotify on the installation path.

We collected the major vendors’ latest ROMs – Samsung, Xiaomi, Motorola, Lenovo, and
Realme – from stockrom.net [208] or firmwarefile.com [66] (see Table 5.7), resulting
in a dataset of 11 images. We collected only the ROMs with the latest security upgrades
(e.g., scoped storage) to gather reliable results, preferring Android 12 when available. Then,

Table 5.7 ROM versions & models

Brand Model Vulnerable

Samsung
Galaxy S20 Ulta ✓

Galaxy S10e ✓
Galaxy A23 ✓

Xiaomi
Xiaomi 12S Pro ✓
Redmi Note 8 ✓

Redmi 10 ✓

Motorola
Edge 20 Pro ✓
Moto G52 ✓
Moto G30 ✓

Realme C25 RMX3191 ✓
Lenovo Legion Y90 ✓

we extracted the content of each ROM, looking for the SElinux policy files. However,
the /sys/fs/selinux/policy file is available only at runtime; thus, we searched for the
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source file (that changes depending on the customization; examples are sepolicy, file_-
contexts, and property_contexts). The analysis allowed us to identify that all the tested
ROMs inherit the AOSP SELinux policy, which assigns to an untrusted app the watch and
watch_read permissions. Thus, all the tested ROMs are also vulnerable.

Information disclosure. Then, the second most common paths found in the FSSignature∗K
(Section 5.6) and the information disclosure vulnerability (Section 5.7.3) are related to the
external storage (i.e., /storage/). These vulnerabilities are easily solvable with POSIX per-
missions. All files and folders in the private external storage should be read-write-execut-able
by the owner. At the same time, to solve the information disclosure, the Android/data folder
in the emulated storage must not be world-executable. Moreover, to err on the side of caution,
it would also be appropriate to introduce a random string in the presence of folders with the
package name of the app (e.g., /storage/emulated/0/Android/data/com.discord/),
as is already the case in the installation path.

RQ11. There are mitigations, and Android system developers should act in combination
with SELinux and POSIX permissions. SELinux policies should be extended to prevent an
untrusted app from installing inotify watches in any installation path, and only the owner
should be able to operate on her private files in the external storage. Moreover, similarly to
the installation path, folders named with the package name of an installed app can lead to
information disclosure or path traversal; therefore, they should be accompanied by a random
string. However, we argue that comprehensive remediation does not exist and Attack #2 can
always be attempted (e.g., through a world-readable file). As in the Man-in-the-Disk, the
FSSignatureK of an app depends on its specific behavior in combination with one of the other
installed apps, thus resulting in a complex environment that is difficult to defend.

5.9 Discussion

Limitations. This work is not exempt from limitations.
First, the timespan considered as the startup time of the app crucially determines the

events in the FSSignatureK and, thus, the attack’s impact. If the timespan is too short,
potential events are lost, limiting the attack; if it is too long, the app may have already started
when the attack takes place, and the user may notice odd behaviors.

Second, we collected the file system events stimulating each app with ARES. Thus, we
inherit the limitations of the dynamic analysis [5, 169]: such traces may not be complete
because the analysis did not lead to specific code.
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Third, by exploiting evasive controls, some apps’ components (e.g., ads libraries) may
show different behaviors depending on the device on which they are executed (e.g., actual
device vs. emulator). However, advertisement libraries are part of a shared codebase that
would likely not generate unique events; moreover, these evasive checks are typical of
malware.

Fourth, in our analysis, we dwelt on monitoring a single file, and given its effectiveness,
we explored no further; Ahn et al. [6], instead, focused on a sequence of events. Although
there is a margin for improvement, our work is mainly concerned with showing the existence
of this new attack and how to stop it. Future works must consider the actions Google will
take after our disclosures.

Google Play Store. This chapter has always referenced the Google Play Store’s policies
and how they may limit the proposed attacks. In particular, we emphasized that if an app
that requires the QUERY_ALL_PACKAGES permission (thus, looking for the installation path)
is uploaded to the Play Store, the app’s use of this permission is subject to approval based
on specific security policies. Even assuming Google fixes the queries tag workaround,
the level of such permission is “normal” (i.e., automatically granted at installation time);
therefore, there are two crucial factors to consider.

First, all the restrictions Google imposes on its store have led malware authors to refrain
from uploading their malicious apps directly. They upload droppers to side-load the malicious
app with extended permissions [146, 207, 221]. Therefore, in such a scenario, our attack has
no limitations.

Second, the Play Store is one of the many app distribution channels. For instance, in
China, the Google Play market share is less than 4%, while MyApp (Tencent) [219] currently
holds 25% of the market. Therefore, such a plethora of alternative markets (e.g., Samsung
Galaxy App, Amazon App Store, AppBrain, etc.) implies that our attack tremendously
impacts the global Android ecosystem.

Responsible Disclosure. We have reported three vulnerabilities to Google through the
official issue tracker:
I) The possibility of using inotify in the installation folder (reported in May 2022, acknowl-
edged the same month);
II) The information disclosure, described in Section 5.7.3 (reported in July and acknowledged
in September 2022);
III) The package visibility bypass via the queries tag, described in Section 5.7.1 (reported
in July 2022).
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The first two were acknowledged as bugs of Moderate severity [89], while other re-
searchers previously reported the third, but it was not public when we developed this work.



Chapter 6

A Comprehensive Analysis of Android
Evasive Behaviors

6.1 Introduction

Given that Android malware has significantly evolved in terms of its capabilities, sophis-
tication (e.g., they are increasingly abusing and exploiting the native layer as discussed in
Chapter 4), and adoption of evasive techniques [187, 128] over the past years, this chapter
studies the anti-behavioral mechanisms used by modern Android apps. In particular, this
work focuses on techniques for detecting different forms of dynamic analysis (i.e., anti-
behavioral techniques discussed in Section 2.2.2). While these techniques are prevalent
among malware to avoid exposing the malicious behavior inside an analysis environment,
they are also adopted by benign apps to protect their code from reverse engineering and
specific client-side attacks or to ensure that the users’ sensitive data (e.g., bank access tokens)
are not stored in a rooted device [149, 196, 29]. Either way, evasive controls are part of the
surreptitious code’s techniques, and their goal is to protect the apps – whether benign or
malicious – by retrieving precise and accurate information on the hardware and software
components of the system they are running on.

Dealing with this topic is as vast as it is complex. First, this chapter aims to study known
evasion techniques without attempting to detect new ones or look for those still unknown (i.e.,
the evasive techniques introduced and categorized in Section 2.2.2). Moreover, we proposed a
novel categorization into two main groups based on the techniques’ implementations, namely
direct and indirect evasive techniques. Direct evasive techniques (DETs) retrieve specific data
that can be directly used to detect whether the app is executed inside an analysis environment.
Conversely, indirect evasive techniques (IETs) return data that must be further processed
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to be used for evasion. This distinction is crucial for detecting evasion attempts: a sample
employing DETs is unequivocally looking for information on the runtime environment,
which per se is enough to infer an evasion attempt, whereas merely engaging IETs may serve
the same objective, but not necessarily.

Therefore, we studied all possible implementations and developed a proof-of-concept
Android app implementing all the collected evasive techniques we gathered (the app is
available at [15]). We were inspired by Al-Khaser [135], an executable for the Windows OS
developed to test the stealthiness of sandboxes, which has also been used in several scientific
papers to study the Windows evasive malware [55, 143, 75] phenomenon.

Then, a sandbox to execute benign and malicious samples is needed to measure the
techniques used in the wild. In the context of malware analysis, the term ‘sandbox’ generally
refers to a dynamic analysis tool that runs in a safe and controlled environment for analyzing
and observing suspicious and surreptitious code behavior without risking damage to the host
or the network [118]. Sandboxes may offer several advantages, such as quickly restoring the
environment after analysis, ensuring that any malicious activity stays confined to the sandbox,
scalability, and replication for a wide range of configurations, making testing the behavior
of several suspect samples across different scenarios easier. In [32], the authors highlighted
the requirements that a malware analysis sandbox for Android should follow. They can be
summarized in two criteria: anti-evasion (or “resilience to the detection”) and maintainability.
The former refers to the ability of a sandbox to be transparent to the apps running inside
it, creating the minimum possible set of artifacts that allow an app to detect the sandbox
itself. Ideally, a sandbox exposes realistic and consistent information; otherwise, malware
may leverage non-coherent knowledge to build a novel evasive technique. Maintainability
quantifies developers’ effort to address new evasive controls and upgrade the sandbox with
a new version of the Android (kernel and operating system). Achieving maintainability
does not necessarily require avoiding kernel and OS modifications as long as they are easily
portable to the newer versions. Another critical aspect of large-scale malware analysis is
scalability, which measures the system’s ability to analyze many samples simultaneously in
an automated fashion and under several device configurations.

In Android, sandboxes are often implemented as emulators [243] or as containers [202].
However, at the time of writing, none of the current Android sandboxes meet the anti-
evasion, maintainability, and scalability criteria at once. Some fully emulated sandboxes
(e.g., DroidScope and CopperDroid) cannot offer stealthiness or transparency, leaving several
artifacts allowing an app to identify their presence quickly. On top of that, these solutions
are also based on obsolete versions of Android. Container-based sandboxes, such as VPBox,
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on the other hand, claim to be resilient to evasion by running on actual phones (bare metal).
This, however, comes at the expense of scalability because smartphones’ hardware still needs
to be improved in computing power, allowing only a limited number of analysis containers
to run in parallel on the same phone and making container-based sandboxes unfit for large-
scale measurements or part of heavy-load analysis pipelines. Finally, all the state-of-the-art
solutions are not easily upgradable with the latest Android OS versions, significantly reducing
their maintainability.

To fill this gap, this chapter also introduces the design of a new sandbox – named Droid-

Dungeon– that jointly meets the anti-evasion, scalability, and maintainability requirements
and enables us to perform the first analysis of evasive controls in malware and goodware.
The sandbox’s design allows the deployment in both an actual device and an emulated
environment, ensuring, in any case, a high level of transparency.

In short, DroidDungeon relies on kernel and user probes to monitor the apps’ behavior
and return “fake responses” from system calls and framework APIs to hide the underlying
emulator and bypass the anti-behavioral controls. While simple on paper, providing fake
responses hides several technical challenges, including parsing and modifying Java objects
from outside the managed runtime. Moreover, to avoid side effects, DroidDungeon has to
modify only the events triggered by the app’s logic and not those that ensure the correct
functioning of the Android operating system. Therefore, it understands when to enforce
the anti-evasion by performing a custom stack unwind to determine a system or API call

provenance and precisely determine whether the app under analysis generated a particular
event.

Finally, this work leverages DroidDungeon to perform the first study of the current
usage of evasive checks in modern benign and malicious Android apps. We carefully
selected 20,556 malicious and 21,154 apps for our experiments. Malware samples are
uniformly spread over 200 families collected by the VirusTotal [228] live feed until April
2023. Conversely, benign apps were retrieved directly from the Google Play store, with a
limit of 500 apps for each available category.

This research aims to answer the following main questions.
RQ12: To what purpose does Android malware use anti-behavioral controls?
RQ13: How do malware and goodware differ in using evasive techniques?
RQ14: What is the relation between evasive controls and packers/protectors?
RQ15: Which operations are hidden under evasive controls?

What we discovered is extremely interesting. Malware mainly leverages evasive controls
to verify the environment in which they are executed; in particular, almost 70% of evasive
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malware aims to detect the emulated environment. We also detected one malicious sample
that leverages the SafetyNet [104] Attestation API to verify the legitimacy of the environment.
This could be a critical tipping point because comprehensive remediation for SafetyNet (and
the new Play Integrity API) does not exist. It also shows how “benign” services can be
abused maliciously. Our experiments also show that the evasiveness of malware heavily
depends on its family: different malware families implement different numbers and types of
evasive techniques.

Benign samples are instead more prone to check app-specific features through APK
tampering verification controls to protect themself from client-side attacks. For instance,
more than 88% of evasive goodware verifies from where they were installed, and 82%
implements at least one IET control related to signature verification. Moreover, while
malware uses evasion techniques predominantly at the beginning, goodware often spreads
them over its entire execution.

Moreover, we checked if a relationship between evasive controls and packers exists. We
discovered that the presence of a packer does not affect the number of evasive checks but
rather the sample’s techniques. In particular, packer samples are more prone to check process
artifacts than non-packed ones.

Finally, we analyzed every sample two times: in the first run, DroidDungeon hides the
underlying emulator by enforcing the anti-evasion criterion, while in the second, the app is
executed and monitored without modifying the emulator’s behavior. The results highlight that
evasive samples perform different events depending on when they are executed. In particular,
14% of evasive malware samples stop their execution before launching any activity when
executed in an emulated environment. Also, evasive malware is more prone to interact with
potentially dangerous APIs (e.g., record audio and video of the device) or run CLI commands
if executed in an environment that behaves like an actual device.

In summary, this chapter provides the following contributions:

• the collection of all documented evasive techniques and their implementation by
categorizing them into two main groups and a proof-of-concept Android app that
implements all of them;

• DroidDungeon, a novel Android sandbox for dynamic analysis of both benign and ma-
licious apps that fulfills the anti-evasion, scalability, and maintainability requirements
at ones;
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• a deep analysis of the actual usage of anti-behavioral techniques in modern Android
apps – both benign and malicious. Moreover, this study investigates the operations a
malware tries to hide under such controls.

6.2 Taxonomy of Android Evasive Controls

This section introduces the malware behavior and method concepts according to the name
convention of the MITRE Malware Behavior Catalog [46]. It discusses our categorization of
evasive techniques based on how they are implemented.

6.2.1 Behaviors and Methods

Section 2.2.2 categorized anti-behavioral techniques based on their purposes and highlighted
three different objectives, namely environment, APK tampering, and high-level verifications.
However, there are many ways to achieve the same objective, and each can be implemented
differently. Following the MITRE jargon, in this context, a malware ‘Behavior’ is the target
of a specific control, which can be implemented in multiple ways, called malware ’Methods’.
For instance, root and hook detection are different malware behaviors aiming to achieve
the same objective (i.e., environment verification). Moreover, the malware methods (i.e.,
the implementations) for each behavior could be very varied; for instance, some of the root
detection tests aim at verifying the presence of some executable files (e.g., the su binary),
while other controls check whether well-known paths that are usually read-only have write
permission.

From now on, we assign a unique identifier to each evasive method, which consists of
the concatenations of three strings: the behavior, the method, and the type of control. For
instance, the ROOT-SU-FILE method denotes a root detection evasive behavior, which aims
to verify the presence of the su binary (method) and achieves that by looking at the file (type
of control). Table C.1 in the Appendix summarizes all the 97 unique methods. Moreover, we
also developed Android-Al-Khaser [15], an Android app that implements a proof-of-concept
of each evasive behavior.

6.2.2 Direct and Indirect Evasive Techniques

This part introduces our novel evasive techniques categorization based on the malware
methods. In other words, this categorization considers how different malware behaviors are
implemented. It extends the concept proposed by Petsas et al. [168], who classified evasive
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controls based on the information they rely upon: I) static heuristics check static information
that is initialized to known values (e.g., a well-known path), II) dynamic heuristics observe
unexpected behavior of the environment, and III) hypervisor heuristics, based on incomplete
emulation of the hardware device. It is worth noticing that this categorization is orthogonal
to the one proposed in Section 2.2, which is based on the goal of the techniques regardless of
how the samples archive it.

It is essential to notice that while, in some instances, we can detect the presence of a given
evasive method used by an app, in other cases, an app can collect some general information
that can be used internally to implement the evasive control. We call the first type a Direct

evasion technique (DET) and the second an Indirect one (IET).
For instance, Magisk [223] is a famous open-source app that customizes Android, re-

quiring root access. To verify if this app is installed, a developer can interact with the
getPackageInfo or the getInstalledApplications methods of the PackageManager.
The former accepts the package name of the target app, while the second does not take any
argument for filtering the result and returns a list of all apps installed for the current user.
Thus, if a sample invokes the getPackageInfo method with the com.topjohnwu argument
(i.e., the package name of the Magisk app), we can flag it as a direct implementation of the
root detection evasive method. However, a sample can also retrieve the entire list of the
installed apps by invoking the getInstalledApplications and then look for the Magisk
package name in several stealthy ways (e.g., by comparing the hash of each name). Hence,
in that latter case, we can not be sure that the app is trying to evade the analysis; however,
we can still report that it collects specific system/device information that can be used to
implement evasive control in an indirect way.

6.3 DroidDungeon

Figure 6.1 presents an overview of DroidDungeon. The monitoring and anti-evasion capa-
bilities of the sandbox are implemented in a custom kernel module (from now on, CKM).
This choice is less invasive than other techniques commonly used in malware analysis –
such as userspace instrumentation, as pointed out by previous work [156, 211] – resulting
in stealthier and sounder analysis. Precisely, CKM can monitor system and app events

(i.e., Android APIs, library functions, and system calls), enforcing the anti-evasion criterion
when necessary. Alongside the CKM, DroidDungeon also ships a userspace companion app
(UCA), which provides configuration directives to the kernel module through a special device
file (/dev/mydevice in the figure). These directives include the list of Android APIs and
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Figure 6.1 Overview of DroidDungeon

syscalls to monitor and the anti-evasion techniques to enable, which the analyst can tweak by
providing configuration files to the UCA.

At first, the kernel module is automatically loaded during the device boot routine but
remains dormant, waiting for the UCA to start (Step 1 of Figure 6.1). CKM detects this event
by monitoring the prctl syscall that the Android operating system uses to name the main
process of an app when it starts. At this point, the kernel module finds the Zygote’s PID by
iterating over the list of all running processes, and it creates a special device file (Step 2) to
communicate with the UCA (Step 3).

The app then sends the categories of syscall that the module needs to hook (Step 4) and
the Android APIs to monitor (Step 5). To give an idea, the syscall connect belongs to the
network category. Table 6.1 recaps the list of syscalls for each category.

The kernel module leverages the kernel tracepoint, k(ret)probe, and u(ret)probe subsys-
tems, which are built-in tracing mechanisms provided by the Linux kernel. Tracepoints
and K(ret)probes allow one to register callbacks triggered when a specific kernel function
is executed. Each callback controls the calling process, including inspecting and modify-
ing CPU registers and memory. While tracepoints can only be declared at compile time,
k(ret)probes can be defined at runtime and allow tracing a specific function’s beginning and
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Table 6.1 DroidDungeon– mapping between category and system calls

Syscall category System call

ACCESS_FILE
(f)access(at), open(at), *stat*,
readlink(at), getdents64

EXE_COMMAND execve(at)

PROCESS_MNG
clone, (v)fork, kill, wait(id|4),
ptrace, pipe(2), tee, mq_*, sched_*,
rt_sigaction, signalfd(64)

FS_MNG

getcwd, (f)chdir, renameat(2), mkdir(at),
rmdir, *link*, *chmod*, mknod(at),
inotify_add_watch, fanotify_mark,
(p)poll, *xattr, flock, mount

NETWORK

socket, binde, accept(4), connect,
getsockname, listen, getpeername,
sendto, recvfrom, sendmsg, socketpair,
setsockopt

SYSTEM
reboot, getcpu, sys*, uname,
time*, clock_*

IDENTITY *gid, *pid, *uid, *sid
MEMORY_MNG mmap, *mprotect

end. In addition, u(ret)probes are the userspace equivalent to k(ret)probes and can be placed
on any ELF or OAT file a process loads. In particular, CKM sets one tracepoint to tap the
kernel’s syscall trap handler that parses the parameters of each syscall invoked on the system
and one k(ret)probe or u(ret)probe for each specific syscall and Android API that logs the
event and implements the relevant anti-evasion tricks.

During the module initialization phase, the UCA also sends the memory addresses of the
android.os.Build Java class. This class is initialized during the device’s start-up in the
Zygote process, and some of its static fields are known to be exploited for evasion. Since
each app inherits its address space from Zygote in Android, virtually all apps can access such
valuable information, which CKM needs to modify as an anti-evasion countermeasure (Step
6). In theory, it is possible to find the address of the Build class directly from kernel space
by introspecting any app’s address space and parsing the ART heap, but we opted to offload
this task to the userspace app instead. Obtaining the class address is much easier by taking
advantage of the managed ART runtime from the app than it is from kernel space.

The module setup phase ends when the UCA sends the init command. At this point,
the kernel module works event-driven, responding to the events triggering the registered
tracepoints and probes and sending the corresponding log entries to the companion apps
through the special device (Step 7).
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6.3.1 CKM: Implementation Details, Technical Challenges & Solutions

The CKM is a loadable Linux kernel module written in about 11,842 lines of C code. It
can intercept all the system calls, kernel functions, and compiled userspace code in ELF or
OAT format and parse and modify native (C/C++) and Java objects. CKM monitors only the
apps installed after the companion one by filtering out all the events of processes with a UID
higher than the UCA. This prevents CKM from interfering with critical system components,
which would make the operating system unstable. Last, CKM sends a log of all relevant
recorded events to the UCA through the device file by using a protocol based on the eXternal
Data Representation (XDR) standard [124].

Tracepoints and probes. To register tracepoints, kernel, and user probes, the CKM uses re-
spectively the register_trace_sys_enter, register_kprobe, and uprobe_register

standard Linux kernel functions. While register_kprobe and uprobe_register can be
used by any kernel module, the Linux kernel prevents an external module from registering
such a tracepoint. We circumvented this limitation by patching the Android kernel to export
tracepoint-related functions and make them externally visible. This tweak consists of only
two lines of C code (as shown in Listing 6.1), making it, in fact, extremely portable between
the various kernel and Android versions.

Listing 6.1 Android kernel modification to enable system call tracepoint in an external kernel
module.

1 // register_trace_sys_enter
2 EXPORT_TRACEPOINT_SYMBOL_GPL( s y s _ e n t e r ) ;
3 // register_trace_sys_exit
4 EXPORT_TRACEPOINT_SYMBOL_GPL( s y s _ e x i t ) ;

Unlike tracepoints, whose targets are fixed and defined at compilation time, the CKM

has to specify the targets of the kernel and user probes at runtime. The former can be set by
specifying the kernel symbol name of the desired function to hook. The procedure is more
complicated for the latter, as the uprobe_register function requires a specific offset of the
ELF file at which to add the probe. We offloaded the offset calculation to the UCA, which
delivers the binary file paths (i.e., the path of the ELF or OAT file) and the offset of each API
to hook through the communication device.

Parsing probe parameters. To monitor execution events and implement anti-evasion
measures, CKM needs to interpret the parameters the analyzed apps employ to invoke
syscalls and APIs. The first step of this process consists of recovering the parameters’
values according to the architecture calling convention. While implementing the parsing
routines, we discovered that the OAT files adopt undocumented (at least to the best of our
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knowledge) calling conventions on the x86 and x86-64 architectures. In particular, the first
three parameters must be passed through registers on x86 or the first five in the case of x86-64,
with the remainder on the stack. Moreover, Java instance methods have a hidden parameter
pointing to the object on which the method is called (referred to as this in Java). Once the
parameters are retrieved, CKM handles them according to the related event’s semantics. For
instance, to monitor the write syscall, CKM resolves the first parameter to the path of the
output file and copies the data written by de-referencing the pointer provided as the second
parameter.

Java object parser. While parsing syscall parameters is relatively easy, handling the
parameters provided to Android APIs proved to be a more complex task requiring knowledge
about how the ART runtime stores Java objects in memory. In particular, each Java entity can
be classified into four categories according to its type, namely Primitive, Array, String, and
Complex [11]. While Primitive entities store basic data types (e.g., bool, char, int), all the
other categories represent Java objects, i.e., structured data types that inherit their structure
from the java.lang.Object class. The Object class has two members: a four bytes pointer
to a java.lang.Class object and a four bytes hash.

The object’s Class defines the size of the object instance, its superclass, and the list of
fields as an array of Art_Field objects. Each Art_Field specifies a pointer to the declaring
class of the field (from which the field name can be retrieved) and its offset (in byte) from
the beginning of the Complex object. Thus, by parsing the array of Art_Fields, we can
decode the Complex objects as a set of fundamental object instances. It is also important to
note that a field of a Complex object could, in turn, be another Complex object or an Array
of Complex objects. This makes parsing Java objects a recursive procedure that ends when a
Primitive or a String object is found. To our knowledge, CKM is the first in-kernel runtime
Java object parser and modifier.

Custom stack unwind. DroidDungeon has mainly adopted a “fake response” approach by
modifying the output values of several system calls, Android APIs, and library functions
when invoked by the app under analysis, mimicking the behavior they would show on an
actual device. However, indiscriminately providing fake responses to all invocations of these
functions can be detrimental. For instance, several evasion techniques include scouting the
file system for QEMU-specific device files. A naive approach to counter these stratagems
would be to counterfeit the result of all file system syscalls that could reveal their existence.
In doing so, however, we would hinder the intended uses of such devices that the Android
framework opens any time a new app starts, resulting in an unrecoverable exception.
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To handle this and other cases, we developed a more fine-grained technique to assess
a call’s purpose by considering its provenance. CKM tampers its outputs only if the call
originates (directly or indirectly) from the app’s code. On the other hand, if the call does not
originate from the app’s code, it must be part of the intended operations performed by the
Android framework, and CKM should not meddle in its execution.

To assess a call’s provenance, CKM unwinds the call stack, reconstructs the list of
function calls, and looks for those that belong to the app’s code. Reconstructing the calling
function list means retrieving the list of return addresses from the stack. The first element in
this list (i.e., the caller’s address of the hooked function) is the value in the stack immediately
before the area pointed by the stack pointer. The following elements in the list can be
computed iteratively by reconstructing each caller’s stack frame and retrieving the respective
return address.

At any given step of the stack unwind procedure, CKM computes the next frame pointer
(FP) as:

FP(n+1) = FPn −FSn − (sizeo f (void∗)∗SAn)

where FSn is the frame size of the n-th function in the call stack (i.e., the sum of the sizes of
all stack variables of that function), and SAn is the number of its parameters passed on the
stack. Since neither FS nor SA can be easily retrieved at runtime, we opted for computing
them a-priori for every symbol of every library in the Android framework. To this end,
we developed a Ghidra [79] script and a Python program based on oatdump that computes
each function’s frame size and stack parameters for Android ELF libraries and OAT files,
respectively. The value calculated for each function in the Android libraries is then embedded
in the CKM at build time.

The stack unwind procedure ends whenever it encounters an address that belongs to the
app’s code or an invalid address. In the first case, the module verifies which method or API
the app invokes to determine whether to enforce the anti-evasion policy. When, instead, the
unwinding procedure reaches an invalid address, CKM infers that the event was due to an
Android standard routine (e.g., app start-up) and does not enforce the anti-evasion criterion.

Notice that this approach works even against reflection. Invoking a framework method
through reflection only adds a few function calls between the caller and the callee, which our
stack unwind routine can handle seamlessly.

To the best of our knowledge, DroidDungeon is the first analysis system that performs
call provenance test through an in-kernel stack unwinder.
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JIT & stack unwind. In Android, the libart.so library enforces the JIT compilation
and contains the jit functions to manage all DEX instructions (i.e., nterp_op_<inst_-
name> functions). For instance, nterp_op_return_void and nterp_op_return_object,
respectively, handle the return statement of a Java (void) procedure or a function that
returns an object. Android interprets the non-OAT-compiled DEX code to build a chain of
equivalent jit functions to execute.

We discovered that also these functions do not respect the standard calling convention:
the jit functions do not have a prologue and epilogue, ending the procedure with a JMP

instruction instead. Moreover, the return address – a pointer to the following jit function in
the chain – is computed at runtime. Thus, the stack unwinding routine does not apply to
this scenario. The only exceptions are the nterp_op_return* jit functions, which have an
epilogue and end with the standard RET statement returning to the pointer stored on the stack.

The idea we had to manage JIT-compiled functions in the stack unwind procedure is
that once the execution reaches the jit function chain, the stack frame does not changes until
the return is reached. It is worth noticing that a JIT-compiled function always ends with a
return statement regardless of the first DEX instruction. Also, during the stack unwinding
procedure, CKM reaches a JIT-compiled function if and only if it invoked another API or a
native method, i.e., if it came from one of the nterp_op_invoke_* jit functions. Thus, once
one of these functions is reached, CKM can consider as if the return jit function had been
invoked: it adds the return’s stack frame size to the SP, retrieving the caller’s return address
from the stack as usual.

6.3.2 Userspace Companion App

The UCA is a regular Android app written in about 1,620 lines of Java and 1,283 lines of
C code. It supports the CKM in Steps 2 and 7 of Figure 6.1. The JSON configuration files
specify the set of functions the CKM has to hook and which anti-evasion techniques need to
be enforced. Contrary to the kernel probe, which can be registered by specifying only the
function name, UCA retrieves the offset of the target userspace functions from the ELF or
OAT files, which CKM needs to register the uprobes. In particular, the app leverages the
readelf [125] utility for the ELF files, while it uses oatdump for the OATs. Finally, UCA

listens on the device file to log the intercepted events into a regular file.
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6.3.3 Anti-evasive Policy

The DroidDungeon design allowed us to limit the artifacts we need to manipulate to only the
emulator and network categories (refer to Section 6.2). Specifically, once the kernel module
receives the init command, it modifies the properties of the network interfaces (e.g., their
names) to make them appear similar to the ones in an actual device. Also, it installs probes to
monitor and tamper with file-related operations (Step 4 of Figure 6.1) and manipulate high-
level Android APIs (Step 5), including changes to system properties (e.g., ro.hardware)
and the simulation of real sensors.

We recall that some static fields of the Build class can be exploited for evasion, and
CKM modifies them each time a new app starts (Step 6).

Finally, the device has a user logged in to an actual Google account, and the file system
is populated with a collection of documents, images, and other common files to resemble a
legitimate smartphone so that malware may identify it as a more valuable target [150].

6.4 Experimental Setup

This section provides technical information on how the experimental campaign was carried
out. It presents the dataset and then introduces the environment in which we executed the
samples.

6.4.1 Dataset

To perform our analysis, we built a comprehensive dataset of Android apps divided into
malware and goodware samples. We collected malicious apps from the VirusTotal (VT)
feed [228], a real-time stream of JSON-encoded reports containing the analysis results for
each app submitted to VT. We wanted our dataset to be diverse regarding the number of
families and balanced so that every malware family is well-represented. For this reason,
we monitored the feed from September 2022 to April 2023. We only retained the Android
apps identified as malicious by at least five engines and fed them to the AVClass2 malware
labeling tool [192], which outputs the most likely family name for the sample. At the end
of the collection, we ended up with 20,556 malicious apps, uniformly distributed over 200
families. Since our goal was to collect 100 “running” samples for each family, we gathered,
on average, 110 for each of them to be able to replace any broken APK that we could not run
in our sandbox.
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For goodware, we collected the package names of the 500 most downloaded free apps
for each of the 50 official Google Play Store categories in April 2023. We extracted this
information using Google Play Scraper [61] and downloaded the apps thanks to apkeep [56]
directly from the Google Play store. In total, we collected 21,154 unique samples.

6.4.2 Runtime Environment

We used DroidDungeon to conduct the first analysis of public evasion techniques in goodware
and malware; thus, we implemented it in an Android emulator. Since February 2020, Google
has introduced support for running ARM binaries on x86 (Android 9) and x86-64 (Android
11) system images. However, starting from version 12, Android emulators can execute only
64-bit binaries. Thus, to execute ARM and Intel 32- and 64-bit-based Android apps, our
analysis system comprises two emulators based on Android versions 12 (API level 31) and
11 (API level 30). Before running an app, we check if it only has 32-bit libraries and choose
the appropriate emulator.

Moreover, because DroidDungeon can not hook DEX code, we must ensure that every
Android Java function is OAT compiled. Thus, we replaced all the OAT framework files in
our Android emulators’ official system.img. We exploited the AOSP build tools to unpack
the image, OAT-compile all the Java APIs, and repack it in a new one. It is worth noticing
that this step is not straightforward: Android put in place several techniques to validate the
integrity of the framework files; thus, we took into account every check. For instance, since
version 8, Android performs the verified boot process [105], which assures the integrity of
the framework software, also verifying the system.img. Thus, we had to recreate a valid
vbmeta.img file, namely, the data structure contains all the metadata for the verified boot
process. In this way, we deployed DroidDungeon with the complete support of the Google
Play services and apps.

All emulators run on a dual-core 2.10 GHz x86-64 processor, 2 GB of RAM, 16 GB of
internal storage, and an 8 GB emulated SD Card. Finally, we manually tested twelve apps
(both malicious and benign) that we knew how they worked and found no user experience
problems or malfunctions.

6.4.3 Red and Blue runs

The concept of red pill and blue pill in evasive malware [167, 55] refers to the movie “The
Matrix”, where the protagonist is offered a choice between a red pill that reveals the true
nature of reality and a blue pill that keeps him in a simulated world. Thus, in our scenario, a
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red pill is an evasive technique, while its blue pill is a corresponding defensive technique to
counteract the red one.

In this work, we also wanted to study how much the executions vary when DroidDungeon

gives blue pills compared to when it does not provide them. Hence, every app in our dataset
is executed twice. In the first run (BlueRun), DroidDungeon hides the underlying emulator
by administering blue pills (i.e., it enforces the anti-evasion criterion). In contrast, in the
second run (RedRun), the app is executed without modifying the emulator’s behavior.

In every app execution, DroidDungeon stimulates the app user interface for 4 mins to
increase its code coverage and simulate a real user with ARES [181]. This black-box tool
uses Deep Reinforcement Learning to test and explore Android apps. Moreover, we modified
ARES to perform the same sequence of user clicks for every tested app to compare the two
execution traces.

Preliminary results. We could correctly execute the 93% of malware (19,090/20,556) and
the 99% of goodware (21,081/21,154). For the failed apps, we were not able to install them
because the signature was not valid or the APK file itself was corrupted.

6.5 Results of the measurement

This section discusses the results of our analysis of the malware and the goodware datasets.
Starting from the app’s execution traces, we developed a post-analysis routine that identifies
DETs and IETs by looking at the list of events that occurred after the first access to the
base.apk file (which, as explained in Section 5.5, signals the start-up of an Android app).
When reporting the results of evasive behaviors and methods, we will use the unique identifier
(in uppercase) we introduced in Section 6.2 and reported in Table C.1.

6.5.1 Prevalence

DETs and IETs usage. 90.8% of goodware and 68.5% of malware implement at least
one DET evasive technique, while about 90% in both categories contain at least one IET.
On average, the malware uses 2.1 unique DETs (σ = 1.9) and 12.8 (σ = 6.7) IETs, while
goodware 3.4 (σ = 2.2) and 14.4 (σ = 4.9), respectively. Interestingly, goodware has almost
twice as many DET controls as malicious samples on average. However, the sample that
employs the maximum number of unique DETs (15) and IETs (39) controls is malicious,
which is almost 15% higher than the maximum for goodware.
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While the prevalence is high in both groups, there are essential differences in the tech-
niques adopted by malware and goodware. Table 6.2 reports the three DETs and IETs that
differ the most among the two groups. In particular, it shows the percentage of malware and
goodware that implement a specific technique w.r.t. all the dataset apps. A negative value
in the rightmost column means that such an evasive check is implemented more often in
goodware, while a positive means is more prevalent in the malware dataset.

Table 6.2 Malware vs Goodware: Differences in adopting evasive techniques.

Evasive Technique Malware Goodware
Malware

-
Goodware

D
E

T

INSTALL-SOURCE-API 43.3% 88.7% –45.4%
VIRT-UND_PERMS-API 35.9% 76.3% –40.4%
ROOT-SU-FILE 18.3% 56.1% –37.8%

EMU-SYSTEM-API 44.1% 19.8% +24.3%
EMU-QEMU-FILE 3.9% 1.2% +2.7%
EMU-KNOWN_EMU-FILE 3.2% 1.1% +2.1%

IE
T

SIGNATURE-APP-APP_INFO 25.6% 76.2% –50.6%
NET-SSL_PINNING-API 54.6% 78.1% –23.5%
VIRT-FAKE_COMP-API 31.2% 47.1% –15.9%

HOOK-PROC_ART-MAPS 26.2% 13.0% +13.2%
HOOK/ROOT-APPS-INST_APPS 19.4% 6.5% +12.9%
NET-INTERFACE-NF 14.7% 5.9% +8.8%

First, more than 88% of goodware verifies how the app was installed or updated by
invoking the getInstallSourceInfo method of the PackageManager (INSTALL-SOURCE-
API), clearly showing how developers care if the app comes from the expected store.

Interestingly, 76.3% of goodware verifies the environment in which they are executed
by checking if permissions not declared on the Manifest are granted to the app (VIRT-UND
PERMS-API). It is a common technique to detect whether the app is running in an app-
level virtual environment [139, 214] because container apps have to declare all possible
permissions to manage with a generic plugin app. However, we have investigated this
further, discovering that most goodware samples import third-party libraries for analytics
and monetization (e.g., [19, 37, 67, 114]), which check the granted permissions at runtime to
extract as much information as possible.

The third DET control is related to root detection: 56.1% of benign apps check the
presence of the su file (ROOT-SU-FILE).

On the other hand, in malware, DETs controls are related to detecting the emulated
environment or an analysis system. In particular, 44% of malware retrieves and checks
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Android system properties, such as the device or the subscriber ID, by interacting with
Android managers (EMU-SYSTEM-API). In addition, malware samples are more prone to
searches for well-known emulator artifacts (e.g., EMU-QEMU-FILE and EMU-KNOWN_EMU-

FILE) and network proxy apps.
Concerning the IETs, goodware often retrieves information about the certificate used

to sign the APK by querying the package manager (SIGNATURE-APP-APP_INFO), performs
SSL pinning (NET-SSL_PINNING-API), and checks for artifacts in the process components
through the Android APIs (VIRT-FAKE_COMP-API).

Conversely, the main IET controls in malware are related to anti-hooking, root checks,
and network artifact detection. First, malware verifies process artifacts by checking the
content of the maps file in the proc file system (HOOK-PROC_ART-MAPS). Moreover, almost
20% retrieves the list of all installed apps on the device and then performs some checks
over it (i.e., HOOK/ROOT-APPS-INST_APPS). This technique can be exploited for detecting
hooking (e.g., Xposed) and rooting (e.g., Magisk) apps. Even if there is proper permission for
doing it, in Section 5.7, we demonstrated that there are tricks a malicious app can leverage to
bypass this protection mechanism. For instance, restrictions are not applied to apps targeting
API level 30 or lower, which can retrieve the metadata of any app in the system. Interestingly,
90% of malware on average targets an older API (<= 30), and almost 3% requests the
QUERY_ALL_PACKAGES permission. The picture is different for goodware: only 14%
targets an API before level 30. Compared to malware, it is a small value, but, in absolute
terms, it is unusual that benign goodware apps do not update the target API as guidelines.

Last, malware verifies network interface properties by using native functions, such as
getifaddrs (NET-INTERFACE-NF), to figure out if the device uses a VPN.

SafetyNet & Integrity APIs. During our analysis, we also investigated if and how goodware
and malware use one of the SafetyNet APIs or the Integrity API (introduced in Section 2.2.2).
Since these technologies are not open-source, we manually analyzed the Android framework
to determine their inner workings.

For SafetyNet, we intercept its binder request, the typical Android inter-process commu-
nication, and the remote method invocation technique. Table 6.3 reports the entire mapping
between binder methods id of the SafetyNet client to its “high-level” security check. Both
goodware (35.7%) and malware (30.4%) interact with at least one of the security services
SafetyNet offers.

One of the services offered by SafetyNet is Verify Apps. This service is unavailable by
default, but an app can ask users to activate it through the enableVerifyApps method. Then,
an app can check if it has been enabled using the isVerifyAppsEnabled method. Once
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Table 6.3 Mapping between SafetyNet Binder and high-level security mechanisms.

Id High-level check Retrived data

7 Attestation API AttestationResponse

4

Verify Apps API
VerifyAppsUserResponse14

5
HarmfulAppsResponse13

12 Safe Browsing API InitSafeBrowsingResponse
3 SafeBrowsingResponse

6 reCAPTCHA API RecaptchaTokenResponse

the service is enabled, users can check the list of harmful apps by invoking the listHarm-
fulApps method. Among samples that use SafetyNet, over 95% of malware and 90.6% of
goodware samples communicate with the Verify Apps service, and all invoke the isVeri-
fyAppsEnabled. However, surprisingly, just one goodware invokes the listHarmfulApps
method.

Also, about one-fifth of malware (14%) and goodware (19%) use the Safe Browsing
API: they invoke the loadUri method to check whether a URI is linked to a well-known
threat. However, this measurement is limited: we cannot distinguish whether it is an explicit
invocation because the Android WebView automatically invokes this mechanism. Starting in
April 2018, WebView supports the Safe Browsing feature by default [106, 82], automatically
verifying the URI through this method.

Regarding the Attestation API, we observed only 0.8% of goodware samples and just one

malware that leveraged it to verify the legitimacy of the execution environment. It is worth
noticing that, contrary to other SafetyNet services, the Attestation API requires an app to
have a registered and valid API key on its Google website; however, this malicious sample
demonstrates that the attackers can abuse “benign” security mechanisms. Moreover, our data
confirms the findings of Ibrahim et al. [113], showing that legitimate apps do not adequately
use SafetyNet services that would significantly improve their security posture.

We intercept the intents used to communicate with this component to monitor the Play
Integrity. Given that this service is very recent (explicitly created to replace SafetyNet), we
monitored only a negligible amount of goodware (0.11%) and no malware using this API.
This new service will be harder to exploit by malicious actors because it is strictly tied to
Google Play Services and requires many verification steps.

Time-based Analysis. We normalized the execution time of each sample in a [0,100] range
(as suggested by [143]), and then divided it into three time slots: [0-10], [11-89], and [90-
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100]. Then, we tracked when the first and last evasive checks (both DETs and IETs) were
performed. Moreover, we also considered the difference between the last and the first to
examine whether checks are usually executed in quick succession or at different points in
time. From a preliminary analysis, we noticed that there were no significant differences if
we considered DET and IET separately; therefore, for ease of reading, we consider them
together.

The KDE plots for malware and goodware are shown in Figure 6.2. The percentages of
the first and last evasion techniques occurring during the first slot [0-10] of the execution are
63.6% and 10.2% for malware and 73.4% and 2.7% for goodware, respectively. Interestingly,
most goodware performs evasive checks at the beginning of execution, even more than
malware. Then, the last evasive technique falls in the last slot [90-100] for the 30% of
malware and 39.3% of goodware.

Figure 6.2 Kernel Density Estimation for the timing of DET and IET controls in malware
and goodware.

Then, for each slot, we computed the percentage of how many times a specific control has
been used. For goodware, the three most common evasive controls are INSTALL-SOURCE-
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API, ROOT-SU-FILE, and VIRT-UND_PEMRS-API, regardless of the time slot. Thus, benign
samples verify from where they were installed and whether the su binary file is present or
some non-declared permission is granted. On the contrary, for malware, evasion checks
depend on the timing. In the first time slot, malicious samples verify the maps file in the
proc file system (HOOK-PROC_ART-MAPS) and from where they are installed (INSTALL-
SOURCE-API). Then, regardless of the second and third slot, they look for Android emulator
fingerprints (e.g., device ID) and network-related information (NET-INTERFACE-API, i.e.,
the name of the network interface).

Finally, we also investigated the order in which goodware and malware samples perform
the evasive checks. Evasive goodware is predominantly characterized (54%) by controlling
the installation source (INSTALL-SOURCE-API), while only 6% of evasive malware uses
it as the first control. On the other hand, for about half of the malicious evasive samples,
the first control is HOOK-PROC_ART-MAPS, followed by EMU-SYSTEM-API (12.5%) and NET-

LISTENER-API (10%). The order in which apps utilize different strategies is crucial because
researchers need to appropriately mitigate them to avoid limiting the results to those evasive
techniques used first.

Evasive among families/categories. We assessed if the goodware category (e.g., banking or
game apps) or malware family affects the overall evasiveness of a sample. For instance, it is
reasonable to assume that benign samples are more prone to implement evasive techniques if
they manage sensitive user information (e.g., banking and finance).

We found that 195/200 (97.5%) malware families contain at least one sample that uses
a DET, while if we include the IETs, the number of families goes up to 199/200. Also, for
22/200 (11%) malware families, all the samples in the family contain at least one DET. These
numbers indicate that it is crucial to consider this phenomenon in the dynamic analysis of
Android malware. On the other hand, all goodware categories contain at least one evasive
sample, but none have all samples with at least one DET technique. Moreover, we measured
the variation of the number of evasive techniques in malware w.r.t. goodware. On average,
the standard deviation of malware is almost four times w.r.t. goodware; namely, the number
of controls carried out by malware apps depends on their family. In contrast, the app category
only affects a small number of evasive checks in goodware.

We also assessed the ‘evasiveness’ of a family by counting the number of evasive
techniques for each sample in the family. On average, the most evasive malware family is
loead, whose samples implement, on average, 16.3 evasive controls. This is followed by fydad

(14.7), beitaad (11.2), and snaptube (11.1). In the benign dataset, Finance, Entertainment
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(e.g., Netflix and Twitch apps), and Shopping are the most evasive goodware categories (with
an average of more than 6 evasive controls per sample).

Finally, we measured how many categories/families use a specific evasive technique. For
goodware, 21 DETs and IETs are implemented by more than 80% of the app categories,
while this number decreases to 12 for malware families. The most widespread for goodware
(almost all goodware categories) are verifying process artifacts, checking the APK signature,
or whether permissions not declared in the Manifest are granted. On the other hand, the
most common for malware are emulator (e.g., EMU-SYSTEM-PROPS) and hook detection
checks (e.g., HOOK-FRIDA-FILE). Interestingly, some checks (e.g., EMU-KNOWN_EMU-FILE
and HOOK-PROC_ART-MAPS) are more spread in goodware categories (86%) w.r.t. malware
families (32%), even if their overall occurrence is higher in malicious apps (e.g., EMU-
KNOWN_EMU-FILE occurs in the 4.3% of malware and only 1.6% of goodware).

RQ12 & RQ13. Our experiments show that goodware and malware use evasive techniques
for different purposes. For instance, about 70% of evasive malware implement at least
one environment verification control related to the emulator detection, while only one-third
of evasive goodware does it. Contrarily, the most common environment verifications for
goodware are app-level virtual environment (81%) and root checks (61%), but they account
for respectively only 43.4% and 33% of malicious samples. Goodware is also more prone to
implement APK tampering verification; e.g., more than 82% of all benign samples perform
signature verification controls.

We also observed that malware tends to rely on IETs techniques more often than on
DETs. For root detection, goodware verifies if the su binary exists, while malware interacts
with the Package Manager to retrieve the list of all installed apps.

Finally, our results highlight how malware families affect the type of evasive controls,
while goodware apps tend to employ the same evasive techniques regardless of their cate-
gories. However, benign apps implement a heterogeneous set of controls for each category
because the variation of the evasive controls in every category is higher than in the malware
family. Each category has samples with several and no evasive checks, showing how evasive
controls are implemented especially by only the most popular apps.

6.5.2 Evasive w.r.t. Packers & Protectors

This part looks at the relationship between evasive behaviors and the presence of packing
schemes and software protectors. We used APKiD [178] to determine whether a sample uses
packing or protection techniques. On the goodware dataset, APKiD could not recognize any
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packer or protector; conversely, it identifies 24 different packers in 11.4% of the malware
samples. As reported in Table 6.4, the Jiagu packer is the most common in our dataset and
was detected on 43.0% of the packed samples. Tencent, Baidu, and MultidexPacker are
the following most prevalent packers, accounting respectively for 9.9%, 5.8%, and 5.3%;
the remaining 10/24 packers account for less than 1%. On the other hand, only 0.2% of
the malware apps are protected by two different protectors: Virbox and CNProtect. Given
the negligible number of protected apps, our analysis is focused only on packers with a
non-negligible prevalence (> 1%).

Table 6.4 Best correlation between evasive techniques and packers.

Packer % packed apps # evasive Most used evasive

APKProtect 5.2% 43 EMU-SYSTEM-PROPS 92%
ApkEncryptor 4.0% 55 SIGNATURE-ZIP-FILE 87%
Baidu 5.8% 37 HOOK-PROC_ART-MAPS 87%
Bangcle 3.3% 9 HOOK-FRIDA-FILE 65%
Bangcle (SecShell) 1.6% 12 HOOK-FRIDA-FILE 84%
DexProtector 4.1% 51 HOOK-STACKTRACE-API 88%
DexProtector for AIDE 1.2% 48 NET-SSL_PINNING-API 88%
Ijiami 4.3% 27 SIGNATURE-ZIP-FILE 90%
Jiagu 43.0% 56 HOOK-FRIDA-FILE 69%
Mobile Tencent Protect 9.9% 43 HOOK-FRIDA-FILE 88%
MultidexPacker 5.3% 26 SIGNATURE-ZIP-FILE 100%
SecNeo.A 1.9% 24 HOOK-PROC_ART-MAPS 58%
Tencent’s Legu 2.3% 29 SIGNATURE-ZIP-FILE 93%
Unicom SDK Loader 5.1% 46 HOOK-STACKTRACE-API 50%

In this context, our goal is to understand whether any difference exists in the adoption of
evasive behaviors between packed and non-packed samples. We started by measuring the
proportion of apps that implement at least an evasive check, and found a similar prevalence
between the two classes - respectively 82% and 89% for packed and non-packed apps.

We further investigated whether specific evasive controls are more characteristic of
the packed apps than non-packed ones. We found that the most used evasive techniques
in packed malware are SIGNATURE-ZIP-FILE, HOOK-PROC_ART-MAPS, and HOOK-FRIDA-

FILE. On average, the former IET technique (i.e., opening the base.apk file through the
java.util.zip.ZipFile Java utility) is used by more than 65% of packed apps, with a
peak of more than 90% for Ijiami and ApkEncryptor. On the contrary, such a technique is
used by 26% of the samples when considering the collection of non-packed malware and less
than 20% for goodware. From an evasive point of view, this operation is helpful to access
and read specific files in the APK to perform signature checks or code integrity. However,
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packers also leverage this mechanism to unpack the APK file (without unzipping inside the
disk) and load resources or encrypted code.

Nine packers cause the apps to open the fd/*, task/*, or maps files under the proc
file system (i.e., HOOK-PROC_ART-MAPS, HOOK-FRIDA-FILE) more frequent compared to
non-packed ones. In particular, these operations occurred more than 60% of packed apps
(with a maximum of 81% for Tencent, Baidu, and Bancled), while this value decreases to
25% for non-packed malware. These IET techniques verify the process artifacts to identify
changes and hook mechanisms, such as the instrumentations injected by Frida.

We finally investigated how varied the evasive controls are for each packing software. We
detected that APKs packed with Jiagu implement the highest number of unique evasive con-
trols (56 over 97 techniques identified in this study [15]), closely followed by the apps packed
with ApkEncryptor and DexProtector, on which we respectively identified the presence of 55
and 51 different evasive techniques. Conversely, we could only measure 9 distinct evasive
checks on samples packed with Bangcle. In a deeper investigation, we found that for some
packers all the samples implement specific evasive controls: SIGNATURE-ZIP-FILE always
characterizes samples packed with MultidexPacker, while those packed with AppSealing and
ChronClickers always control for EMU-SYSTEM-API and HOOK-PROC_ART-MAPS. Overall,
we measured that although some techniques are more prevalent in packed samples or specific
packing schemes, all evasive behaviors used in packed samples also exist in non-packed ones
and vice versa. This highlights that, in the considered dataset, evasive techniques are not
strictly related to the usage of a packer.

RQ14. A comparable ratio (82% and 89%) of packed and non-packed samples implements at
least an evasive technique. Similarly, on average, packed and non-packed APKs implement
5.1 and 8.7 evasive checks, respectively. Nevertheless, some behaviors such as SIGNA-

TURE-ZIP-FILE, HOOK-PROC_ART-MAPS, and HOOK-FRIDA-FILE are more widespread
in packed samples than in non-packed ones. Moreover, samples packed with specific packers
always implement a subset of evasive controls: for instance, samples from AppSealing and
ChronClickers always check Android system properties (EMU-SYSTEM-API) and process
memory artifacts (HOOK-PROC_ART-MAPS), which are observed on less than 40% of non-
packed samples. However, we could not find evasive techniques exclusively employed by
packed samples or specific packing routines.
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6.5.3 BlueRun vs. RedRun

In our final experiment, we measured the difference between the two execution traces: the
BlueRun in which our sandbox mitigates the evasion mechanisms, and the RedRun in which
it does not. The expectation is that an app employs evasive checks to avoid executing a
particular piece of code. However, it is not trivial to establish a methodology to compare
two traces and find this difference. The reason is that we cannot make assumptions about
code that does and does not execute. Other works [231, 202, 4] have faced a similar problem;
however, they addressed it for their specific use case: [202] only compared the number of file
system operations, while [231, 4] examined different forms of a call graph.

Therefore, we decided to measure the differences between the events in the execution
traces by dividing them into 11 high-level categories related to the workings of Android:
1) Accessibility Service (a11y), 2) Broadcast Receivers (BR), 3) Command Line Interface

commands (CLI), 4) Content Providers (CP), 5) Dangerous APIs (DAPI), 6) Dynamic Code

Loading (DCL), 7) File System (FS), 8) Inter-Process Communication (IPC), 9) Network

(NET), 10) Requests for permissions (PERM), and 11) Systems Services (SS).
To conduct this measurement correctly and verify whether a pair of events were the same,

we had to post-process the traces to remove execution-specific values (e.g., a path with UID
or temporary network tokens). We were guided by some works [18, 51] where, for example,
the authors generated ML features related to file system activity by removing the file name
and just considering the path plus the file extension; or else, when dealing with a URL, they
were considering only protocol, domain, and port.

In addition, there are some important factors that we considered. First, there may be
cases where the sample does evasive checks, but we do not provide blue pills because
our environment does not need them. For example, the su executable is not present in
DroidDungeon, so if an app checks for the presence of this file, it will not find it in both
executions. On the other hand, if an app checks for the /dev/goldfish_pipe file (the
presence of this device reveals an emulator) in RedRun it finds it, while in BlueRun it does
not. For this reason, the numbers we will report below must be considered a lower bound.

Second, we considered the events of the two traces divided into categories as elements
of two ordered sets that we will call Red (R) and Blue (B) for brevity. B<cat> denotes
the set of events in a specific category (e.g., BNET is the collection of NETwork events of
BlueRun). Of these sets, we calculated union, intersection, the two differences, the various
cardinalities, Jaccard Index, and finally aggregated by category, checking in percentages
what the significant differences were. We also computed the percentage number of times an
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event occurred in B and not R and vice versa. Table 6.5 summarizes these results. In the
following, we only report the significant differences for evasive apps between B and R traces.

Table 6.5 Stats about trace comparison in evasive samples, all numbers are in percentage [%]

Malware Goodware

R = B R ⊂ B
|B\R|
>

|R\B|

|B|> 0
∧

|R|= 0

avg
|R\B|
÷

|B\R|

R = B R ⊂ B
|B\R|
>

|R\B|

|B|> 0
∧

|R|= 0

avg
|R\B|
÷

|B\R|
a11y 68.01% 10.70% 1.62% 0.00% 62.98 89.27% 4.43% 0.42% 0.00% 61.08
BR 85.90% 9.37% 0.65% 0.14% 93.84 92.38% 4.31% 0.00% 2.94% 0.00
CLI 90.78% 3.65% 1.82% 0.30% 97.22 98.19% 0.00% 1.20% 0.00% 100.0
CP 79.79% 13.28% 1.08% 0.03% 72.14 88.68% 6.23% 0.21% 0.21% 90.00
DAPI 73.60% 9.97% 6.96% 0.37% 83.01 95.56% 1.50% 0.06% 0.17% 100.0
DCL 86.92% 1.88% 0.21% 0.05% 87.50 80.22% 0.86% 0.00% 0.24% 0.00
FS 23.21% 10.47% 34.78% 0.00% 61.43 26.63% 5.69% 28.19% 0.00% 73.46
IPC 74.58% 10.77% 2.96% 0.25% 83.11 78.87% 9.73% 0.56% 0.45% 91.70
NET 48.50% 6.03% 31.48% 0.46% 87.45 29.74% 2.85% 52.45% 0.86% 93.93
PERM 80.37% 10.27% 1.68% 0.00% 83.72 80.01% 4.44% 1.92% 0.00% 90.74
SS 67.59% 25.35% 1.32% 0.03% 84.72 80.15% 4.54% 0.18% 0.00% 100.0

Moreover, although these measurements are only meaningful for the evasive samples,
we also verified the non-evasive ones to double-check that our sandbox worked properly.
Therefore, for all the numbers we reported, we have verified that the same trend does not occur
for the non-evasive samples. During this inspection, we found that irrespective of the classes
(malware/goodware) and category except for NET, for the non-evasive samples, the two
traces are equal (R<cat> = B<cat>) in more than 90% of the samples, while this percentage
varies considerably for evasive ones (between 30% and 96%). The only notable exceptions
are the network traffic traces: they are very different even in non-evasive goodware samples
(RNET = BNET only in 46%). The main reason is related to ads and monetization libraries: at
each execution, goodware renders different ads, which generates different network requests.

A closer look at the cases where RSS ⊂ BSS, i.e., when the two traces are not the same and
the RedRun events are a subset of the BlueRun ones, allowed us to observe that almost 14%
of malware does not create any Android Activity when they are executed in RedRun, but they
do it when the anti-evasion criterion is enforced; this phenomenon occurs for less than 4% of
goodware. In practical terms, these samples did not show any GUI and finished execution
when their evasive controls detected a potential analysis environment. Nevertheless, contrary
to other systems (e.g., Windows [55, 143]), most evasive malware samples (86%) do not
stop their executions if the anti-evasion criterion is not enforced, behaving like a legitimate
Android app.
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Then, combining some observations in the DAPI, CP, and SS categories, we noticed two
interesting behaviors that evasive malware exhibits when it thinks it is not under analysis.
First, almost 10% more samples interact with the Captioning Manager (that contains methods
to access and monitor preferred video captioning state), and most of them (70%) use it as
an alternative way to get the user’s properties, such as the preferred language. Second, 2%
records the audio or video of the device for an unlimited period through methods of the
MediaRecorder class.

Regarding the FS category, more than 17% of evasive goodware looks for the su binary
in BlueRun, while they did not do it in RedRun. We observed that these goodware samples
perform root checks only after verifying the presence of an emulator. Conversely, it happened
for less than 3% of evasive malware, which, on the other hand, are more prone to change the
mode bits of files in their private folders. For instance, the fchmod syscall occurred more
than 20% of evasive malware in the BFS trace w.r.t. the RFS one. We manually investigated
this latter fact and found that, in these cases, the malware makes some files containing code,
such as native libraries, writable to modify their content (e.g., the Grifthorse Trojan [251]).
In this way, the sample will execute a different code at runtime compared to the statically
available one in the APK.

Finally, the CLI category is abused by 1.5% of evasive malware to retrieve system prop-
erties value through the getprop command or run chmod command (< 0.1 for goodware),
avoiding interacting with the Android APIs.

RQ15. Our experiments show that 14% of malicious and 4% of benign samples refrain from
running in our analysis environment when we do not mitigate evasive controls. In other cases,
malware hides techniques to obtain information about the device or records audio/video
without the user’s knowledge. It also overwrites portions of its code to perform different
operations than those that could be observed by statically analyzing the APK file. Goodware,
instead, tries to hide its search for the presence of a device with root permissions.

6.6 Related Work on Android Sandboxes

According to [202], we grouped current Android sandboxes for malware analysis based on
the technique on which they are based. First, this section discusses emulator-based sandboxes
and then introduces container-based solutions. There are currently no Android malware
sandboxes based on app-level virtualization, so this solution was not considered. Finally,
this section discusses the differences between DroidDungeon and the other state-of-the-art
sandboxes.
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Full-system emulation. In the last years, researchers proposed several sandboxes based
on Android emulators. In 2012, Yan et al. developed DroidScope [243], a virtual machine
introspect (VMI) system to monitor the activity of the malicious app in the Android emulator.
DroidScope leverages a 2-level VMI to gather information about the system and exposes
hooks to a set of APIs. In 2015, Tam et al. proposed CopperDroid [211], a sandbox built on
QEMU to automatically perform out-of-the-box VMI-based dynamic analysis and reconstruct
Android malware behaviors. In the same year, DroidBox [170] and CuckooDroid [137] have
been proposed. The former is a custom Android OS version 4.1.1 variant that tracks and
taints API calls. Alternatively, CuckooDroid is an extension of Cuckoo Sandbox [69] for
automating the analysis of Android apps; it is based on the Xposed Framework to monitor
API calls and provide blue pills to the target apps. Similarly to CuckooDroid, over the years,
other researchers proposed hook-based sandboxes which rely on Xposed [49, 32, 74] or
Frida [62]. In 2018, Liu et al. [134] proposed RealDrois, an emulator-based analysis system
built by modifying the Android framework.

Android Container-Based Virtualization. Similarly to the desktop counterparts, the An-
droid container-based virtualization is a lightweight in-kernel virtualization technique that
creates an isolated (virtual) environment in the same Android device. However, Android
container development has to overcome several challenges; in particular, mobile devices are
not designed for multiplexing hardware components (e.g., WiFi and Bluetooth).

In 2011, Andrus et al. proposed Cells [14], a virtualization architecture enabling multiple
isolated virtual phones (VP) to run simultaneously on the same physical device. In 2015,
Xu et al. developed Condroid [240], a lightweight Android virtualization solution based
on container technology, which leverages both Linux namespaces and cgroups to create
multiple VPs. In 2021, Song et al. proposed VPBox [202], an Android OS-level sandbox
framework via container-based virtualization that overcame the limitations of the previous
works, integrating with the principle of anti-evasion. In particular, VPBox offers complete
device virtualization for all the device components (e.g., WiFi, Camera), minimizing the
artifacts in the VPs, and it can customize the virtual device configurations (e.g., OS version)
for each VP.

6.6.1 DroidDungeon vs. SOTA

Emulators are programs that simulate the functionality of some hardware, thus providing
great scalability and flexibility. For instance, the virtual environment can be restored to a
clean snapshot in seconds. However, the anti-evasion criterion is demanded to the sandbox
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itself, which has to implement the “bypass” logic for each evasive technique. In particular,
DroidScope, CopperDroid, and DroidBox do not enforce any detection resilience mechanism,
while hook-based techniques can bypass only a subset of evasive controls, leaving several
artifacts uncovered. For instance, Xposed is not designed to hook into lower-level system
calls; hence, an attacker can detect the emulator by making direct syscalls. DroidDungeon

leverages the probe mechanism, which allows the hooking of user functions and system
calls. Thus, we can provide more fine-grained analysis mechanisms that only hook the least
possible set of functions. For instance, to identify the opening of a file, DroidDungeon hooks
only file-related system calls, avoiding hooking all the high-level functions for both the Java
and the native layers.

Moreover, all the container-based virtualization techniques and framework-level mod-
ifications (e.g., RealDroid) heavily modify the Android kernel and OS layers, which can
make integration with system updates challenging (no maintainability criterion); in addition,
the former techniques share the assumption to be executed on an actual phone affecting
scalability.

Finally, it is essential to note that the primary goal of container-based virtualization is
to create an isolated environment. Still, more is needed to provide a suitable technique
for monitoring and analyzing the app’s behavior. On the contrary, DroidDungeon can be
deployed in both an emulated and actual device. In the former case, DroidDungeon has to
enforce the anti-evasion criterion. At the same time, the second one leverages the underlying
actual device to bypass the evasive controls, behaving like a virtual phone. Moreover, we
developed a fully separate kernel module, which can be easily integrated with newer Android
versions.

Table 6.6 compares DroidDungeon and the other state-of-the-art solutions based on the
anti-evasion, scalability, and maintainability criteria. At the time of writing, our solution
remains the best tool to analyze Android malware dynamically.

Table 6.6 Comparison between DroidDungeon and SOTA w.r.t. the anti-evasion, maintain-
ability, and scalability criteria.

Requirement Container-Based Emulator-Based

Cells [14] Condroid [240] VPBox [202] VMI-based [243, 211] Framework
mod. [170, 134]

Hook-based
[137, 62, 49, 32, 74] DroidDungeon

Anti-evasion G# G#  #  G#  
Maintenability # # # G# # G#  
Scalability # # # G#    
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6.7 Discussion

The first limitation of this work is related to the fact that the probe mechanisms cannot
measure direct memory access or reading Java object fields. For instance, simple evasive
checks aim to verify the fields of the Build class. We cannot measure these events even if
DroidDungeon can mitigate them by updating the Build class field values when a new app
starts.

Second, when a probe is placed in a userspace program, the instruction at the probed
location is overwritten by a jump to the handler routine. This mechanism introduces artifacts
into the memory of the probed functions that an attacker could exploit to detect the sandbox.

Third, Garfinkel et al. [76] demonstrated how making hardware emulation and native
hardware indistinguishable is fundamentally infeasible. The emulator-based implementation
of DroidDungeon inherits all limitations of the hardware emulation, such as time delays
during the execution of certain instructions. However, we recall that DroidDungeon can also
be distributed on an actual device.

Fourth, we collected the events by stimulating each app with ARES. Thus, we inherit the
limitations of the dynamic analysis [5, 169], namely, there are parts of the code that may not
be explored.

Finally, as mentioned in Section 6.5.3, our measures in comparing execution traces should
be considered a lower bound because there are evasive controls that our sandbox does not
need to mitigate. In those cases, if there are differences, they are not measured.



Chapter 7

Future Work and Conclusion

7.1 Future work

This thesis discusses several aspects of surreptitious code and the protection mechanisms
that Android apps – both malicious and benign – employ. On one side, benign actors
have to protect their apps from several attack vectors, such as man-at-the-end attacks, by
routinely developing more robust methodologies. Conversely, malware authors aim to fly
under the radar of detection and analysis tools by exploiting anti-static and anti-behavioral
analysis techniques. Even if my thesis aims to contribute to the cat-and-mouse game between
goodware and malware, the challenges that affect protection mechanisms from benign and
malicious standpoints still need to be solved. In addition, this research topic is constantly
evolving: malware and goodware authors regularly improve their protection schemes to
make them more and more effective in reacting to novel attack vectors or analysis systems.
However, the research presented in this thesis suggests several avenues for future directions.
In particular, this section highlights two possible tracks to build upon our work.

The first track consists of improving the security posture and awareness of Android apps
and their developers. Nowadays, developers do not only have to worry about developing
secure code but also about protecting their apps from reverse engineering and code tampering.
In particular, according to the OWASP Mobile Top Ten [165], the seventh issue for Android
apps is insufficient binary protection. It is worth noticing that all apps are vulnerable to
binary attacks (e.g., repackaging). Thus, in this context, the challenge lies in the fact that
if there are additional protective measures (e.g., obfuscation for static analysis and APK
tampering verification for code manipulation), successful attacks become more complex and
more challenging to achieve, leading the attacker to give up if it is too complicated.
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From the benign standpoint, the problem of security awareness is twofold. On one side,
several developers are unaware of and do not include any protection mechanisms in their apps
against these issues. Conversely, some remaining benign apps include ineffective protection
techniques or consider only part of the problem. For instance, as highlighted in Section 6.5,
goodware tends to rely on “homemade” evasive techniques instead of taking advantage of
reliable services like the Play Integrity API offered by Google.

In tandem with the security awareness, a technological aspect should be considered. The
Android operating system constantly evolves, and new features are routinely introduced,
which can impact the robustness or effectiveness of current protection techniques. For
instance, this thesis has investigated the impact of the Android app-level virtualization in the
repackaging attack and proposed a novel protection scheme. Moreover, novel features can
also affect the operating system’s security. For instance, in Chapter 5, we discussed a novel
state inference attack that has remained dormant since the inotify APIs were added to the
system. Thus, future works should consider how novel features affect the security posture of
modern Android apps and the entire operating system.

The second track consists of continuously improving the malware understanding and
the effectiveness of the security tools for both static and dynamic analysis. For instance,
Chapter 4 highlights how the state-of-the-art static analysis tools almost ignore the behavior
exposed by the compiled native libraries. This work has contributed to this cat-and-mouse
game, and we hope that our suspicious tag will be the building block for future research on
Android malware and its detection. We suppose that exciting applications can be found in
machine-learning-based analysis systems, and including native features could improve their
robustness against these kinds of cheats.

Finally, an obvious extension of our work is the continuous development of DroidDun-

geon (introduced in Section 6.3) to improve its effectiveness concerning the anti-evasion
criterion in large-scale malware analysis. Moreover, this dynamic analysis tool should be
enhanced to understand other important aspects of anti-analysis techniques that malicious ac-
tors exploit. For instance, inspecting anti-static analysis techniques is an orthogonal research
topic concerning the anti-behavioral analysis we conducted during this thesis. It is well
known, and our results highlighted that modern malware (ab)uses DCL to load potentially
harmful code at runtime. However, an in-depth analysis of the dynamically loaded code is
still needed; for instance, exploring the type of loaded files, when malicious actors exploit
these mechanisms, and the behavior they expose would be interesting.
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7.2 Conclusion

The various projects that we tackled and discussed in this thesis allowed us to analyze
numerous issues related to the security of the Android ecosystem. This research allowed
us to understand, by changing the point of view for the analysis, how protection and anti-
analysis techniques are not always considered an integral piece of the security of the Android
ecosystem. Ensuring the security of the entire ecosystem becomes a very challenging task:
different actors at play, with additional requirements and security constraints, make a generic
approach to security ineffective.

In Chapter 3, this thesis starts with a security analysis of modern repackaging attacks,
aiming at proposing a novel protection scheme – MARVEL– able to protect Android apps
against traditional and virtualization-based repackaging attacks. We enforced the MARVEL

protection scheme by I) MARVELoid, which injects the protections inside each plugin app,
and II) the trusted container, a customized version of the VirtualApp framework to create
a trusted execution environment and enforce the protection at runtime. We designed MAR-

VELoid to minimize the impact on the end-user by only requiring the device to be equipped
with the TC without any modification to the underlying OS. From an experimental point of
view, our evaluation of MARVEL over 4,000 Android apps demonstrated the applicability
and efficacy of the tool and the proposed protection scheme.

Then, Chapter 4 investigates different aspects related to the usage of native code in
Android apps by performing the first longitudinal analysis of the use of native components.
This allowed us to identify several suspicious uses related to the JNI code. Moreover, it
showed how our automatically assigned suspicious tags could pinpoint the code region to
inspect and speed up the analysis process of Android malware, studying the behavior for all
supported architectures.

The analysis of native code has brought to light a novel state inference attack based on
the inotify APIs discussed in Chapter 5. Then, thanks to inotify, it is possible to execute code
promptly to mount more complex attacks, such as phishing. Moreover, Chapter 5 introduced
the concepts of file system footprint and signature and showed how these “traces” lead to
figuring out when a particular app is starting. Interestingly, this work also opens up exciting
future works because these concepts can be ported to different operating systems.

Our measurements show that all Android apps are vulnerable if the attacker can monitor
a file in the installation path. Otherwise, this chapter has shown that it is still possible to carry
it out on a smaller but significant number of apps. What is more, the attacker can unleash it
from a malicious app without requesting any permission. Fortunately, we have also shown
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the existence of practical remediation. However, even assuming they are all implemented
immediately, the number of devices left vulnerable will remain high for many years because
of the timeframe to deploy these updates, and many device vendors will not apply them.

Finally, Chapter 6 focuses on seeking, collecting, and measuring Android evasive tech-
niques based on their behaviors and methods, both in malicious and benign apps. For this
purpose, it introduces DroidDungeon, a probe-based sandbox that jointly fulfills the anti-
evasion, maintainability, and scalability criteria. The experiments show the primary purposes
of evasive checks in malware and goodware, and our main result highlights that 14% of
malware and 4% of goodware refrain from running if their evasive controls detect a potential
analysis environment. It is crucial to consider these percentages when dealing with dynamic
analysis of Android apps and, thus, consider the bias introduced by anti-analysis and evasive
techniques, which this thesis sought to shed light on.
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Appendix A

Hash of the Samples

Due to the easy of readability, this thesis never reported the whole sha256, but only the first 4
bytes. For each sample, Table A.1 reports the full hash with the first 4 bytes in bold, sorted
in alphabetical order. Moreover, each entry is a hyperlink to the corresponding VirusTotal
webpage.
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Table A.1 Sha256 of the samples mentioned in the thesis

0009 | b9d191236fef80c954feb2eeea998d8c2a1e2ca6dc273a0a68836851423f
019e | 12c7233d7324667d9e49aba4787c67204c5c8f2c38754f469a5b600bddde
0259 | d084a78ddc98e663ae5799898a0afb4d021c6486cb61bdf7285731476d61
04ce | f547b64e459936dd243bfb19575bc905f6271c94723788000088f9e7e278
05b4 | c4dd8bf9f376c767330e649d725ad35c0c9c3b1b2dbbfab7f39e90c5bac4
1306 | 8932cd52ffa257fa35bba7860e618416f0d53eecd7650a7700607220d4c0
180f | 897219b41b01441d3fd275699b9eb7e922000b7ce16f60152389cc978f2e
1ac7 | fad8a64016e4fdc185f604365b2333cabe65b8083242ed5d41c92a25a9fb
1f26 | 7514222943779bdd642b9c7322a31a87d8f17790be4f31d59c2f4fade4d3
213c | 997dc02dfc4e83e872243c9217c7481a18a386b4fd79c049a5e27dad97f0
25ca | a43d5d96069b1cb8b9a9d5b18bd858b8ca2c4c0960d7b69d38d8414f68f0
32cd | 907d3343c44180294a7c279c2a5f139a6ee443cbf443eb2bd663bca37c6e
338c | 09c3ded12f3d6fed78706b1505d7cdf696fd6ac32913d2f710502853ba94
3c0b | 88d1b054e275c4fa8b3496030bab8395b8789d1d4599bbd7ef4a13fca2c5
4a7e | 913d491f715bb00b37ad5b8802a00c919070486212e8d1d1a802f4bdf6bf
4e4b | e579cffdd690cef4bb0d779d66ede95cfd955eb27eb797e0704f59d61e6d
5264 | 52b1ecb5c5572cfd24c9cb8b7cbeef5321510244a5f8a160492552698cc9
58b3 | 4234bd375ac81753cb8cc793a60cf9f0a220383bf332d15ce51917488623
5bd3 | e6f49aaab9e7fe566d92cceb9a5701a072426434de5bb2cdbc34a7d265f2
6c6e | eed1b91913db0d6232edb1979c67d6fb48ca3da4f83dc49fb565a4e5f4fe
7383 | 7b030f031d532741b7e84068aabed24e7a6ac118c4272005e6ecd18a17d7
775c | 3e036f3a1fc18fd683fa9e5da2a2e68f19feb7e7a0f609ba775a0a2e6571
7900 | 9a3bbdb9f73faa3d8b3a35306957fbd2bfb362d0c2d658079ff6a49b69e0
7adb | a016acdcafac4b5fa2eb44e3103b5cd80be16ae483d2008c72f79a22e0ac
7f9d | ce517a39bca41752f2deb028ea02b5408d0892133ec815e044354e95ceed
84a2 | aabef11c823d55529f6424155dbf1f86ec32b601519457f79989cd992b1b
858e | bffaa54e40cc4787280da60e5854e8776359340bdf5287e32a580878a2c0
8cda | 6e90ae30175dcfce5fca040abb525df4d2d74e81f52bd83971297683348a
9195 | 30d756b8e759023585656f8ae91ed743cb83c7f6765ee7244a93a17c8e7d
97e0 | e7da3bacf383150d7ea1b4fe9ea502fe84aa856f1f51355b71260c453084
b816 | 209838a43e77dba33ed8d574f66735d9b1a239a110e53a82fa62e0a35f40
c227 | edef2d823059f261b2101a21c4deeda2ee016671ce06b28dde0297018550
cdde | 49edda06e3856755e5b847892ee91fb3ac334595328b1a742d9b898992a7
d867 | 31c8fa5ed48f13fadbf761a0869697dd56bbf963028e57d35395cf217f74
dcb7 | 2f950cbcbb6a8661b80ff15f83627a2ad4c55fdb8a3fc44fa752a96b4c91
e088 | 1b869add4b86628abb53255990aabb5db2548b259ecb04d03834dcf54d38
ecd2 | 981d192282fd72ca82cd3c13bc04fe366a411ebe8f76d8303298ac541f7d
f7b9 | 06ec2ce1c39979092dbd220d0b9bf7fb770122c4de31e239935aa4763fea
fcd4 | d6ecfea993400fa242890e344c696724a6ac14bda9a0b067b0d418ffe5d7

https://www.virustotal.com/gui/file/0009b9d191236fef80c954feb2eeea998d8c2a1e2ca6dc273a0a68836851423f
https://www.virustotal.com/gui/file/019e12c7233d7324667d9e49aba4787c67204c5c8f2c38754f469a5b600bddde
https://www.virustotal.com/gui/file/0259d084a78ddc98e663ae5799898a0afb4d021c6486cb61bdf7285731476d61
https://www.virustotal.com/gui/file/04cef547b64e459936dd243bfb19575bc905f6271c94723788000088f9e7e278
https://www.virustotal.com/gui/file/05b4c4dd8bf9f376c767330e649d725ad35c0c9c3b1b2dbbfab7f39e90c5bac4
https://www.virustotal.com/gui/file/13068932cd52ffa257fa35bba7860e618416f0d53eecd7650a7700607220d4c0
https://www.virustotal.com/gui/file/180f897219b41b01441d3fd275699b9eb7e922000b7ce16f60152389cc978f2e
https://www.virustotal.com/gui/file/1ac7fad8a64016e4fdc185f604365b2333cabe65b8083242ed5d41c92a25a9fb
https://www.virustotal.com/gui/file/1f267514222943779bdd642b9c7322a31a87d8f17790be4f31d59c2f4fade4d3
https://www.virustotal.com/gui/file/213c997dc02dfc4e83e872243c9217c7481a18a386b4fd79c049a5e27dad97f0
https://www.virustotal.com/gui/file/25caa43d5d96069b1cb8b9a9d5b18bd858b8ca2c4c0960d7b69d38d8414f68f0
https://www.virustotal.com/gui/file/32cd907d3343c44180294a7c279c2a5f139a6ee443cbf443eb2bd663bca37c6e
https://www.virustotal.com/gui/file/338c09c3ded12f3d6fed78706b1505d7cdf696fd6ac32913d2f710502853ba94
https://www.virustotal.com/gui/file/3c0b88d1b054e275c4fa8b3496030bab8395b8789d1d4599bbd7ef4a13fca2c5
https://www.virustotal.com/gui/file/4a7e913d491f715bb00b37ad5b8802a00c919070486212e8d1d1a802f4bdf6bf
https://www.virustotal.com/gui/file/4e4be579cffdd690cef4bb0d779d66ede95cfd955eb27eb797e0704f59d61e6d
https://www.virustotal.com/gui/file/526452b1ecb5c5572cfd24c9cb8b7cbeef5321510244a5f8a160492552698cc9
https://www.virustotal.com/gui/file/58b34234bd375ac81753cb8cc793a60cf9f0a220383bf332d15ce51917488623
https://www.virustotal.com/gui/file/5bd3e6f49aaab9e7fe566d92cceb9a5701a072426434de5bb2cdbc34a7d265f2
https://www.virustotal.com/gui/file/6c6eeed1b91913db0d6232edb1979c67d6fb48ca3da4f83dc49fb565a4e5f4fe
https://www.virustotal.com/gui/file/73837b030f031d532741b7e84068aabed24e7a6ac118c4272005e6ecd18a17d7
https://www.virustotal.com/gui/file/775c3e036f3a1fc18fd683fa9e5da2a2e68f19feb7e7a0f609ba775a0a2e6571
https://www.virustotal.com/gui/file/79009a3bbdb9f73faa3d8b3a35306957fbd2bfb362d0c2d658079ff6a49b69e0
https://www.virustotal.com/gui/file/7adba016acdcafac4b5fa2eb44e3103b5cd80be16ae483d2008c72f79a22e0ac
https://www.virustotal.com/gui/file/7f9dce517a39bca41752f2deb028ea02b5408d0892133ec815e044354e95ceed
https://www.virustotal.com/gui/file/84a2aabef11c823d55529f6424155dbf1f86ec32b601519457f79989cd992b1b
https://www.virustotal.com/gui/file/858ebffaa54e40cc4787280da60e5854e8776359340bdf5287e32a580878a2c0
https://www.virustotal.com/gui/file/8cda6e90ae30175dcfce5fca040abb525df4d2d74e81f52bd83971297683348a
https://www.virustotal.com/gui/file/919530d756b8e759023585656f8ae91ed743cb83c7f6765ee7244a93a17c8e7d
https://www.virustotal.com/gui/file/97e0e7da3bacf383150d7ea1b4fe9ea502fe84aa856f1f51355b71260c453084
https://www.virustotal.com/gui/file/b816209838a43e77dba33ed8d574f66735d9b1a239a110e53a82fa62e0a35f40
https://www.virustotal.com/gui/file/c227edef2d823059f261b2101a21c4deeda2ee016671ce06b28dde0297018550
https://www.virustotal.com/gui/file/cdde49edda06e3856755e5b847892ee91fb3ac334595328b1a742d9b898992a7
https://www.virustotal.com/gui/file/d86731c8fa5ed48f13fadbf761a0869697dd56bbf963028e57d35395cf217f74
https://www.virustotal.com/gui/file/dcb72f950cbcbb6a8661b80ff15f83627a2ad4c55fdb8a3fc44fa752a96b4c91
https://www.virustotal.com/gui/file/e0881b869add4b86628abb53255990aabb5db2548b259ecb04d03834dcf54d38
https://www.virustotal.com/gui/file/ecd2981d192282fd72ca82cd3c13bc04fe366a411ebe8f76d8303298ac541f7d
https://www.virustotal.com/gui/file/f7b906ec2ce1c39979092dbd220d0b9bf7fb770122c4de31e239935aa4763fea
https://www.virustotal.com/gui/file/fcd4d6ecfea993400fa242890e344c696724a6ac14bda9a0b067b0d418ffe5d7


Appendix B

Native Suspicious Tags

Table B.1 details the list of suspicious tags divided by categories that we identify in Sec-
tion 4.3. ‘<SYMBOL>’ denotes that there is a specific tag for each suspicious library call
family (Table 4.1). A TAG is made of the concatenations of its category and title with the
symbol -.
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Table B.1 List of suspicious tags used in the ML validation.
†: float computed as # o f f eatures

total
§: boolean

Step TAG Category TAG Category Description TAG Title TAG Example

#0 J_NATIVE_METHODS
Presence/absence of native methods

and the entry point from which
they can be reached

NO_NATIVE_METHOD†

NO_REACHABLE†

APP_LIFECYCLE_EP†

ACTIVITY_LIFECYCLE_EP†

EXTERNAL_DEX†

SUSPICIOUS_INTENT§

#1 J_LOAD_METHODS
Presence/absence of load methods

and the entry point from which
they can be reached

NO_LOAD_METHODS§

PATH_LOAD_METHOD†

APP_LIFECYCLE_EP†

ACTIVITY_LIFECYCLE_EP†

SUSPICIOUS_INTENT§

EXTERNAL_DEX†

NO_ELF_NAME†

ELF_IN_LIB_AND_NOT§

#2 CODE_LOCATION Code file in suspicious location or
with extension name mismatch

ELF_IN_ARCHIVE§

DEX_EXT_MISMATCH§

ELF_EXT_MISMATCH§

#4 REGISTERNATIVES RegisterNatives callback
UNRESOLVED_METHODS§

MULTIPLE_PATH§

CLASS_NON_IN_APK§

#6A

NR_FINDCLASS Native Reflection:
FindClass callback

ANDROID_MANAGER§

CONTEXT§

CLASSLOADER§

JAVA_REFLECTION§ java.lang.reflect.Method
THREAD§

SYSTEM§

CRYPTO§ javax.crypto.Cipher

APP_INFO§ android.content.
SharedPreferences

ZIP§

ANDROID_INTERNALS§ android.app.LoadedApk

STACK_TRACE§ java.lang.
StackTraceElement

EXCEPTION§

PARTIAL_RESOLUTION†

NO_RESOLUTION†

NR_METHOD Native Reflection:
GetMethodID callback

WITH_DANGEROUS_PERM§

ANDROID_MANAGER§

CONTEXT§ getSystemService
SENSIBLE_INFORMATION§ getImei

CLASSLOADER§ loadClass
JAVA_REFLECTION§ getClass

THREAD§

PERMISSION§

STACK_TRACE§ getStackTrace
PARTIAL_RESOLUTION†

NO_RESOLUTION†

#6B DYNAMIC_LOADING
The tags report the usage of library
call to dynamically load and invoke
exported functions of other libraries

<SYMBOL>§ (see Table 4.1) dlsym(fd, "chmod")
NO_RESOLUTION§

ANDROID_DVM_ART§ libdvm.so

#6C
SUSP_LIB_CALL Suspicious library calls <SYMBOL>§ (see Table 4.1) execve

CREATEJAVAVM§ JNI_CreateJavaVM

LIB_CALL_SUSP_PARAM Suspicious argument to
the library calls

<SYMBOL>§ (see Table 4.1)
open("/proc/version")
open("/sys/devices")

CREATEJAVAVM§ JNI_CreateJavaVM

#6A
#6C STRING Presence of meaningful strings

CLASSLOADER§

ANDROID_INTERNALS§

PROPERTIES§ ro.product.cpu.abi



Appendix C

Anti-Behavioral Techniques

Table C.1 reports the 97 unique evasive methods we collected during the analysis. For each
method, it highlights if it belongs to the DET or IET category.
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