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A B S T R A C T

For propeller-driven vessels, cavitation is the most dominant noise source producing both structure-borne
and radiated noise impacting wildlife, passenger comfort, and underwater warfare. Physically plausible
and accurate predictions of the underwater radiated noise at design stage, i.e., for previously untested
geometries and operating conditions, are fundamental for designing silent and efficient propellers. State-of-
the-art predictive models are based on physical, data-driven, and hybrid approaches. Physical models (PMs)
meet the need for physically plausible predictions but are either too computationally demanding or not accurate
enough at design stage. Data-driven models (DDMs) are computationally inexpensive ad accurate on average
but sometimes produce physically implausible results. Hybrid models (HMs) combine PMs and DDMs trying to
take advantage of their strengths while limiting their weaknesses but state-of-the-art hybridisation strategies
do not actually blend them, failing to achieve the HMs full potential. In this work, for the first time, we
propose a novel HM that recursively correct a state-of-the-art PM by means of a DDM which simultaneously
exploits the prior physical knowledge in the definition of its feature set and the data coming from a vast
experimental campaign at the Emerson Cavitation Tunnel on the Meridian standard propeller series behind
different severities of the axial wake. Results in different extrapolating conditions, i.e., extrapolation with
respect to propeller rotational speed, wakefield, and geometry, will support our proposal both in terms of
accuracy and physical plausibility.
. Introduction

The sustainability of anthropogenic activities is nowadays a funda-
ental problem requiring a multidisciplinary approach in order to be
roperly addressed. In a broad sense, sustainability concerns the control
f the adverse effects of human activities on the environment.1 In the
aritime industry, heretofore, the impact of vessels on the environment
as considered just in terms of atmospheric pollutant formation from

he prime movers (Trivyza et al., 2021), release of toxic compounds
rom hull coatings (Torres and De-la Torre, 2021), or importation of
xotic biological species through ballast water (Lakshmi et al., 2021)
nd biofouling (Song et al., 2020). Underwater Radiated Noise (URN)
as just recently categorised as a form of pollution (Vakili et al.,
020a) due to the substantial increase of noise pollution on oceans
orldwide (Sezen et al., 2021b). URN not only has severe effect on the
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marine ecosystem (Ferrier-Pagès et al., 2021; Di Franco et al., 2020)
but also affects the crew and passenger comfort (Oldenburg et al.,
2010). Several regulatory bodies have urged the industry to address
the harmful effects of noise pollution (Chou et al., 2021; Vakili et al.,
2020b) and take precautionary measures (European Union, 2017). For
instance, the International Maritime Organisation (IMO) adopted a reg-
ulation defined by the International Convention for the Safety of Life at
Sea (IMO, 2012) that requires shipowners to take measures that reduce
on-board noise pollution, by setting mandatory maximum noise level
limits. More recently, guidelines to reduce URN in commercial shipping
were released, in the attempt to address adverse impacts on marine
life (IMO, 2014). As a consequence, several classification societies have
now introduced the ‘‘silent’’ class notation (Det Norkse Veritas, 2010).
Apart from environmental concerns, URN abatement is compulsory
in maritime warfare. Navies are conducting continuous research and
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development activities in stealth technology optimisation and quiet
submarines, with the aim of reducing their noise signature which
determines their detectability, operability, and survivability (Tucker
and Azimi-Sadjadi, 2011; Li and Wang, 2020).

The noise signature of a seagoing vessel is composed of a variety of
sources including rotating machinery, hull-form, and propellers (Lur-
ton, 2002). Among these, the propeller is the most significant noise
contributor and the subject of increased interest in academia and
the industry (Carlton, 2018). Non-cavitating propellers generate the
highest noise levels at frequencies below 200 [Hz] while cavitating
ropellers can emit noise up to frequencies of 1 [MHz] dominating the

audible noise spectrum (Ross, 1976; Carlton, 2018). As a consequence,
a considerable amount of effort has been spent in investigating and
implementing propeller URN mitigation strategies (Tong et al., 2021;
Tong and Chen, 2020; Kim and Kinnas, 2021; Hu et al., 2019; Huang
et al., 2019; Capone et al., 2021). Nevertheless, there is a natural
tension between the need for silent yet efficient propellers that requires
to find the best application specific trade-off (Gaggero et al., 2017a,b,
2016; Nouri et al., 2018; Valdenazzi et al., 2019). For this purpose,
computational tools able to support the design process for finding these
break points are needed (Valdenazzi et al., 2019; Li et al., 2018). In
fact, at the design stage, it is not feasible to investigate the propeller’s
behaviour by means of experimental facilities (e.g., cavitation tunnels)
since experiments are time consuming and expensive, thus they cannot
be carried out for too many different designs (Miglianti et al., 2020).

State-of-the-art computational tools are based on three main ap-
proaches: Physical Models (PMs), Data Driven Models (DDMs), and
Hybrid Models (HMs). Here we briefly summarise them but in Section 2
we will perform a thorough review

• PMs (see Section 2.1) rely on the knowledge of the phenomena
and can be further subdivided in two main families

– Empirical and semi-empirical models (see Section 2.1.1)
utilise empirical formulas, to approximate with different
levels of accuracy the physical phenomena, fine tuned by
means of measurement data (Bosschers et al., 2017). These
models are computationally efficient but usually not enough
accurate to be exploited at design stage (Carlton, 2018).

– Computational Fluid Dynamics (CFD) based models (see
Section 2.1.2) decouple the sound propagation from its
source generation, allowing to separate the flow solution
from the acoustic analysis (Sezen et al., 2021a). The viscous
flow field, where the sound source is generated, is solved
by means of a CFD method with an appropriate turbulence
model and the sound propagation is treated by an integral
method based on acoustic analogy (Sezen et al., 2021b).
CFD-based models can be quite accurate and reliable at
the expense of large computational requirements, which
prevent their use at the design stage (Bosschers, 2018a).

• DDMs (see Section 2.2) rely on Machine Learning (ML) and histor-
ical observations to build models of the phenomena with no prior
physical knowledge about them (Coraddu et al., 2017). While
DDMs can be quite computationally expensive during the model
creation phase, they can be highly accurate and computationally
inexpensive during the prediction phase, which is considered the
crucial one at design stage (Miglianti et al., 2020). DDMs main
limitation lies on their accuracy, which is high on average but not
pointwise. Therefore, in some cases, DDMs can provide physically
inconsistent predictions (Coraddu et al., 2021a).

• HMs (see Section 2.3) leverage on both PMs and DDMs. By
combining them, they take advantage of their strengths while
limiting their weaknesses (Miglianti et al., 2020). Specifically,
HMs can achieve the same or higher accuracy with respect to
DDMs (fully leveraging historical data), but they also leverage
prior physical knowledge (exploiting computationally efficient
outputs or partial computations behind PMs) to deliver physically

plausible results (Coraddu et al., 2018).
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HMs have the potential to deeply change the design stage of pro-
pellers. As a first advantage, they can rely on and fully exploit both
physical knowledge of the phenomena and historical data to deliver
both accurate and physically plausible results (Coraddu et al., 2021a).
As a second advantage, they can be quite efficient in making pre-
dictions, allowing to include them in automatic tools for design op-
timisation (Coraddu et al., 2020). Finally, they reduce the need for
historical observations, thanks to the exploitation of the prior knowl-
edge about the phenomena, reducing consequently the computational
effort needed to build them. Unfortunately, current hybridisation strate-
gies do not allow to fully achieve HMs true potential, since they naively
pull together PMs and DDMs without actually blending them. The
limitation of this naive approach is twofold. The first one is that the
current works available in the literature do not fully investigate the
physical plausibility of the prediction (e.g., with comparisons between
the expected behaviour of the models in circumstances where physical
knowledge of the phenomena is high) (Vesting and Bensow, 2014). The
second one is that current body of literature do not show the advantage
of using HM in terms of the ability to better extrapolate (to be more
accurate) with respect to PMs and DDM (and this limitation is also due
to the unavailability of large datasets covering multiple propellers and
multiple working conditions) (Miglianti et al., 2020).

For these reasons, in this work, we focus on tackling these three
main gaps. In particular, we propose a novel hybridisation strategy able
to truly blend PMs and DDMs into single HMs. The knowledge of the
phenomena is exploited in model structure, in model building, and in
model enrichment: we consider a dedicated feature engineering process
to extract meaningful information from the available experimental data
and several additional quantities derived from a computationally cheap
Boundary Element Method (BEM) (Gaggero et al., 2017b; Gaggero and
Villa, 2018). Furthermore, we exploited the computationally cheap PMs
from our preliminary work (Kalikatzarakis et al., 2021) to estimate the
noise generated by sheet cavitation and Tip Vortex Cavitation (TVC).
Everything is empowered by a novel approach based on a state-of-the-
art DDM which recursively correct a state-of-the-art PM, leveraging
the information contained in the historical data. We tested the models
in many different extrapolation scenarios, and we tested the physical
plausibility of the results. In order to achieve this goal and support
our statements, we will test our proposal, for the first time in the
literature, on real data collected in a vast experimental campaign at
the Emerson Cavitation Tunnel (Atlar, 2011) on the Meridian standard
propeller series (Aktas, 2017) behind different severities of the axial
wake.

The rest of the paper is organised as follows. Section 2 summarise
the literature on the topics faced in this work. Section 3 describe
the data collected during the experimental campaign at the Emerson
Cavitation Tunnel on the Meridian standard propeller series. Section 4
presents our proposal. Section 5 exploits the data described in Section 3
to test the proposal detailed in Section 4. Finally, Section 6 concludes
the paper. For the sake of readability, Table 1 summarises the acronyms
used in the paper.

2. Related work

This section reviews the state-of-the-art computational tools for
propeller URN prediction. Specifically, PMs, DDMs, and HMs will be
reviewed in Sections 2.1, 2.2, and 2.3 respectively.

2.1. Physical models

PMs for propeller URN prediction can be further subdivided in two
main families Empirical and semi-empirical models and CFD based
model that we will review separately in Sections 2.1.1 and 2.1.2,
respectively.
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Table 1
Acronyms.

Acronym Description Acronym Description

BEM Boundary Elements Method CFD Computational Fluid Dynamics
DDM Data Driven Model DES Detached Eddy Simulation
ETV Empirical Tip Vortex Model FI Features Importance
FWH Ffowcs William-Hawkings HM Hybrid Model
IMO International Maritime Organisation KRR Kernel Ridge Regression
LOGO Leave One Geometry Out LORSO Leave One Rotational Speed Out
LOWO Leave One Wakefield Out ML Machine Learning
MAE Mean Absolute Error MAPE Mean Absolute Percentage Error
NN Neural Network PM Physical Model
PPMCC Pearson Product-Moment Correlation Coefficient RANS Reynolds-Averaged Navier–Stokes
RF Random Forests RNL Radiated Noise Level
SNN Single-layered Neural Network SPL Sound pressure level
TPK Test on Prior Knowledge TVI Tip Vortex Index
TVC Tip Vortex Cavitation URN Underwater Radiated Noise
VLM Vortex Lattice Method
2.1.1. Empirical and semi-empirical models
Historically, empirical and semi-empirical models were the first

attempts to predict propeller URN (Brown, 1976; Bosschers, 2018a,
2009; Brown, 1999; Bosschers, 2018c,b; Raestad, 1996). They utilise
empirical formulas to approximate with different levels of accuracy
the physical phenomena, and then they are fine tuned by means of
measurement data (Bosschers et al., 2017). These models are compu-
tationally efficient but usually not enough accurate to be effectively
exploited at design stage (Carlton, 2018) even if some researchers have
investigated this research direction (Bosschers et al., 2017).

Brown (1976) were among the first researchers investigating empir-
ical models for broadband noise. Exploiting measurements taken from
thruster propellers, they proposed a simple model able to describe its
upper limit for frequencies between 100 [Hz] to 10 [kHz]. The original
model has been subsequently modified by several researchers (Oka-
mura and Asano, 1988; Ekinci et al., 2010) improving prediction
quality. Nevertheless, detailed comparisons for a reasonably large set
of propellers were not reported.

Semi-empirical models focusing on sheet cavitation and its effects
on propeller URN have been studied by Brown (1999), Matusiak (1992)
and further extended by Brown (1999). Specifically, Brown (1999)
presented a simple empirical formulation for the noise generated by
thruster propellers. Their work provided a simple relation between the
amplitude of noise and the area of sheet cavitation. Despite its lack of
insight into the underlying physical phenomena, the method is able to
accurately predict the URN of open propellers as recently demonstrated
by Lafeber and Bosschers (2016).

Matusiak (1992) proposed a more theoretically grounded approach
to model the collapse of free bubbles due to sheet cavitation, assuming
that the number and the average size of cavitation bubbles generated
by a cavity break-off to follow a beta distribution characterised by
one parameter. This model produces a broadband propeller-induced
pressure spectrum strongly correlated with the one measured from
sheet cavitating propellers. This idea was then evolved in Kamiirisa
and Goto (2005) who estimated the behaviour of sheet cavitation
using Lifting Surface Method and model tests introducing the effect of
compressibility and damping in bubble flow to improve the prediction
accuracy.

In order to deal with noise sources different from sheet cavita-
tion, Bosschers (2018c,b), Raestad (1996) studied tip vortex induced
propeller URN. Specifically, Raestad (1996) proposed empirical for-
mula for the amplitude of tip vortex noise. Later, Bosschers (2009)
presented another empirical formula for the prediction of the char-
acteristic frequency of tip vortex generated noise. Both studies suc-
ceeded in approximating the behaviour of vortex noise, but they both
require extensive case-by-case tuning due to their high parameters
sensitivity (Bosschers, 2018a).

Recently, Bosschers (2018c) combined the semi-empirical vortex
model of Bosschers (2018a) with BEM to predict the hump-shaped pat-

tern of the propeller cavitation noise spectrum for a variety of vessels.

3

This approach was later improved by Bosschers (2018b) noting that the
main weakness of the original method was its inability to model the un-
derlying dynamics interactions that explain the inaccuracies observed
in several case studies. For the sake of completeness and readability,
Table 2 provides an overview of Empirical and Semi-Empirical state-
of-the-art methods for propeller URN prediction reporting for each
one of the considered works its scopes, case studies, exploited data,
performance, and takeovers.

2.1.2. CFD-based models
CFD-based models, contrarily to Empirical and Semi Empirical mod-

els, are able to achieve very accurate results at the expense of con-
siderable computational requirements preventing their use at design
stage (Ianniello et al., 2013). Nevertheless, few large-scale studies
involving CFD-based numerical models exists (Lidtke, 2017).

The most common CFD-based approach involves coupling hydro-
dynamic solvers with the acoustic analogy, effectively decoupling the
noise source and noise propagation fields (Sezen et al., 2021a). For
instance, Salvatore and Ianniello (2003) employed this approach on
the David Taylor Research Center (DTRC) 4148 propeller, utilising
the Ffowcs Williams–Hawkings (FWH) acoustic analogy evaluated on
the blade surface (to deduce the URN radiated by the propeller) and
potential flow coupled with BEM (for the hydrodynamic analysis).

Similarly, Seol et al. (2002) conducted a numerical study for the
prediction of non-cavitating propeller radiated noise utilising the FWH
coupled with BEM considering a wide range of operating conditions.
The aim of the study was to investigate the effects of duct geometry on
the overall propeller URN considering sound reflection and scattering
effects. This study was further extended by Seol et al. (2005), studying
propeller URN levels and noise directivity patterns of various noise
sources under the presence of sheet cavitation on the DTRC-4119
propeller.

Several studies (Ianniello et al., 2013, 2014a,b) employed Reynolds-
Averaged Navier–Stokes (RANS) coupled with FHW to investigate the
propeller URN induced by a model- and full-scale ships and propellers
in non-cavitating conditions. The authors concluded that the propeller
URN is considerably affected by the contribution of nonlinear noise
sources which must be taken into account regardless of propeller
operational conditions. The authors also challenged the commonly
accepted idea that cavitation is in most cases the dominant propeller
URN source showing possible significant noise levels in non-cavitating
conditions. Finally, the authors concluded that the current state-of-the-
art in cavitation modelling is unlikely to be sufficient to accurately
capture the associated propeller URN as the compressibility effects are
usually excluded from the analysis.

The previous studies were further extended by
Ianniello and De Bernardis (2015), where RANS and Detached Eddy
Simulation (DES) solvers were coupled with the FWH equation, show-

ing that RANS solvers were inadequate for hydroacoustics analyses. The
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Table 2
Propeller UNR empirical and semi-empirical models review.

Ref. Scopes Case studies Exploited data Performances Takeovers

Brown
(1999)

URN prediction of thruster
propellers and reduction
technologies.

Discoverer Enterprise
drill-ship.

Measurements from 6
thruster propellers.

≤ 30 [dB] Acceptable qualitative agreement
between the predicted and
measured highest levels of
cavitation noise.

Bosschers
(2018c)

URN prediction of
broadband hull pressure
fluctuations and propeller
tip vortex cavitation.

Combi freighter vessel
and MS Statendam
cruise vessel (Kipple,
2002).

Experiments from
various vessels.

Average error less than
25 [dB] with high
variance among the
case studies.

Aspects influencing the shape of
the hump and the high frequency
slope need further investigation.

Bosschers
(2018b)

Prediction of the azimuthal
velocity distribution of a
cavitating vortex in a
two-dimensional viscous
flow.

Wing tip-vortex in
cavitating and
non-cavitating
conditions.

Experimental data from
Pennings et al. (2015).

Good qualitative
agreement between the
predicted and measured
azimuthal velocity
distributions.

Model still needs to be extended
with a relation for the axial and
radial velocity distribution.

Raestad
(1996)

Tip vortex noise and
acoustic pressure
prediction.

Various twin-screw
passenger vessels.

Experimental studies
involving 15 vessels of
various types.

Average error less than
25 [dB].

Acceptable qualitative agreement
between predictions and
experimental data of model scale
tests and full-scale trials.

Okamura and
Asano (1988)

Prediction of tonal and
broadband noise from
marine propellers.

Full-scale tests. Cargo liner and
training ship.

Average error less than
5 [dB] for tonal and
less than 20 [dB] for
broadband noise.

More detailed measurements of
cavitation patterns required for
validation.

Ekinci et al.
(2010)

URN due to blade sheet
cavitation prediction.

DTMB-4148,
DTMB-4119, and
Seium-maru HSP
propellers.

Numerical results
(Fraser, 1986).

Average error less than
25 [dB].

Models produces fast and reliable
predictions but validation on
additional propellers required.

Matusiak
(1992)

Model the generation and
collapse of free bubbles
from sheet cavitation.

Sydney Express coastal
service vessel.

Measurements from the
Pasadena oil tanker.

Average error less than
20 [dB].

Further validation on
highly-skewed propellers is
required together with extensions
to include viscous effects.
v

same approach was exploited by Lidtke et al. (2019) for the E779 A pro-
peller with the purposed to explore the crucial solution parameters for
the prediction of the propeller URN. The authors concluded that larger
porous data surface in the coarse grid region might risk information
loss due to discretisation errors and dissipation.

Finally, it is worth mentioning an interesting comparison conducted
by Testa et al. (2008) between DES and BEM solvers coupled with a
porous FHW equation for the E779 A propeller under uniform and cav-
itating conditions. The authors concluded that the BEM solver was com-
putationally cheap but inadequate to reflect the effects of non-linear
noise sources as moving downstream of the propeller.

For the sake of completeness and readability, Table 3 provides
an overview of CFD-based state-of-the-art methods for propeller URN
prediction reporting for each one of the considered works its scope,
employed methods, case studies, and takeovers.

2.2. Data-driven models

DDMs have proven to be valuable instruments in several mar-
itime applications (Miglianti et al., 2020; Coraddu et al., 2020, 2019;
Cipollini et al., 2018; Coraddu et al., 2017; Wang et al., 2021; Vesting
and Bensow, 2014; Coraddu et al., 2021b; Sha et al., 2022; Banan et al.,
2020; Shao et al., 2021; Fan et al., 2020), and have also been employed
by several researchers in propeller design and analysis.

Koushan (2000) was among the first to explore the use of DDMs
in propeller hydrodynamics, developing a Neural Network (NN) to
predict propeller induced pressure pulses utilising 470 model-scale tests.
The authors reported results of satisfactory accuracy with an average
error below 20% for the predictions of the 1st and 2nd harmonic
pressure pulse coefficient. They further commented that the use of
DDMs can accelerate the propeller design loop and help researchers
develop highly efficient unconventional designs.

NN were also exploited by Roddy et al. (2008) for the prediction
of propeller forces and moments during crash-back maneuvers. Utilis-

ing 155 experiments, the authors demonstrated that NN can estimate o

4

propeller forces and moments quite accurately, with a determina-
tion coefficient ranging in 0.95÷0.99. The authors also commented on
the potential of NN as a valuable tool for large-scale maneuvering
simulation.

DDMs for propeller design optimisation exploiting NN was explored
by Calcagni et al. (2010). Utilising a dataset of BEM simulations and
experimental data, they were able to build a model for propeller thrust
and torque coefficients prediction with an average error smaller than
4%. The authors primarily commented on the computational advan-
tages of using NN in large-scale performance optimisation studies.
In fact, they were able to successfully optimise two unconventional
propeller geometries, used in high-speed vessels, with minimal time
requirements.

Similarly to Calcagni et al. (2010), Jiang et al. (2021), employed
a NN-based URN predictor coupled with a genetic optimisation algo-
rithm to find a propeller designs with minimal low-frequency discrete
spectrum thrust. Leveraging 336 thousand simulations, they were able
to build a NN showing average error below 0.01% for the thrust
coefficient and below 0.2% and 5.7% for the and the 1st and 2nd
order discrete spectrum thrust respectively. Exploiting the NN-based
predictor, the authors obtained impressive reductions in computational
requirements (150 times faster) with respect to using a CFD-based
predictor.

A quantitative comparison between NN- and Kriging-based predic-
tor, to be used in propeller design optimisation, was reported by Vesting
and Bensow (2014). Authors first exploited a total of 350 numerical
simulations obtained by the application of the Vortex Lattice Method
(VLM) of He et al. (2011), Sun et al. (2004) to train a NN- and a Kriging-
based predictor. Then they used them to predict propeller dynamics and
the necessary cavitation constraints needed for the design optimisation
process. The NN-based models showed 1% of average error while the
Kriging-based were able to achieved smaller average error ranging in
0.3÷0.9%. The authors concluded that DDMs can facilitate rapid con-
ergence and greatly reduce computational requirements of large-scale

ptimisation processes.
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Table 3
Propeller URN prediction CFD-based models review.

Ref. Scopes Methods Case studies Takeovers

Salvatore and
Ianniello (2003)

Comparison of noise waveforms
using FWH or the Bernoulli equation.

BEM and
FWH or
Bernoulli
equation.

DTRC-4148. Waveforms are fully comparable and both
models identify the major features of cavitation
induced propeller radiated noise generation.
Discrepancies are present even at
non-cavitating flows.

Seol et al.
(2002)

Investigation of the effects of duct
geometry on overall URN considering
sound reflection and scattering
effects.

BEM and
FWH.

DTMB-4119 and
KA4-70.

Noise generated by a marine propeller under
non-cavitating conditions has a long
fundamental wavelength and the effect of the
duct is not so important at the far-field from
the viewpoint of acoustic performance.

Seol et al.
(2005)

Investigation of URN levels and noise
directivity patterns of various noise
sources under the presence of sheet
cavitation.

BEM and
FWH.

DTMB-4119. In non-uniform flows noise, directivity patterns
are a direct result of dipole noise under
non-cavitating flows.

Ianniello et al.
(2013)

Test of the versatility and
effectiveness of the numerical
method in predicting URN from
non-cavitating propellers.

RANS and
FWH.

INSEAN-E779A. Due to the relevant acoustic role played by the
vorticity and turbulence, RANS simulations
become inadequate for hydroacoustic purposes,
especially at measurement points where the
turbulent fluctuating component of the velocity
field becomes relevant.

Ianniello et al.
(2014a)

URN Prediction for a scaled ship
model in a steady course.

RANS and
FWH.

Scaled patrol boat
model.

Results demonstrate the effectiveness and
robustness of the numerical method to assess
URN and to identify the main generating noise
mechanisms.

Ianniello et al.
(2014b)

URN prediction for a large ROPAX. RANS and
FWH.

ROPAX vessel. The numerical method can be used as a
standard approach to provide hydroacoustic
characterisation during the design stage.

Ianniello and
De Bernardis
(2015)

Demonstration of the potential of the
numerical method for hydroacoustic
analysis.

RANS or DES
and FWH

INSEAN-E779A Reliable hydroacoustic analysis of a marine
propeller requires the computation of the
nonlinear quadrupole sources and cannot avoid
an accurate estimation of the three-dimensional
turbulence and vorticity fields.

Lidtke et al.
(2019)

Exploration of the sensitivity of the
FWH for defining the porous data
surfaces and key simulation
parameters such as time step and
grid resolution.

RANS or DES
and FWH.

INSEAN-E779A. Particular care must be adopted while defining
the porous data surfaces to minimise the
amount of upstream vorticity penetrating them
while ensuring the effect of noise-generating
flow features is aptly captured.

Testa et al.
(2008)

Comparison of FWH and the
Bernoulli equation for the evaluation
of far-field pressure distribution from
cavitating marine propellers.

BEM and
FWH or
Bernoulli
equation.

INSEAN-E779A Numerical results demonstrate the superiority
of the FWH and support its usage for naval
applications of hydroacoustics.
2
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Gaggero et al. (2021) demonstrated the feasibility of a multi-fidelity
nd multi-objective design optimisation of the E779 A propeller (Sal-
atore et al., 2009) employing Kriging-based prediction models. The
etters were developed exploiting data coming from different low-
idelity BEM and high-fidelity RANS (Siemens Digital Industries Soft-
are, 2021) simulations. Predictions were able to achieve average
rror ranging in 0.3÷5.8% on 160 BEM simulations and average error
anging in 0.06÷4.8% when exploiting data from 320 BEM and 40 RANS
imulations.

URN prediction capabilities of NN were also studied by Wang et al.
2021), where they were exploited to predict the Sound Pressure Levels
SPLs) at the first 3 blade passing frequencies exploiting a dataset
f 3098 hydroacoustic simulations. The authors experimented with
arious NN architectures considering a variety of interpolation and
xtrapolation scenarios. The best performing NN architecture was able
o achieve an average error of 7.8±1.0 [dB] across all targets.

For the sake of completeness and readability, Table 4 provides an
verview of state-of-the-art DDMs for propeller noise prediction, report-
ng for each one of the considered works, the scopes, the methods, the
nputs and the outputs of the models, the data exploited to conduct the
tudy, and the final performance. DDMs also appear as components of
Ms, and are therefore included in all of the studies involving HMs.

or the sake of clarity, these are further discussed in Section 2.3. b

5

.3. Hybrid models

HMs are able to exploit the physical knowledge of the phenomenon
nd available historical data, to deliver both accurate and physically
lausible results, usually surpassing the performance of both PM or
DM (Coraddu et al., 2018, 2021a, 2022).

Recently, HMs have also been proposed for propeller URN predic-
ion, and their effectiveness has been demonstrated in several stud-
es (Cipollini et al., 2019b,a; Miglianti et al., 2019; Oneto et al., 2020;
iglianti et al., 2020). A seminal work was the one of Cipollini et al.

2019b) aiming at predicting the cavitating vortex frequency and its
orresponding SPLs. The authors exploited a dataset of 164 cavitation
unnel model scale tests, a Kernel Ridge Regression (KRR) (Hain-
ueller and Hazlett, 2014) based DDM, and a semi-empirical (Bossch-

rs, 2018a; Raestad, 1996) based PM. Combining the DDM and PM they
emonstrated that the resulting HM has high potential in predicting
ortex noise. This study was further extended by Cipollini et al. (2019a)
emonstrating the superiority of HMs over DDMs and PMs in various
nterpolation and extrapolation scenarios. Subsequently, Miglianti et al.
2019) proposed HMs to predict an artificial simplification of URN
pectra. In particular, they developed 3 different modelling approaches:

PM, combining BEM simulations (Gaggero et al., 2013, 2016) with
he Empirical Tip Vortex (ETV) model (Bosschers, 2018a,c), a DDM
ased on KRR, and a Multi Task Learning (Baxter, 2000; Caruana, 1997)
ased HM. An extensive experimental analysis conducted on a dataset
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Table 4
Propeller URN prediction DDMs review.

Ref. Scopes Methods
exploited

Inputs Outputs Data Performance

Koushan
(2000)

Propeller-induced
pressure pulse
prediction.

NN. 16 wakefield quantities
and 19 propeller
geometry quantities.

1st and 2nd order
harmonic pressure
pulse coefficients.

Experimental data of
470 model-scale tests.

4% of average error for the
1st order coefficient and
20% of average error for
the 2nd order coefficient.

Roddy
et al.
(2008)

Propeller force and
moment prediction.

NN. 16 variables describing
propeller geometry and
submarine control.

Forces and moments in
6 degrees of freedom.

155 experiments of
submarine model tests.

Determination coefficient
in 0.95÷0.99.

Calcagni
et al.
(2010)

Hydrodynamic
performance prediction.

NN. Number of propeller
blades, blade area
ratio, pitch ratio, and
advance coefficient.

Thrust, torque, and
open water efficiency.

Wageningen-B series
experiments and BEM
simulations.

Average error below 4%

Jiang
et al.
(2021)

Discrete spectrum
thrust prediction.

NN. Coefficients of a 4th
order polynomial
describing the propeller
skew distribution.

Thrust coefficient and
1st and 2nd order
thrust coefficients.

336,000 BEM
simulations.

Average error below 0.01%
for the thrust coefficient
and in 0.21÷5.71% for the
1st and 2nd order thrust
coefficients.

Vesting
and
Bensow
(2014)

Hydrodynamic
performance prediction.

NN and Kriging. 11 variables for
propeller geometry,
inflow conditions. and
cavitation.

4 cavity characteristics
of the ‘‘key’’ blade.

350 VLM simulations Average error around 1%
for NN and in 0÷0.9% for
Kriging.

Gaggero
et al.
(2021)

Optimisation of the
hydrodynamic
performance

Kriging. Pitch distribution. Thrust coefficient and 4
pressure coefficients.

40–640 BEM simulations
and 4–40 RANS
simulations.

Average error in 0.3÷5.8%
on BEM and 0.06÷4.8% on
RANS simulations.

Wang
et al.
(2021)

URN prediction of
blade passing
frequencies.

NN. 15 variables describing
the propeller geometry
and inflow conditions.

1st, 2nd, and 3rd blade
passing frequency URN
levels.

3098 BEM–FWH
simulations.

Average error 7.8±1.0 [dB].
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of 425 cavitation tunnel model scale tests allowed the authors to prove
that HMs can remarkably improve the original DDMs or PMs.

Oneto et al. (2020) employed HMs to predict cavitating vortex
frequency and its corresponding SPL, utilising Deep Learning (Good-
fellow et al., 2016) based DDMs and HMs on a subset of experi-
ments of Miglianti et al. (2019). The authors demonstrated that these
new DDMs and HMs outperform the corresponding models presented
by Miglianti et al. (2019). In fact, they are able to effectively take in to
account several high-dimensional quantities describing the underlying
phenomena (i.e., surface pressure distributions over the blades, and
bound circulation). Nevertheless, authors notices how models perfor-
mance need to be tested on larger datasets of geometries and for
challenging real world extrapolation scenarios.

To the best of the authors’ knowledge, the latest results in HMs for
URN prediction are the ones of Miglianti et al. (2020), which accounts
for the extensions recommended by Oneto et al. (2020), and further
predicts the simplification of the URN spectra proposed by Miglianti
et al. (2019), instead of the cavitating vortex frequency and its corre-
sponding SPL. In this study, the authors utilised a subset of experiments
from the dataset of Miglianti et al. (2019) for the development of the
DDMs and HMs, enriched with several quantities extracted from a BEM
computational model. The authors demonstrated that HMs are able to
outperform both DDMs and PMs in all interpolation and extrapolation
scenarios considered. Still, limitations in the cardinality and variety of
geometries in the dataset are present.

For the sake of completeness and readability, Table 5 provides an
overview of the state-of-the-art HMs for propeller URN prediction re-
porting for each one of the considered works, the scopes, the methods,
the inputs and the outputs of the models, the data exploited to conduct
the study, and the final performance.

3. Dataset description

In order to test our proposal, we will leverage the dataset collected
by Aktas (2017), Aktas et al. (2018), which we will describe in this
section for the sake of completeness. We provide all details that would
allow the full reproduction of our work on any similar dataset, and
note that any dataset containing experiments from a cavitation tunnel,
6

university, research institution, or private company could have been
employed.

The authors of Aktas (2017), Aktas et al. (2018) performed an
extensive measurement campaign conducting a series of cavitation
tunnel tests at the Emerson Cavitation Tunnel of the Newcastle Univer-
sity (Atlar, 2011), with 6 members of the Meridian Standard propeller
series (Emerson, 1978) and 3 wakefields.

The Meridian propeller series, derived from the proprietary pro-
peller design of the Stone Manganese Marine Ltd., is an unique standard
series based solely on practical propeller designs for standardised vari-
ations in pitch-to-diameter ratio 𝑃∕𝐷, blade area ratio 𝐴𝐸∕𝐴𝑂, and number
of blades 𝑍, where 𝑃 is the propeller pitch, 𝐷 is the propeller diameter,
𝐴𝐸 is the expanded area of the propeller, and 𝐴𝑂 is the propeller disk
area. Initially, the series comprised 4 parent models having a combina-
tion of 𝐴𝐸∕𝐴𝑂 ∈ {0.45, 0.65, 0.85, 1.05} and 𝑃∕𝐷 ∈ {0.4, 0.6, 0.8, 1.0, 1.2}. All
ropellers had 𝐷 = 304.8 [mm] and 𝑍 = 6 blades with a hub diameter
f 𝐷ℎ = 0.185𝐷. Currently, there are 60 propellers in the series, with
∈ {4, 5, 6}, 𝐴𝐸∕𝐴𝑂 ∈ [0.45, 1.05] and 𝑃∕𝐷 ∈ [0.4, 1.2] (Carlton, 2018). The

ubset of this series exploited in this work includes the propeller models
ing’s College-D (KCD)-65, KCD-74, KCD-129, KCD-191, KCD-192, and
CD-193 represented in Fig. 1.

The wakefields were selected based on the criteria suggested by
onno et al. (2002), Angelopoulos et al. (1988), Odabasi and Fitzsim-
ons (1978), where it was observed that steeper velocity changes

n the wakefield produce more severe pressure fluctuations, and con-
ribute to the formation of a higher number of cavities (Aktas et al.,
018). Based on these observations, the wake non-uniformity, mean
ake, half-wake width, and wake depth were controlled to generate 3
akefields that would induce variation in the inflow velocities of vary-

ng severity. These changes would subsequently induce the formation of
nsteady cavitation from the collapse and rebound of cavity volumes at
he exit of the wake peak region. Fig. 2 provides a visual representation
f the wakefields, which are referred to as W1, W2, and W3.

Based on these propeller geometries and wakefields, a full fac-
orial experimental design was conducted, including 3 levels of tun-
el vacuum pressures (150 [mmHg], 300 [mmHg], and 760 [mmHg])
nd 8 propeller rotational speeds (600 [rpm], 800 [rpm], 1000 [rpm],
200 [rpm], 1400 [rpm], 1500 [rpm], 1750 [rpm], and 2000 [rpm])
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Table 5
Propeller Noise Prediction HMs review.

Ref. Scopes Methods
exploited

Inputs Outputs Data DDM Performance HM Performance

Cipollini
et al.
(2019a)

Cavitating vortex
frequency and SPL
prediction.

KRR. 39 quantities for
propeller geometry,
inflow conditions,
cavitation.

Cavitating vortex
frequency and SPL.

164 cavitation
tunnel tests.

Errors ranging between
10.9÷18.1% for
interpolation, and
17.6÷25.1% for
extrapolation.

Errors ranging between
6.4÷10.7% for interpolation,
and 7.7÷12.6% for
extrapolation.

Miglianti
et al.
(2019)

Simplified spectra
URN prediction.

KRR. 39 quantities for
propeller geometry,
inflow conditions,
cavitation.

3 2-dimensional key
quantities of the
URN spectrum.

425 cavitation
tunnel tests.

Errors ranging between
5.3÷140.1% for
interpolation, and between
15.2÷354.4% for
extrapolation.

Errors ranging between
4.3÷10.1% for interpolation,
and between 6.1÷12.6% for
extrapolation.

Oneto
et al.
(2020)

Cavitating vortex
frequency and SPL
prediction.

NN. 39 quantities for
propeller geometry,
inflow conditions,
cavitation.

Cavitating vortex
frequency and SPL.

258 cavitation
tunnel tests.

Errors approximately equal
to 6% for all quantities
predicted.

Errors ranging between
4.0÷4.7% for all quantities
predicted.

Miglianti
et al.
(2020)

Simplified spectra
URN prediction.

NN. 37 quantities for
propeller geometry,
inflow conditions,
cavitation.

3 2-dimensional
quantities of the
URN spectrum.

258 cavitation
tunnel tests.

Errors ranging between
2.9÷6.1% for interpolation,
and between 5.8÷9.8% for
extrapolation.

Errors ranging between
2.3÷4.3% for interpolation,
and between 4.2÷8.1% for
extrapolation.
Fig. 1. Subset of the Meridian Standard propeller series exploited in this work.
Fig. 2. Contour plots of axial velocity distributions of the dataset wakefields.
7
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with a constant inflow velocity of 3 [m/s], for a total of 432 exper-
iments (Aktas et al., 2018). The URN was measured by means of an
hydrophone placed in the tunnel test section, measuring the fluctu-
ations of the pressure over time. The pressure timeseries spectrum,
computed via Fourier transformation, were subsequently converted in
1∕3 octave band Institute (2009), corrected for background noise, and
converted to the standard measuring distance of 1 [m] according to the
recommendations of International Towing Tank Conference Specialist
Committee on Hydrodynamic Noise (2017). A visual representation of
the experimental setup is reported in Fig. 3.

From this set of experiments we extracted a set of quantities (that
we will exploit later as predictive features and targets to predict) that
will compose our dataset (of 432 samples, one for each experiment).

For what concerns the targets, the final goal is to predict the
Radiated Noise Levels (RNLs) in the form of 1∕3 octave band, namely
31 RNLs for 31 frequencies 𝒇 .

For what concerns the predictive features, namely, the quantity that
we can extract at design stage to make the predictions, we rely on a
set of quantities that provide a rich representation of the propeller ge-
ometry and the operational aspects that influence the generated noise,
including cavitation phenomena, loading, and kinematic conditions.
Some of these quantities can be easily and rapidly estimated via BEM.

In order to describe the propeller geometry, we rely on a combina-
tion of heterogeneous quantities. The first and most intuitive ones are
𝐷, 𝑍, and 𝐴𝐸∕𝐴𝑂. Additionally, we took into account 𝑷 , chord 𝒄, total
rake 𝒊𝑇 , maximum thickness 𝒕max, maximum camber 𝒇max, and skew
angle 𝜽𝑠 for 8 radial sections from the root to the blade tip. Skew angle
is defined as the rotation of the section seen in the transversal plane
with respect to midchord measured from the vertical axis.

In order to describe the average operating conditions, we included
the propeller’s rotational speed 𝑛𝑝, its advance velocity 𝑉𝑎, the static
ressure of the tunnel 𝑝rel, the advance ratio 𝐽 , thrust and torque
oefficients 𝐾𝑡, 𝐾𝑞 , and the propeller efficiency 𝜂𝑜 (Carlton, 2018). The
akefields are defined as 𝒘𝑎 = 1 − 𝑽 𝒂

𝑉 , with 𝑉 being the undisturbed
low velocity. These quantities are usually known during the propeller
esign process (Miglianti et al., 2019) and are represented by two-
imensional tensors of the axial wake distribution in polar coordinates,
rovided for 22 radial sections and 60 angular positions. In order to
ndicate the presence of cavitation, we consider 4 different definitions
f the cavitation index (Carlton, 2018). First 𝜎𝑣 and 𝜎𝑛, that refer to
he cavitation numbers based on 𝑉𝑎 and 𝑛𝑝 respectively. Then 𝜎v,tip
nd 𝜎n,tip that refer to the same values resulting at the tip and also
ith respect to the static pressure at the tip when the blade is in the
pright position. In order to describe the hydrodynamic functioning of
he blade sections, we also include the geometric angle of attack 𝜶𝐺 in

the dataset, evaluated as the difference between the advance angle 𝜽 of
𝑎

8

a blade section and the local pitch angle 𝜽𝑝 according to International
owing Tank Conference Propulsion Committee (2008)

𝐺(𝑟, 𝜃) = 𝜃𝑝(𝑟) − 𝜃𝑎(𝑟, 𝜃),

𝑎(𝑟, 𝜃) = arctan
[

𝑉𝑎
(

1 −𝑤𝑎(𝑟, 𝜃)
)

2𝜋𝑛𝑟

]

, (1)

ith 𝑟 and 𝜃 being the radial and angular position of the blade section.
Finally, we estimate 2 tensors with a computationally inexpen-

ive BEM briefly recalled in Section 4.1, extensively described in Ka-
ikatzarakis et al. (2021), and verified in many works (Gaggero and
rizzolara, 2009; Gaggero et al., 2013, 2016; Gaggero and Villa, 2017,
018; Gaggero et al., 2010, 2014, 2019). These quantities include the
istribution of the pressure coefficient 𝑪pn for 44 chord-wise locations,
2 radial sections and 60 angular positions, as well as the unsteady
adial circulation distribution 𝑪 for the same radial sections and angu-
ar positions. 𝑪pn is directly related to the occurrence of blade surface
avitation and can provide an estimation of cavitation inception (see
ection 4.2.1). 𝑪 is related to the forces acting on the hydrofoil, and
n particular to the lift, according to the well-known Kutta–Joukowski
heorem (Katz and Plotkin, 2001) and correlates with the load acting
n the blades and its distribution, which in turn is strictly related to the
trength of the shed vortices and the occurrence of vortex cavitation. By
onsidering all these quantities, we can fully characterise the dynamic
ressure acting on the whole surface of the blades during their rotation
n any wakefield (Miglianti et al., 2020).

A summary of the quantities just described composing our dataset
s reported in Table 6. Note that data have not been made publicly
vailable due to confidentiality constraints.

. Methodology

This section is devoted to the description of the proposed methodol-
gy with all the details needed to reproduce this study and is organised
s follows. Authors first recall the PM (Section 4.1), then we exploit this
M to empower state-of-the-art DDMs (Section 4.2) to build novel HMs
Section 4.3). In particular, we will leverage the domain knowledge
oth for the DDMs (to design a domain-knowledge enriched feature
et) and HMs (to exploit the knowledge distilled from the PM) and the
ipeline of the different approaches is summarised in Section 4.4. , we
escribe the methods to tune and assess the performance of the methods
n different interpolating and extrapolating scenarios, as reported in
ection 4.5. Finally, the physical plausibility of the generated model
ill be tested according to what is described in Section 4.6.
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Table 6
Quantities available in the dataset.

Targets to predict

Symbol Description Sizea Units

RNLs RNLs in 1∕3 octave band 31 [dB]

Input features for the prediction

Symbol Description Sizea Units

Propeller geometry

𝐷 Propeller diameter [m]
𝑍 Number of blades [–]
𝐴𝐸∕𝐴𝑂 Blade aspect ratio [–]
𝒑 Sectional pitch 8 [m]
𝒄 Sectional chord 8 [m]
𝒊𝑇 Sectional total rake 8 [deg]
𝒕max Max. sectional thickness 8 [m]
𝒇max Max. sectional camber 8 [m]
𝜽𝑠 Sectional skew angle 8 [deg]

Operating conditions

𝑛𝑝 Propeller rotational speed [rpm]
𝑉𝑎 Advance velocity [m/s]
𝑝rel Tunnel pressure [mbar]
𝒘𝑎 Axial wakefield 22 × 60 [–]
𝐽 Advance coefficient [–]
𝐾𝑡 Thrust coefficient [–]
10𝐾𝑞 Torque coefficient [–]
𝜂𝑜 Propeller efficiency [–]
𝜎𝑣 Cavitation index ref. on 𝑉𝑎 [–]
𝜎v,tip Cavitation index ref. on

√

𝑉 2
𝑎 + (𝜋𝑛𝑝𝐷)2 at blade tip [–]

𝜎𝑛 Cavitation index ref. on 𝑛𝑝𝐷 [–]
𝜎n,tip Cavitation index ref. on 𝑛𝑝𝐷 at blade tip [–]
𝜶𝐺 Geometric angle of attack 22 × 60 [deg]

Estimated quantities from BEM simulations

𝑪 Blade circulation 22 × 60 [–]
𝑪𝒑𝒏 Pressure coefficient 44 × 22 × 60 [–]

aEmpty field indicates scalar quantity.
.1. Physical models

The exploited PMs have been verified and validated by Kalikatzarakis
t al. (2021), and for the sake of completeness, here we will report a
ummary of the method.

First, to accurately characterise the propeller’s hydrodynamic field,
nsteady hydrodynamic computations have been performed through
n in-house developed BEM code (Gaggero et al., 2010; Gaggero and
illa, 2018). The validity of our implementation for cavitating flows
as been demonstrated in the past for steady (Gaggero and Villa, 2017)
nd unsteady conditions (Gaggero and Villa, 2018), for strongly non-
omogeneous wakefields (Brizzolara et al., 2008; Gaggero et al., 2014),
or very off-design conditions (Gaggero et al., 2019), and for a variety
f propeller types, including supercavitating (Gaggero and Brizzolara,
009), ducted (Gaggero et al., 2013), and tip loaded propellers (Gag-
ero et al., 2016).

Then, to estimate the broadband effects of sheet cavitation, we
mplemented the approach suggested by Matusiak (1992), which con-
iders as inputs the blade pressure distribution computed by the BEM
ode, along with 5 constants that can be estimated from available data.
he model assumes that any change in the volume rate of the generated
ubbles equals the rate at which the sheet cavity volume decreases and
hat the bubble size follows a 𝛽 distribution. In combination with a
ubble dynamics model (Brennen, 2014), this method can accurately
stimate the high-frequency broadband spectral content of the URN due
o propeller cavitation.

Finally, we utilise the ETV model proposed by Bosschers (2018a,c)
o estimate the URN due to the TVC. In particular, the ETV is a semi-
mpirical model based on the Tip Vortex Index (TVI) method (Raestad,
996), and relates the measured URN to the predicted size of the vortex
avity, using a computed circulation distribution on the propeller blade.
9

Note that this PM, as all PMs, has no hyperparameters to tune
(since the model structure is given by the domain knowledge) and just
parameters need to be tuned on the available data (see Table 8).

4.2. Informed data-driven models

In this section, we will present our proposal for an Informed DDMs,
namely a pure shallow DDMs that leverage on the domain knowledge
to design a rich and informative yet synthetic feature set.

In fact DDMs can be grouped in two main families: shallow and
deep DDMs (Shalev-Shwartz and Ben-David, 2014; Goodfellow et al.,
2016). Shallow DDMs usually require handcrafting, implicitly and/or
explicitly, features to be able to achieve good recognition perfor-
mance (Shalev-Shwartz and Ben-David, 2014; Duboue, 2020). Usually,
this feature set is designed based on classical signal processing tech-
niques (Duboue, 2020) and then enriched via ensemble (Breiman,
2001; Chen and Guestrin, 2016), kernel (Shawe-Taylor and Cristian-
ini, 2004), random (Huang et al., 2011), or learned (Bishop et al.,
1995) representations. Deep DDMs, instead, are able to automatically
learn features directly from the data (Goodfellow et al., 2016) and
over-perform state-of-the-art shallow models (and in some case also
humans) in terms of recognition performance in many different appli-
cations (Cireşan et al., 2011; Hekler et al., 2019; Silver et al., 2017;
Jumper et al., 2021; Grace et al., 2018). Unfortunately, Deep DDMs
have also three main weaknesses. First, they require a huge number
of samples to be trained. In our case, the dataset has less than 500
samples in the simplest scenario, namely interpolation, and much fewer
samples in complex scenarios (see Section 4.5), namely extrapolation.
The second problem is that Deep DDMs are very hard to interpret. It
is complex to understand what they actually learned from the data,
resulting in models not useful for practical applications, where insights
on the problem need to be extracted (Molnar, 2020). Finally, Deep
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Fig. 4. Wake features defined by Odabaşi and Fitzsimmons (1978) and utilised
in Miglianti et al. (2019).

DDMs are seldom able to give physically plausible prediction, see for
example the well known problem of the adversarial samples (Biggio
and Roli, 2018; Duan et al., 2020).

For these reasons in this work we will leverage on Informed Shallow
DDMs and for this purpose we will present in Section 4.2.1 the proposed
Informed Feature Engineering Phase and in Section 4.2.2 the different
state-of-the-art Shallow DDMs that we will test since, a priori, it is not
possible to choose a model (Adam et al., 2019) and different approaches
need to be tested.

4.2.1. Informed feature engineering phase
The predictive features described in Table 6 are fundamental raw

quantities to predict the URN SPLs. Nevertheless, as described above,
DDMs can achieve their full potentials when these raw quantities are
transformed in richer and informative, yet synthetic feature set, based
on the domain knowledge.

In particular, some quantities have been kept from the original
dataset (Table 6), while others (𝒘𝑎, 𝜶𝐺, 𝑪, and 𝑪pn) need to be
synthesised into a new set of features characterised by a more compact
yet informative set of features.

Wakefield. For what concerns 𝒘𝑎, we followed the approach of Od-
abaşi and Fitzsimmons (1978), as these features are known to provide
a rich representation of the propeller inflow conditions (Carlton, 2018;
Miglianti et al., 2019, 2020). The first quantity that we can extract from
𝒘𝑎 is the average volumetric axial wake �̄�𝑎

�̄�𝑎 =
∫ 𝑅
𝑟ℎ

𝑟 ∫ 2𝜋
0 𝑤𝑎(𝑟, 𝜃)𝑑𝜃𝑑𝑟

𝜋
(

𝑅2 − 𝑟2ℎ
) , (2)

where 𝑟ℎ corresponds to the hub radius and 𝑅 to the propeller radius.
Furthermore, several quantities on two radial sections, 𝑟∕𝑅 = 0.7, and
𝑟∕𝑅 = 0.9, have been defined

• the left and right gradients of 𝒘𝑎 w.r.t. the angular position
𝐷𝜃𝑤|

{+,−}
{07,09}, which represent the rate of variation of blade loading

during one revolution;
• the wake width 𝑤wd{07,09}, which is the angular sector where the

wake fraction is greater than 0.05, i.e. the sector where the axial
velocity on the propeller plane is reduced by at least 5%;

• the wake depth 𝑤max{07,09}, which corresponds to the maximum
value of 𝒘𝑎 for a given radial section.

Fig. 4 provides a visual impression of these features for one radial
section. In principle, all and any radial sections of a propeller can be
utilised. Nevertheless, the ones described represent the best trade-off
between: Richness of the features describing propeller behaviour under
sheet cavitation and TVC (Carlton, 2018), and the cardinality of the
feature set.

To further enrich the representation of 𝒘𝑎, we exploit Fourier’s
theorem to decompose the total fluctuating component at any radial

section into a finite set of sinusoidal components of various harmonic c
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orders. We use the first 4 components of this decomposition, as they
are sufficient to accurately describe 𝒘𝑎 for the available experimental
data. Using this basis, the general approximation of 𝒘𝑎 at a particular
propeller radius is given by

𝑤𝑎(𝜃)|𝑟 =
4
∑

𝑘=0
𝑎𝑤,𝑘

|𝑟
cos

( 𝑘𝜃
2𝜋

)

+ 𝑏𝑤,𝑘|𝑟 sin
( 𝑘𝜃
2𝜋

)

, (3)

ith 𝑎𝑤,𝑘
|𝑟
, 𝑏𝑤,𝑘

|𝑟
being the Fourier coefficients of order 𝑘 = {1,… , 4}

hat have been utilised as additional features.

ngle of attack. The angle of attack is another important aspect with
espect to cavitation occurrence, and more specifically the presence of
heet cavities on the suction sides of the blades (Carlton, 2018). The
valuation of the angle of attack requires the propeller’s self-induced
elocities to be known. These can be straightforwardly evaluated using
BEM or lifting surface numerical code. However, as the information

t contains is implicitly included in 𝒘𝑎 (Miglianti et al., 2019), the
eometric angle of attack is used instead, for simplicity.

We extract a set of features from 𝜶𝐺 that is similar to 𝒘𝑎. For the
ame radial locations of the blade, namely at the 70% and the 90% of
he propeller radius, we computed

• the average value of 𝜶𝐺, denoted as �̄�𝐺;
• its minimum value 𝛼𝐺min

and the corresponding angular location
𝜃min 𝛼𝐺 ;

• its maximum value 𝛼𝐺max
and the corresponding angular location

𝜃max 𝛼𝐺 ;
• the coefficients (𝒂, 𝒃)|𝛼𝐺 resulting from the Fourier analysis.

ropeller blade pressure distribution. The pressure distribution evalu-
ted with BEM can approximate the presence of cavitation under
he assumption that cavitation occurs when the opposite of the local
ressure coefficient is higher than the cavitation index at a given
perating condition, i.e., when the local pressure is lower than the
apour pressure (Gaggero and Villa, 2017). This cavitation inception
riterion has been successfully applied for the design of conventional
nd unconventional propellers, and it allows estimating the occurrence
f cavitation on the blades, its location, and to guess its extent (Gaggero
nd Villa, 2017; Gaggero, 2020). With these considerations in mind, in
rder to estimate the region where true cavitation starts from 𝑪pn, we
valuate the blade areas 𝑨𝑐 |(𝑠), 𝑨𝑐 |(𝑝), for which the pressure is lower
han the vapour pressure. Subsequently, from these two vectors we
urther compute

• the 4th order Fourier coefficients (𝒂, 𝒃)|𝐴𝑐 |(𝑠)
and (𝒂, 𝒃)|𝐴𝑐 |(𝑝)

;
• the minimum and maximum areas encountered 𝐴min 𝑐 |(𝑠), 𝐴min 𝑐 |(𝑝),
𝐴max 𝑐 |(𝑠), and 𝐴max 𝑐 |(𝑝);

• their corresponding angular positions 𝜃min𝐴𝑐 |(𝑠)
, 𝜃min𝐴𝑐 |(𝑝)

, 𝜃max𝐴𝑐 |(𝑠)
and 𝜃max𝐴𝑐 |(𝑝)

.
oreover, we split each side of the blade into the following 4 panels,

ccording to Fig. 5
• Panel 1 (𝑃 1): From blade root to 𝑟∕𝑅 = 0.7, and from the leading

edge to 20% of the chord;
• Panel 2 (𝑃 2): From blade root to 𝑟∕𝑅 = 0.7, and from 20% to 60%

of the chord;
• Panel 3 (𝑃 3): From 𝑟∕𝑅 = 0.7 to blade tip, and from the leading

edge to 20% of the chord;
• Panel 4 (𝑃 4): From 𝑟∕𝑅 = 0.7 to blade tip, and from 20% to 60%

of the chord.
or panels 𝑃1 and 𝑃3 on the pressure side of the blade, and panels 𝑃 1,
2, 𝑃 4, and 𝑃 4 on the suction side, we evaluate the minimum value
f 𝑪pn for each angular position of the key blade, and subsequently
ompute the 4th order Fourier coefficients.

lade circulation. Finally, from 𝑪 , we evaluate the strength of the
ortex shed in the wake 𝜞 0.95 at 𝑟∕𝑅 = 0.95, which is proportional to
he cavitating tip vortex occurrence (Brennen, 2014), for every angular
osition of the key blade. From the resulting vector, we subsequently

ompute
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Fig. 5. Blade subdivision in panels.

• its minimum value 𝛤min 095 and the corresponding angular location
𝜃min𝛤095 ;

• its maximum value 𝛤max 095 and the corresponding angular loca-
tion 𝜃max𝛤095 ;

• the coefficients (𝒂, 𝒃)|𝛤095 resulting from a Fourier analysis.

Final predictive features set. The new set of predictive features com-
ing from Table 6 according to what we described in this section is
summarised in Table 7.

4.2.2. Shallow data-driven models
After the Informed Feature Engineering phase described in Sec-

tion 4.2.1, we applied a series of top learning algorithms for re-
gression. In fact, the problem of predicting the URN RNLs in 1∕3
octave band based on the predictive features reported in Table 7
can be mapped to a typical multi-output regression problem in Ma-
chine Learning (Shalev-Shwartz and Ben-David, 2014; Shawe-Taylor
and Cristianini, 2004).

The no-free-lunch theorem (Adam et al., 2019) ensures us that,
in order to find the best algorithm for a particular application, it
is necessary to test multiple algorithms. In our case, we will test 4
state-of-the-art algorithms2 (Fernández-Delgado et al., 2014; Wainberg
et al., 2016): Random Forests (RF) (Breiman, 2001), XGBoost (Chen
and Guestrin, 2016), Kernel Ridge Regression (KRR) (Shawe-Taylor and
Cristianini, 2004), and a Single Layered Neural Network (SNN) (Bishop
et al., 1995).

In RF we need to tune the number of features to randomly sample
from the whole features during each node of each tree creation 𝑛𝑓 and
the maximum number of elements in each leaf of each tree 𝑛𝑙. As RF
performance improves increasing the number of trees 𝑛𝑡 we set it to
1000 as a reasonably large number but yet computationally tractable.

In XGBoost, we need to tune the learning rate of the gradient 𝑙𝑟, the
max dept of each tree 𝑛𝑑 , the minimum loss reduction 𝑚𝑙, number of
points to randomly sample from the whole training set for each tree
creation 𝑛𝑏, and the number of features to randomly sample from the
whole training set during the creation of each node for each tree 𝑛𝑓 .

In KRR we chose to rely on the Gaussian kernel for the reason
escribed in Keerthi and Lin (2003), and then the regularisation hy-
erparameter 𝜆 and the kernel coefficient 𝛾 need to be tuned.

In SNN, we use the sigmoid activation function in the hidden layer
nd the linear activation in the output layer, and we used the ADAM
ptimiser (Bishop et al., 1995). Then we need to tune the learning rate
𝑟, the number of hidden neurons ℎ𝑙, the weight decay 𝑤𝑑 , and the
ropout rate in the hidden layer 𝑑𝑟.

The summary of these hyperparameters with the associated search
pace is reported in Table 8.

As we will see in Section 5, KRR will result to be the best performing
lgorithm for this application.

2 Results in Kaggle www.kaggle.com, the most popular Machine Learning
ompetition website, shows that these algorithms are the top winners.
 t
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4.3. Hybrid models

Current, all HMs rely on the same idea (see Section 2): correct/imp-
rove the results of the PMs exploiting the available data or improve
the results of the DDMs encapsulating the domain knowledge into the
DDMs (i.e., via feature engineering or via DDMs functional form modi-
fications). In this paper, we consider the first approach since the second
one, according to the point of view of the authors, can be inserted
under the umbrella of fine tuned PMs (i.e., PMs whose parameters are
tuned with available data) of informed DDMs (i.e., features engineered
or enriched with domain knowledge).

In the context of HMs (see Section 2), current strategies are quite
basic: either the results of the PMs are added as new features for the
DDMs, or the DDMs tries to learn, simultaneously, both the data and
the output of the PMs (i.e., be as much as possible close to it).

In this work, we propose a novel and more elaborated approach.
Since the final goal of the HMs is to correct the PMs outputs via DDM,
we will use the idea of recursion where, for a series of iterations,
the DDMs input features are enriched with the difference between the
output of the PMs and the one of the DDMs itself.

More formally, let us define the PM as 𝑃𝑀 (𝑋) where 𝑋 is a subset
f the features of Table 6 needed to predict the URN RNLs (see
ection 4.1). Then the DDM of Section 4.2 is defined as 𝐷𝑀 (𝑋) where

𝑋 is the set of features of Table 7. Finally, the proposed HM 𝐻𝑀 (𝑋) =
𝐷𝑟

𝑀 (𝑋) where

𝐷0
𝑀 (𝑋) = 𝐷𝑀 (𝑋),
𝑖+1
𝑀 (𝑋) = 𝐷𝑀 ([𝑋,𝐷𝑖

𝑀 (𝑋) − 𝑃𝑀 (𝑋)]), 𝑖 ∈ {1,… , 𝑟} (4)

here 𝑟 is the number of recursion iterations, an hyperparameter to be
uned (see Table 8). In plain English, the proposed HM, is the successive
pplication of a DDM informed by the distance from the PMs and
implicitly) the accuracy of the previous application of the DDM.

.4. Physical, data-driven, and hybrid models pipeline

In order to improve the readability and the clarity of the manuscript,
e present in Fig. 6 a simplified pipeline of the proposed methodology

or the exploited and proposed PMs (Section 4.1), DDMs (Section 4.2),
nd HMs (Section 4.3).

.5. Scenarios and performance tuning/assessment

In our experiment, we will study three different extrapolating sce-
arios based on the intrinsic hierarchy of the dataset. This will allow
s to understand the extrapolation ability and the robustness of the
ifferent models described in Sections 4.1, 4.2, and 4.3:

• Leave One Rotational Speed Out (LORSO): in this scenario the
models have been trained with all data except the one referring
to a particular rotational speed;

• Leave One Wakefield Out (LOWO): in this scenario the models
have been trained with all data except the one referring to a
particular wakefield;

• Leave One Geometry Out (LOGO): in this scenario the models
have been trained with all data except the one referring to a
particular propeller geometry.

ote how the scenarios are the extrapolating scenario increase in
omplexity from LORSO to LOWO and finally to LOGO.

We report in Fig. 7 a visual representation of the intrinsic hierarchy
f the dataset and these three scenarios. In particular, in the figure, we
ighlighted data hidden from the training phase and exploited just for
esting purposes.

What remains to be addressed is how to tune the hyperparameters
f the PMs, DDMs, and HMs and how to assess the final perfor-
ance (Oneto, 2020).

For what concerns the last point, the answer is easy. Based on

he different scenarios (LORSO, LOWO, and LOGO) we have to split

http://www.kaggle.com
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Table 7
Predictive feature set engineered from the quantities of Table 6 based on the domain knowledge.

Symbol Description Sizea Units

Quantities retained from the original dataset of Table 6.

𝐷 Propeller diameter [m]
𝑍 Number of blades [–]
𝐴𝐸∕𝐴𝑂 Blade aspect ratio [–]
𝒑 Sectional pitch ratio 1 × 8 [–]
𝒄 Sectional chord ratio 1 × 8 [–]
𝒊𝑇 Sectional total rake ratio 1 × 8 [–]
𝒕max Max. sectional thickness ratio 1 × 8 [–]
𝒇max Max. sectional camber ratio 1 × 8 [–]
𝜽𝑠 Sectional skew angle 1 × 8 [deg]
𝑛𝑝 Propeller rotational speed [rpm]
𝑉𝑎 Advance velocity [m/s]
𝑝rel Tunnel pressure relative to ambient pressure [mbar]
𝐽 Advance coefficient [–]
𝐾𝑡 Thrust coefficient [–]
10𝐾𝑞 Torque coefficient [–]
𝜂𝑜 Propeller efficiency [–]
𝜎𝑣 Cavitation index ref. on 𝑉𝑎 [–]
𝜎v,tip Cavitation index ref. on

√

𝑉 2
𝑎 + (𝜋𝑛𝑝𝐷)2 at blade tip [–]

𝜎𝑛 Cavitation index ref. on 𝑛𝑝𝐷 [–]
𝜎n,tip Cavitation index ref. on 𝑛𝑝𝐷 at blade tip [–]

Quantities substituting 𝒘𝑎 in the original dataset of Table 6.

�̄�𝑎 Average 𝒘𝑎 [–]
(𝒂, 𝒃)|𝑤07

4th order Fourier coefficients of 𝑤 at 0.7R 1 × 9 [–]
𝑤𝑤𝑑07 Wakefield width at 0.7R [deg]
𝐷𝜃𝑤|

+
07 Left wake gradient at 0.7R [deg]

𝐷𝜃𝑤|

−
07 Right wake gradient at 0.7R [deg]

𝑤max 07 Maximum 𝑤 at 0.7R [–]
(𝒂, 𝒃)|𝑤09

4th order Fourier coefficients of 𝑤 at 0.9R 1 × 9 [–]
𝑤wd09 Wakefield width at 0.9R [deg]
𝐷𝜃𝑤|

+
09 Left wake gradient at 0.9R [deg]

𝐷𝜃𝑤|

−
09 Right wake gradient at 0.9R [deg]

𝑤max 09 Maximum 𝑤 at 0.9R [–]

Quantities substituting 𝜶𝐺 in the original dataset of Table 6.

�̄�𝐺07
Average 𝜶𝐺 at 0.7R [deg]

𝛼𝐺max 07
Maximum 𝜶𝐺 at 0.7R [deg]

𝛼𝐺min 07
Minimum 𝜶𝐺 at 0.7R [deg]

𝜃max 𝛼𝐺07
Angular position of 𝛼𝐺max 07

[deg]
𝜃min 𝛼𝐺07

Angular position of 𝛼𝐺min 07
[deg]

(𝒂, 𝒃)|𝛼𝐺07 4th order Fourier coefficients of 𝜶𝐺07
1 × 9 [deg]

�̄�𝐺09
Average 𝛼𝐺 at 0.9R [deg]

𝛼max𝐺09
Maximum 𝛼𝐺 at 0.9R [deg]

𝛼min𝐺09
Minimum 𝛼𝐺 at 0.9R [deg]

𝜃max 𝛼𝐺09
Angular position of max 𝛼𝐺09

[deg]
𝜃min 𝛼𝐺09

Angular position of min 𝛼𝐺09
[deg]

(𝒂, 𝒃)|𝛼𝐺09 4th order Fourier coefficients of 𝜶𝐺09
1 × 9 [deg]

Quantities substituting 𝑪𝒑𝒏 in the original dataset of Table 6.

𝐴max 𝑐 |(𝑠) Maximum 𝐴𝑐 |(𝑠) [m]
𝐴min 𝑐 |(𝑠) Minimum 𝐴𝑐 |(𝑠) [m]
𝜃max𝐴𝑐 |(𝑠)

Angular position of 𝐴max 𝑐 |(𝑠) [deg]
𝜃min𝐴𝑐 |(𝑠)

Angular position of 𝐴min 𝑐 |(𝑠) [deg]
(𝒂, 𝒃)|𝐴𝑐 |(𝑠)

4th order Fourier coefficients of 𝐴𝑐 |(𝑠) 1 × 9 [m]
𝐴max 𝑐 |(𝑝) Maximum 𝐴𝑐 |(𝑝) [m]
𝐴min 𝑐 |(𝑝) Minimum 𝐴𝑐 |(𝑝) [m]
𝜃max𝐴𝑐 |(𝑝)

Angular position of max𝐴𝑐 |(𝑝) [deg]
𝜃min𝐴𝑐 |(𝑝)

Angular position of min𝐴𝑐 |(𝑝) [deg]
(𝒂, 𝒃)|𝐴𝑐 |(𝑝)

4th order Fourier coefficients of 𝐴𝑐 |(𝑝) 1 × 9 [m]
(𝒂, 𝒃)|𝐶P1

pn
|(𝑝) 4th order Fourier coefficients of 𝐶 (LE,p,r)

𝑝𝑛 1 × 9 [–]
(𝒂, 𝒃)|𝐶P2,

pn
|(𝑝) 4th order Fourier coefficients of 𝐶 (LE,p,t)

𝑝𝑛 1 × 9 [–]
(𝒂, 𝒃)|𝐶P1

pn
|(𝑠) 4th order Fourier coefficients of 𝐶 (LE,s,r)

𝑝𝑛 1 × 9 [–]
(𝒂, 𝒃)|𝐶P2,s

pn
|(𝑠) 4th order Fourier coefficients of 𝐶 (LE,s,t)

𝑝𝑛 1 × 9 [–]
(𝒂, 𝒃)|𝐶P3,s

pn
|(𝑠) 4th order Fourier coefficients of 𝐶 (m,s,r)

𝑝𝑛 1 × 9 [–]
(𝒂, 𝒃)|𝐶P4

pn
|(𝑠) 4th order Fourier coefficients of 𝐶 (m,s,t)

𝑝𝑛 1 × 9 [–]

Quantities substituting 𝑪 in the original dataset of Table 6.

(𝒂, 𝒃)|𝛤095
3rd order Fourier coefficients of 𝛤095 1 × 7 [m2/s]

𝛤max 095 Maximum 𝛤095 [m2/s]
𝛤min 095 Minimum 𝛤095 [m2/s]
𝜃max𝛤095

Angular position of max𝛤095 [deg]
𝜃min𝛤095

Angular position of min𝛤095 [deg]
aEmpty field indicates scalar quantity.
12
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Fig. 6. Simplified pipeline of the proposed methodology for the exploited and proposed PMs (Section 4.1), DDMs (Section 4.2), and HMs (Section 4.3).
Fig. 7. Visual representation of the intrinsic hierarchy of the dataset and the three extrapolating scenarios. In particular we highlighted data hidden from the training phase and
exploited just for testing purposes.
the data in Training 𝑛 and Test 𝑡 sets using the principle described
above. Then we can use 𝑛 to both train the model and select the best
hyperparameters (architecture) of the shallow and deep models and
used 𝑡 to assess the performance of the final model. Repeating multiple
times, this procedure will give us the average performance in the
different scenarios. The performance will be measured in accordance
with different metrics: three qualitative (the Mean Absolute Error –
13
MAE – the Mean Absolute Percentage Error – MAPE – and the Pearson
Product-Moment Correlation Coefficient - PPMCC) (Naser and Alavi,
2021) and one quantitative (the scatter plot actual versus predicted
value) (Sainani, 2016).

Instead, for tuning the hyperparameters of the PMs, DDMs, and HMs
we proceeded as follows. We took 𝑛 and split it into Learning 𝑙 and
Validation  sets considering the LORSO, LOWO, or LOGO scenarios.
𝑣
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Fig. 8. Cavitation occurrence computed by cavitating BEM for the case studies of Table 9.
e

Table 8
Hyperparameters and hyperparameters search space for all algorithms tested in this
work, 𝑑 denotes the number of features in the dataset.

Models Algorithm Hyperparameters

PMs None

DDMs

RF
𝑛𝑓 ∶ {𝑑1∕3 , 𝑑1∕2 , 𝑑3∕4}
𝑛𝑙 ∶ {1, 3, 5, 10}
𝑛𝑡 ∶ {1000}

XGBoost

𝑙𝑟 ∶ {0.01, 0.02, 0.03, 0.04, 0.05}
𝑛𝑑 ∶ {3, 5, 10}
𝑚𝑙 ∶ {0, 0.1, 0.2}
𝑛𝑏 ∶ {0.6𝑛, 0.8𝑛, 1𝑛}
𝑛𝑓 ∶ {0.5𝑑, 0.8𝑑, 1𝑑}

KRR 𝐶 ∶ {10−6 , 10−5.8 ,… , 103}
𝛾 ∶ {10−6 , 10−5.8 ,… , 103}

SNN

𝑙𝑟 ∶ {0.0001, 0.0005, 0.001, 0.005, 0.01}
ℎ𝑙 ∶ {32, 64, 128,… , 65536}
𝑤𝑑 ∶ {10−6 , 10−5.8 ,… , 103}
𝑑𝑟 ∶ {0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1}

HMs The same of the DDMs The same of the DDMs
𝑟 ∶ {1, 2, 4, 8}

Then we train each model with 𝑙 with many different hyperparameters
onfigurations and measure its performance on 𝑣 according to the
AE. Then we repeated the experiment multiple times and selected the

yperparameters’ configuration which gives the best average MAE on
he validation sets. Finally, we retrained the model with the selected
est configuration of the hyperparameters on the whole 𝑛 which is
he model that will be used for testing purposes (see the previous
aragraph).

.6. Physical plausibility

As discussed in the introduction, the purpose of this work was
o truly blend PMs and DDMs to achieve the full potential of the
Ms, namely: (i) overperform the top DDMs and PMs without the
omputational burden required by the top PMs and (ii) maintain the
hysical plausibility of PMs.

Regarding point (i) our proposal is depicted in the previous section.
or what concerns (ii), we will leverage a twofold strategy. The first
ne comes from the world of the DDMs (the Feature Importance - FI ex-
lainability method Molnar, 2020) and the second one comes from the
orld of PMs (testing the behaviour of DDMs and HMs based on prior
nowledge — TPK of the phenomena under consideration Oberkampf
nd Roy, 2010).

Let us start with the FI. In this setting, we decided to exploit the per-
utation importance (Fisher et al., 2019; Good, 2013; François et al.,
006), a statistically grounded and effective method firstly applied in
F (Breiman, 2001), using the mean decrease in MAE as a metric. This
pproach allows understanding of the features which mostly affect the
odels’ performance. Failure of the learned models to properly account

or the relevant features according to the domain knowledge might

ndicate poor quality in the measurements, or spurious correlations. t
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Table 9
Numerical experiments for the DDMs’ physical plausibility assessment.

Case Propeller Wakefield 𝑛𝑝 [Hz] 𝑝rel [mmHg] 𝐽 [–] 𝜎𝑛 [–]

C1 KCD 191 W3 22.0 300 0.44 3.75
C2 KCD 191 W2 25.5 100 0.38 3.42
C3 KCD 129 W3 20.7 80 0.46 5.18
C4 KCD 192 W3 22.5 0 0.43 4.74
C5 KCD 74 W3 24.5 0 0.39 4.07

FI, therefore, represents an important step in the model verification
process, since it examines whether the learned models generate results
that are consistent with prior knowledge of the phenomena under
consideration. The idea behind the permutation-based FI is quite sim-
ple: one has to estimate the increase/decrease in the model’s MAE
after permuting the feature. The feature is deemed important if the
permutation of its values increases the model error, which implies
that the model strongly relied on the feature for making accurate
predictions. On the other hand, a feature is considered unimportant if
the permutation of its values does not alter (or does not increase) the
model MAE, as the model practically disregards (or is deceived by) that
feature in its predictions.

For what concerns TPK, instead, we have conducted additional
numerical experiments to test the physical plausibility of the predicted
URN SPLs. The additional numerical experiments are designed to as-
sess if the predictions of the models are in line with the knowledge
of the phenomena under consideration. This assessment is especially
critical for DDMs as, contrarily to HMs, they do not rely on any
prior knowledge regarding the phenomena under consideration. These
experiments still involve the propellers and wakefields presented in
Section 3 but under different loading conditions. The loading conditions
can be introduced by varying 𝑛𝑝 and 𝑝rel. Selecting values that do
not appear in our data allows for investigating how the cavitating
area and the vortex strength affect model predictions. The numerical
experiments conducted to test these effects are provided in Table 9.
The predictions of models will be compared with the general theory on
cavitation noise. More specifically, using one of the cases of Table 9 as
a reference, we evaluate

• the effect of the cavitation area, by examining the relative differ-
ences between:

– the noise increment corresponding to increased or decreased
cavitation area as predicted by the formula of Brown (1976),

– the noise increment according to the DDMs, estimated on
the frequency band between 4–20 [kHz],

• the effect of the vortex strength, by examining the relative differ-
ences between:

– the URN peak level corresponding to increased or decreased
cavitating tip vortex radius, as predicted by the model
of Bosschers (2017),

– the URN peak level according to the DDMs.
To better appreciate the cavitating conditions occurring in these

xperiments, apart from the unsteady non-cavitating BEM simulations

hat provide the necessary inputs for all the models, unsteady cavitating



M. Kalikatzarakis, A. Coraddu, M. Atlar et al. Engineering Applications of Artificial Intelligence 118 (2023) 105660
Fig. 9. Visual representation of the MAE from Table 10: overall average performance measured according to MAE for the PMs, DDMs (based on RF, XGBoost, KRR, and SNN),
and the HMs counterparts of the DDMs for the different scenarios (LORSO, LOWO, and LOGO).
BEM simulations have also been performed. A visual representation of
the cavities formed on the blade surfaces for all experiments of Table 9
is provided in Fig. 8, at one time-step of the simulations. In Fig. 8 the
colour of the cavity bubble corresponds to the estimated thickness from
the cavitating BEM conditions. The range of the thickness values is
consistent among all experiments, to facilitate the visual comparison
in terms of both cavitation area and cavitation thickness.

5. Results

In this section, we test the performance of the PMs, DDMs, and HMs
described in Section 4 developed utilising the data described in Sec-
tion 3, in terms of the performance measures discussed in Section 4.5
and analysing the physical plausibility of the DDMs and HMs according
to what described in Section 4.6.

5.1. Performance of PMs, DDMs, and HMs

In this section, we will test and compare the performance of PMs,
DDMs, and HMs following the approach described in Section 4.5 using
15
the data described in Section 3. In particular, we tested three extrap-
olating scenarios (LORSO, LOWO, and LOGO) and we measured the
performance with different metrics (three quantitative — MAE, MAPE,
and PPMCC – and one qualitative – the scatter plot).

For this purpose we report a series of tables and graphs that will
help the reader appreciating and understanding the quality of the
different models in different scenarios.

Table 10 reports, for the different scenarios (LORSO, LOWO, and
LOGO), the overall average performance measured according to MAE,
MAPE, and PPMCC for the PMs, DDMs (based on RF, XGBoost, KRR,
and SNN), and the HMs counterparts of the DDMs. Fig. 9 shows the
MAE reported in Table 10 but with a visual representation which is
easier to catch. Tables 11, 12, and 13 have been inserted for the sake
of completeness and report the MAE, MAPE, and PPMCC respectively
for the different scenario but detailing the accuracy on the different
speed for the LORSO, the accuracy on the different wakes for LOWO,
the accuracy on the different geometries for the LOGO. Fig. 10, instead,
reports the scatter plots for the different scenario (LORSO, LOWO, and
LOGO) for the best PM, DDM, and HM. Finally, Fig. 11 reports for a
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Fig. 10. Scatter plot, actual versus predicted value, for the different scenario (LORSO, LOWO, and LOGO) for the best PM, DDM, and HM.
Table 10
Overall average performance measured according to MAE, MAPE, and PPMCC for the PMs, DDMs (based on RF, XGBoost, KRR, and SNN), and the HMs counterparts of the DDMs
for the different scenarios (LORSO, LOWO, and LOGO).

PM DDM HM

RF XGBoost KRR SNN RF XGBoost KRR SNN

Metric LORSO

MAE 7.03 ± 1.08 4.23 ± 0.62 4.21 ± 0.63 3.63 ± 0.58 3.62 ± 0.51 3.55 ± 0.52 3.53 ± 0.51 3.04 ± 0.49 3.03 ± 0.46
MAPE 6.57 ± 1.03 3.79 ± 0.52 3.77 ± 0.52 3.22 ± 0.50 3.22 ± 0.43 3.24 ± 0.35 3.21 ± 0.34 2.77 ± 0.41 2.76 ± 0.38
PPMCC 0.81 ± 0.07 0.88 ± 0.04 0.87 ± 0.04 0.89 ± 0.04 0.89 ± 0.05 0.92 ± 0.04 0.92 ± 0.05 0.93 ± 0.04 0.93 ± 0.03

Metric LOWO

MAE 8.75 ± 1.35 5.99 ± 1.47 5.97 ± 1.48 5.14 ± 1.37 7.28 ± 1.83 4.75 ± 0.99 4.72 ± 0.99 4.06 ± 0.93 5.17 ± 2.40
MAPE 8.41 ± 1.35 5.64 ± 1.34 5.61 ± 1.35 4.79 ± 1.29 6.83 ± 1.65 4.41 ± 0.89 4.39 ± 0.89 3.77 ± 1.04 4.78 ± 2.41
PPMCC 0.79 ± 0.11 0.85 ± 0.08 0.84 ± 0.07 0.86 ± 0.07 0.81 ± 0.12 0.90 ± 0.03 0.90 ± 0.04 0.91 ± 0.03 0.89 ± 0.05

Metric LOGO

MAE 7.70 ± 1.03 4.75 ± 0.85 4.73 ± 0.84 4.48 ± 0.69 5.35 ± 1.72 3.64 ± 0.59 3.62 ± 0.60 3.44 ± 0.48 4.48 ± 1.53
MAPE 7.20 ± 0.97 4.57 ± 0.82 4.54 ± 0.81 4.12 ± 0.66 5.09 ± 1.68 3.45 ± 0.58 3.43 ± 0.59 3.16 ± 0.36 4.16 ± 1.25
PPMCC 0.82 ± 0.10 0.87 ± 0.06 0.87 ± 0.06 0.88 ± 0.06 0.85 ± 0.07 0.91 ± 0.03 0.91 ± 0.03 0.92 ± 0.03 0.89 ± 0.04
single representative spectrum the comparison between the best PM,
DDM, and HM in the different scenarios (LORSO, LOWO, and LOGO)
and in Fig. 12 the comparison between the different scenario (LORSO,
LOWO, and LOGO) for the best PM, DDM, and HM (the dual version
16
of Fig. 11). The representative spectra have been selected as they
correspond to the experiment for which the errors committed by the
PM, DDMs and HMs closely follow the average performance reported
in Table 10. From these results, it is possible to observe that:
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Fig. 11. Comparison between the best PM, DDM, and HM in the different scenario
(LORSO, LOWO, and LOGO) for a single representative spectrum.

• all models commit the lowest errors on the LORSO scenario,
followed by the LOGO and LOWO scenarios that exhibit similar
errors;

• considering the performance of each individual model, the errors
committed are fairly consistent within each scenario, irrespec-
tive of the wakefield (LOWO), propeller geometry (LOGO), or
rotational speed (LORSO), being present in the test set;

• the HMs are the most accurate models across all scenarios, fol-
lowed by the DDMs, and the PM which is consistently the least
accurate model. Specifically, the error reduction of the DDMs
and HMs with respect to the PM is approximately 30% and 45%,
respectively;

• the relative performance of the DDMs and HMs with respect to
the PM decreases with the complexity of the scenario: for the
least complex LORSO scenario, the DDMs commit approximately
50% lower errors than the PM, whereas for the HMs the same
error reduction approaches 60%. On the other hand, for the LOGO
scenario, the same error reductions correspond to 35% (DDMs)

and 50% (HMs);

17
Fig. 12. Comparison between the different scenario (LORSO, LOWO, and LOGO) of
the best PM, DDM, and HM in for a single representative spectrum.

• the performance of the various DDMs is similar, except for the
SNN which is consistently the least accurate DDM. RF, XGBoost,
and KRR experience relatively small performance differences
across all scenarios with KRR being the top performing DDM.
One exception is the LORSO scenario, in which the SNN com-
mits slightly lower errors, however the differences between the
two is not statistically significant, i.e., the associated confidence
intervals strongly overlap. Similar conclusions can be drawn for
the HMs, with the HM based on KRR being the top performing
model for all scenarios;

• the PM is able to capture the general trends of the URN spectrum,
however it tends to underestimate the noise levels at frequencies
higher than 500 [Hz]. The DDMs exhibit the opposite behaviour,
with the highest accuracy being observed for frequencies lower
than 1 [kHz]. Finally, the HMs, leveraging on the advantages of
both the PM and DDMs, are able to capture the noise levels over
the entire frequency range.
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Table 11
Performance measured according to MAE for the PMs, DDMs (based on RF, XGBoost, KRR, and SNN), and the HMs counterparts of the DDMs for the different scenarios (LORSO,
LOWO, and LOGO). MAE details for different speeds in the LORSO scenario, accuracy for different wakes in the LOWO scenario, and accuracy for different geometries in the
LOGO scenario.

PM DDM HM

RF XGBoost KRR SNN RF XGBoost KRR SNN

Speed LORSO

600 [rpm] 7.02 ± 1.07 4.24 ± 0.58 4.02 ± 0.68 3.7 ± 0.55 3.82 ± 0.47 3.22 ± 0.56 3.26 ± 0.55 3.07 ± 0.46 2.92 ± 0.44
800 [rpm] 7.05 ± 1.02 4.08 ± 0.66 4.23 ± 0.65 3.8 ± 0.57 3.46 ± 0.46 3.67 ± 0.55 3.69 ± 0.5 3.19 ± 0.45 3.11 ± 0.47
1000 [rpm] 7.02 ± 1.12 4.43 ± 0.63 4.61 ± 0.61 3.83 ± 0.56 3.63 ± 0.56 3.74 ± 0.51 3.32 ± 0.47 3.14 ± 0.52 2.99 ± 0.47
1200 [rpm] 7.02 ± 1.08 3.92 ± 0.56 4.6 ± 0.62 3.63 ± 0.57 3.78 ± 0.56 3.58 ± 0.5 3.7 ± 0.56 3.03 ± 0.5 3.25 ± 0.46
1400 [rpm] 7.01 ± 1.09 3.92 ± 0.63 3.86 ± 0.67 3.44 ± 0.63 3.33 ± 0.56 3.86 ± 0.48 3.32 ± 0.57 3.22 ± 0.5 2.92 ± 0.49
1600 [rpm] 7.05 ± 1.05 4.42 ± 0.58 3.81 ± 0.65 3.93 ± 0.6 3.93 ± 0.46 3.47 ± 0.57 3.84 ± 0.51 2.74 ± 0.5 3.13 ± 0.46
1800 [rpm] 7.04 ± 1.01 3.82 ± 0.58 4.29 ± 0.59 3.28 ± 0.59 3.42 ± 0.48 3.66 ± 0.52 3.4 ± 0.51 2.82 ± 0.51 3.19 ± 0.43
2000 [rpm] 7.03 ± 1.14 4.35 ± 0.67 4.22 ± 0.57 3.52 ± 0.57 3.58 ± 0.54 3.32 ± 0.52 3.74 ± 0.47 3.18 ± 0.47 2.84 ± 0.42

Average 7.03 ± 1.08 4.23 ± 0.62 4.21 ± 0.63 3.63 ± 0.58 3.62 ± 0.51 3.55 ± 0.52 3.53 ± 0.51 3.04 ± 0.49 3.03 ± 0.46

Wake LOWO

W1 8.91 ± 1.31 6.16 ± 1.45 6.14 ± 1.44 5.91 ± 1.35 7.38 ± 1.81 4.64 ± 0.98 4.63 ± 0.99 4.45 ± 0.91 5.78 ± 2.49
W2 8.61 ± 1.30 5.78 ± 1.47 5.75 ± 1.47 4.59 ± 1.36 6.31 ± 1.75 4.68 ± 0.99 4.65 ± 0.98 3.72 ± 0.92 3.74 ± 2.20
W3 8.74 ± 1.35 6.04 ± 1.48 6.02 ± 1.49 4.92 ± 1.41 8.14 ± 1.95 4.92 ± 1.00 4.90 ± 0.99 4.01 ± 0.95 5.99 ± 2.50

Average 8.75 ± 1.35 5.99 ± 1.47 5.97 ± 1.48 5.14 ± 1.37 7.28 ± 1.83 4.75 ± 0.99 4.72 ± 0.99 4.06 ± 0.93 5.17 ± 2.40

Geometry LOGO

KCD-65 7.99 ± 1.10 4.87 ± 0.81 4.87 ± 0.80 4.58 ± 0.69 5.62 ± 1.70 4.30 ± 0.57 4.28 ± 0.56 4.04 ± 0.48 5.15 ± 1.67
KCD-74 7.58 ± 1.02 4.98 ± 0.92 4.95 ± 0.89 4.66 ± 0.66 4.91 ± 1.63 3.65 ± 0.60 3.63 ± 0.60 3.48 ± 0.44 4.04 ± 1.57
KCD-129 7.70 ± 1.04 5.58 ± 0.92 5.58 ± 0.92 5.16 ± 0.81 5.22 ± 1.81 4.34 ± 0.62 4.32 ± 0.61 4.01 ± 0.54 4.64 ± 1.46
KCD-191 7.67 ± 1.02 4.98 ± 0.82 4.94 ± 0.82 4.62 ± 0.68 5.17 ± 1.72 3.55 ± 0.59 3.52 ± 0.58 3.29 ± 0.48 4.98 ± 1.55
KCD-192 7.82 ± 1.04 4.12 ± 0.78 4.10 ± 0.77 3.92 ± 0.68 5.71 ± 1.83 3.02 ± 0.55 3.00 ± 0.56 2.87 ± 0.49 4.05 ± 1.49
KCD-193 7.53 ± 1.02 4.04 ± 0.87 4.02 ± 0.85 3.93 ± 0.60 5.48 ± 1.64 3.00 ± 0.65 2.99 ± 0.64 2.92 ± 0.44 4.04 ± 1.46

Average 7.70 ± 1.03 4.75 ± 0.85 4.73 ± 0.84 4.48 ± 0.69 5.35 ± 1.72 3.64 ± 0.59 3.62 ± 0.60 3.44 ± 0.48 4.48 ± 1.53
Table 12
Performance measured according to MAPE for the PMs, DDMs (based on RF, XGBoost, KRR, and SNN), and the HMs counterparts of the DDMs for the different scenarios (LORSO,
LOWO, and LOGO). MAPE details for different speeds in the LORSO scenario, accuracy for different wakes in the LOWO scenario, and accuracy for different geometries in the
LOGO scenario.

PM DDM HM

RF XGBoost KRR SNN RF XGBoost KRR SNN

Speed LORSO

600 [rpm] 6.05 ± 0.96 3.44 ± 0.51 3.73 ± 0.57 3.42 ± 0.5 3.3 ± 0.44 3.01 ± 0.32 3.2 ± 0.32 2.71 ± 0.44 3 ± 0.35
800 [rpm] 6.19 ± 1.11 3.47 ± 0.53 3.69 ± 0.52 3.48 ± 0.46 3.3 ± 0.44 2.93 ± 0.35 3.42 ± 0.32 3.01 ± 0.45 3.03 ± 0.41
1000 [rpm] 6.87 ± 0.99 3.94 ± 0.51 4.08 ± 0.54 3.44 ± 0.46 3.37 ± 0.4 3.32 ± 0.33 2.92 ± 0.35 2.53 ± 0.42 2.54 ± 0.38
1200 [rpm] 6.64 ± 1.05 3.78 ± 0.48 3.51 ± 0.53 3.08 ± 0.5 3.08 ± 0.39 3.52 ± 0.36 3.38 ± 0.36 2.62 ± 0.4 2.67 ± 0.41
1400 [rpm] 6.58 ± 1.03 3.99 ± 0.57 3.7 ± 0.48 3.52 ± 0.46 3.27 ± 0.39 3.29 ± 0.37 3.32 ± 0.33 2.97 ± 0.39 2.55 ± 0.41
1600 [rpm] 6.92 ± 1.09 4.09 ± 0.49 3.78 ± 0.5 3.02 ± 0.49 3.09 ± 0.43 3.01 ± 0.38 3.4 ± 0.31 2.71 ± 0.38 3 ± 0.39
1800 [rpm] 7.12 ± 0.98 3.82 ± 0.47 3.77 ± 0.52 3.37 ± 0.47 2.92 ± 0.42 3.29 ± 0.37 3.04 ± 0.36 2.57 ± 0.43 2.61 ± 0.39
2000 [rpm] 6.2 ± 1 3.8 ± 0.5 3.96 ± 0.49 3.26 ± 0.5 3.37 ± 0.43 3.49 ± 0.33 3.05 ± 0.36 2.97 ± 0.43 2.75 ± 0.37

Average 6.57 ± 1.03 3.79 ± 0.52 3.77 ± 0.52 3.22 ± 0.50 3.22 ± 0.43 3.24 ± 0.35 3.21 ± 0.34 2.77 ± 0.41 2.76 ± 0.38

Wake LOWO

W1 8.53 ± 1.41 5.86 ± 1.32 5.84 ± 1.31 5.49 ± 1.22 6.71 ± 1.59 4.31 ± 0.88 4.29 ± 0.89 4.13 ± 0.90 5.32 ± 2.40
W2 8.23 ± 1.33 5.38 ± 1.35 5.32 ± 1.35 4.28 ± 1.28 5.83 ± 1.54 4.35 ± 0.90 4.35 ± 0.89 3.46 ± 0.88 3.38 ± 2.36
W3 8.47 ± 1.38 5.69 ± 1.36 5.67 ± 1.37 4.61 ± 1.36 7.94 ± 1.81 4.57 ± 0.90 4.55 ± 0.91 3.73 ± 1.35 5.64 ± 2.48

Average 8.41 ± 1.35 5.64 ± 1.34 5.61 ± 1.35 4.79 ± 1.29 6.83 ± 1.65 4.41 ± 0.89 4.39 ± 0.89 3.77 ± 1.04 4.78 ± 2.41

Geometry LOGO

KCD-65 7.70 ± 1.04 4.76 ± 0.78 4.72 ± 0.77 4.34 ± 0.67 5.35 ± 1.93 4.07 ± 0.55 4.05 ± 0.56 3.83 ± 0.37 4.72 ± 1.23
KCD-74 7.10 ± 0.96 4.69 ± 0.89 4.68 ± 0.88 4.23 ± 0.62 4.78 ± 1.59 3.46 ± 0.60 3.44 ± 0.59 3.15 ± 0.31 3.86 ± 1.25
KCD-129 7.28 ± 0.97 5.38 ± 0.88 5.37 ± 0.87 4.83 ± 0.72 5.06 ± 1.83 4.11 ± 0.60 4.09 ± 0.61 3.75 ± 0.43 4.39 ± 1.21
KCD-191 7.14 ± 0.94 4.77 ± 0.78 4.73 ± 0.78 4.21 ± 0.67 5.01 ± 1.71 3.36 ± 0.56 3.35 ± 0.57 3.00 ± 0.37 4.46 ± 1.31
KCD-192 7.31 ± 0.96 3.96 ± 0.73 3.93 ± 0.73 3.59 ± 0.69 5.35 ± 1.61 2.86 ± 0.55 2.85 ± 0.55 2.63 ± 0.38 3.76 ± 1.27
KCD-193 7.00 ± 0.95 3.84 ± 0.85 3.83 ± 0.84 3.52 ± 0.57 5.01 ± 1.39 2.84 ± 0.62 2.81 ± 0.61 2.62 ± 0.32 3.78 ± 1.25

Average 7.20 ± 0.97 4.57 ± 0.82 4.54 ± 0.81 4.12 ± 0.66 5.09 ± 1.68 3.45 ± 0.58 3.43 ± 0.59 3.16 ± 0.36 4.16 ± 1.25
5.2. Physical plausibility of DDMs and HMs

In order to test the physical plausibility of the DDMs and HMs, we
will leverage a twofold strategy as described in Section 4.6: the use of
the FI (Section 5.2.1) and the TPK (Section 5.2.2).
18
5.2.1. Feature importance
Having studied the performance of the different models developed

in the paper and showed that the HM based on KRR is the top per-
forming one, we computed the FI described in Section 4.6 to verify
if the model actually learned physically plausible knowledge from the
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Table 13
Performance measured according to PPMCC for the PMs, DDMs (based on RF, XGBoost, KRR, and SNN), and the HMs counterparts of the DDMs for the different scenarios (LORSO,
LOWO, and LOGO). PPMCC details for different speeds in the LORSO scenario, accuracy for different wakes in the LOWO scenario, and accuracy for different geometries in the
LOGO scenario.

PM DDM HM

RF XGBoost KRR SNN RF XGBoost KRR SNN

Speed LORSO

600 [rpm] 0.776 ± 0.065 0.852 ± 0.044 0.816 ± 0.037 0.938 ± 0.041 0.803 ± 0.048 0.927 ± 0.039 1.012 ± 0.05 0.876 ± 0.039 0.886 ± 0.027
800 [rpm] 0.844 ± 0.069 0.888 ± 0.043 0.79 ± 0.039 0.878 ± 0.038 0.836 ± 0.049 0.865 ± 0.039 0.971 ± 0.055 1.011 ± 0.038 0.906 ± 0.032
1000 [rpm] 0.845 ± 0.076 0.87 ± 0.042 0.92 ± 0.043 0.959 ± 0.039 0.853 ± 0.047 0.966 ± 0.044 0.843 ± 0.051 0.94 ± 0.042 1.017 ± 0.029
1200 [rpm] 0.876 ± 0.071 0.891 ± 0.037 0.834 ± 0.038 0.892 ± 0.043 0.902 ± 0.054 0.838 ± 0.041 0.855 ± 0.046 0.985 ± 0.039 0.889 ± 0.029
1400 [rpm] 0.825 ± 0.072 0.964 ± 0.041 0.91 ± 0.04 0.812 ± 0.042 0.842 ± 0.048 0.94 ± 0.04 0.864 ± 0.048 0.838 ± 0.04 0.865 ± 0.031
1600 [rpm] 0.755 ± 0.072 0.84 ± 0.041 0.903 ± 0.044 0.872 ± 0.039 0.934 ± 0.051 0.896 ± 0.044 0.919 ± 0.049 0.971 ± 0.037 0.967 ± 0.029
1800 [rpm] 0.817 ± 0.069 0.916 ± 0.038 0.949 ± 0.04 0.977 ± 0.04 0.968 ± 0.055 0.957 ± 0.04 0.966 ± 0.048 0.885 ± 0.043 1.016 ± 0.029
2000 [rpm] 0.756 ± 0.072 0.839 ± 0.043 0.902 ± 0.041 0.803 ± 0.044 0.965 ± 0.05 0.956 ± 0.042 0.937 ± 0.054 0.91 ± 0.041 0.865 ± 0.027

Average 0.81 ± 0.07 0.88 ± 0.04 0.87 ± 0.04 0.89 ± 0.04 0.89 ± 0.05 0.92 ± 0.04 0.92 ± 0.05 0.93 ± 0.04 0.93 ± 0.03

Wake LOWO

W1 0.78 ± 0.12 0.83 ± 0.08 0.83 ± 0.07 0.85 ± 0.07 0.82 ± 0.12 0.88 ± 0.03 0.89 ± 0.04 0.90 ± 0.03 0.87 ± 0.05
W2 0.80 ± 0.11 0.86 ± 0.07 0.85 ± 0.07 0.87 ± 0.06 0.81 ± 0.10 0.91 ± 0.04 0.90 ± 0.04 0.92 ± 0.04 0.93 ± 0.04
W3 0.81 ± 0.14 0.85 ± 0.08 0.84 ± 0.08 0.86 ± 0.07 0.80 ± 0.13 0.90 ± 0.03 0.91 ± 0.03 0.91 ± 0.03 0.88 ± 0.05

Average 0.79 ± 0.11 0.85 ± 0.08 0.84 ± 0.07 0.86 ± 0.07 0.81 ± 0.12 0.90 ± 0.03 0.90 ± 0.04 0.91 ± 0.03 0.89 ± 0.05

Geometry LOGO

KCD-65 0.80 ± 0.12 0.87 ± 0.05 0.87 ± 0.04 0.87 ± 0.05 0.84 ± 0.08 0.91 ± 0.03 0.92 ± 0.03 0.91 ± 0.03 0.85 ± 0.05
KCD-74 0.85 ± 0.08 0.89 ± 0.05 0.88 ± 0.06 0.88 ± 0.05 0.87 ± 0.06 0.92 ± 0.03 0.92 ± 0.04 0.91 ± 0.03 0.92 ± 0.04
KCD-129 0.84 ± 0.08 0.85 ± 0.07 0.86 ± 0.08 0.87 ± 0.06 0.86 ± 0.08 0.89 ± 0.04 0.88 ± 0.03 0.91 ± 0.03 0.86 ± 0.03
KCD-191 0.82 ± 0.11 0.87 ± 0.06 0.87 ± 0.06 0.87 ± 0.05 0.84 ± 0.07 0.92 ± 0.02 0.91 ± 0.03 0.92 ± 0.02 0.85 ± 0.05
KCD-192 0.80 ± 0.10 0.89 ± 0.05 0.88 ± 0.06 0.88 ± 0.05 0.85 ± 0.06 0.94 ± 0.02 0.94 ± 0.02 0.93 ± 0.02 0.93 ± 0.03
KCD-193 0.83 ± 0.9 0.87 ± 0.08 0.88 ± 0.06 0.90 ± 0.07 0.86 ± 0.07 0.90 ± 0.03 0.91 ± 0.04 0.93 ± 0.03 0.94 ± 0.04

Average 0.82 ± 0.10 0.87 ± 0.06 0.87 ± 0.06 0.88 ± 0.06 0.85 ± 0.07 0.91 ± 0.03 0.91 ± 0.03 0.92 ± 0.03 0.89 ± 0.04
n
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data. Before analysing the results of this procedure, it should be noted
that the many features in the dataset are strongly correlated or even
redundant and that FI is not a so precise information to retrieve.
Consequently, we should look at global trends and not go into details
of results that would not provide any real insight.

Table 14 reports the top 20 features computed during the FI test for
the top performing model (HM based on KRR). From Table 14, it is
possible to observe that:

• the outputs of the PM at various frequencies correspond to 6 out
of the 20 most important features;

• the relative tunnel pressure and the cavitation index based on
rotational speed are also ranked highly as they are directly related
to the URN levels;

• the angular locations in which the size of the blade area on
the propeller suction side having pressure lower than the vapour
pressure reaches its minimum and maximum value are also highly
ranked. Note that these features were included to estimate the
region where true cavitation starts and ends, which correlate
with the time duration of bubble growth and collapse, hence
significantly influencing the characteristics of noise spectra both
in terms of amplitude and frequency distribution;

• several Fourier coefficients extracted from the wakefield as well
as propeller design parameters are also present, including the
number of propeller blades, the total rake and skew angle at
𝑟 = 0.75𝑅, as well as the skew angle near the tip (𝑟 = 0.95𝑅),
which are known to be important design parameters with respect
to URN (Da-Qing, 2006; Tong et al., 2021; Carlton, 2018);

• it is interesting to note the absence in the top positions of features
assumed to be strongly related to the cavitation noise, such as the
features related to the angle of attack. This can be justified by
recalling that these features are directly dependent on, or derived
by, the wakefield. Hence, these features might be redundant.

Summarising, the results of the FI test are consistent with general
cavitation noise theory, with the top positions occupied by impor-
tant parameters and PM features directly containing the theoretical
information about propeller cavitation noise.
 (
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Table 14
Top 20 features computed during the FI test for the top performing model (HM based
on KRR).
# Feature # Feature

1 𝑃M(𝑋; 𝑓 = 500 [Hz]) 11 𝑃M(𝑋; 𝑓 = 630 [Hz])
2 𝑃M(𝑋; 𝑓 = 1000 [Hz]) 12 𝑍
3 𝑝rel 13 𝑎(3)𝑤07

4 𝜎𝑛 14 𝑃M(𝑋; 𝑓 = 800 [Hz])
5 𝜃max𝐴𝑐 |(𝑠)

15 𝑎(1)𝑤07

6 𝜃min𝐴𝑐 |(𝑠)
16 𝑎(2)𝑤07

7 𝑃M(𝑋; 𝑓 = 400 [Hz]) 17 𝑃M(𝑋; 𝑓 = 1250 [Hz])
8 𝜃𝑠(𝑟∕𝑅 = 0.75) 18 𝑎(1)𝑤09

9 𝜃𝑠(𝑟∕𝑅 = 0.95) 19 𝑎(2)𝑤09

10 𝑖𝑇 |(𝑟∕𝑅 = 0.75) 20 𝛤max 095

5.2.2. Test against prior knowledge
As discussed in Section 4.6, it is important to assess if the predictions

of the best model developed – HM based on KRR (HM-KRR) – are
aligned with the general theory of cavitation noise. To this end, for the
cases reported in Table 9 the predictions of the HM-KRR are compared
with the models of Brown (1976), Bosschers (2018c).

More in detail, the noise increments of the HM-KRR, estimated
on the frequency range between 4÷20 [kHz], are compared with the
oise increment predicted with the formula of Brown (1976). Results
re reported in Fig. 13(a). Utilising the URN SPLs of case C1 as a

reference value, which represents the origin of the axes in Fig. 13(a),
the relative noise increase 𝛥SPL with respect to C1 is evaluated with
the HM-KRR and is plotted along the 𝑦-axis. The same predictions
𝛥SPLB from the formula of Brown (1976) are plotted along the 𝑥-axis.

perfect correlation between the HM-KRR’s and Brown’s predictions
s expected when 𝛥SPL = 𝛥SPLB for all cases, which corresponds to the
traight line of Fig. 13(a). Whereas this is not the case for Fig. 13(a),
he predictions of the HM-KRR do correlate with Brown’s formula. The
argest discrepancy is observed for Case C5, in which 𝛥SPL = 15 [dB]
or the HM-KRR, whereas the formula of Brown (1976) estimates an
ncrease of 7.5 [dB]. For cases C2 and C3, the HM-KRR estimates that
SPL equals 6 [dB], and 8.5 [dB], respectively. According to Brown

1976), 𝛥SPL should be equal to 4 [dB], and 5 [dB] respectively. In
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a

Fig. 13. URN increment and peak levels predicted with the HM-KRR and the models of Brown (1976), Bosschers (2017) for the cases of Table 9.
w
r
S
d
i
D
i
O
W

D

c
i

ddition, for Case C4, the HM-KRR predict 𝛥SPL = 11 [dB], whereas a
value of 10 [dB] is expected according to Brown (1976). Overall, the
predictions of the two models are in reasonable agreement.

Fig. 13(b) presents the results of the same analysis conducted for the
peak noise levels predicted by the HM-KRR and the model of Bosschers
(2017). Once again, case C1 is considered as the reference (axis origin),
and the relative increase of the peak SPL with respect to C1 (𝛥SPL)
is evaluated with the HM-KRR and plotted along the 𝑦-axis. The 𝑥-
axis contains the same values (𝛥SPLTVC) as predicted by the model
of Bosschers (2017). Similarly to the previous analysis, there is a
strong correlation between the two models. However, the HM-KRR
either over- or under-predict the peak SPL increase with respect to the
predictions obtained from Bosschers (2017). The lowest discrepancy is
observed for case C3, with the HM-KRR matching almost exactly the
estimations obtained from Bosschers (2017). The highest deviation is
observed for cases C4 and C5, with the HM-KRR overestimating 𝛥SPL
by approximately 4 [dB], with respect to the model of Bosschers (2017).
Overall, the predictions of the two models are fairly close.

6. Conclusions

Silent vessels preserve marine wildlife, ensure the comfort of passen-
gers, and are compulsory in underwater warfare. For propeller-driven
vessels, cavitation is the most dominant noise source, producing both
structure-borne and radiated noise. For this reason, accurate predic-
tions of the noise signature at the design stage are fundamental for
engineering simultaneously silent and efficient propellers. State-of-the-
art predictive models are based on physical, data-driven, and hybrid
approaches. PMs rely on the knowledge of the phenomena and can
be quite accurate and reliable at the expense of huge computational
requirements which prevent their use at the design stage. On the other
side, DDMs rely on historical observations of the phenomena and can be
computationally inexpensive and accurate but may produce physically
implausible results. For this reason, HMs exploit the combination of
PMs and DDMs taking advantage of their strengths while limiting their
weaknesses. Currently, hybridisation does not fully achieve its true
potential since it naively pulls together PMs and DDMs without actually
blending them. For this reason, in this work, we propose a novel
hybridisation strategy able to truly blend the knowledge of the phe-
nomena with the information contained in the historical data producing
models able to properly, i.e., physically plausible, extrapolating as PMs
while being extremely accurate and computationally inexpensive as
DDMs. The performance of all models in several real-world scenarios
has been investigated. More specifically, three different tests have been
conducted:

• extrapolation on the rotational speed, in which the models are
tested with previously unseen rotational speeds;
20
• extrapolation on the wakefield, in which the models are tested
with previously unseen wakefields,

• extrapolation on the propeller geometry, in which the models are
tested with previously unseen geometries.

In order to support our statements, we tested our proposal, for the first
time in the literature, on real data collected in a vast experimental
campaign at the Emerson Cavitation Tunnel on the Meridian standard
propeller series behind different severities of the axial wake. In all the
considered scenarios, DDMs and HMs have shown increased capabilities
with respect to PMs in predicting the URN spectra, with errors that are
certainly acceptable during the early stage of the design process. The
proposed HMs, consistently demonstrate the lowest average errors in
all scenarios. Moreover, various tests showed that the top performing
HMs learns and deliver predictions which are in agreement with the
state-of-the-art physical knowledge of the phenomena.

In the future, we plan to further enlargement of the existing dataset
with additional experiments that cover a broader set of propeller ge-
ometries and operating conditions using the facilities available at the
University of Genoa and Delft University of Technology. We also plan
to make a more tight collaboration with leading research institution
active in the sector like the Maritime Research Institute Netherlands.
This allows us not only to evaluate more thoroughly the capabilities
of the proposed approaches, but to further validate and evolve them
in additional scenarios encountered in practice. Furthermore, we aim
at utilising the DDMs and HMs for design optimisation studies with
multiple and conflicting operating goals, towards the development of
unconventional propeller designs. Finally, we are trying to understand
if Physically Informed surrogate models of CFD simulator could allow
us to further develop a PM with a good trade-off between accuracy and
computational requirements.
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