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Abstract. Attitude estimation is a popular topic in marine engineering and robotics; the
position and orientation of a vehicle are required as feedback from several control algorithms to
improve autonomous navigation capabilities, such as dynamic positioning, track keeping, and
autodocking. Typically, position and heading angles are provided by the Global Positioning
System and compass. Usually, during the development and testing, the experiments are
performed in a controlled environment, such as an indoor test tank. However, Global Positioning
System systems can be unreliable due to non-negligible model scale errors or the absence of
line-of-sight with the satellites. This article presents an experimental tracking system setup
suitable for indoor testing facilities. In particular, the paper presents a tracking system based
on a GigE camera and ArUco markers detection and a LiDAR-based tracking system relying
on unsupervised machine learning techniques. The MQTT broker-based publish/subscribe
message-queuing protocol allows real-time data communication and sharing. The proposed
system was developed, installed, and tested in the COMPASS laboratory (University of Genoa).
The two tracking systems’ outcomes have been compared. Eventually, an accuracy analysis was
performed by comparing the results to the ground truth in purpose-built experiments. The
proposed approach can estimate the degrees of freedom of a self-propelled model-scale vessel in
an indoor testing facility without requiring active or powered markers and share the information
acquired with multiple entities in real-time at a high frame rate.

1. Introduction
Developing, testing, and validating guidance and control algorithms is a significant topic in
marine engineering and marine robotics. Dynamic positioning [1], track keeping [2], target
chasing [3], and auto docking/undocking [4] are challenging tasks to be achieved, leading to
an increase in safety and vessel capabilities. Such algorithms, generally implemented at the
guidance and control module level, require as feedback an effective attitude estimation from the
navigation module that has to provide a reliable evaluation of the vessel’s degrees of freedom. In
full-scale application, position and heading are provided by Global Positioning System (GPS),
Inertial Measurement Units (IMU), and Gyro-compass. However, before moving to full-scale sea
trials, developing and testing an algorithm to solve the maneuvering problem needs model-scale
indoor testing where the traditional sensors suite is unusable [5]. The need to provide guidance
and control modules with a surrogate for navigation feedback data in a controlled environment
for model-scale testing drove the proposed system’s conception, development, and installation.
Moreover, using a multi-sensor system allows the performance of each sensor to be evaluated.
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Figure 1. Indoor tracking system pipeline.

Eventually, an external DOF estimation system limits the number of sensors needed onboard
and the resulting power supplies since some model-scale vessels may have limited payload [6].

Figure 1 shows the general pipeline of the proposed multi-sensor indoor tracking system. In
particular, the sensing layer is entrusted to a 3D spinning LiDAR and a monochromatic GigE
Camera, reducing to model scale a possible coastal setup consisting of a land radar and GPS.
Each sensing data is processed independently regarding detection, combining both Unsupervised
Learning for LiDAR data processing and Supervised Learning for image processing, relying on
suitable fiducial markers [7]. The position and heading angle of the model-scale target are
estimated, and the output is made available via the MQTT broker-based publish/subscribe
message-queuing protocol achieving real-time data sharing with all possible subscribers (e.g.,
guidance and control algorithms). The following sections will describe the two pipeline branches:
camera and lidar detection, the experimental setup, and the data-sharing system. The results
provided by the system during two maneuvers of increasing difficulty by remotely controlling a
model-scale vessel are shown. Moreover, a purpose-built experiment comparing the system
outcome to the ground truth values is illustrated, allowing the assessment of the position
estimation errors of the system’s two branches.

2. Camera detection
This section presents the approach to camera data processing. In particular, the whole process
is achieved using OpenCV libraries [8] and the original ArUco marker series [9]. Placing two
ArUco markers on the scale-model vessel allows for a straightforward detection process; then,
the position of the detected markers is estimated relying on camera calibration parameters and
the pin-hole camera model, obtaining the position and the heading angle of the model-scale
vessel in the time domain.

2.1. Pin hole camera model and calibration
Mapping 3D points on a 2D image plane and the reverse operation is a widely documented
activity in the literature. Several camera models are available. For the case study, the pin-hole
camera model has been adopted [10]. Model calibration using a dedicated checkboard based on
ArUco marker (known as ChArUco board) has been carried out to obtain the camera’s intrinsic
matrix (or camera matrix). However, the camera matrix directly obtained using such a model
does not consider lens distortion. For this reason, the performed calibration also includes the
radial and tangential distortion [11]. The calibration process allowed computing the intrinsic
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parameters and distortion coefficients.

2.2. 2D to 3D: ArUco marker detection and pose estimation
An ArUco detector algorithm is used to detect the markers placed on the model scale vessel.
In particular, the dedicated OpenCV function makes marker corners and IDs available. Then,
exploiting the calibration parameters, a pose estimation of the marker is performed; for each
marker, a rotation matrix and a translation vector are computed, allowing for the passage from
the 2D image plane to the 3D reference system of the camera.

2.3. 3D to 3D: pose estimation in world reference frame
The points in the camera reference system need to be referred to the world reference system
(or test-tank RS) to make the output suitable for further applications. Since the installation
circumstances do not allow a precise estimation of the position and pose angles of the camera, the
pose computation problem is achieved by relying on the Perspective-n-Point (PnP) procedure
[12]. Markers at known positions in the world reference system have been framed by the camera
so that the world reference system coordinates and the pixels reference coordinates of a set of
points have been made available. Then, the PnP computation procedure has been used to obtain
the rotation matrix Rwc and translation vector twc that relates the points in the world system
Xw to the same points expressed in the camera reference system Xc. In particular:

Xc = RwcXw + twc so : Xw = Rwc
−1(Xc − twc) (1)

2.4. Real-time ID tracking
A well-known problem in the literature regarding tracking algorithms is the track ID association.
This step is crucial for multi-target applications to robustly track a target and eventually predict
its motion based on the time history thus reconstructed.

As far as the case study is concerned, the presence of the ArUco markers avoids using
a sophisticated tracking algorithm and thus allows reducing the computational load. ArUco
marker detection associates each marker with the corresponding ID of the series they belong
to. It is, therefore, straightforward to associate the target with the track as long as different
markers are placed on different objects.

3. LiDAR detection
LiDARs are becoming popular in various fields of application, often employed as perceptual
systems for situational awareness of autonomous vehicles or environmental surveillance purposes.
For the case study, the sensor is used as a fixed acquisition system to reconstruct the test tank
scenario and detect targets within the point cloud. In particular, the real-time parsed point
cloud is analyzed using an unsupervised machine learning clustering technique to obtain the
position of the target objects i.e., the model scale vessel.

3.1. LiDAR pose estimation
The point cloud provided by LiDAR is expressed in the sensor reference system. Once the sensor
has been accurately installed on the tank side, the rotation matrix Rlw and translation vector
tlw are derived to express the point cloud in the world reference system. In particular:

WT
i = RlwL

T
i + tlw (2)

Where L is the n-by-3 matrix of the three spatial coordinates for the n points caught by the
LiDAR expressed in the sensor reference system; thus, LT

i represent the column vector of the
three spatial coordinates of the ith point. W is the n-by-3 matrix of the three spatial coordinates
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for the points expressed in the world reference system; thus, WT
i represent the column vector

of the three spatial coordinates of the ith point.

3.2. Noise filtering and point-cloud cutting
The LiDAR sensor provides a three-dimensional point cloud that reconstructs the surrounding
environment. In the case study, the sensor provides an oversized point cloud, i.e., detects points
outside the domain of interest. In particular, the focus is placed exclusively on the boundaries of
the test tank, while acquiring outside it provides objects of no interest (e.g., walls or furniture),
unnecessarily increasing the amount of data to be processed. For these reasons, the cloud points
exceeding the spatial limits of the test pool are filtered out. Moreover, considering the point
position and intensity, additional noise filters were imposed to compensate for water acquisition
errors, as presented in [13, 14].

3.3. Target detection
Many methods are presented in the literature to detect targets based on point cloud data.
Contrary to image-based target detection, where supervised machine learning is used extensively,
unsupervised machine learning techniques are generally used in point cloud data processing,
including LiDAR data. In particular, point cloud clustering techniques aim to identify groups of
points that share common patterns [15]. Many clustering algorithms have been developed over
the years, differing mainly on the grouping criterion; for the case study DBSCAN clustering
algorithm [16] has been selected due to its high outcome accuracy. The clustering analysis
associates each point to a cluster, dividing the point cloud into groups, where each group
represents a target.

3.4. Principal Component Analysis
The association of a bounding box with the groups of points identified by the clustering analysis
is a crucial operation to extract useful information. A Principal Component Analysis (PCA)
is conducted on each group of points to identify the most significant variance directions. The
principal component directions are then used to orient a rectangular bounding box. Eventually,
the center of the bounding box is used to obtain the target position in place of the point cloud
cluster centroid. This technique improves the position estimation since it mitigates the shift of
the centroids towards the first impact surfaces with LiDAR channels [13].

3.5. LiDAR centroids real-time tracking
The ID-track association problem is generally entrusted to tracking systems based on predictive
filters. For the case study, since the marker’s unique identification code is available at the
output of the camera processing, there is no need to resort to such filters, and the association
process is straightforward. Because of the system’s modular structure, the possibility of using
an independent tracking module for LiDAR, based on the Global Nearest Neighbours approach
[17, 18] was also envisaged.

4. Experimental set-up
The presented work focuses on the setup, experimental validation, and use of the proposed DOF
estimation system. For this reason, this section describes the experimental setup, the sensors
used, and their positioning in detail. In particular, the experimental setup is presented in Figure
2, where the position of the sensor, connection, and reference system is illustrated. The test
environment consists of a 4.88m x 4.88m tank framed by the sensor suite; data are collected
from a dedicated workstation.
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Figure 2. Test tank experimental set-up

4.1. LiDAR specifications and setup
The 3D mechanical LiDAR sensor used for the experimental campaign is a HESAI Pandar XT-
32 (Figure 3) which provides 32 equally spaced infrared laser beams for an operating range of
120m; the vertical field of view is 32° by 1° of resolution while the horizontal ensures 360° FOV
(Field of Vision) by a tunable resolution (depending on rotating speed), which is set to 0.36° for
the case study. Considering a trade-off between the solidity of the positioning and the ability to
capture the test tank adequately, the LiDAR was mounted on the edge of the tank, in a fixed
known position, using dedicated support printed using additive manufacturing techniques. The
connection is achieved by ethernet cable and UDP data protocol, while the power supply has a
dedicated channel.

Figure 3. HESAI PandarXT representation.
Figure 4. Basler acA1920-40gm
camera.

4.2. Camera specifications and setup
For capturing images, a monochromatic camera is placed above the test tank, exploiting the
structure of the hosting building. In particular, a Basler ace GigE Camera acA1920-40gm has
been selected; it is equipped with the Sony IMX249 CMOS sensor and an 8 mm lens, providing
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1920 x 1200 pixels grey-scale images at 42 fps. Data transmission and power supply are achieved
using Power over Ethernet (PoE) via a dedicated powered network card in the workstation.

4.3. Self-propelled model-scale target
The target chosen for the experimental campaign is a teleoperated, self-propelled model-scale
vessel, SWAMP (Shallow Water Autonomous Multipurpose Platform) [19], available at the
COMPASS lab in UNIGE facilities. It is a catamaran double-ended soft hulls modular platform,
driven by an innovative system composed of 4 pump-jets designed and tested by CNR-INM
laboratory [20]; hydrodynamic tests were performed in DITEN Hydrodynamic Laboratories
towing tank (University of Genoa). Figure 5 shows a perspective rendering of the vessel. For
the experimental trials, the SWAMP-class vessel was equipped with two original-series 200mm
x 200mm ArUco markers on the top of the payload deck, as shown in Figure 6 and teleoperated
from a remote control station to perform any desired maneuver. In particular, markers 1 and 10
uniquely identify the stern and bow of the vessel, respectively, and, with proper positioning, the
midpoint of the segment joining the centroids of the two markers represents the vessel’s center.

Figure 5. SWAMP-class vessel view.

1100 mm

12
50

 m
m

550 mm

62
5 

m
m

bow

ID 1

ID 10

Figure 6. ArUco markers position.

4.4. Communication middleware
Sharing sensor data with multiple entities is a crucial part of the setup. Those entities work
as nodes or clients of an IoT system and might need some or all the measured data for
different purposes, such as logging, processing, filtering, and control. For instance, the dynamic
positioning system of an autonomous vessel model needs pose estimation as a feedback signal
to control the actuators. For this reason, the communication middleware needs to feature
scalability, modularity, and platform and language agnosticism. Typically, IoT systems rely
on a publish-subscribe data distribution model, where some network entities, called publishers,
produce data and others, called subscribers, receive it. Publishers and subscribers operate
independently and are unaware of each other’s information.

MQTT (Message Queuing Telemetry Transport) [21] is a lightweight publish-subscribe
messaging protocol for efficient communication in IoT systems. MQTT is broker-based since
the data distribution is achieved by a broker that receives all messages from the publishers and
then routes the messages to the subscribers. MQTT’s main features are high efficiency and
support for low-power devices in IoT applications, such as the testing setup described in this
paper; moreover, it is a consolidated and well-established technology.

The open-source MQTT broker Mosquitto [22] was adopted for the presented case study.
Broker-based communication protocols, however, present some reliability issues due to the
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Figure 7. Model scale vessel
trajectory.

Figure 8. LiDAR - Camera
position difference.

Figure 9. Position difference
box-plot.

presence of a single point of failure: if the broker fails, the whole data communication system
fails. Even if this can be considered a minor issue in an indoor testing framework, it can be
a limiting factor when operating in outdoor contexts where high autonomy is required. For
this reason, as well as possible performance improvements, broker-less protocols, such as DDS
[23, 24], or ZeroMQ [25, 26], are currently under evaluation as alternatives.

5. Results
An extensive experimental campaign was conducted to test the performance of the proposed
system. The results of only two relevant acquisitions of the SWAMP-class teleoperated model-
scale self-propelled USV equipped with ArUco markers have been reported for brevity. In
particular, the first set of figures (Figures 7, 8, 9) represents a turning maneuver following a
U-shaped trajectory, while an almost chaotic motion with considerable changes of direction is
presented in the second set of figures (Figures 10, 11, 12). Figures 7 and 10 show the trajectory
of the model-scale vessels in the test tank reference frame; in particular, blue markers identify
the centroid of the bounding box obtained from LiDAR data, green and red markers identify
the bow and stern centroids of the ArUco marker, respectively. Figures 8 and 11 show the
distribution of the difference of the evaluation of the plane coordinates of the centroid of the
vessel, calculated by subtracting the coordinates estimated with LiDAR from those estimated
with the camera; Figures 9 and 12 present the same position difference in a box plot, where
the five representative parameters of the distribution are evaluated, considering the presence of
outliers (plotted in green) due to acquisition errors.

The error distribution is roughly centered on zero; however, a non-negligible spread of the
position difference is present. The points acquired by LiDAR necessarily lie close to the surfaces
of the first impact along the line-of-sight between the sensor and the acquired target, giving rise
to shifts in the centroid evaluation.

Eventually, a tailored experiment was conducted to compare the results obtained to a ground
truth value. In particular, a target was kept at a constant distance of 3.95 m along the x-
axis of the tank reference frame and left free to move along the y-axis. Thus, the target was
acquired and tracked with the perceptive system, comparing LiDAR and Camera results with
the available ground truth value. Results are reported in Figures 13, 14, 15. In particular,
Figure 13 shows the trajectory of the centroids evaluated with the camera (red markers) and
with the LiDAR (blue markers). Figure 14 shows the error against the ground truth value on
the x coordinates; finally, the same results are presented in a box plot in Figure 15.

The analysis of the obtained results indicates that, for objects of this specific size and shape,
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Figure 10. Model scale vessel
trajectory.

Figure 11. LiDAR - Camera
position difference.

Figure 12. Position difference
box-plot.

Figure 13. Model scale vessel
trajectory.

Figure 14. LiDAR - Camera
x componet error.

Figure 15. X-component error
box-plot.

the camera proves to be a more dependable sensor for precise position estimation. The superior
performance of the camera can be primarily attributed to the LiDAR-based method’s intrinsic
calculation approach, where position determination occurs at the center of the bounding box
constructed from the point cloud data. Consequently, this calculated position tends to be shifted
towards the surfaces of initial impact, namely those closest to the sensor, as the laser radiation
cannot propagate further. However, it is essential to highlight that, in the case of smaller targets,
this positional shift experienced by the LiDAR-based method reduces significantly, resulting in
enhanced accuracy. This advantage arises from the reliance of the LiDAR-based procedure on a
physical phenomenon - specifically, the measurement of time elapsed between the emission and
reception of a laser pulse - rather than being contingent on a mathematical model, as observed
in the case of the camera-based approach.

6. Conclusions
In this paper, the authors presented a multi-sensor attitude estimation of model-scale vessels
overcoming the issues of a traditional proprioceptive sensor suite (GPS, compass, IMU) in indoor
testing applications due to model scale errors or line-of-sight limitations. In particular, a multi-
sensor tracking system based on a GigE camera, ArUco marker detection, and unsupervised
learning LiDAR detection has been developed, installed, and widely tested. The tracking
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systems were integrated using the MQTT broker-based publish/subscribe protocol, enabling
real-time data sharing among multiple entities. Results demonstrate the capability to estimate
the degrees of freedom of a self-propelled model-scale vessel in the indoor testing facility without
needing active or powered markers. Moreover, the information is acquired and shared at a high
frame rate, providing a valuable tool for achieving DOF estimation feedback in the test tank.
Eventually, the results achieved provide a quantitative evaluation of the accuracy of the centroids
estimate relying on LiDAR and camera detection.
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