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Abstract
Background: Chronic kidney disease (CKD) is a progressive
systemic condition characterized by numerous compli-
cations. Among these, alterations in skeletal muscle
physiology, such as sarcopenia, are particularly significant,
as they are associated with poor outcomes and reduced
quality of life. Summary: Various interventions, including
pharmacological approaches and lifestyle modifications
have been investigated to slow CKD progression and
prevent or treat its complications. Physical exercise, in
particular, has emerged as a promising intervention with
multiple beneficial effects. These include improvements
in physical functioning, increased muscle mass, modu-
lation of metabolic abnormalities, and reduced cardio-
vascular risk. However, the pathophysiology of physical
exercise in patients with kidney disease is complex and
remains only partially understood. A crucial advancement
in understanding this phenomenon has been the iden-

tification of myokines –molecules expressed and released
by skeletal muscle in response to physical activity. These
myokines can exert both paracrine and systemic effects,
influencing not only skeletal muscle physiology but also
other processes such as energy metabolism and lipid
regulation. Key Messages: The interplay among skeletal
muscle, physical activity, and myokines may act as a
pivotal regulator in various physiological processes, in-
cluding aging, as well as in pathological conditions like
cachexia and sarcopenia, frequently observed in CKD
patients at different stages, including patients on dialysis.
Despite the potential importance of this relationship, only
a limited number of studies have explored the relation-
ship between exercise and myokine, and the effect of this
interaction on experimental models or individuals with
kidney disease. In the following sections, we review and
discuss this topic. © 2024 The Author(s).
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Introduction

Chronic kidney disease (CKD) affects approximately
15% of the general population [1]. CKD patients stages 1
to 5 on conservative therapy or in renal replacement
therapy tend to adopt a sedentary lifestyle [2], which
correlates with an increased risk of mortality [3].
Moreover, a sedentary lifestyle promotes increased in-
flammation, oxidative stress, atherosclerosis, vascular
calcification, altered lipid metabolism, and insulin re-
sistance [4, 5].

TheWorld Health Organization (WHO) guidelines on
physical activity define a sedentary lifestyle as any waking
behavior characterized by an energy expenditure of 1.5
metabolic equivalent of the tasks or lower while sitting,
reclining, or lying (e.g., watching television or an office
job) [6, 7].

Factors such as decreased muscle mass, cardiac dys-
function, and malnutrition contribute significantly to the
inactive lifestyle observed in CKD patients [4]. Skeletal
muscle, beyond its traditional role in movement, acts as
an endocrine organ, producing myokines that regulate
various physiological processes [8]. These myokines are
secreted during physical activity and play roles in
metabolism, insulin sensitivity, and immune function [9].

Promoting exercise and physical activity in CKD pa-
tients offers numerous benefits, including improvements
in sarcopenia, physical function, mental performance,
and quality of life, while also reducing inflammation and
oxidative stress [10–13].

However, the precise mechanisms underlying these
benefits, particularly the role of myokines, remain in-
completely understood [1]. In this review, we aim to
provide a comprehensive overview of the role of my-
okines in CKD patients, specifically focusing on the
impact of exercise and physical activity on their
pathophysiology.

Physical Exercise in Renal Disease
Physical activity is any bodily movement produced by

skeletal muscles that requires energy expenditure. It
should be gradually incorporated into the routine of
CKD patients [14] to align with the World Health
Organization (WHO) guidelines [6], which recommend
in adults (aged 18–64 years and including those with
chronic conditions) at least 150–300 min of moderate-
intensity aerobic physical activity or 75–100 min of
vigorous-intensity aerobic physical activity per week.
Muscle-strengthening activities involving all major
muscle groups are also recommended twice or more
times a week at moderate or higher intensity.

Instead, physical exercise is a subset of planned,
structured, and repetitive physical activity aimed at im-
proving or maintaining physical fitness. When pre-
scribing exercise in CKD, a patient-centered approach
should be followed. This approach considers CKD stage,
comorbidities, pharmacologic treatments, patient’s goals,
and physical capacity. An assessment of the patient’s
physical function can be performed using tests such as
short physical performance battery, 6-min walking test,
or five time sit to stand test [15]. Furthermore, due to the
high cardiovascular risk of CKD patients, a stress test
such as the cardiopulmonary exercise testing (CPET) is
also helpful especially if the prescribed exercise is
vigorous [16].

The type of exercise can differ from walking, running,
cycling, and swimming for aerobic training to the use of
weights, elastic bands, kettlebells, and machines but also
bodyweight exercises for strength training [17]. Following
the American College of Sports Medicine (ACSM)
guidelines, which are based on the Frequency Intensity
Time Type-Volume Progression (FITT-VP) principle,
exercise programs for CKD patients on conservative
treatment, dialysis, or kidney transplant recipients can be
tailored [18]. Typically, the duration and frequency of
training should be 30 min per day, 3–5 days per week.
Meanwhile, the exercise intensity should be personalized
according to maximum heart rate from exercise testing or
by using the rating of perceived exertion (RPE) on the
Borg scale (Table 1) [19].

Myokines: A General Overview
It is well-recognized that the skeletal muscle is involved

in various physiological processes beyond its mechanical
functions, including metabolic regulation, insulin sensi-
tivity, and immune response [20, 21]. A significant ad-
vancement in understanding the role of skeletal muscle in
these processes has been the identification of myokines,
which are cytokines or small peptides produced and
released by muscle fibers in response to physical
activity [22].

Historically, interleukin-6 (IL-6) was the first molecule
directly associated with skeletal muscle [23]. Starting
from this initial evidence, the exploration of skeletal
muscle as an endocrine organ has been the object of
intense research, leading to the identification of various
myokines, including myostatin, irisin, interleukin-15 (IL-
15), insulin-like growth factor 1 (IGF-1), decorin, among
others, with the list continuously expanding [24].

In addition, this scenario has recently become even
more intricate with the emergence of the concept that
myokines represent just one category elicited by physical
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exercise. The term “Exerkines” has been introduced to
encompass a diverse array of signals released by skeletal
muscles in response to acute and chronic exercise [25].
Exerkines may include cytokines, nucleic acids, and
metabolites released by other organs and tissues, such as
the heart (cardiokines), liver (hepatokines), white adipose
tissue (adipokines), brown adipose tissue (batokines), and
the nervous system (neurokines).

Focusing on myokines, it should be recognized that
beyond the distinct characteristics of individual mol-
ecules, they share common features such as secretion by
skeletal muscle, modulation by physical activity, and
the ability to exert both local and systemic effects.
These myokines mediate communication between
skeletal muscle and other organs, such as the adipose
tissue, liver, and brain, influencing physiological pro-
cesses and contributing to the pathogenesis of condi-
tions like obesity, diabetes, and neurodegenerative
disorders [26–28].

Notably, myokines may also play various roles in
the pathogenesis of kidney diseases, participating in
the muscle-kidney crosstalk [29]. For instance, mol-
ecules such as IL-6, irisin, Myostatin, and FGF21
exhibit differential expression in both experimental
and clinical diabetic nephropathy, where they may
serve as progression factors or therapeutic targets
[30–32].

Furthermore, myokines appear to be implicated in the
pathogenesis of vascular alterations related to CKD [33].
However, in addition to their systemic actions, it is crucial
to consider the autocrine and paracrine effects of my-
okines, primarily involved in regulating muscle physi-
ology, includingmuscle growth, satellite cell proliferation,
and lipid metabolism [34].

Given the involvement of myokines in numerous
complex pathways, it is not surprising that these mole-
cules have been investigated in physiological processes
such as aging and pathological conditions like sarcopenia
and CKD [35, 36]. Their expression has specifically been
evaluated in experimental and clinical CKD, where
modulation, achievable through pharmacological ap-
proaches as well as physical exercise [37], may signifi-
cantly impact multiple processes (Fig. 1; Table 2).

Interleukin-6
The human IL-6 gene is situated at the p21 region of

human chromosome 7. It comprises a 28-amino-acid
signal peptide, which, due to varying glycosylation, may
manifest as various subtypes with molecular weights
ranging from 21.5 to 28 kDa.

Additionally, different IL-6-related signaling pathways
have been identified, including the classical pathway,
dependent on IL-6 binding to membrane-bound IL-6
receptors (IL-6R), and the trans-signaling pathway,
which involves the interaction of soluble IL-6/IL-6R
complexes with transmembrane proteins [38].

Table 1. Exercise prescription according to the CKD stage (stages 1–5 CKD-ND, dialysis, and kidney transplant)

Aerobic training Resistance training

Stages 1–5
CKD-ND

From moderate (3.0–5.9 METs; RPE 12–14) to
vigorous (6.0–8.9 METs; RPE 15–17)

3 sets of 10–15 repetitions of flexion/extension motion of
different muscle groups 70% 1-RM

Dialysis Moderate (3.0–5.9 METs; RPE 12–14) 2/3 set of 8–15 repetitions of flexion/extension motion of
different muscle groups 50/60% 1-RM

Kidney transplant Vigorous (6.0 a 8.9 METs; RPE 15–17) 3 sets of 10–15 repetitions of flexion/extension motion of
different muscle groups 70/80% 1-RM

CKD, chronic kidney disease; MET, metabolic equivalent of task; ND, not on dialysis; RPE, rating of perceived exertion on the Borg
scale 6-20; 1-RM, maximum weight a subject can lift for a single repetition of a given exercise. [19].

Fig. 1. Exemplificative representation of the potential effects of
physical activity and exercise on the most studied myokines in
experimental models of renal disease and CKD patients.
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The intricate nature of these molecular pathways likely
contributes to the diverse effects of IL-6, which en-
compass the regulation of inflammation, immune re-
sponse, hematopoiesis, and metabolism [39–41]. Skeletal
muscle is a significant source of IL-6 production, par-
ticularly in response to physical exercise [42, 43]. Initially
hypothesized to be released by immune cells, subsequent
molecular analyses demonstrated a direct production and
secretion of IL-6 by skeletal muscle cells, establishing this
cytokine as the first member of the myokine family [41,
44, 45].

In resting skeletal muscle, IL-6 mRNA content is low,
but both muscle IL-6 gene and protein expression sig-
nificantly increased in response to acute exercise in
healthy subjects [46]. Notably, these effects are associated
with the intensity and duration of exercise rather than
muscle injury [47]. When acting as a myokine, IL-6 exerts
multiple effects. Initially, during exercise, IL-6 release

activates metabolic pathways capable of mobilizing glu-
cose and fatty acids from the liver and adipose tissue to
provide energetic substrates for skeletal muscle con-
traction [48, 49].

Then, higher levels of IL-6 after acute physical ex-
ercise may have an anti-inflammatory effect, eventually
mediated by decreased levels of tumor necrosis factor-
alpha (TNF-α) and interleukin-1 (IL-1), along with
increased production of the anti-inflammatory cyto-
kines IL-1ra and interleukin-10 (IL-10) [50, 51].
However, the relationship between IL-6 and skeletal
muscle is complex and not linear, influenced by life-
style, and type and duration of training, among other
factors [52]. In older individuals, elevated IL-6 levels
are associated with poor physical performance and
muscle strength [53], while physical activity is linked to
decreased muscle inflammation and IL-6 levels [54],
suggesting chronic exercise as a potential intervention

Table 2. Basal values of myokine and potential benefits of their modulation in experimental models of renal disease and CKD
patients

Myokine Basal values CKD
versus no-CKD (ref)

Potential benefits of modulation (ref)

skeletal muscle nephroprotective role ancillary benefits

Myostatin* = [89, 92] Anti-
sarcopenic. [75]

Anti-inflammatory [71, 82] Improved glucose
tolerance [71, 82]

IL-6* [55–57] N/A Anti-inflammatory effect [50] Improved cardio-
metabolic profile [138]

Irisin* [114] Anti-
sarcopenic [111]

Anti-inflammatory [112, 113] Improved glucose
tolerance [108]Reduced oxidative stress and apoptosis

[112, 113]
Reduced glomerular hyperfiltration and
fibrosis in diabetic nephropathy [32]

Reduced vascular
calcifications [33]

IL-15 [139] N/A Anti-inflammatory effect [121] Improved glucose
tolerance [119, 120]Anti-fibrotic effect [121]

BDNF [140] N/A Anti-inflammatory effect [125] Improved glucose
tolerance [123]

Reduced oxidative stress [125] Increased fat
oxidation [124]

Apelin [129, 130] Anti-
sarcopenic.

[126]

Anti-EndMT [127] –
Anti-fibrotic [127]
Endothelium-dependent vasodilator [128]

FGF21 [141] N/A Anti-fibrotic [132] Improved glucose
tolerance [133]
Improved lipid
metabolism [133]

IGF-1* [136] Anti-
sarcopenic.

[107]

– –

IL-6, interleukin-6; IL-15, interleukin-15; BDNF, brain-derived neurotrophic factor; FGF21, fibroblast growth factor 21; IGF-1,
insulin-like growth factor 1; EndMT, endothelial-to-mesenchymal transition. N/A = data not available. *Data from clinical studies
evaluating the effects of physical exercise in CKD patients are reported in Table 3.
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Table 3. Summary of themain clinical studies evaluating the effects of different type of physical exercise in CKD patients at different
stages

Myokine Study (Ref) CKD
stage

n Exercise program Duration Effects on
circulating level

Effects on muscle
tissue expression

Interleukin-6 Castaneda et al.
[61] (2004)

3–5 14 RT 12 weeks

Headley et al.
[142] (2012)

2–4 10 Aerobic exercise 12 weeks NO

Viana et al. [58]
(2014)

5 13 Acute (walking) 30’

Walking training 6 months

Watson et al. [59]
(2017)

3b–4 7 Acute resistance
exercise

1 exercise
session

RT 8 weeks NO
Ikizler et al. [60]
(2018)

3–4 27 Aerobic exercise 4 months

Correa et al. [62]
(2021)

2 35 RT 6 months

Watson et al. [98]
(2022)

3–5 21 Aerobic Acute (1
session)

NO

20 Combined 12 weeks NO
Kopple et al. [97]
(2007)

HD 37 Combined 21 weeks
(median)

NO

Wilund et al. [63]
(2010)

HD 17 Intradialytic
cycling

4 months NO

Cheema et al. [67]
(2011)

HD 24 RT 12 weeks NO

Liao et al. [64]
(2016)

HD 40 Intradialytic
cycling

3 months

Cruz et al. [65]
(2018)

HD 15 Intradialytic
cycling

12 weeks

Dong et al. [66]
(2019)

HD 21 RT 12 weeks NO

Moura et al. [143]
(2020)

HD 81 RT 24 weeks

Highton et al.
[144] (2021)

HD 20 Intradialytic
cycling

6 months NO

March et al. [68]
(2022)

HD 46 Intradialytic
cycling

6 months NO

Myostatin Watson et al. [59]
(2017)

3b–4 7 Acute resistance
exercise

1 exercise
session

RT 8 weeks

Zhou et al. [99]
(2021)

3–5 151 Combined 12 months

3–5 21 Aerobic
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to control inflammation, especially in fragile subjects.
In this regard, CKD at different stages (from non-
dialysis to dialysis patients) presents a peculiar risk
profile, exhibiting a systemic subclinical inflammation,
characterized by elevated IL-6 levels, and associated
with adverse outcomes, such as cardiovascular disease,
sarcopenia, atherosclerosis, bone diseases, and in-
creased mortality [55].

Interestingly, resident renal cells expressing IL-6R may
be directly involved by the activation of both classical and
trans-signaling IL-6 pathways, which may, in turn, play a
role in CKD progression [56]. Moreover, IL-6 is elevated
in the muscles of CKD patients, contributing to local and
systemic inflammation, which may lead to reduced
protein synthesis and increased protein degradation [56,
57]. Considering these factors, various strategies have
been proposed to attenuate IL-6 release and production in
CKD, including optimal dialysis treatment and lifestyle
modifications [34, 37]. Several studies have explored the
capacity of different types of exercise interventions to
modulate IL-6 levels in the diverse population of CKD
patients (Table 3).

Looking at the non-dialysis CKD population, Viana
et al. [58] 2014 investigated the effects of physical exercise
on inflammatory molecules in advanced CKD. They
confirmed a bimodal regulation of IL-6, with plasma IL-6
levels increasing after acute exercise, along with higher

levels of IL-10, but decreasing after 6 months of regular
walking exercise.

Similar findings were reported in 2017 byWatson et al.
in a secondary analysis of a trial conducted on 38 patients
with CKD stage 3b–4 randomized to receive an 8-week
resistance exercise training intervention [59]. Overall,
acute unaccustomed exercise was associated with a large
inflammatory response, evidenced by increased gene
expression of IL-6, MCP-1, and TNF-α, which was
subsequently reduced after training.

In 2018, Ikizler TA et al. randomized 122 participants
with CKD stages 3 and 4 to receive a 4-month inter-
vention with aerobic exercise in combination with caloric
restriction. They found that each intervention was in-
dependently associated with an improved pro-
inflammatory metabolic milieu, and a significant re-
duction of IL-6 concentrations [60].

Conversely, the effects of resistance training were
investigated in 2004 by Castaneda C. et al. [61] in 26 non-
dialysis patients on a low-protein diet. They found that
resistance training reduced inflammation and improved
nutritional status.

Similarly, Correa et al. [62] in patients with stage 2
CKD observed that a 6-month resistance training pro-
gram improved both uremic parameters and inflam-
matory markers, including IL-6, and notably, delayed the
progression of kidney disease. However, the potential

Table 3 (continued)

Myokine Study (Ref) CKD
stage

n Exercise program Duration Effects on
circulating level

Effects on muscle
tissue expression

Watson et al. [98]
(2022)

Acute (1
session)

20 Combined 12 weeks NO

Kopple et al. [96]
(2006)

HD RT 8.9 weeks
(median)

Kopple et al. [97]
(2007)

HD 37 Combined 21 weeks
(median)

Irisin Moraes et al. [115]
(2013)

HD 26 RT 6 months NO

Esgalhado et al.
[116] (2018)

HD 15 Acute intradialytic
exercise

30’ NO

IGF-1 Kopple et al. [96]
(2006)

HD RT 8.9 weeks
(median)

CKD, chronic kidney disease; HD, hemodialysis; RT, resistance training. Combined exercise program: Aerobic+ RT; NO = no
significant changes compared to basal values.
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exercise-mediated IL-6 modulation has also been tested
in HD patients with nonuniform results.

For instance, in 2010, Wilund et al. [63] found no
effects on inflammatory markers of intradialytic exercise
training prescribed in 17 HD patients. On the opposite,
Liao et al. [64] in 40 HD patients randomized to exercise
(cycling) for 3 months observed significant improve-
ments in serum albumin levels, body mass index, and
IL-6.

More recently, these findings have been confirmed by
Cruz et al., [65] who found a reduction in IL-6 serum
levels after 12 weeks of intradialytic aerobic training.
However, several other studies have shown that pro-
gressive intradialytic resistance training did not affect IL-
6 circulating levels [66–68].

Finally, a recent meta-analysis showed that different
types of exercise interventions in CKD patients are as-
sociated with a significant decrease in pro-inflammatory
molecules, including IL-6, C-reactive protein, and TNF-α,
along with an increase in IL-10 [69]. However, subgroup
analysis showed that the effects of exercise on reducing
IL-6 are more prominent in non-dialysis CKD patients
and when interventions lasted more than 16 weeks.

Undoubtedly, the heterogeneity of patient populations
and interventions (type of exercise, duration) renders the
interpretation of the results of these studies and others
with similar aims difficult to make. Therefore, while
exercise intervention seems to be a reliable strategy to
modulate IL-6 in CKD patients, defining the right target
population and implementing an adequate program to
promote improvements in clinical outcomes remains to
be determined.

Myostatin
Myostatin, also known as growth and differentiation

factor-8 (GDF8), belongs to the transforming growth
factor-β (TGF-β) family and was first identified in 1997.
It is initially synthesized as an inactive 375 kDa pre-
cursor (pre-pro Mstn) and undergoes processing to
produce a 12.5/26 kDa mature peptide [70]. Myostatin
acts by binding to type II activin receptor IIB, which
activates intracellular pathways, including Smad pro-
teins and mitogen-activated protein kinases (MAPKs),
regulating essential cellular processes like cell differ-
entiation and inflammation [71]. Skeletal muscle cells
are the primary source of total body myostatin, serving
as the principal negative regulator of muscle growth. Its
expression is downregulated by physical activity, yet it
exerts detrimental effects on muscle growth by influ-
encing various cell types, including satellite cells and
myofibers.

Primarily acting on myofibers, myostatin inhibits
myogenesis, reducing the gene expression of molecules
involved in skeletal muscle development through the
inhibition of the IGF-1/Akt/mTOR pathway [72]. Ad-
ditionally, it can enhance muscle loss by activating
proteolysis and autophagy through the upregulation of
the ubiquitin-proteasome system and inhibiting satellite
cell proliferation and differentiation [73]. Myostatin’s
role as a potential mediator and biomarker of aging and
sarcopenia is evident through experimental models
showing a significant negative correlation between Mstn
gene expression and muscle mass and strength in older
animals and adults [74]. Coherently, the inhibition or
knockout of muscle expression of myostatin has dem-
onstrated beneficial effects during aging and in reducing
the extent of sarcopenia [75].

However, contradictory results have emerged re-
garding serum myostatin levels in the elderly population,
suggesting a discrepancy between muscle and systemic
Mstn expression and effects [76]. In con trast to sarco-
penia, cachexia, characterized by weight loss and severe
wasting associated with inflammation and metabolic
derangements, represents a pathological condition ob-
served in chronic diseases such as cancer, heart failure,
liver cirrhosis, and CKD [77].

Experimental and clinical studies have hypothesized
myostatin’s role in cachexia, observing correlations be-
tween systemic Mstn overexpression in adult mice and
muscle and fat loss, typical features found in cachectic
patients [78–81].

Beyond muscle production, myostatin is expressed in
various tissues, including adipose tissue, liver, kidney, and
bone. Accumulating evidence suggests its implications in
physiological and pathological processes, including en-
ergy metabolism, bone mineralization, inflammatory-
related vascular alterations, insulin resistance, and obe-
sity [71, 82].

Myostatin is also directly expressed in the human
kidney, in both glomerular and tubulointerstitial com-
partments. This expression is upregulated in diabetic
nephropathy and directly correlated with interstitial fi-
brosis [83]. Moreover, myostatin expression is also up-
regulated in the arterial wall of CKD patients, where,
similarly to its effects observed in skeletal muscle, it may
induce ubiquitin-mediated proteolysis of intracellular
proteins, thus influencing vascular structure [84].

Therefore, myostatin may potentially play a significant
role in the pathogenesis, progression, and onset of
complications in CKD patients. In this regard, one of the
most typical aspects of patients with CKD, particularly
those undergoing HD, is the high prevalence of
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malnutrition and muscle wasting, which directly corre-
lates with morbidity and mortality [85].

Malnutrition and muscle wasting, whose components
have been synthesized in the definition of protein energy
wasting (PEW) syndrome, are multifactorial conditions
with a complex physiopathology [86, 87]. Myostatin
overexpression may contribute to these conditions,
supported by data indicating the association between its
upregulation and inflammation in the skeletal muscle of
CKDmurine models and in human CKDmuscle biopsies
[88, 89].

Moreover, inflammatory cytokines and uremic toxins,
such as TNF-α and indoxyl sulfate, induce Mstn, thus
promoting protein catabolism [90]. Therefore, Mstn may
constitute a link between inflammation and PEW in CKD
patients [91]. However, also in CKD patients, data on
circulating Mstn levels seem in contradiction with those
reported in skeletal muscle [92, 93].

Given its substantial regulatory effects on muscle
growth and metabolism, inhibiting or modulating my-
ostatin signaling has been explored as a potential ther-
apeutic strategy in various clinical conditions, focusing on
improving muscle mass and performance status in pa-
tients with sarcopenia and cachexia. Currently, physical
exercise remains the most effective and safe intervention
to modulate Mstn muscle expression. Resistance exercise
training has demonstrated beneficial effects in attenu-
ating the progression of sarcopenia, improving muscle
size and strength, and decreasingMstn gene expression in
animal models, healthy individuals, and patients with
chronic heart failure [94, 95]. Specific effects of physical
exercise on myostatin muscle expression or systemic
levels in kidney disease patients have been scarcely in-
vestigated (Table 3).

In 2006, Kopple et al. [96] reported the secondary
analysis of a randomized interventional study testing the
effects of 8-week resistance training in a cohort of HD
patients undergoing muscle biopsy. The authors observed
that, following training, there was an increase in the gene
expression of IGF-I, IGF-I receptor, and IGF binding
proteins (IGFBPs), while Mstn expression significantly
decreased (-51%). One year later, the same group re-
ported similar results testing different forms of exercise
training (endurance, strength, or a combination) in 51
HD patients [97]. After about 21 weeks, they found that
all the exercise programs improved physical perfor-
mances and reduced body fat content, while significantly
increasing IGF-I and IGFBPs and reducing Mstn gene
expression.

More recently, the effects of exercise on muscle Mstn
expression have also been tested in non-dialysis-

dependent CKD patients. In the previously mentioned
study by Watson, it was found that muscle gene ex-
pression of Mstn was significantly suppressed from
baseline following both acute exercise and resistance
training in patients with CKD stage 3b–4 [59].

These data were then confirmed later by the same
group in a larger cohort [98]. Despite the promising
results, only one study has prospectively evaluated the
relationship between training and circulating Mstn in
CKD patients. This study, part of the Renal Exercise
(RENEXC) trial, demonstrated that 12 months of exercise
training increased lean mass and decreased fat mass in
151 CKD non-dialysis-dependent patients [99]. However,
the prevalence of sarcopenia was unchanged, and most
interestingly, plasma myostatin levels were significantly
positively correlated with muscle mass and physical
performance and further increased after training, sug-
gesting that circulating myostatin reflects muscle mass
content rather than being a marker of muscle wasting
[100]. The role of myostatin in sarcopenia pathogenesis
has prompted exploration of pharmacological ap-
proaches. While inhibition in aged mice has shown in-
creased muscle mass and strength, direct inhibition in
humans, including HD patients, has yielded limited re-
sults. Multitarget strategies focusing on inhibiting myo-
statin receptor or downstream pathways appear more
promising, though these therapeutic strategies are still far
from clinical application.

Irisin
Irisin represents one of the first identified and most

studied myokines. It derives from the cleavage of fibro-
nectin type III domain-containing 5 protein (FNDC5)
and ones released into the bloodstream, after binding to
its receptor integrin aV/b1/5, it can mediate pleiotropic
functions in several tissues and organ systems through the
adenosine 5’-monophosphate-activated protein kinase
(AMPK), the focal adhesion kinase (FAK), and the
MAPK signaling pathways [101].

It is vigorously produced after acute physical exercise,
and by activating downstream pathways in an autocrine
manner, it plays a key regulatory role in muscle growth
and differentiation of myoblasts [102]. Notably, there is
conflicting evidence about the effects of chronic exercise
on irisin production [103], but recent metanalysis suggest
the importance of the type of training performed: chronic
resistance training programs seem to lead to an increase
in irisin levels comparable to that obtained with acute
exercise [104, 105]. The strict relationship with muscle
physiology has allowed to identify circulating irisin as a
biomarker for muscle mass and performance, taking into
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consideration its significantly lower levels in patients with
sarcopenia [106].

However, as expected by its myokine role, beyond
musculoskeletal homeostasis, irisin is also involved in
many other regulatory pathways, including liver and
glucose metabolism, white fat browning and neuro-
protection. Noticeably, evidence is recently mounting for
what concerns the role played by irisin in the field of
kidney diseases.

First of all, it is important to underline that irisin is
involved in kidney protection more broadly and indi-
rectly by counteracting oxidative stress and glucose in-
tolerance, which conspicuously contribute to renal
damage and CKD progression [107]. In an in vivo model,
treatment with irisin was shown to improve glucose
tolerance and diet-induced obesity [108]. More specifi-
cally, for what concerns diabetic nephropathy,Wang et al.
have found decreased levels of circulating irisin in dia-
betic patients with micro- and macroalbuminuria com-
pared to those with normal albuminuria. Of note, the
myokine’s serum concentration showed, respectively, a
linear and an inverse relationship with glomerular fil-
tration rate and proteinuria [32].

Recently, Formigari et al. have shed light on the po-
tential involvement of irisin in physical exercise-mediated
nephroprotection in diabetic nephropathy. In an in vivo
model of diabetic rats, 8 weeks of aerobic physical exercise
hindered the development of glomerular hypertrophy
and fibrosis. This finding was linked with an increased
irisin expression in the muscle and with an activation of
the AMPK pathway in the kidney. Of note, treatment
with an irisin receptor inhibitor (CycloRGDyK) coun-
teracted the irisin-mediated nephroprotective effects
observed after physical exercise, such as the reduction of
albuminuria and the glomerular expression of fibronectin
and collagen IV [109].

Renal fibrosis represents the pathophysiological hall-
mark of CKD. The treatment with irisin of tubule cells
incubated with a well-knownmediator of kidney damage,
TGFβ, leads to suppression of downstream signaling
pathways of TGFβ and increased aerobic metabolism.
Moreover, the same authors showed that the adminis-
tration of irisin to an in vivo model of kidney fibrosis and
CKD was associated with an improvement of both kidney
histopathology and function [110]. CKD is notoriously
associated with vascular calcifications, which represent
one of the main causes of high cardiovascular risk in this
population. Irisin treatment was shown to protect against
medial vascular smooth cell calcifications in vitro and in a
CKD mouse model by reducing inflammation and pro-
inflammatory cell death [33]. The same research group

has very recently described how irisin may be able to
counteract PEW. The use of irisin in mouse models of
CKD-related muscle atrophy led to reduced fatty acid
oxidation and apoptosis and consequently to an im-
provement of skeletal muscle atrophy [111]. Of note,
there is evidence that irisin plays a nephroprotective role
in the context of acute kidney injury, as well. Liu et al.
[112] have shown in vitro and in vivo irisin expression in
kidney tubule cells during ischemia-reperfusion-injury
(IRI) conditions. The authors showed an autocrine re-
nal defense mechanism mediated by irisin leading to
decreased oxidative stress and inflammation. This finding
was confirmed in another recent paper in which irisin
pretreatment allowed for a dampening of apoptosis, in-
flammation, and oxidative stress in mouse renal tissue
subjected to IRI [113].

Recently, Wen et al. [114] have found decreased irisin
plasma levels in patients affected by advanced CKD
compared to healthy subjects. The authors have identified
reduced muscle mass and circulating uremic toxins as
factors possibly responsible for this reduction.

For what concerns the effects of physical exercise on
irisin levels in CKD patients, evidence is still scarce and
derives solely from studies conducted on hemodialytic
patients. Notably, no difference was observed in plasma
irisin levels of hemodialysis patients after both an in-
tradialytic resistance training program of 6 months and
after acute intradialytic exercise sessions [115, 116]. In
conclusion, whether induced by physical exercise or as a
recombinant drug, in the future irisin may represent a
promising therapeutic agent in renal diseases,
mainly – but not only – aimed at reducing the high
cardiovascular risk which characterizes CKD patients.

Other Myokines
Myostatin, irisin, and IL-6 are the most well-known

myokines in the field of renal diseases. Nevertheless, other
promising ones are gaining interest and evidence such as
IL-15, brain-derived neurotrophic factor (BDNF), apelin,
fibroblast growth factor 21 (FGF21), and IGF-1, which
production and release are significantly upregulated by
physical exercise.

IL-15 is a cytokine member of the interleukin-2 su-
perfamily involved in skeletal muscle fiber growth and
myocyte differentiation [117]. Studies on mice and hu-
mans showed an augmented production and secretion of
IL-15 in skeletal muscle after physical exercise [118]. Of
note IL-15 seems to act positively on metabolic diseases
enhancing glucose uptake and tolerance [119, 120].
Moreover, in a unilateral ureteral obstruction model,
treatment with IL-15 was recently associated with a

Physical Exercise and Myokines in CKD Kidney Blood Press Res 2024;49:457–471
DOI: 10.1159/000539489

465

D
ow

nloaded from
 http://karger.com

/kbr/article-pdf/49/1/457/4250101/000539489.pdf by guest on 12 July 2024

https://doi.org/10.1159/000539489


reduced inflammatory milieu and myofibroblasts-
mediated fibrosis [121].

The neurotrophin BDNF recently emerged as a my-
okine linked with protective effects in diabetes and
obesity [118]. The extent of its muscular release after
acute and especially chronic physical exercise are yet to be
elucidated [122], but the metabolic beneficial effects are
well ascertained. Treatment of diabetic mice with BDNF
enhances glucose metabolism in the diabetic muscle and
leads to decreased blood glucose levels [123]. An in-
creased BDNF production in the skeletal muscle after
contraction results in an AMPK-dependent fat oxidation
showing a myokine’s beneficial role in energy homeo-
stasis. Interestingly, BDNF circulating levels were found
low both in obese and diabetic patients [124]. Finally, a
recent paper by Asfar et al. described a strong association
between CKD, inflammation, and oxidative stress and
proposed BDNF as a promising biomarker, considering
that BDNF low levels are linked with sarcopenia, de-
pression, and reduced exercise capacity in CKD pa-
tients [125].

As previously stated, skeletal muscle atrophy is a well-
known complication of CKD. Apelin is a myokine with a
direct anti-sarcopenic effect. Enoki et al. [126] showed a
two-phase trend in apelin’s production in a CKD mouse
model with an increased expression in the early stages of
CKD (8 weeks after 5/6 nephrectomy) and a reduction in
myokine’s expression in later stages. Interestingly,
treatment with apelin led to an improvement in CKD-
induced sarcopenia.

Moreover, a recent paper described an in vitro and
in vivo nephroprotective role played by apelin, consisting
in an anti-endothelial-to-mesenchymal (EndMT) tran-
sition and anti-fibrotic effect via the inhibition of TGFβ/
Smad signaling [127]. It is interesting to point out that
this myokine seems to be also involved in the patho-
physiology of acute kidney injury by exerting an
endothelium-dependent vasodilator effect [128].

Few data have been reported in human CKD, where
apelin circulating levels have been found both under and
upregulated when compared with healthy subjects. The
potential clinical implications of these findings and the
effects of physical exercise in CKD remain to be clarified
[129, 130].

The hormone FGF21 is mainly produced in the liver
but also by the skeletal muscle during physical exercise
[131]. The beneficial role played by FGF21 as a metabolic
regulator is well known and confirmed in therapeutic
studies [132]. Moreover, its involvement in hindering the
histopathological alterations found in diabetic ne-
phropathy was observed [133].

Of note, increased levels of FGF21 were found in CKD
models and patients affected by CKD, but the patho-
physiological meaning and the implications of these
findings still need to be elucidated [134]. IGF-1 is a
growth hormone (GH) essential for bone and tissue
development. Alterations of the GH/IGF-1 axis and the
high-affinity IGFBP activity were observed in renal dis-
eases. In particular, an overactivation was found in the
early stages of diabetic nephropathy and autosomal
polycystic kidney disease [135, 136], whereas resistance to
GH/IGF-1 was observed in CKD, which may be due to
metabolic acidosis, inflammation, and uremia [137].
Interestingly, physical exercise is positively associated
with IGF-1 production, as also found by Kopple et al. [96]
The authors observed an increase in the skeletal muscle
expression of IGF-1 and IGFBPs after exercise training in
dialysis patients, which was associated with a reduction in
body fat and an increase in fat-free mass.

Moreover, there is evidence of a key role played by
IGF-1 in the anabolic response observed after physical
exercise in CKD and hemodialysis patients [107]. As
outlined above, all these exercise-induced cytokines and
peptides have been acknowledged as myokines with a
promising role in the field of kidney diseases. Never-
theless, the knowledge about their involvement in hu-
mans and in the different stages of CKD has to be
deepened.

Conclusions

The identification and characterization of myokines
have marked a significant advancement in compre-
hending the intricate pathophysiology of skeletal muscle.
In particular, the modulation of myokines by physical
exercise may partially elucidate the role of physical ac-
tivity in muscular physiology, as well as its impact on
metabolism and other systemic processes.

Experimental and clinical data indicate that, in CKD
patients, physical exercise may serve as a potent regulator
of both muscle and systemic myokine effects. These
regulatory mechanisms hold promise for having a pos-
itive influence on conditions such as sarcopenia, mal-
nutrition, metabolic dysregulation, and chronic inflam-
mation in this patient population. Moreover, through the
regulation of myokines, physical exercise may contribute
to a delayed progression of kidney disease.

Hence, while myokines can be potential therapeutic
targets, physical exercise emerges as an even more for-
midable tool for improving patient outcomes. However,
also considering the lack of specific data for other CKD
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patient populations, such as those undergoing peritoneal
dialysis and kidney transplantation, further research is
needed to identify the most effective type of exercise,
determine which patients stand to benefit the most and
optimize the integration of physical exercise with phar-
macological and non-pharmacological interventions.
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