
Physics of the Dark Universe 42 (2023) 101274

a

C
b

c

d

o
l
p
t

d
V

s

Contents lists available at ScienceDirect

Physics of the Dark Universe

journal homepage: www.elsevier.com/locate/dark

Interacting quintessence cosmology fromNoether symmetries:
Comparing theoretical predictionswith observational data
Ester Piedipalumbo a,b,∗, Stefano Vignolo c, Pasquale Feola c, Salvatore Capozziello a,b,d

Dipartimento di Fisica ‘‘E. Pancini’’, Università degli Studi di Napoli ‘‘Federico II’’, Compl. Univ. Monte S. Angelo, Edificio 6, Via
inthia, I-80126 Napoli, Italy
Istituto Nazionale di Fisica Nazionale, Sez. di Napoli, Compl. Univ. Monte S. Angelo, Edificio 6, via Cinthia, I-80126, Napoli, Italy
DIME, Università di Genova, Via all’ Opera Pia 15, I-16145, Genova, Italy
Scuola Superiore Meridionale, Largo S. Marcellino 10, I-80138, Napoli, Italy

a r t i c l e i n f o

Article history:
Received 14 March 2023
Received in revised form 17 June 2023
Accepted 21 June 2023

Keywords:
Scalar-tensor gravity
Noether symmetries
Observational cosmology

a b s t r a c t

In the framework of scalar-tensor gravity, we consider non-flat interacting quintessence cosmology
where a scalar field is interacting with dark matter. Such a scalar field can be a standard or a phantom
one. We use the Noether Symmetry Approach to obtain general exact solutions for cosmological
equations and to select scalar-field self-interaction potentials. It turns out that the found solutions can
reproduce the accelerated expansion of the Universe, and are compatible with observational dataset, as
the SNeIa Pantheon data, gamma ray bursts Hubble diagram, and direct measurements of the Hubble
parameter.

© 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The detection of the accelerated expansion of the Universe is
ne of the most challenging discoveries in cosmology over the
ast decades. To explain this unexpected dynamics, two main
roposals have been developed. According to the first approach,
he accelerated expansion is driven by some unknown dark en-
ergy fluid; the second approach, instead, is connected to non-
homogeneous matter distributions or to some modification or
extension of General Relativity. According to these perspectives,
several cosmological models have been proposed in literature,
including a non-zero cosmological constant, standard or phantom
scalar fields, and extended/alternative theories of gravity [1–9].

Recently interacting dark matter–dark energy models, dubbed
as interacting dark energy or coupled-dark energy, have been
proposed in different contexts in view to address several cos-
mological problems, such as the cosmic coincidence problem–
i.e. the circumstance that dark energy and dark matter amounts
are today of the same order of magnitude, even if they evolve
independently- and cosmological tensions ( [3,10–25]). However,
these interacting dark energy models are characterized by some
phenomenological choices for the interaction form, and there is
a certain freedom in choosing specific interaction models. In [25]
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we investigated, in a flat model, whether this coupling can be
selected by the existence of a Noether symmetry. It turned out
that this method allows us to select both the analytical form
of the interaction and the self-interacting potential of the scalar
field: we actually found out that the interaction term can be
factorized as F (a, φ) = F1(a)F2(φ). Moreover, we were able
to obtain exact solutions of the Friedman equations, which are
quite well compatible with this SNeIa data set. In this paper,
we extend the Noether Symmetry Approach (see [26] for details)
to a cosmological model with non-flat spatial geometry, and to
phantom scalar fields.

In Section 2, we investigate the existence of Noether symme-
tries for the point-like Lagrangian describing a single standard or
phantom scalar field coupled to dark matter. We show that the
existence of this symmetry allows a coupled dark energy field and
selects the self-interaction potential leading the dark matter–dark
energy interaction: we actually obtain more general expressions,
and not always factorizable, for the interaction term.

Section 3 is devoted to obtain general exact solutions for the
Friedman equations, which naturally supply accelerated expan-
sions.

In Section 4 we finally compare the theoretical solutions with
different datasets in order to achieve a reliable cosmic history at
different redshifts. In Section 5 we draw conclusions.

2. Interacting scalar-tensor cosmology

The Noether Symmetry Approach [26] provides a geometric
selection rule to find out the unknown parameters or functions in
icle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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he gravitational action, and to solve the cosmological equations
4,7,27–34]. Moreover, the existence of a Noether symmetry al-
ows to reduce the dynamical system that, in most cases, results
ntegrable. In the present case, let us consider the following action
unctional

=

∫
√

−g
[
−

1
2
R +

ϵ

2
g ijφiφj + V (φ) + L̃(gij, φ)

]
d4x, (1)

describing a theory of gravity with a minimally coupled scalar
field interacting with the dark matter component. We are actually
interested in investigating cosmological models in which the dark
energy component, represented by a quintessential scalar field,
is directly coupled to a perfect fluid,-whose contribution has
been incorporated into the Lagrangian, by using the conserva-
tions laws. That kind of perfect fluid is described by a standard
term Ma−3(γ−1) (corresponding to the equation of state pm =

(γ − 1) ρm. In Eq. (1), V (φ) denotes the self-interaction potential
of the scalar field φ, whereas

L̃(gij, φ) = Lm(gij) + Lint
m (gij, φ), (2)

is the sum of standard matter Lagrangian function Lm(gij) with in-
teraction term Lint

m (gij, φ). In order to study cosmological models
deriving from the action (1), let us take into account a Friedman–
Robertson–Walker spacetime, whose line element is expressed as

ds2 = −dt2 + a(t)2
[

dr2

1 − kr2
+ r2dθ2

+ r2 sin2 θdϕ2
]

, (3)

ith k = −1, 0, 1. Inserting the content of Eq. (3) into Eq. (1), we
et the corresponding point-like Lagrangian

(a, φ, ȧ, φ̇) = 3aȧ2 − a3
(

ϵφ̇2

2
− V (φ)

)
− 3ka

+ Ma−3(γ−1) (1 + F (a, φ)) ,

(4)

where γ ∈ [1, 2], and the term

Lm(gij) = Ma−3(γ−1) (5)

indicates, indeed the standard matter Lagrangian function with
the constant M related to the present matter density, and

Lint
m (gij, φ) = Ma−3(γ−1)F (a, φ), (6)

denotes the interaction term. The value of the constant ϵ dis-
criminates between standard and phantom quintessence field:
actually, in the former case, it is ϵ = 1 while, in the latter, it
is ϵ = −1. The variation with respect to the two dynamical fields
a and φ gives the Euler–Lagrange equations

2
ä
a

+ H2
+

k
a2

+
ϵφ̇2

2
− V (φ)

+ (γ − 1)Ma−3γ (1 + F) −
1
3
Ma(−3γ+1) ∂F

∂a
= 0,

(7a)

φ̈ + 3ϵHφ̇ +
∂V
∂φ

+ Ma−3γ ∂F
∂φ

= 0, (7b)

here H =
ȧ
a is the Hubble parameter. Moreover, the Jacobi first

integral provides the relation

3H2
−

ϵφ̇2

2
+

3k
a2

− V (φ) − Ma−3γ (1 + F) = 0, (8)

corresponding to the (0, 0) Einstein field equation.
In the case of γ = 1, we can write Eq. (8) in the form:

3H2
= ρm + ρk + ρ

eff
φ , (9)

where the effective energy density of the φ-field is given by

ρ
eff

= ρ + Ma−3F (a, φ), (10)
φ φ w

2

and ρφ is the scalar field energy density

ρφ =
1
2
ϵφ̇2

+ V (φ). (11)

nalogously, it is possible to define an effective pressure of the
calar field as:

eff
φ =

1
2
ϵφ̇2

− V (φ) +
M
3a2

∂F (a, φ)
∂a

. (12)

ith these two expressions, it turns out that Eq. (7a) takes the
orm(

ä
a

)
= −

(
ρeff + 3peff

)
, (13)

and it is possible to define an effective equation of state

w
eff
φ =

pφ

ρφ

=

1
2ϵφ̇

2
− V (φ) +

M
3a2

∂F (a,φ)
∂a

1
2ϵφ̇

2 + V (φ) + Ma−3F (a, φ)
, (14)

hich drives the dynamics of the model.

. Noether symmetries and exact solutions

The system of differential equations (7a), (7b), (8) is non-linear
nd many choices are possible for the interaction term F (a, φ) and

the self interaction potential V (φ). In order to solve the system,
we search for Noether symmetries for the Lagrangian in Eq. (4),
by which it is possible to simplify the study of the dynamics.
Furthermore, the existence of these symmetries allows us to fix
the forms of F (a, φ) and V (φ).

3.1. The case of a standard scalar field

The configuration space of the model is given by the local
coordinates. It is Q ≡ {a, φ}. The associated tangent bundle is
then given by the fibered coordinates, i.e. TQ ≡ {a, φ, ȧ, φ̇}. The
resulting point-like Lagrangian is a function on TQ having the
local expression

L(a, φ, ȧ, φ̇) = 3aȧ2 − a3
(

φ̇2

2
− V (φ)

)
− 3ka

+ Ma−3(γ−1) (1 + F (a, φ)) .

(15)

We look for Noether symmetries of the Lagrangian (15) of the
form

X = α
∂

∂a
+ β

∂

∂φ
+ α̇

∂

∂ ȧ
+ β̇

∂

∂φ̇
(16)

here α = α(a, φ), β = β(a, φ), α̇ = ȧ ∂α
∂a + φ̇ ∂α

∂φ
and β̇ = ȧ ∂β

∂a +

˙ ∂β

∂φ
. The vector fields (16) are defined on the tangent bundle TQ

and are the canonical lift of corresponding vector fields

Y = α
∂

∂a
+ β

∂

∂φ
(17)

efined on Q. A Noether symmetry (16) is achieved if the condi-
ion

XL = XL = α
∂L
∂a

+ β
∂L
∂φ

+ α̇
∂L
∂ ȧ

+ β̇
∂L

∂φ̇
= 0, (18)

holds, where LX is the Lie derivative.1 The Noether charge Σ0 can
be written as iXΘL = Σ0, where iXΘL is the Cartan one-form.

1 It is worth noting that using the Lie derivative to find symmetries of a
iven Lagrangian allows a classification of the Noether symmetries into three
roups: the standard condition LXL = 0 characterizes the fact that the phase
lux along the vector field X is conserved and internal symmetries arise. Here
e limit just to this case
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Condition (18) gives rise to the following system of first-order
artial differential equations

+ 2a
∂α

∂a
= 0, (19a)

α + 2a
∂β

∂φ
= 0, (19b)

6
∂α

∂φ
− a2

∂β

∂a
= 0, (19c)

αa2V (φ) + βa3
dV
dφ

(φ) − 3(γ − 1)Ma−3γ+2α (1 + F (a, φ))

+Ma−3(γ−1) ∂F
∂a

α + Ma−3(γ−1) ∂F
∂φ

β − 3kα = 0. (19d)

Actually the contraction appearing in (18) defines a quadratic
form in ȧ and φ̇: in order to solve, at any value of t , the equation
LXL = 0, we equate to zero each coefficient of the velocities and
their power terms, plus the 0th power term of such a quadratic
form, obtaining Eqs. (19a)–(19d). Indeed it turns out that

LXL = Ma3−3γ α(a, φ)F (1,0)(a, φ) − 3(γ − 1)Ma2−3γ α(a, φ)(F (a, φ) + 1) +

ȧφ̇
(
6aα(0,1)(a, φ) − a3β (1,0)(a, φ)

)
−

1
2
a2φ̇2 (3α(a, φ) + 2aβ (0,1)(a, φ)

)
+

3a2V (φ)α(a, φ) + a3β(a, φ)
(
Ma−3γ F (0,1)(a, φ) + V ′(φ)

)
+ (20)

3ȧ2
(
2aα(1,0)(a, φ) + α(a, φ)

)
+ 3kα(a, φ).

Therefore, it can be easily verified that Eqs. (19a)–(19c) are ob-
tained by canceling the coefficients in ȧ2, φ̇2 , ȧ φ̇ respectively, and
q. (19d) is obtained by canceling the 0th order term. It turns out
hat we can immediately find a not factorized particular solutions
f Eqs. (19a), (19b) and (19c), given by

(a, φ) = 0, (21a)

(a, φ) = β0, (21b)

here β0 is constant. In this case the corresponding symmetry is
he field

= β0
∂

∂φ
(22)

and the constant of motion is

Σ0 = a3φ̇. (23)

A more general solution of the system (19a), (19b) and (19c), can
be obtained by applying the separating variables method. Actually
solutions are

α =
Ae

1
2
√
3/2φ

+ Be−
1
2
√
3/2φ

a1/2
(24a)

=
−A

√
6e

1
2
√
3/2φ

+ B
√
6e−

1
2
√
3/2φ

a3/2
(24b)

where A and B are intergration constants. After, we can split
Eqs. (19d) into two separate equations for V (φ) and F (a, φ) re-
spectively:

3αa2V (φ) + βa3V ′(φ) = 0 (25a)

and

− 3(γ − 1)Ma−3γ+2α (1 + F (a, φ)) + Ma−3(γ−1) ∂F
∂a

α

+ Ma−3(γ−1) ∂F β − 3kα = 0.
(25b)
∂φ

3

Therefore, making use of Eqs. (24), we find the potential

V (φ) = e−

√
3
2 φV0

(
B − Ae

√
3
2 φ

)2

. (26)

ome comments are in order here. These kind of potential is
hysically relevant because it gives accelerated expansion also for
he inflationary paradigm [35]. Moreover it turns out that in pres-
nce of exponential potentials it is possible to exhibit alternative
agrangians for the Einstein field equations [36]. Furthermore, it
s possible to show that exponential forms for the potential result
n invertible conformal transformations and can be related to f (R)
ravity in the Einstein frame [37]. In the following we set A = 0,
o that the potential takes the form:

(φ) = V0e−
√
3/2φ . (27a)

he function F (a, φ) is

F (a, φ) = a3(γ−1)G(−
√
6 ln a + φ) +

3k
M

a3γ−2
− 1, (27b)

here G(x) is an arbitrary function of its own argument (therefore
n the case of Eq. (27b) x = −

√
6 ln a + φ). Inserting Eqs. (27a)

and (27b) into Eq. (15), Lagrangian (15) assumes the expression

L = a3
(
V0e

−

√
3
2 φ

−
φ̇2

2

)
+ MG

(
φ −

√
6 log(a)

)
+ 3ȧ2a. (28)

t is worth noticing that the above symmetries give rise to an
nteraction term which actually cancels the contributions due
o the spatial curvature and reduces the dynamic effect of the
osmological fluid to that of a dust. The effects of the curva-
ure remain indeed in the evolution of the scalar field, as it
an be inferred from the definition of the effective density and
ressure of the scalar field (see Eqs. (10) and (12)). Moreover it
urns out that, in the case of an arbitrary form for the function(

φ −
√
6 log(a)

)
in Eq. (28), the interaction function F (a, φ)

is not separable on a and φ: just for some special choices of
this arbitrary term, we find out that F (a, φ) can be considered
factorized. For instance, by choosing G(x) = Qe

−
hx√
6 with Q and h

appropriate constants, we have the function

F (a, φ) = Qa3(γ−1)+he
−

hφ
√
6 +

3k
M

a3γ−2
− 1. (29)

In this case, the Lagrangian (15) assumes the physically relevant
expression

L = 3aȧ2 − a3
(

φ̇2

2
− V0e−

√
3/2φ

)
+ MQahe

−
hφ
√
6 . (30)

e see that, once that we have been able to assign the functions
(φ), and F (φ), it is always possible to transform the Lagrangian
n Eq. (30):

(a, φ, ȧ, φ̇) → L̃(u, u̇, v̇), (31)

.e. v becomes a cyclic variable for the transformed Lagrangian.
ctually it is well known that under a point transformation, a
ector field X becomes

˜ =
(
iXdQ k) ∂

∂Q k +
d
dt

(
iXdQ k) ∂

∂Q̇ k
. (32)

f X is a Noether symmetry, and we consider a point transforma-
ion in a such a way that

XdQ 1
= 1, (33)

XdQ j
= 0 (j ̸= 1), (34)

e obtain

˜ =
∂

, (35a)

∂Q 1
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∂L̃
∂Q 1 = 0. (35b)

Therefore Q 1 is a cyclic coordinate for L̃, and the dynamics can
e simplified according to a well known procedure, which can
ften allow us to obtain exact solutions for the associated Euler–
agrangian equations. It is worth remarking that the change of
oordinates defined in Eqs. (35a)–(35b)is not unique (so that an
ppropriate choice is important), and the solution of this system
t is, in general, not defined everywhere in the space. In the case
f our Lagrangian (30), we perform the change of variables:

Xdv = α
∂v

∂a
+ β

∂v

∂φ
= 1, (36a)

Xdv = α
∂u
∂a

+ β
∂u
∂φ

= 0. (36b)

It turns out that v is cyclic for the transformed Lagrangian
(i.e. ∂L

∂v
= 0).2 We solve Eqs. (36a)–(36b) and obtain

= (uv)1/3 , (37a)

φ = −

√
2/3 ln

u
v
. (37b)

n terms of the new coordinates, the Lagrangian (30) can be
xpressed as

=
4
3
u̇v̇ + V0u2

+ MQu
2h
3 , (38)

here v is a cyclic coordinate. The associated conserved momen-
um is given by
∂L
∂v̇

=
4
3
u̇ = Σ, (39)

here Σ is a constant of motion. By integrating Eq. (39), we get

(t) =
3
4
Σt + u0. (40)

sing the Jacobi first integral of (38), we obtain the evolution
quation for v

˙ =
V0

Σ

(
3
4
Σt + u0

)2

+
MQ
Σ

(
3
4
Σt + u0

) 2h
3

(41)

which is directly integrated, giving rise to

v(t) =
4V0

9Σ2

(
3
4
Σt + u0

)3

+
4MQ

3Σ2
( 2h

3 + 1
) (3

4
Σt + u0

) 2h
3 +1

+C .

(42)

herefore, Eqs. (37a) and (37b) provide the analytical form for the
cale factor, a(t), and the scalar field, φ(t) in terms of u(t) and v(t).
Another possible choice in Eq. (27b) is G(x) = Qxn. The

oint-like Lagrangian (15) becomes

= 3aȧ2 − a3
(

φ̇2

2
− V0e−

√
3/2φ

)
+ MQ (−

√
6 ln a + φ)n. (43)

y performing again the coordinate transformation (37), the La-
rangian (43) assumes the form

=
4
3
u̇v̇ + V0u2

+ 6n/2MQ
(

−
2
3
ln u

)n

(44)

gain, the variable v is cyclic, the quantity ∂L
∂v̇

=
4
3 u̇ is conserved

and the solution (40) holds. By inserting solution (40) into the

2 In the following, with abuse of notation, we shall write L and not L̃ to
ndicate the transformed Lagrangian.
4

Jacobi first integral, we get the evolution equation for the variable
v

v̇ =
V0

Σ

(
3
4
Σt + u0

)2

+ 6n/2MQ
Σ

(
−

2
3
ln
(
3
4
Σt + u0

))n

(45)

hich is solved as

(t) =
4V0

9Σ2

(
3
4
Σt + u0

)3

+

∫
6n/2MQ

Σ

(
−

2
3
ln
(
3
4
Σt + u0

))n

dt

(46)

Similar solutions are obtained by choosing G(x) = Qex, G(x) =

ln(x) or G(x) = Q
√
x in Eq. (27b). For G(x) = Qex, the corre-

sponding point-like Lagrangian is given by

L = 3aȧ2 − a3
(

φ̇2

2
− V0e−

√
3/2φ

)
+ MQe−

√
6 ln a+φ, (47)

and the transformed Lagrangian (47) becomes

L =
4
3
u̇v̇ + V0u2

+ MQu−
√
8/3. (48)

Also in this case the variable v is cyclic and the quantity ∂L
∂v̇

=
4
3 u̇

is conserved. The solution (40) is still valid and we can use it into
the Jacobi first integral. The evolution equation for the variable v

s

˙ =
V0

Σ

(
3
4
Σt + u0

)2

+
MQ
Σ

(
3
4
Σt + u0

)−
√
8/3

(49)

nd it admits the solution

(t) =
4V0

9Σ2

(
3
4
Σt + u0

)3

+
4MQ

3Σ2
(
−

√
8/3 + 1

)
×

(
3
4
Σt + u0

)−
√
8/3+1

+ C

(50)

n the case G(x) = Q ln(x), the corresponding point-like La-
rangian is

= 3aȧ2 − a3
(

φ̇2

2
− V0e−

√
3/2φ

)
+ MQln(−

√
6 ln a + φ), (51)

nd the transformed Lagrangian (51) assumes the form:

=
4
3
u̇v̇ + V0u2

+ +MQln(−
√
8/3 ln u) (52)

Since v is again a cyclic variable, the quantity ∂L
∂v̇

=
4
3 u̇ is con-

erved and we get solution (40) again. Inserting (40) into the
acobi first integral, we get the evolution equation for the variable

˙ =
V0

Σ

(
3
4
Σt + u0

)2

+
MQ
Σ

ln
(

−

√
8/3 ln

(
3
4
Σt + u0

))
(53)

hich has solution

(t) =
4V0

9Σ2

(
3
4
Σt + u0

)3

+

∫
MQ
Σ

ln
(

−

√
8/3 ln

(
3
4
Σt + u0

))
dt

(54)

Finally, for G(x) = Q
√
x the point-like Lagrangian is

L = 3aȧ2 − a3
(

φ̇2

2
− V0e−

√
3/2φ

)
+ MQ

√
(−

√
6 ln a + φ) (55)

the transformed Lagrangian (55) can be written as

L =
4
u̇v̇ + V0u2

+ +MQ
√

−

√
8/3 ln u. (56)
3
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ue to the conservation of momentum ∂L
∂v̇

=
4
3 u̇, the solution (40)

olds again, while the Jacobi first integral yields the evolution
quation for v

˙ =
V0

Σ

(
3
4
Σt + u0

)2

+
MQ
Σ

√
−

√
8/3 ln

(
3
4
Σt + u0

)
(57)

he latter can be integrated as

(t) =
4V0

9Σ2

(
3
4
Σt + u0

)3

+

∫
MQ
Σ

√
−

√
8/3 ln

(
3
4
Σt + u0

)
dt =

4V0

9Σ2

(
3
4
Σt + u0

)3

+ (58)

23/4
√

− log
( 3
4 (Σt + u0)

)⎛⎝−

(Σt+u0)F
(√

log
(

3
4 (tΣ+u0)

))
√
log
(

3
4 (Σt+u0)

) + Σt + u0

⎞⎠
4
√
3Σ

.

Here F is a Dawson integral, defined as:

F(x) = e−x2
∫ x

0
ey

2
dy. (59)

t is worth stressing that the Dawson integral can be represented
n terms of the imaginary error function:

(x) =
1
2
√

πe−x2 erf (ix)
i

. (60)

It is worth noting that the solutions corresponding to the
symmetries of the Lagrangians described in Eqs. (43), (47), (51)
and (55) are expressed only in terms of the new variables u(t) and
(t), for reason of mathematical clarity and simplicity: the use of
he old variables (a(t) and φ(t)) would result in very long and
ndesirably complicated expressions. Moreover, as final remark,
e emphasize that the Noether symmetry approach allowed us to

ind a considerable number of symmetries and related cosmolog-
cal solutions: in order to understand if these solutions provide
vailable candidates for describing the dark energy component,
ll these mathematical solutions ought to be analyzed in detail,
nd case by case, from a physical point of view-checking, for
xample, whether they give rise to accelerated expansion of
he Universe. In a forthcoming paper we plan to analyze and
haracterized all the mathematical solutions provided by the
oether symmetry method on the base of their physical features.
ere, to illustrate our method, we concentrate our attention on
he solution in Eqs. (40), and (42) concerning the case of the
tandard scalar field, and on the solution in Eqs. (78a) and (78b),
oncerning the case of a phantom scalar field, as we shall discuss
elow.

.2. The case of a phantom field

Almost all data sets from cosmological probes are compatible
ith dark energy equations of state parameter where w < −1
see for instance [38]): dark energy with this kind of equations
f state is often called phantom dark energy. Phantom fluids
ere first introduced by Caldwell, who suggested the name due
o the circumstance that phantoms or ghosts possess negative
nergy, which leads to instabilities on both classical and quan-
um level [39–41], and violate the energy conditions. From the
heoretical point of view, however, contexts with phantom-like
quations of state, which do not lead to energy conditions viola-
ion, have been explored. Actually, phantom type of matter was
nvestigated in several cosmological scenarios [42–46]. Here we
onsider phantom interacting dark energy, and look for general
nalytical form of the interaction and the self-interacting poten-
ial of the phantom field. The point-like Lagrangian is now of the
5

orm

(a, φ, ȧ, φ̇) = 3aȧ2+a3
(

φ̇2

2
+ V (φ)

)
−3ka+Ma−3(γ−1) (1 + F (a, φ))

(61)

In this case, the conditions for the existence of a Noether sym-
metry (18) are

α + 2a
∂α

∂a
= 0, (62a)

3α + 2a
∂β

∂φ
= 0 (62b)

6
∂α

∂φ
+ a2

∂β

∂a
= 0, (62c)

3αa2V (φ) + βa3
dV
dφ

(φ) − 3(γ − 1)Ma−3γ+2α (1 + F (a, φ))

(62d)

+Ma−3(γ−1) ∂F
∂a

α + Ma−3(γ−1) ∂F
∂φ

β − 3kα = 0.

nce again by separating variables, Eqs. (62a), (62b) and (62c)
ave solutions of the form

=

−A cos
(√

6
4 φ

)
+ B sin

(√
6
4 φ

)
a1/2

, (63a)

=

A
√
6 sin

(√
6
4 φ

)
+ B

√
6 cos

(√
6
4 φ

)
a3/2

, (63b)

here A and B are appropriate integration constants. By splitting
gain Eq. (62d) into

αa2V (φ) + βa3V ′(φ) = 0, (64a)

nd

− 3(γ − 1)Ma−3γ+2α (1 + F (a, φ)) + Ma−3(γ−1) ∂F
∂a

α

+ Ma−3(γ−1) ∂F
∂φ

β − 3kα = 0,
(64b)

and, using Eqs. (63), it turns out that

V (φ) = V0

(
B cos

(
1
2

√
3
2
φ

)
− A sin

(
1
2

√
3
2
φ

))2

. (65)

Also in this case we can set A = 0 for simplicity, and we obtain
solutions for V (φ) and F (a, φ) of the form

V (φ) = V0 cos2
(√

6
4

φ

)
, (66a)

(a, φ) = a3(γ−1)G

(
cos

(√
6
4

φ

)
a

3
2

)
+

3k
M

a3γ−2
− 1, (66b)

here G(x) is an arbitrary function of its own argument (therefore
n the case of Eq. (66b) x = cos

(√
6
4 φ

)
a

3
2 . It is worth noting that

the choice A = 0 implies a periodic the self-interaction potential,
but not a periodic interaction term, due to the presence of the
term a

3
2 . As a consequence, differently from the case of a non-

interacting phantom model-when a periodic potential actually
gives rise to oscillating solutions [32,36]—whatever the analyti-
cal form of G(x), we have no oscillating cosmological solutions
(see, for instance, Eqs. (71a), (71b), (71a), (74a), (74b) below).
Moreover, also in the case of a phantom scalar field, it turns out
that the interaction term effectively cancels the contributions due
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o the spatial curvature and reduces the dynamic effect of the
osmological fluid to that of dust.
For instance, by choosing G(x) = x and inserting expressions

(66) into Eq. (61), the point-like Lagrangian assumes the form

L = 3aȧ2+a3
(

φ̇2

2
+ V0 cos2

(√
6
4

φ

))
+M cos

(√
6
4

φ

)
a

3
2 (67)

herefore, also in the case of phantom scalar field, we can look
or new coordinates u and v, solutions of equations:

iXdv = α
∂v

∂a
+ β

∂v

∂φ
= 1, (68a)

Xdv = α
∂u
∂a

+ β
∂u
∂φ

= 0. (68b)

Again, under the hypothesis A = 0, they are given by

(a, φ) = f

(
cos

(√
6
4

φ

)
a

3
2

)
, (69a)

(a, φ) =
2
3B

sin

(√
6
4

φ

)
a

3
2 + g

(
cos

(√
6
4

φ

)
a

3
2

)
, (69b)

here f and g are arbitrary real functions of one variable. By
etting B =

2
3 , f (x) = x and g(x) = 0, we have

u(a, φ) = cos

(√
6
4

φ

)
a

3
2 , (70a)

(a, φ) = sin

(√
6
4

φ

)
a

3
2 . (70b)

Inverting functions (70), we get the relations

a =
(
u2

+ v2) 1
3 , (71a)

=
4

√
6
arctan

(v

u

)
. (71b)

Eqs. (71) allow us to express the Lagrangian (67) in the new
coordinates as

L(u, v, u̇, v̇) =
4
3

(
u̇2

+ v̇2)
+ V0u2

+ Mu. (72)

he Lagrange equations generated by the Lagrangian (72) are
iven by
8
3
ü − 2V0u − M = 0, (73a)

8
3
v̈ = 0. (73b)

Eqs. (73) admit solutions of the form

u(t) = C1e
√

3V0t
2 + C2e−

√
3V0t
2 −

M
2V0

, (74a)

(t) = v1t + v0. (74b)

Similar solutions are obtained by choosing G(x) = x2 in Eq. (66b).
In this case, the point-like Lagrangian is expressed as

L = 3aȧ2 + a3
(

φ̇2

2
+ V0 cos2

(√
6
4

φ

))
+ M cos2

(√
6
4

φ

)
a3.

(75)

erforming the change of coordinates (71), Lagrangian (75) as-
umes the form

(u, v, u̇, v̇) =
4 (

u̇2
+ v̇2)

+ (V0 + M) u2. (76)

3

6

Lagrangian (76) yields the Euler–Lagrange equations
4
3
ü − (V0 + M) u = 0, (77a)

8
3
v̈ = 0. (77b)

Eqs. (77) give solutions of the form

u(t) = C1e

√
3(V0+M)t

2 + C2e−

√
3(V0+M)t

2 , (78a)

(t) = v1t + v0. (78b)

n particular, for V0 = −M , we have

(t) = u1t + u0. (79)

ore in general, we can chose G(x) = xn in Eq. (66b). The
orresponding point-like Lagrangian is given by

= 3aȧ2 + a3
(

φ̇2

2
+ V0 cos2

(√
6
4

φ

))
+ M cosn

(√
6
4

φ

)
a

3n
2 .

(80)

In the new coordinates (71), Lagrangian (80) is expressed as

L(u, v, u̇, v̇) =
4
3

(
u̇2

+ v̇2)
+ V0u2

+ Mun. (81)

he latter gives rise to Euler–Lagrange equations of the form
8
3
ü − 2V0u − nMu(n−1)

= 0, (82a)

8
3
v̈ = 0. (82b)

Eqs. (82) admit the following solutions

±

∫
2du√

3V0u2 + 3nMun + C1

= t + C2, (83a)

(t) = v1t + v0. (83b)

imilar solutions can be obtained by setting G(x) = ex, G(x) =

n(x) or G(x) =
√
x in Eq. (66b). For G(x) = ex, the corresponding

oint-like Lagrangian is given by

= 3aȧ2 + a3
(

φ̇2

2
+ V0 cos2

(√
6
4

φ

))
+ Mecos

(√
6
4 φ

)
a
3
2
. (84)

n the new coordinates (71), Lagrangian (84) is expressed as

(u, v, u̇, v̇) =
4
3

(
u̇2

+ v̇2)
+ V0u2

+ Meu. (85)

rom Eqs. (85), we derive Lagrange equations of the form
8
3
ü − 2V0u − Meu = 0, (86a)

8
3
v̈ = 0. (86b)

Eqs. (86) admit the following solutions

±

∫
2du√

3V0u2 + 3Meu + C1

= t + C2, (87a)

(t) = v1t + v0. (87b)

or G(x) = ln(x), the point-like Lagrangian is

= 3aȧ2+a3
(

φ̇2

2
+ V0 cos2

(√
6
4

φ

))
+Mln

(
cos

(√
6
4

φ

)
a

3
2

)
.

(88)



E. Piedipalumbo, S. Vignolo, P. Feola et al. Physics of the Dark Universe 42 (2023) 101274

I

L

v

L

I

L

−

w
i

c

e

w

F

v

T
o

A
a
c
t

V

a
w

Q

+{
a

a

n the coordinates (71), Lagrangian (88) is expressed as

(u, v, u̇, v̇) =
4
3

(
u̇2

+ v̇2)
+ V0u2

+ Mln(u). (89)

The induced Lagrange equations are of the form
8
3
ü − 2V0u −

M
u

= 0, (90a)

8
3
v̈ = 0. (90b)

Solutions of (90) are

±

∫
2du√

3V0u2 + 3Mln(u) + C1
= t + C2, (91a)

(t) = v1t + v0. (91b)

Finally, for G(x) =
√
x, the point-like Lagrangian is given by

= 3aȧ2+a3
(

φ̇2

2
+ V0 cos2

(√
6
4

φ

))
+M

√(cos(√
6
4

φ

)
a

3
2

)
.

(92)

n the coordinates (71), Lagrangian (92) is expressed as

(u, v, u̇, v̇) =
4
3

(
u̇2

+ v̇2)
+ V0u2

+ M
√
u (93)

and the corresponding Euler–Lagrange equations are
8
3
ü − 2V0u −

M
2
√
u

= 0, (94a)

8
3
v̈ = 0. (94b)

Eqs. (94) admit the following solutions

±

∫
2du√

3V0u2 + 3M
√
u + C1

= t + C2, (95a)

v(t) = v1t + v0. (95b)

As final remark, we observe that, in order to solve Eq. (62d)–or,
analogously, Eq. (19d)–, it is possible to redefine F (a, φ) to absorb
all terms, including the potential V (φ), into a single function:

F (a, φ) → F̃ (a, φ) = a3V (φ) + Ma−3(γ−1)(1 + F (a, φ)). (96)

It turns out that, using Eqs. (63) with A = 0,

F (a, φ) =

a3γ−3
(
Mc1

[√
2
3

(
2 log

(
sec

(
1
2

√
3
2φ

))
− 3 log(a)

)])
M

a3γ V (φ) − 3a3γ−2k
M

− 1, (97)

here c1[x] is an arbitrary function of one real variable. For
nstance, by choosing

1

[√
2
3

(
2 log

(
sec

(
1
2

√
3
2
φ

))
− 3 log(a)

)]
= (98)

xp

(
−

1
3
m

(
2 log

(
sec

(
1
2

√
3
2
φ

))
− 3 log(a)

))
,

e have the function F (a, φ) in the form:

(a, φ) =

a3γ−3
(
Mam sec−

2m
3

(
1
2

√
3
2φ

)
− a3V (φ) − 3ak

)
M

− 1.

(99)
7

Inserting Eq. (99) into Eq. (61), Lagrangian (61) assumes the
expression

L = am sec−
2m
3

(
1
2

√
3
2
φ

)
+

a3φ̇2

2
+ 3aȧ2. (100)

It turns out that this choice in Eq. (96) has no effect in the search
for Noether symmetries and the results are the same with only
a single function being involved. However, the form used in the
action (61) offers the advantage to highlight contributions from
different terms (scalar field potential, matter etc.).

4. Exact solutions as dark energy: comparison between theo-
retical prediction and observations

Let us show now that some of the above solutions can repro-
duce, both for the standard (ϵ = 1) and the phantom scalar field
(ϵ = −1), the accelerated expansion of the Universe. In particular,
they are compatible with different observational datasets, as the
SNeIa Pantheon, the gamma ray bursts Hubble diagram, and
measurements of the Hubble parameter.

4.1. The case of the standard scalar field

For our purposes, we consider the case described by Eqs. (40)
and (42) with h =

3
2 . It turns out that

u(t) =
3Σt
4

+ u0 (101)

(t) =
3
8
t2 (MQ + 2u0V0) +

tu0 (MQ + u0V0)

Σ
+

3
16

Σt3V0.

he scale factor and the scalar field can be expressed as functions
f u(t) and v(t). Actually a(t) = (uv)1/3, and φ(t) = −

√
2/3 ln u

v
.

Moreover we impose the condition a(0) = 0, and we set the age
of the Universe, t0, as time-scale (t0 = 1). Therefore the expansion
rate H(t) is dimensionless, and its actual value H0 = H(t0) is
clearly of order 1. This means that it is numerically different
from the Hubble constant usually measured in km s−1 Mpc−1.
ctually, H0 depends on the integration constants. We then set
0 = a(1) = 1, and H0 = H(1). These conditions induce some
onstraints among the integration constants: for instance from
he condition a(t0 = 1) = 1 we obtain

0 =
64Σ − 2MQ (3Σ + 4u0) (3Σ + 8u0)

(3Σ + 4u0)
(
3Σ2 + 12Σu0 + 16u2

0

) , (102)

nd from H(t0 = 1) = H0 we obtain-once that we substitute V0
ith the relation in Eq. (102):

= −
{
32
(
9 (3H0 − 4) Σ3

+ 144 (H0 − 1) Σ2u0

96 (3H0 − 2) Σu2
0 + 64 (3H0 − 1) u3

0

)}
×

3M (Σ + 4u0) (3Σ + 4u0)
3}−1

. (103)

By means of these choices the scale factor and the scalar field
re parametrized by H0, u0 and Σ:

3(t) =
3Σ2t4

(
27 (H0 − 1) Σ2

+ 36 (3H0 − 2) Σu0 + 32 (3H0 − 1) u2
0

)
(Σ + 4u0) (3Σ + 4u0) 3 +

4t3
( 27

4 (4 − 3H0) Σ4
+ 72 (3H0 − 2) Σ2u2

0 + 80 (3H0 − 1) Σu3
0

)
(Σ + 4u0) (3Σ + 4u0) 3 +

4t2u0
(
27 (4 − 3H0) Σ3

− 216 (H0 − 1) Σ2u0 + 64 (3H0 − 1) u3
0

)
(Σ + 4u0) (3Σ + 4u0) 3 +

32tu2
0

(
3 (4 − 3H0) Σ2

− 30 (H0 − 1) Σu0 + 8 (2 − 3H0) u2
0

)
(Σ + 4u0) (3Σ + 4u0) 3 ,

(104)
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Fig. 1. The redshift dependence of the acceleration for the standard scalar field
odel, corresponding to fixed values of H0 = 1, u0 = 5.12 and Σ = 1.2. The
odel provides an accelerated expansion and the transition to the decelerated

egime occurs at a redshift compatible with observations.

Fig. 2. The redshift dependence of the equation of state parameter w
eff
φ (gray

ine) and wφ (red line) for the standard scalar field model, corresponding to
ixed value of H0 = 1, us0 = 5.12 and Σ = 1.2. The values of the parameters
re chosen to highlight the different behavior between the two function: it is
vident the super-quintessential nature of the equation of state (weff

φ < 1) due to
he interaction term. (For interpretation of the references to color in this figure
egend, the reader is referred to the web version of this article.)

√
3
2 φ

=
v(t)
u(t)

=

(
3Σt
4

+ u0

)−1

× (105){
4Σt3

(
27 (H0 − 1) Σ2

+ 36 (3H0 − 2) Σu0 + 32 (3H0 − 1) u2
0

)
(Σ + 4u0) (3Σ + 4u0)

3 +

4t2
(
9 (4−3H0) Σ3

−36 (H0−1) Σ2u0+48 (3H0−2) Σu2
0+64 (3H0 − 1) u3

0

)
(Σ+4u0) (3Σ+4u0)

3

32tu0
(
3 (4 − 3H0) Σ2

− 30 (H0 − 1) Σu0 + 8 (2 − 3H0) u2
0

)
(Σ + 4u0) (3Σ + 4u0)

3

}
. (106)

This exact solution provides an accelerated expansion as shown
in Fig. 1.

Moreover, using the analytical expressions for a(t) and φ(t),
we can construct the standard quantities ρφ , pφ , Vφ , wφ , and the
effective quantities ρ

eff
φ , peffφ , and w

eff
φ , defined by Eqs. (11), (10),

(12), (14) with ϵ = 1. In Fig. 2 , we compare the redshift behavior
of w and w

eff for some values of the parameters.
φ φ

8

4.2. Supernovae and GRB Hubble diagram

The SNIa Hubble diagram provided the first strong evidence
of the present accelerating expansion of the Universe [47–50].
Here we consider the Pantheon compilation, consisting of 1048
SNIa in the range 0.01 < z < 2.26. This sample combines 365
spectroscopically confirmed SNIa, discovered by the Pan-STARRS1
PS1 Medium Deep Survey, the subset of 279 PS1 SNIa in the range
(0.03 < z < 0.68), distance estimates from SDSS, SNLS, and
various low redshift and HST samples [51]. The SNIa observations
provide the apparent magnitude m(z), related to the Hubble free
luminosity distance through the relation:

mth(z) = M̄ + 5 log10(DL(z)). (107)

Here M̄ is the zero point offset and depends on the absolute mag-
nitude M and on the Hubble parameter. The theoretical distance
modulus is therefore defined as

µth(zi, {θp}) = 5 log10(DL(zi, {θp})) + ν0, (108)

where DL is the luminosity distance:

DL =
c

100h
(1 + z)

∫ z

0

1
H(ζ , θ )

dζ . (109)

The parameter ν0 in Eq. (108) encodes the Hubble constant. The
absolute magnitude M and {θp} are the parameters of the model.
Actually, it is well known that, using only SNeIa, one cannot
constrain the Hubble constant, without including measurements
of its local value, since this is degenerate with M .

Gamma-ray bursts (GRBs) are the brightest cosmological
sources in the Universe, thanks to the enormous amount of
energy released in tens or hundreds of seconds: actually the
isotropic radiated energy, Eiso, can reach 1054 erg. Moreover their
redshift distribution extends up to z ∼ 9.4: therefore they
are good candidates for cosmological investigation. Unfortunately
GRBs are not standard candles, since their peak luminosity spans
a wide range. However it is possible to consider them as distance
indicators calibrating some empirical correlations of distance-
dependent quantities and rest-frame observables [52–55]. Here
we consider the GRB Hubble diagram built up from the Ep,i −

Eiso correlation. Actually, it is well known that GRBs have non-
thermal spectra modeled by a smoothly broken power law with
two indices (a low index α, and a high index β), named the
band function, N(E). Their spectra show a peak corresponding the
photon energy Ep = E0(2+α). Moreover, for GRBs with measured
spectrum and redshift, it is possible to evaluate the intrinsic peak
energy, Ep,i = Ep(1 + z) and the isotropic equivalent radiated
energy, defined as:

Eiso = 4πDL(z, θ ) (1 + z)−1
∫ 104/(1+z)

1/(1+z)
EN(E), dE, (110)

where

N(E) =

⎧⎨⎩A
( E
100keV

)α
exp

(
−

E
E0

)
(α − β) E0 ≥ E,

A
(

(α−β)E
100keV

)α−β

exp (α − β)
( E
100keV

)β
(α − β) E0 ≤ E.

The existence of a correlation between Ep,iand Eisofor long GRBs
was discovered in 2002 [52], and was confirmed by later mea-
surements by several different GRB detectors. It can be modeled
as a linear relation between the logarithms of the two quantities:

log
[
Ep,i

keV

]
= b + a log

[
Eiso

1052 erg

]
, (111)

The Ep,i–Eiso correlation is characterized by an intrinsic additional
extra-Poissonian scatter, σint , around the best-fit line that has
to be taken into account and determined together with (a, b)
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Fig. 3. The Hubble diagram of SNIa (upper panel) and GRBs (lower panel), with
their respective 1σ uncertainties.

by the fitting procedure. After that values (a, b) are estimated,
it is possible to obtain the energy Eiso of each burst at high
redshift through Eq. (111), and the luminosity distance, DL(z)
from Eq. (110), building up the GRB Hubble diagram. Here we
use the GRB Hubble diagram presented in [54,56], and in [57]. In
Fig. 3, we show the SNIa and GRB Hubble diagram.

4.3. Direct H(z) measurements

The accurate and direct determination of the expansion rate
of the Universe, H(z), has become one of the main drivers in
precision cosmology, since it can provide fundamental informa-
tion about the possible physical mechanisms underlying the late
time acceleration. The Hubble parameter, defined as H(z) =

ȧ
a ,

epends on the differential age of the Universe as a function of
edshift and can be measured using the cosmic chronometers.
he quantity dz is obtained from spectroscopic surveys with
igh resolution, and the differential evolution of the age of the
niverse dt in the redshift interval dz can be measured provided

that appropriate probes of the aging of the Universe, that is,
just the cosmic chronometers, are identified. The most reliable
cosmic chronometers, observable at high redshift, are old early-
type galaxies evolving passively on a timescale much longer than
their age difference. These galaxies formed the majority of their
stars rapidly and early and they have not experienced subsequent
major star formation or merging episodes. Moreover, the Hubble
 c

9

Fig. 4. The direct H(z) measurements used in our analysis.

parameter can also be obtained from BAO measurements, observ-
ing the typical acoustic scale in the light-of-sight direction. Here
we used a list of direct H(z) measurements in the redshift range

∼ 0.07 − 2.3, compiled in [58,59], as shown in Fig. 4

.4. Statistical analysis

To test the cosmological model described above, we use a
ayesian approach based on the Markov Chain Monte Carlo
MCMC) method [60]. We set the starting points for our chains
erforming a preliminary fit to maximize the likelihood function
(p):

(p) ∝
exp (−χ2

SNIa/GRB/2)

(2π )
NSNIa/GRB

2 |CSNIa/GRB|
1/2

×
exp (−χ2

H/2)
(2π )NH/2|CH |

1/2 , (112)

where

χ2(p) =

N∑
i,j=1

(
xi − xthi (p)

)
C−1
ij

(
xj − xthj (p)

)
. (113)

In Eq. (113), p indicates the parameters of the cosmological
model, N is the number of data points, xi is the ith measurement,
and xthi (p) indicate the theoretical predictions. Cij is the covariance
matrix for the SNIa/GRB/H data. Moreover we used flat priors
on the parameters , and we apply the Gelman–Rubin test for
the convergence of the five running chains. We make thin the
chains discarding the first 30% of iterations at the beginning of
any run, and we finally extract the best fit values and the regions
of confidence on the parameters by co-adding the thinned chains.
In Table 1, we present the results of our analysis. In Figs. 5 and 6,
we plot data vs theoretical predictions.

4.5. The case of the phantom scalar field

Also the phantom scalar field, selected by the Noether sym-
metry, can provide a late accelerated expansion. Let us con-
sider the case described by Eqs. (78a) and (78b). It is a(t) =(
u(t)2 + v(t)2

)1/3, and φ(t) =
4

√
6
arctan

(
v(t)
u(t)

)
.

Also in this case we impose the condition a(0) = 0, and we
et the age of the Universe, t0, as a time-scale (t0 = 1). Indeed,
e set a0 = a(1) = 1, and H0 = H(1). These conditions induce
onstraints among the integration constants: The scale factor and
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Table 1
Constraints on the standard scalar field parameters from different data: com-
bined SNIa and GRB Hubble diagrams, and H(z) data sets. Columns show the
mean ⟨x⟩ and median x̃ values and the 68% and 95% confidence limits.

Standard scalar field

Id ⟨x⟩ x̃ 68% CL 95% CL

SNIa/GRBs/H(z)

H0 1.01 1.02 (0.93, 1.08) (0.90, 1.1)
u0 5.17 4.2 (1.78, 8.3) (1.07, 12.3)
Σ 1.5 1.1 (0.39, 2.9) (0.14, 4.6)
h 0.7 0.69 (0.63, 0.77) (0.61, 0.79)

Fig. 5. Comparison between GRB and Pantheon data vs theoretical distance
odulus, corresponding to the best fit values of the parameters for the standard
calar field model.

Fig. 6. Comparison between the H(z) data vs the theoretical predictions, corre-
ponding to the best fit values of the parameters for the standard scalar field
odel.

he scalar field are therefore parametrized by H0, and α (where
=

√
3 (V0 + M)).

By the analytical expressions for a(t) and φ(t), we can con-
struct the standard quantities ρφ , pφ , Vφ , wφ , and the effective
uantities ρ

eff
φ , peffφ , and w

eff
φ , defined by Eqs. (11), (10), (12), (14)

ith ϵ = −1. It is worth noticing that in order to evaluate the in-
eraction contribution to the effective quantities, we parametrize
he present matter density, M , in terms of the associated ΩM =
M
3H2

0
. In Fig. 7, we compare the redshift behavior of wφ and w

eff
φ

for some values of the parameters. In order to test this model,
we use the same data-samples, and we apply the same statistical
10
Fig. 7. The redshift dependence of the equation of state parameter w
eff
φ (red

line) and wφ (gray line) for the phantom scalar field model, corresponding to
fixed values of H0 = 0.98, α = 3.2 and Ωm = 0.27. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version
of this article.)

Table 2
Constraints on the phantom scalar field parameters from different data samples
(combined SNIa and GRB Hubble diagrams, and H(z) data sets). Columns show
the mean ⟨x⟩ and median x̃ values and the 68% and 95% confidence limits.

Phantom scalar field

Id ⟨x⟩ x̃ 68% CL 95% CL

SNIa/GRBs/H(z)

H0 0.95 0.96 (0.93, 1.2) (0.90, 1.3)
α 7.8 7.9 (5.8, 9.3) (4.2, 10.3)
h 0.72 0.72 (0.65, 0.78) (0.63, 0.80)

analysis described above. In Table 2, we present the results of our
analysis.

5. Discussion and conclusions

We analyzed non-flat cosmological models with an interacting
quintessence component, where, in turn, a standard or a phantom
scalar field interacts with the dark matter term. These models
are usually characterized by a phenomenological choice of the
form of the interaction. Instead, we used the Noether symmetry
approach to select the analytical form of both the scalar-field
self-interaction potential and the interaction term. It turns out
that this latter cancels out the contributions due to the spatial
curvature and reduces the dynamic effect of cosmological fluid
to that of dust. Of course, there are still effects of curvature in
the evolution of the scalar field, as it can be inferred from the
definition of the scalar field effective density and pressure.

Furthermore, we were able to obtain exact solutions of the
cosmological equations, some of which can reproduce the accel-
erated expansion of the Universe, both in the case of a standard
and a phantom scalar field. Moreover, some solutions make evi-
dent the so called super-quintessential behavior of the equation
of state (i.e: w

eff
φ < −1) due to the coupling term. Finally, we

showed that some of the exact solutions are compatible with dif-
ferent observational dataset related to the background expansion,
as the SNeIa Pantheon data, a GRBs Hubble diagram, and direct
measurements of the Hubble parameter. In a forthcoming paper,
we are going to perform a detailed analysis of the interacting dark
energy on the large scale structures. This approach can allow us
to achieve a reliable cosmic history at different redshifts.
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