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Abstract

This doctoral thesis introduces huSync, a computational framework

developed to assess non-verbal communication dynamics in small groups

quantitatively. It aspires to contribute to Interaction Design and

Human-Computer Interaction (HCI), focused on bridging computer

science techniques, embodied design and somatics. huSync employs

pose estimation algorithms to interpret movement trajectories from

video sequences, offering a non-intrusive way to study entrainment in

small-group settings based on established conceptual frameworks.

Joint actions in musical ensembles serve as the primary case study to

explore how non-verbal body cues particularly influence interpersonal

coordination and the directionality of information flow. These mu-

sical joint actions are exemplary instances of ‘self-managed groups’,

illustrating the complex relationships between musical structure, en-

trainment dynamics, and mutual influence among ensemble members.

These musical interactions are central to the research, serving as a

universal language to understand nuanced human behaviours. Meth-

ods and results derived from three distinct studies on dyadic group

dynamics are also presented.

Recent studies are making improvements in computationally mod-

elling human behavior, sharing interesting techniques and approaches,

and continues to remain an open area for research. huSync provides a



computational methodology and approach to model these behavioural

mechanisms in small-group setups, and in this thesis, we present mu-

sical ensembles as a use case. By studying these subtle interactions in

group settings, we begin to get a clearer perspective on how groups

connect and interact. The potential of huSync lies in its capability to

make these intangible elements tangible, offering a fresh perspective

on the subtleties of small-group interactions.

huSync is versatile, managing diverse data sources and identifying es-

sential movement attributes characteristic of group interactions, com-

bining multi-modal signals, feature extraction, entrainment measure-

ment, and analysis validation. It extends its applications to healthcare

projects, emphasising music’s universal role in non-verbal communi-

cation and interdisciplinary studies by integrating technology with

economics, psychology, and the arts. It aims to bridge diverse disci-

plines, suggesting new paths for research in human movement sciences,

especially regarding the use of markerless technologies in behaviorally

driven computational research.

The findings from huSync are reliable and provide an alternative

means for analysing human body movements, aiding in deepening the

understanding of small-group dynamics and the elements contribut-

ing to successful collaborations. huSync seeks to provide dependable

insights into evolving human behaviours by centralising the human

body in small-group interaction-related contexts.
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Chapter 1

Introduction

Non-verbal communication constitutes a foundational component of human in-

teraction, serving pivotal roles in signifying meaning, conveying emotions, and

establishing relationships [1]. Its importance becomes even more accentuated in

specialised settings like musical ensembles, where reliance on non-verbal cues like

body movements and facial expressions is fundamental for coordinating perfor-

mances and achieving harmonious sound [2].

In various social contexts, synchronisation and directionality of influence, crit-

ical components of non-verbal communication, are instrumental in determining

leadership dynamics [3; 4]. Due to their intrinsic reliance on non-verbal com-

munication for synchronisation, musical ensembles present a distinct opportunity

to study these multifaceted phenomena [5]. Recent studies have utilised motion

capture and video analysis to investigate these facets in small-group setups such

as musical ensembles [6; 7]. Nonetheless, a gap exists in understanding the re-

lationship between these factors and leadership dynamics in small-group music

performances. Standard methodologies, such as Motion Capture systems, involve

attaching markers to performers and, because of this, have limited widespread

application due to their intrusive nature. Fewer non-intrusive studies exist, and

1



where they do, they often employ diverse methods, such as eye gaze tracking

[8; 9]. Recent advances in deep learning have led to the development of human

pose estimation (HPE) algorithms, and using them for non-verbal communication

remains a largely unexplored medium.

This thesis introduces huSync, a computational model and framework in-

tended for the automated analysis of human body movements and associated

movement qualities. It includes a structured set of components and protocols

facilitating an objective and empirical exploration of non-verbal cues. It utilises

HPE algorithms to extract postural and movement data, offering a non-intrusive

alternative for studying a variety of small-group settings in naturalistic contexts.

Recognising the importance of investigating interpersonal dynamics within groups

in real-world environments, huSync has been thoughtfully designed to ensure that

findings reflect routine group interactions. Utilising HPE methods, we ensure par-

ticipants can exhibit their natural movements, a contrast to the constraints posed

by MoCap’s form-fitting attire.

With this aim, huSync is applied to standard video footage of professional

musical groups, facilitating the exploration of their inherent movements and in-

teractions. The structured nature of musical performances, where interactions

are often pre-determined in musical scores across many cultures, provides an op-

timal environment to probe non-verbal communication. Building on this premise,

huSync is used to analyse and assess how participants’ movements evolve through-

out structures specific to musical scores.

We address research questions on the effects of musical structural features

on ensemble coordination, directionality of influence, and leadership dynamics,

thereby elucidating their complex interrelationship. Evidence suggests that syn-

chronisation and directionality of influence critically shape the collective perfor-

mance and potentially hint at leadership dynamics [10; 11]. We operationalise the

2



1.1 Objectives

huSync model and implement our computational methods to quanify and mea-

sure dyadic synchronisation and the directionality of influence within musical

ensembles, thus empirically testing our hypotheses.

This thesis addresses important research questions about ensemble coordina-

tion, directionality, and leadership by combining the fields of embodied interaction

design, computer science, and Human-Computer Interaction (HCI). It provides

fresh insights into the dynamics of nonverbal communication within musical en-

sembles. The results have considerable implications beyond of music, even though

the huSync framework is specifically designed for this musical setting. Musical en-

sembles, being self-regulating teams striving for impeccable performances under

systematic structures defined by objective conventions like musical scores, pro-

vide an unparalleled lens for understanding nonverbal communication in broader

group activities [12]. As we employ video-based pose estimation to analyse ex-

tensive real-world performance datasets across cultures and ensemble sizes, we

magnify music’s potential as a medium to dissect and elucidate the intricate

communication dynamics inherent to diverse social groups [10; 11].

1.1 Objectives

Two primary objectives guide this thesis. First, the development of huSync (Hu-

man Sync), a computational framework tailored for automated entrainment mea-

sures analysis, particularly interpersonal synchronisation and directionality of

influence in small groups. While traditional methodologies have certain advan-

tages, they pose challenges for observing naturalistic behaviours. By leveraging

pose-estimation algorithms, huSync non-intrusively extracts relevant data from

video, paving the way for analysing synchronisation and directionality under var-

ied leadership scenarios in realistic settings.

3



1.2 Research Questions and Hypotheses

The need for huSync emerges from the requirement to study interpersonal

coordination in environments reflective of everyday joint actions. Within the

musical ensemble environment, dictated by scores, a suitable setting to analyse

non-verbal communication is presented, focusing on dyadic pairs.

The secondary objective is to operationalise huSync for quantifying interper-

sonal coupling (dyadic) and directionality of influence amongst co-performers in a

musical ensemble. Through the extraction of postural information from standard

concert video recordings, we examine the relationship between musical texture

and leader-follower relations. This not only helps us better understand the cor-

relation between performers’ movements and musical structures but also assesses

the influence of these structures on ensemble coordination and leadership dynam-

ics. By testing huSync’s robustness, we empirically contribute to the literature

of dyadic mechanisms in small groups.

1.2 Research Questions and Hypotheses

This thesis addresses research questions related to nonverbal communication, in-

terpersonal synchronisation, and leadership dynamics within musical ensembles:

1. RQ1 How might computational methods reliably quantify interpersonal

synchronisation in small-group interactions?

2. RQ2 How do structural elements of a musical composition, including tex-

ture and phrase position, modulate interpersonal synchronisation patterns

and relationships among co-performers?

3. RQ3 How does the presence of leadership, whether clear or ambiguous,

alter synchronisation and ensemble interaction dynamics?

4



1.2 Research Questions and Hypotheses

4. RQ4 Are there identifiable patterns of directional influence between melody

instruments and their accompaniments within an ensemble?

5. RQ5 Can statistical and computational techniques such as phase-locking

values, Granger Causality, and human pose estimation algorithms offer a

comprehensive, objective assessment of nonverbal cues, synchronisation,

and leadership dynamics in small group contexts?

In pursuit of answers to these research questions, the subsequent hypotheses

will be explored:

1. H1 Computational and statistical techniques, such as phase-locking val-

ues and Granger Causality, will yield credible indicators of interpersonal

synchronisation and leadership dynamics in small-group interactions.

2. H2 Ensembles performing musical textures with ambiguous leadership (poly-

phonic) will exhibit heightened synchronisation compared to those with a

clearly defined leader (homophonic).

3. H3 Points of structural transition in the music, such as phrase endings,

that raise coordination demands will increase synchronisation.

4. H4 Granger Causality analysis is expected to show a more pronounced

directional influence from melody instruments to accompaniment than vice

versa, especially in homophonic textures.

Through this investigation, the thesis aims to empirically validate the proposed

computational model and showcase its potential to address research questions on

the dynamics of nonverbal communication, entrainment, and evolving leadership

in musical groups. This knowledge base can potentially be extrapolated to diverse

small team dynamics.

5



1.3 Thesis Outline

1.3 Thesis Outline

This The structure of this thesis is as follows:

1. Introduction (Chapter 1): Outlines the foundational objectives, research

questions, and hypotheses guiding this study. Additionally, it points to

relevant publications and introduces the datasets used.

2. Literature Review (Chapter 2): We review pertinent literature on non-

verbal communication in musical settings, synchronization concepts, and

human pose estimation. It provides a context within which this research is

situated.

3. Methodology (Chapter 3): The huSync framework is detailed, and its pro-

cedural elements are articulated.

4. Dataset and Experiment Design (Chapter 4): We share details on the

dataset being utilised, and the procedures involved in their annotation and

segmentation steps. Additionally, it elucidates the experimental design for

our studies.

5. Results (Chapter 5): Findings from the conducted studies are presented in

this chapter. Each subsection provides a structured overview of the results

from the respective studies.

6. Beyond Core Objectives (Chapter 6): During the course of this thesis we

investigate additional areas where the methodologies and insights from this

research found application, albeit outside the primary focus of the thesis.

7. Discussion (Chapter 7): We share our interpretations of the results and dis-

cuss their validity compared to existing literature, drawing tentative simi-

larities and links and sharing the various limitations in our approach.
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1.4 List of publications

8. Conclusions (Chapter 8): We share our conclusive remarks, and suggest

possible directions for future inquiry in this domain.

9. Appendix (Appendix A): Tables concerning the dataset for which experi-

ments have been conducted, and the results obtained, have been organised

in their respective sections.

1.4 List of publications

Results from the work carried out in this thesis were published in high-ranking

peer-reviewed journals and international conferences, and their particulars have

been systematically explained. Below, they are categorised according to their

alignment with the research objectives. The first three studies address synchro-

nisation, directionality of influence, and leadership dynamics within small-group

setups, in particular musical ensembles. Insights from these studies laid the

groundwork for the fourth, highlighting our research’s interconnectedness and

suggesting a promising avenue for further exploration. For clarity, individual

studies within this document will bear titles such as ‘Study 1’, ‘Study 2’, and so

on, serving as reference points for readers.

1. Core Objectives

• Study 1: S. R. Sabharwal, M. Varlet, M. Breaden, G. Volpe, A. Ca-

murri and P. E. Keller. huSync - A Model and System for the Measure

of Synchronisation in Small Groups: A Case Study on Musical Joint

Action, in IEEE Access, vol. 10, pp. 92357-92372, 2022 [13].

• Study 2: S. R. Sabharwal, Arianna Musso, Matthew Breaden, Eva

Riccomagno, Antonio Camurri, Peter E. Keller. Analysing directional-

ity of influence among ensemble musicians using Granger Causality, in
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International Conference of Kansei Engineering and Emotion Research

(KEER), Barcelona, Spain, 2022 [14].

• Study 3: S. R. Sabharwal, M. Breaden, G. Volpe, A. Camurri and

P. E. Keller. Leadership Dynamics in Musical Groups: Quantifying

Effects of Musical Structure on Directionality of Influence in Concert

Performance Videos. Currently under review [15].

2. Beyond central objectives

• Study 4: A. Bergsland∗ and S. Rajeev Sabharwal∗. Examining the

Correlation Between Dance and Electroacoustic Music Phrases: A Pi-

lot Study, in Proceedings of the 18th International Audio Mostly Con-

ference (AM ’23). Association for Computing Machinery, New York,

NY, USA. [16]

∗ These authors contributed equally.

1.5 Software repository and datasets

Following is a list of the software contributions, and the datasets utilised, for the

studies conducted during the course of this thesis:

1. huSync - Dyadic Synchronization: This repository contains the code

for the huSync system and framework, and also the data utilised for Study

1.

2. Directionality of Influence: This repository contains the code and data

that was Utilised for the experiments performed in Studies 2 and 3.
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1.5 Software repository and datasets

3. Correlation Music and Movement - Code Repository: Code repos-

itory for the experiments conducted for the submission to AudioMostly

2023.

4. Correlation Music and Movement - Online Material: Online mate-

rial that was a part of the submission for AudioMostly 2023. Contains the

tables, references, and mocap example.

5. MECS-Py: A pythonic implementation of the Multi-Event-Class Synchro-

nization (MECS) algorithm that is being utilised for investigating saliency

of movements as part of future works.

Within these repositories, where applicable, the relevant datasets have also

been uploaded for easy reproducibility for researchers.
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Chapter 2

Literature Review

In HCI, the increasing integration of sensors and sensing technologies has driven a

profound shift towards embodied interaction design. This paradigm acknowledges

the body’s central role in interface design and interaction, emphasising non-verbal

communication as pivotal. The movement towards embodied interactions is not

merely a consequence of advancing technology but also a reflection of recognising

the body’s significance in conveying subtle yet crucial information—primarily

through somatic states. As software development for interface design evolves, it

naturally demands a keen understanding of these non-verbal cues.

Musical ensembles, with their nuanced non-verbal exchanges and patterns of

synchrony and influence, serve as an ideal setting to investigate into embodied

interactions. However, the dynamics inherent to these ensembles, while funda-

mental, are multifaceted and intricate to decipher.

In this literature review, we discuss studies, perspectives, theories and bodies

of work that are relevant to our research questions (see 1.2). In this process, we

identify shortcomings in previous research, and make an attempt in this work to

address the gaps. The aim is to build upon prior studies, setting the stage for

the subsequent chapters of this thesis. We cover the following:
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2.1 Non-verbal Communication

1. Non-verbal Communication

2. Synchronisation in Small Groups

3. Directionality of Influence and Leadership Dynamics

4. Computational Models for Studying Non-verbal Communication

5. Human Pose Estimation

2.1 Non-verbal Communication

Non-verbal communication includes a spectrum of cues, including facial expres-

sions, vocal cues, touch, proxemics (the study of personal space), gaze, physical

attractiveness, facial morphology, behavioural choices such as hairstyle, clothing,

adornment, and appearance, and even material objects serving communicative

functions within a society [17].

The scientific study of nonverbal behaviour traces its origins to Darwin’s sem-

inal work, ‘On the Expressions of the Emotions in Man and Animal’ [18], where

he highlighted the evolution and adaptiveness of emotional expressions in animals

and humans. Anthropological contributions, especially in kinesics (the study of

body movement) [19] and proxemics [20], played a pivotal role in its development.

Nonverbal communication has garnered extensive interest across disciplines

such as psychology, linguistics, medicine, sociology, anthropology, ethology, and

law. Research in this domain examines the communication of emotional states in

humans and animals, focusing on emotions and expressive features characterising

specific states, such as ‘the loud voice of extraversion’ [21] and its implications

for initial impressions.

Facial expressions, especially those conveying emotions, receive substantial

attention in literature. Paralinguistic aspects such as voice quality, gestures,
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and the recently renewed focus on gaze are also under scrutiny. Nevertheless, di-

mensions of nonverbal communication beyond facial expressions remain relatively

underexplored [17].

Nonverbal communication plays a pivotal role in social interactions. Within

dyadic settings, a significant phenomenon is behavioural synchronisation. As

interactions progress, participants converge in speech characteristics like loudness

and speed, linked to rapport [22]. This behavioural synchronisation, also known

as the ‘chameleon effect,’ underscores shared nonverbal behaviours such as foot

tapping and face touching [23], fostering affiliation and often referred to as ’social

glue’ [24].

Another phenomenon, facial or emotional mimicry, involves imitating emo-

tional behaviour [25]. Often perceived as a form of affective empathy or a ‘low

road’ in empathy, mimicry aids in comprehending others’ emotions [26], and its

suppression can lead to reduced decoding accuracy in specific contexts [25].

Nonverbal communication is a complex aspect of our social interactions and

profoundly shapes our behaviours. While facial expressions receive emphasis,

voice quality, gestures, and gaze are equally pivotal in conveying information and

facilitating social interaction. The roles of behavioural synchronisation and facial

mimicry underscore nonverbal communication’s significance in fostering affiliation

and understanding emotions. A comprehensive grasp of nonverbal communication

is essential for comprehending human social interaction [17].

12



2.1 Non-verbal Communication

2.1.1 Non-verbal Communication in Musical Ensembles

Effective nonverbal communication is essential for a successful musical ensemble

performance. Instrumental movements and other physical gestures are crucial

in sound production and conveying expressive intentions. When combined with

auditory signals, these visual cues reveal the hierarchical structure of the music

and enhance the overall performance quality. [27; 28].

Musicians in ensembles must achieve a balance between precise interpersonal

coordination and the requisite flexibility for expressive renditions [29; 30]. This

balance often manifests as spontaneous or premeditated expressive variations.

These variations, seen in attributes like micro-timing deviations and local tempo

changes, convey musical structure and stylistic interpretation [31; 32; 33; 34].

Ensemble performance necessitates individual variations and coordinated changes

among participants [35].

The spectrum of non-verbal behaviours in musical settings spans complex

body movements, nuanced facial expressions, intentional eye contact, and explicit

gestures [28; 36]. Body movements unintentionally echo rhythm, anticipating the

actions of fellow performers [28], while facial expressions enrich music’s interpre-

tative depth by conveying a diverse range of emotions [36]. Effective use of eye

contact, a non-verbal tool, serves multifaceted roles within ensembles, including

signalling transitions, aiding synchronisation, and reinforcing mutual understand-

ing [28]. Gestures, mainly when employed by conductors, play a crucial role in

establishing rhythmic frameworks [36]. In musical ensembles, it extends beyond

visible gestures, including auditory signals and movements essential for sound

production [28]. The actions of pianists, violinists, wind instrument players, and

others are intrinsic to ensemble communication. Ancillary movements, like head

nods or body sways, determine performance tempo and offer fundamental visual

cues for interpersonal coordination.
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Expressive variations in attributes like timing add a layer of non-verbal com-

munication [28]. Ensemble musicians rely on shared mental representations of

music developed through rehearsals, fostering alignment of performance goals

[35]. Performance cues, guiding musicians and acting as landmarks in composi-

tions [37; 38], facilitate coordination through established memory processes [39],

ensuring alignment with shared objectives for synchronised performance. Effec-

tive non-verbal communication contributes to the coherence observed in musical

ensembles, shaping collective musical experiences. Studies have shown how a

comprehensive understanding of these dynamics provides insights into collabora-

tive mechanisms in ensemble performances [40; 41].

We explore the following roles of non-verbal communication in influencing

performance outcomes:

1. Coordination and Synchronisation: Non-verbal communication cataly-

ses temporal and expressive alignment among ensemble members, ensuring

coherent and well-coordinated performances [40; 42]. Observing fellow mu-

sicians’ movements, expressions, and gestures enables real-time adaptation,

fostering synchronisation and unity [43].

2. Emotional Expression: Facial expressions, body movements, and other

cues convey music’s emotional content, enhancing performance quality [44;

45]. Musicians communicate their unique interpretations, engaging audi-

ences and peers in an emotional journey [46].

3. Leadership and Directionality of Influence: Non-verbal communica-

tion establishes and maintains leadership dynamics within ensembles [29;

35], as leaders effectively employ gestures and eye contact to guide and in-

fluence performances [6; 47]. Musicians align their performances with the

leader’s intentions, achieving a cohesive execution [48; 49].
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Nonverbal communication in musical ensembles involves a complex interplay

of visual and auditory cues, shared representations, and performance goals [27;

28; 36]. It necessitates coordination flexibility and is pivotal for cohesive and

expressive performances [29; 31; 33]. Extensive research supports these insights,

guiding the methodology and experimental design in this PhD Thesis [32; 34; 37;

38; 39].
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2.2 Synchronisation in Small Groups

Synchronisation, central to group dynamics, is thoroughly explored across disci-

plines, including psychology, sociology, and musicology [50]. Beyond mere tem-

poral alignment, it solidifies collective goals and social cohesion in small groups,

such as musical ensembles [35]. This process manifests in behavioural, emotional,

and cognitive forms.

Behavioural synchronisation pertains to coordinated physical actions like con-

gruent movements [42; 51]. Emotional synchronisation encompasses shared emo-

tional states within groups [52], while cognitive synchronisation aligns mental

processes, including shared attention [53; 54].

Various theories elucidate synchronisation’s mechanisms. Entrainment theory

suggests individuals naturally align their actions with their environment’s rhyth-

mic patterns [55]. Conversely, intentional coordination posits conscious synchro-

nisation to optimise group performance [2].

Synchronisation’s degree in groups is influenced by factors such as individual

differences, group structure, and task-specific characteristics. For instance, indi-

vidual traits and experiences influence synchronisation propensity [29; 35], while

group size and diversity affect synchronised behaviour emergence [42; 56]. Task

intricacies, like complexity, also play a role [57; 58].

To visualise behavioural synchronisation, think of a rowing team aligning their

strokes for efficient movement, as highlighted in Fig. 2.1a. Similarly, an orchestra

requires behavioural and cognitive synchronisation, ensuring every musician plays

in harmony, as depicted in Fig. 2.1b. In the case of cognitive synchronisation, J

Buck pointed out a fascinating example from nature, where he hypothesised that

fireflies possess a neural mechanism that automatically makes them synchronise

the rhythmic flashing of conspecific males [59].

In small groups, synchronisation complexities, intertwined with leadership
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dynamics, enrich our understanding of effective collaboration [60]. For example, a

lead musician may adjust their tempo to harmonise with a colleague—an instance

of behavioural synchronisation influenced by leadership dynamics [6]. Similarly,

one can observe military officials coordinate their movements in perfect harmony

during parades 2.1g. Such moments emphasise the nuanced interplay of social

interaction within groups.

Musical ensembles underscore synchronisation’s importance, where performer

coordination is imperative for success [42]. Here, synchronisation coordinates

notes, phrases, and structural elements, influencing temporal accuracy and overall

quality [6; 35].

We can parallel synchronisation’s interplay with leadership dynamics in other

contexts. A project manager directing a team is akin to a conductor guiding

an orchestra, with synchronisation reflecting their leadership efficacy. These un-

derstandings have applications in enhancing group performance in classrooms,

workplaces, or sports teams. Additionally, insights can guide technology designs

like collaborative software and human-interactive robotic systems [50].

Understanding synchronisation allows for tailored strategies to enhance group

performance, from training programs to foster synchronisation skills to policies

encouraging diversity within teams [56]. This research area extends beyond

academia, offering practical educational, business, and sports implications.

In technology, synchronisation principles can augment human-computer inter-

action. For instance, understanding user activity synchronisation could influence

collaborative software tool designs or enhance interactions with social robots, as

illustrated in Fig. 2.1e. Examining larger structures, insights into synchronisation

can elucidate dynamics within communities, societies, and nations, emphasising

the significance of synchronisation in fostering collective action.

The study of synchronisation in small groups offers profound insights into hu-
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man social interaction. We gain invaluable knowledge applicable in diverse social

and professional settings by investigating individual alignment within group con-

texts and influences such as leadership dynamics. This evolving research domain

holds the potential to unveil methods to improve group performance, leadership

efficacy, and societal cohesion.

2.2.1 What is Interpersonal Synchrony?

When discussing “Synchronisation in Small Groups”, we often refer to how a

collective group behaves in unity or harmony, perhaps in achieving a common

goal or functioning as a unit, and it can include coordinated actions, shared

emotions, or aligned objectives among all members.

In contrast, “Interpersonal Synchrony” narrows the scope from the group

to individual-to-individual interactions, and it refers to the dynamic alignment

and temporal coordination. Interpersonal synchrony refers to the dynamic align-

ment and temporal coordination between individuals [62; 63]. This complex

phenomenon goes beyond mere imitation or mirroring to involve the precise tim-

ing and reciprocal adaptation of actions, gestures, and nonverbal signals between

partners [64]. This kind of synchrony is not just about doing the same thing si-

multaneously; it is about how two people can anticipate, mirror, and reciprocate

each other’s actions, emotions, and intentions in real time.

The study of interpersonal synchrony originated in developmental psychol-

ogy research on caregiver-infant interactions, where attunement and synchrony

in gaze, affect, and vocal rhythms were deemed crucial for secure attachment

and social development [65; 66]. However, researchers found that interpersonal

synchrony subsequently facilitated social connection and task performance in con-

texts beyond infancy [67; 68]. For instance, synchrony has increased affiliation,

rapport, and prosocial behaviour between adults [58; 69].
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(a) Rowing team demonstrating be-
havioural synchronisation.

(b) Orchestra illustrating synchronised
performance.

(c) Ensemble showing synchronisation
and leadership.

(d) Dance troupe in harmonised perfor-
mance.

(e) Pepper robot interacting with child
[61].

(f) Fireflies exhibiting synchronised
flashing.

(g) Military officers in aligned forma-
tion.

19



2.2 Synchronisation in Small Groups

In recent years, interpersonal synchrony has become an active multidisci-

plinary research area spanning social signal processing, human-robot interac-

tion, music psychology, and clinical psychiatry [64; 70]. This broad interest

reflects a growing recognition of the role of precise temporal coordination in so-

cial interaction. However, methodological barriers have constrained progress,

especially the need for automated tools for measuring synchrony dynamics in

natural settings [71]. Traditionally, developmental psychologists examined inter-

personal synchrony through manual coding of videotaped interactions to mark

gaze patterns, affect sharing, and contingent responsiveness [65; 66]. However,

such labour-intensive analysis cannot scale to larger groups or capture subtle

temporal nuances. Computational methods are needed to achieve an objective,

quantitative perspective.

Critical elements for the emergence of interpersonal synchrony identified by

psychology research include sustained mutual focus, prompt responsiveness, match-

ing of activity and energy levels, and attunement to the partner’s state [65; 72].

Underpinning this behavioural alignment are shared mental models, allowing

partners to anticipate actions and coordinate adaptively [73]. Developing compu-

tational metrics that capture these dynamic elements poses an interdisciplinary

challenge involving signal processing, machine learning, and construct grounding

in behavioural theory.

Researchers made initial progress, using motion energy analysis (MEA) to

quantify body movement synchrony in psychotherapy [74] and recurrence analysis

to measure postural coordination in conversations [62]. However, substantial

scope remains for sophisticated automated synchrony measures to unlock new

insights into social interaction patterns and deficits in conditions like autism.

Advancing methods to assess interpersonal synchrony can enable diverse applied

domains while addressing basic theoretical questions about temporal coordination
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in human relations.

2.2.2 Interpersonal Synchrony in Musical Ensembles

Interpersonal synchrony in musical ensembles is a fascinating area of study that

intersects the fields of music, psychology, and neuroscience. This phenomenon

refers to the temporal coordination between individuals during a musical perfor-

mance, creating a unified and harmonious output. The study of interpersonal

synchrony in musical ensembles provides insights into the complex interplay of

individual skills, group dynamics, and the overarching musical structure [64].

Interpersonal synchrony in musical ensembles manifests the broader concept of

synchrony in human interactions. Synchrony generally refers to the temporal co-

ordination during social interactions, requiring the perception and integration of

multimodal communicative signals and continuous adaptation [64]. This concept

has been studied extensively in various contexts, including early development,

language learning, and social connection.

Interpersonal synchrony in musical ensembles is crucial for cohesion in per-

formances. It involves coordinating various elements, including rhythm, tempo,

dynamics, and articulation. The musicians in an ensemble must continuously

adapt their performance in response to the cues from their fellow musicians,

thereby achieving a high level of synchrony [75].

Several studies have investigated mechanisms underlying interpersonal syn-

chrony in musical ensembles. For instance, Varni et al. [76] conducted a study

on “Emotional Entrainment in Music Performance”, highlighting emotional syn-

chrony’s role in achieving a unified performance. Similarly, another study by the

same authors focused on “Measuring Entrainment in Small Groups of Musicians”,

providing insights into the dynamics of interpersonal synchrony in small musical

ensembles [77].
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The study of interpersonal synchrony in musical ensembles is broader than

just the coordination of musical elements. It also involves the coordination of

non-verbal cues, such as body movements and facial expressions. For instance, a

study by Richardson, Marsh, and Schmidt [78] explored the effects of visual and

verbal interaction on unintentional interpersonal coordination, highlighting the

role of non-verbal cues in achieving synchrony.

Interpersonal synchrony in musical ensembles is a complex and multifaceted

phenomenon that involves the coordination of musical elements and non-verbal

cues. It requires a high level of individual skill and group dynamics, making it a

fascinating study area for music, psychology, and neuroscience researchers.
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2.3 Directionality of Influence and Leadership

Dynamics

Directionality of influence is a crucial concept when examining leadership dynam-

ics in small groups, as it pertains to the process through which specific individuals

exert a more substantial influence on others, consequently shaping group deci-

sions and behaviour [79]. In this section, we will explore the existing literature on

the directionality of influence and leadership dynamics, highlighting the primary

findings and insights from prior research.

Leadership dynamics involve the patterns and processes by which leaders

emerge, exercise influence, and interact with other group members. An exten-

sive body of research has investigated the role of formal and informal leaders in

small groups, revealing that leadership can emerge from various sources, such as

individual expertise, personal charisma, and social connections [80]. The notion

of shared or distributed leadership has gained traction in recent years, suggest-

ing that leadership roles and responsibilities can be fluid and distributed among

group members, depending on the context and demands of the task [81; 82].

When studying the evolution of leadership dynamics in small groups, review-

ing the direction of influence is important. Research has revealed that leader-

follower interactions can be reciprocal, meaning that both parties can influence

each other through ongoing feedback loops [83]. To measure this dynamic pro-

cess, techniques like Granger causality (GC) analysis are used in neuroscience

and psychology to determine the causal relationships between individuals and

how they influence each other’s actions or behaviour [84].

In musical ensembles, the directionality of influence and leadership dynamics

play a pivotal role in shaping the quality and expressiveness of performances. The

ensemble is a microcosm of a small group where leadership roles can shift fluidly
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based on factors such as the individual’s instrument, position within the group,

and expertise [6]. For instance, a conductor often serves as the central figure

guiding the ensemble, strongly influencing the group’s performance. However,

the directionality of influence is not solely from the conductor to the musicians.

Musicians, particularly section leaders or soloists, can also influence the group’s

performance, contributing to the overall sound and cohesion of the ensemble

[85]. This dynamic interplay of influence underscores the complexity of leadership

dynamics within small groups, illustrating how leadership can be a shared and

reciprocal process. Studying musical ensembles offers a rich context to understand

the nuances of directionality of influence and leadership dynamics in small groups.

It provides insights we can extrapolate to other social and professional settings.

Researchers identified several factors that shape the directionality of influence

and leadership dynamics in small groups. Personality traits, cognitive abilities,

and emotional intelligence can affect a person’s propensity to assume a leadership

role or be influenced by others [86; 87]. Group factors, including group size,

diversity, and familiarity among members, can also influence the emergence and

stability of leadership roles and the directionality of influence [88].

The literature on the directionality of influence and leadership dynamics has

yielded valuable insights into the factors contributing to the emergence of lead-

ership roles, the dynamics of leader-follower interactions, and the impact of indi-

vidual and group factors on these processes. This foundational knowledge serves

as a basis for investigating the directionality of influence and its relationship

with synchronisation in musical ensembles, thereby illuminating the underlying

mechanisms that drive the complex interplay between leadership and group co-

ordination.
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2.4 Human Pose Estimation

Human pose estimation (HPE) is the computational task of detecting human

body posture by estimating the location of critical joints or body parts from

images or video. It has become a central topic in computer vision due to its

diverse applications ranging from human-computer interaction to robotics and

activity recognition. Following a brief literature review of the evolution of HPE,

we discuss the potential of studying non-verbal communication.

2.4.1 Early Methods

Historically, human pose estimation (HPE) methods relied on manually created

features and probabilistic graphical models, specifically pictorial structures [89].

These models depicted the human body as a collection of interconnected parts

and utilised features such as HOG to identify body parts and determine the

overall pose [90]. However, experts widely acknowledge that we must improve

these methods to handle complex movements and obstructions.

With the advent of deep learning, the landscape of HPE transformed. Toshev

and Szegedy [91] pioneered this change, using deep neural networks to regress

body joint coordinates directly. Their approach dramatically outperformed ex-

isting techniques on the FLIC dataset. Subsequent innovations such as the Con-

volutional Pose Machines by Wei et al. [92] and the Stacked Hourglass network

by Newell et al. [93] further refined joint detection, even in challenging scenarios.

2.4.2 Multi-Person Pose Estimation

Researchers designed initial methods for single-person pose estimation. However,

challenges arose when applying them to real-world images containing multiple

individuals, variations in appearance, occlusions, and an unpredictable number
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of people. Different strategies emerged to address this: top-down methods that

first identified individual bounding boxes before estimating poses and bottom-up

methods that identified joints and later grouped them into individuals.

Pioneering top-down solutions include proposals by Insafutdinov et al. [94]

and He et al. [95]. Contrastingly, bottom-up methods like OpenPose [96] detected

joint candidates and then organised them using part affinity fields. Recent en-

deavours have attempted a hybrid of these strategies for optimised multi-person

pose estimation [97].

2.4.3 3D Human Pose Estimation

Transitioning from 2D to 3D pose estimation introduces complexities due to depth

information loss. Previous methods leveraged 3D scans or multi-view images.

Modern techniques integrate 2D joint estimates across time or impose bone length

constraints [98]. Recent research is now exploring implicit depth learning and

self-supervised methods that utilise unlabeled video [99; 100].

2.4.4 Applications of HPE

HPE’s rising precision has spurred diverse applications such as gesture recogni-

tion and control interfaces in HCI, VR/AR avatars in gaming, detecting unusual

activities in surveillance systems, understanding customer behaviour in the retail

industry, predicting pedestrian or car movements in autonomous vehicles, enhanc-

ing athlete performance and monitoring patients in health sciences, and aiding

people who are hard of hearing through sign language recognition. The grow-

ing accuracy of pose estimation methods is paving the way for broader adoption

across industries. Lightweight models are also enabling real-time uses on edge

devices. As algorithms improve and applications diversify, the exploitation of

HPE in HCI-related applications becomes a promising research frontier.
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2.4.5 Potential of HPE in studying Non-Verbal Commu-

nication

Human Pose Estimation (HPE) has witnessed immense growth and application

in diverse fields, from sports analysis to medical support and surveillance [101;

102; 103]. Such interest stems from the capability of HPE to detect human body

postures and movements from images and videos and inherently speaks to its

potential as a dependable tool for non-verbal communication analysis.

A closer inspection reveals that HPE offers more than what meets the eye. It

does not just recognise body parts or postures; it delves into the details of move-

ment and position, often the silent yet profound indicators of socio-emotional

states [104]. For instance, a person’s defensive posture can reveal discomfort or

apprehension, even if their words convey confidence. Moreover, tracking these

nuanced movements over time can provide invaluable insights into behavioural

mimicry, indicating rapport and trust or hinting at dominant-subordinate dy-

namics in group interactions.

Studies like those by Angelini et al. [105] showed the capability of posture-

based algorithms in recognising diverse human actions. Similarly, Fanello et al.

highlighted HPE’s role in real-time activity recognition using RGBD images with

a one-shot learning approach [106]. These findings emphasise the importance of

postures and movements in non-verbal cues, which can lead to a deeper under-

standing of group dynamics, societal roles, and even disorder diagnosis based on

movement patterns.

Still, complexities such as occlusion, object interaction, or motion blur can

affect the reliability of pose estimation algorithms. Despite these challenges, the

advancements in HPE, as evidenced by Osokin’s work on real-time performance

on edge devices [107], and the utilisation of OpenPose for diverse applications

[96; 108; 109], demonstrate its growing robustness and reliability. Studies like
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that of Goyal et al. [110] attempt to address these obstacles using event-driven

cameras. These advancements make the potential of HPE in decoding non-verbal

nuances in human interactions promising.

With the increasing relevance of HPE in human interactions, researchers aim

to harness its potential in non-verbal communication analysis. Still in its nascent

stages, this area encourages the intersection of computer vision, behavioural sci-

ences, and communication studies [111]. There is currently a limited body of

research in non-verbal communication analysis, and this underscores the moti-

vation for study to utilise such non-intrusive techniques to study interpersonal

synchrony, directionality of influence, and leadership dynamics.
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2.5 Computational Models for studying Non-

verbal Communication

2.5.1 Measuring Interpersonal Synchrony

The study of interpersonal synchrony, defined as the dynamic and reciprocal

adaptation of the temporal structure of behaviours between interactive partners,

has been a topic of interest for researchers across various disciplines for many

years [64]. This interest stems from recognising the critical role that non-verbal

communication plays in human interaction, particularly in small-group settings

where leadership dynamics are often at play [112; 113]. In such settings, the abil-

ity of group members to synchronise their behaviours and adapt to changes in the

behaviour of others can strongly influence the group’s overall performance. Such

a phenomenon is particularly evident in musical ensembles, where the success of

the performance relies heavily on the ability of the musicians to coordinate their

actions and maintain harmony [2].

Researchers proposed several approaches over the years to analyse interper-

sonal synchrony. Historically, these methods involved the manual coding of non-

verbal cues by trained human coders. While providing valuable insights into the

dynamics of human interaction, this approach was labour-intensive and time-

consuming, limiting the scope and scale of the studies that could be conducted

[114]. Besides, manual coding methods were subject to various forms of bias and

error, such as coder bias and inter-coder reliability issues, which could potentially

affect the validity and reliability of the findings [64; 115]. Therefore, there was

a clear need for more efficient and objective methods for studying interpersonal

synchrony.

Addressing this, researchers began to explore using automated coding tech-

niques for collecting nonverbal behavioural data. These techniques, which often
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involve advanced computer algorithms and machine learning methods, can col-

lect data more effectively, objectively, and efficiently than traditional manual

coding methods [64; 115]. These techniques have been particularly beneficial for

studying interpersonal synchrony in the context of nonverbal communication and

leadership dynamics in small-group settings. Researchers have made use of such

advanced techniques to measure the degree of synchronisation and directionality

of influence among the musicians [116], and also adaption and anticipation mod-

els of sensorimotor synchronisation (SMS) [4]. Newtson and colleagues developed

one of the initial methods where they overlaid transparency on a video screen’s

still frame, tallied body part changes to create a time series, and evaluated move-

ment changes over time [117; 118; 119]. Despite its innovativeness, this method

was laborious, provided a coarse view of synchrony, and struggled to capture

intricate, dynamic human interactions [120].

In contrast, MoCap methods excel in capturing and quantifying interper-

sonal synchrony in structured group activities, discerning subtleties that other

techniques might miss. These methods provide insights into spatial proximity,

motion information, and interactive behaviours prevalent within group members

[121]. A study by Novotny and Bente used MoCap data to create computer

animations of dyadic interactions, where participants performed a repetitive mo-

tor task in unison [122]. Observers assessed these animations derived from both

partners’ synchronised full-body motion capture data to gauge synchrony and

leader-followership dynamics in the dyad. The study revealed a significant cor-

relation between most synchrony measures and observer perceptions, with phase

synchrony and Pearson correlations strongly associated with these observations.

MoCap’s precision in capturing fine and gross motor movements, such as finger

movements and limb motions, respectively, is particularly beneficial for studies

related to motor control conditions, including Parkinson’s Disease [123]. Overall,
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MoCap offers a detailed and comprehensive perspective on interpersonal syn-

chrony across diverse settings.

While MoCap systems are known for their high-frequency data capture, accu-

racy, and low noise levels, they come with challenges. These specialised systems

bear a significant cost and introduce methodological complexities. One parti-

cular challenge researchers often encounter is restricting natural movement due

to the tight-fitting suits often required for motion-tracking [124]. Recognising

these constraints, the research community has focused on alternative solutions,

specifically video-based tracking methods. Researchers have recognised two major

approaches: pixel or frame differencing methods and human pose estimation al-

gorithms. Pixel-based or frame differencing methods capture motion in a specific

region of interest [74; 125; 126]. Studies like Hadjakos et al. used the Kinect cam-

era to analyse nuances in head movement for studying synchronisation of a violin

duet performance [127]. On the other hand, human pose estimation algorithms

track human body key points, and algorithms such as OpenPose, AlphaPose, or

OpenFace have recently gained traction [96; 128; 129]. OpenFace, an open-source

facial behaviour analysis toolkit, has been used in analysing nonverbal cues such

as facial expressions, eye gaze, and head movements from video recordings. Sim-

ilarly, OpenPose’s real-time multi-person pose estimation has shown its efficacy

in studying nonverbal communication, presenting results that stand promisingly

alongside MEA [130].

Transitioning from MoCap to video-based methods has enabled studies in nat-

uralistic contexts, offering efficient and less restrictive tools for analysing human

motion and interaction. As research shifted from manual coding to advanced

computer-based techniques, the study of interpersonal synchrony has become

more streamlined. These techniques have paved the way for deeper exploration

of human interaction and group dynamics previously challenging to investigate.
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These methodological advancements provide objective insights into leadership dy-

namics within small groups, informing the formulation of strategies to optimise

group performance.

2.5.2 Measuring Directionality of Influence

The dynamic interplay of sounds and movements in musical performances coor-

dinates over varying timescales. Sounds align on a millisecond level, while body

movements correspond to higher levels of musical structure, such as phrases[131;

132; 133]. This coordination is not static but evolves, reflecting the dynamic

nature of musical communication [43; 116; 134].

In musical ensembles, performers often assume varying roles, with some lead-

ing and others following. These roles can be explicitly assigned or emerge spon-

taneously due to task structure or individual characteristics[29; 36; 135; 136].

Optical motion capture systems have been used to study these dynamics, reveal-

ing that leaders’ movements often precede those of followers[42].

The study of the directionality of influence and information flow in group

dynamics, particularly in musical ensembles, has seen the application of various

computational approaches. One such approach is GC, a statistical concept used

to determine whether one time series helps forecast another. GC has been used

to quantify the flow of information between performers, revealing the influence

of different performers and the dynamics of their interactions[7]. In a study by

Klein et al. [137], GC was applied to measure information flow in sound during

a musical performance. The study involved professional violinists playing along

with recordings of two folk pieces. They compared the amplitude envelopes of

their performances with those of the recordings using GC to measure information

flow and cross-correlation to measure similarity and synchronisation. The study

found that the measure of information flow was higher from the recordings to
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the performances than vice versa, and this decreased as the violinists became

more familiar with the recordings over trials. This decline in information flow

was consistent with a gradual shift from relying on auditory cues to predict the

recording to relying on an internally-based (learned) model built through repe-

tition. The study also found that the violinists became more synchronised with

the recordings over trials. These results shed light on the planning and learning

processes involved in aligning expressive intentions in group music performance

and laid the groundwork for applying GC to investigate information flow through

sound in more complex musical interactions. Researchers employed GC to predict

a musician’s upcoming movements based on the immediate past movements of

fellow musicians [137].

Pertinent to our research, looking at four relevant previous studies on GC

in ensembles, one analysed position [116] and three analysed acceleration [6; 47;

138]. Collectively, these investigations lay the groundwork for our exploration

into ensemble dynamics and performer roles.

Bishop et al. [138] conducted a study to investigate the role of visual contact in

the interaction between musicians during a duo performance. They analysed the

head movements of pianists and clarinettists during performances of a contempo-

rary piece, focusing on the effects of visual contact on movement coordination and

interaction. The study found that visual contact between performers increased

the consistency and coordination of their movements and that performers ex-

changed cueing gestures during held notes. The study also used GC to estimate

the direction and magnitude of influence between performers’ head movements.

The results showed that leader-to-follower influence was more potent in sections

of the piece where a melody/accompaniment structure implied leader/follower

relationships. The study suggests that visual contact can enhance movement-

based interaction between performers and may serve as a social motivator that
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encourages creative thinking and risk-taking during performance. The study used

GC to estimate the influence of one performer’s head movements on another by

comparing two models. In the restricted model, they predicted observations of

the second performer’s movements only by lags of their movements. In the un-

restricted model, they predicted them by lags of both their movements and the

first performer’s movements. They then compared the predictive ability of the

two models to estimate influence likelihood.

In D’Ausilio et al. [6] study, GC was used to investigate the causal rela-

tionships among the movement kinematics of conductors and violinists during

the execution of Mozart pieces (information flow between the baton and bow

motion). The study aimed to explore whether conductors’ kinematics were as-

sociated with a differential influence on musicians’ performance (driving force)

and if this was able to affect inter-musician interaction (interaction strength).

The results showed that the increase of conductor-to-musician influence and the

reduction of musician-to-musician coordination (an index of successful leader-

ship) parallel the quality of execution, as assessed by musical experts’ judgments.

The research quantitatively displayed the GC pattern among conductors and

musicians as a sensorimotor conversation between several individuals: musicians

adjust their performance based on non-linguistic motor messages from other mu-

sicians and the conductors.

Chang et. al. [116] investigated the role of leadership and visual information

in interpersonal coordination during musical ensemble performances. The study

used GC analysis to examine the direction and magnitude of information flow

among performers’ body sway time series. The results showed that leadership

assignment influenced information flow, with leaders having a more significant

influence on followers’ body sway than vice versa or between followers. Visual

information also played a role, with the influence of leader-follower dynamics
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being higher in the visual present condition. The study also found that total

interpersonal body sway coupling correlated with the performers’ rated goodness

of ensemble performance.

Hilt et al. [47] investigate the role of different channels of communication in

ensemble music performance, specifically focusing on the interaction between the

conductor and two sections of violinists. The study uses GC analysis to exam-

ine the causal relationships between the conductor’s movements, the bow and

head movements, and the synchronisation of the two sections of violinists. The

study finds that the patterns of sensorimotor information carried by the bow

and head movements are distinct, with the bow movements exhibiting a robust

leader-follower relationship between the conductor and the violinists. The study

also finds that the conductor’s movements influence the synchronisation between

the two sections of violinists and that the perturbation of the communication

flow leads to changes in the causal relationships between the different movements

and synchronisation. The study highlights the importance of multimodal com-

munication in ensemble music performance and the potential of GC analysis to

investigate complex non-verbal communication.

This chapter systematically reviews the literature pertinent to interpersonal

synchrony, the directionality of influence, ensemble dynamics, and their underly-

ing methodologies, shedding light on the progression from rudimentary techniques

to advanced computational techniques. This comprehensive review intends to es-

tablish a foundational understanding of non-verbal communication in musical

settings. The subsequent chapter will delineate the research methodology used

to answer research questions as discussed in 1.2, built upon the insights extracted

from this literature review.
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Chapter 3

Methodology

This chapter presents the huSync computational model and how we utilise it to

quantify and analyse interpersonal synchrony and the directionality of influence

in small-group interactions. Drawing upon multi-modal signals such as audio and

video, it offers a flexible and adaptable methodology that accommodates various

processing techniques based on the experiment design to answer specific research

questions.

Central to our approach is the concept of entrainment. We emphasise syn-

chronisation measurement and the directionality of coupling among dyadic pairs.

Specifically, huSync leverages phase locking values (PLV) to determine inter-

personal dyadic synchronisation, while the Granger Causality (GC) method is

employed to discern the directionality of coupling. This process aids in revealing

the internal dynamics and influences within groups, providing a nuanced under-

standing of their collective interactions.

To underscore our methodology’s practical and empirical value, we highlight

its application and utility using performance recordings from the Omega En-

semble, a professional chamber music group. This helps showcase its empirical

credibility using a real-world example. From its foundational theory to its tan-
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gible applications, the aim is to offer a replicable and robust model for studying

small-group interactions and their dynamics.

3.1 Computational Model and Framework

To address the research questions in Section 1.2, we introduced huSync. This

computational model quantifies entrainment in small group interactions, empha-

sising synchronisation and directionality of coupling within dyads. Grounded

in a framework that evaluates expressiveness through body movements and ges-

tures and building on prior research, huSync merges a multi-modal approach

with rigorous statistical methods, offering a comprehensive tool for investigating

small-group dynamics.

Figure 3.1: The huSync computational model and framework for entrainment
measurement in small-group settings

Designed for adaptability, it can integrate alternate techniques tailored to

specific applications at each stage. As illustrated in Fig. 3.1, the model comprises

four primary blocks:
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1. Multi-modal signals (Block A): This captures diverse input signals like

video, audio, physiological signals, and motion capture data for a holistic

assessment of group coordination.

2. Feature extraction (Block B): Input signals undergo pre-processing to

glean features that elucidate bodily motion, acoustics, and interpersonal

dynamics. For instance, video data are subjected to pose estimation algo-

rithms to extract 2D or 3D skeletal joint coordinates. Audio data, on the

other hand, yields features such as loudness, pitch, and timbre.

3. Measurement of entrainment (Block C): We analyse the group’s be-

haviour using extracted features in this section. We use metrics such as

interpersonal synchronisation, calculated using the Phase Locking Values

obtained from body sway patterns. Additionally, we determine directional-

ity by performing Granger Causality analysis on time series data.

4. Analysis and validation (Block D): Here, statistical techniques evalu-

ate the impact of varying experimental conditions on group coordination.

Cross-referencing measures from diverse modalities reinforce the validity of

results.
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3.2 Phase Locking Values and Granger Causal-

ity: Key Metrics in huSync

Entrainment measurement, particularly synchronisation and directionality of cou-

pling among dyadic pairs, is at the core of our methodology. The huSync model

utilises Phase Locking Values (PLVs) to quantify synchronisation and the GC

Method to discern the directionality of coupling. By doing so, it maps influences

within a group, illuminating the dynamics of collective performance.

We derive PLVs from the phase values of motion trajectory signals to ascer-

tain the synchrony between two signals. We obtain these phase values for each

frequency using the Fast Fourier Transform (FFT). Our study chooses relative

phase values to evaluate dyadic synchronisation among co-performers, as out-

lined in a previous study [139]. We compute the PLVs by examining the phase

difference between the head motion trajectories of paired co-performers.

PLV =

∣∣∣∣∑n
t=1 e

i(Θ1−Θ2)

n

∣∣∣∣ (3.1)

This equation’s synchrony range is [0,1], with 1 indicating peak synchrony

[140; 141].

GC determines whether one time series can predict another using linear re-

gression modelling. Suppose variable X Granger causes variable Y; changes in X

come before changes in Y. In that case, we seek evidence of this causality by re-

gressing Y against its lagged values and the lagged values of X. If the coefficients

on the lagged values of X prove significant, then X Granger-causes Y. We test

the causality through regressions:

Autoregressive model of Y

Yt = a0 + a1Yt−1 + a2Yt−2 + ...+ anYt−n + et (3.2)
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Extended model with X

Yt = a0+a1Yt−1+a2Yt−2+ ...+anYt−n+b1Xt−1+b2Xt−2+ ...+bnXt−n+et (3.3)

If coefficients b1, ..., bn in the extended equation significantly differ from zero,

X Granger-causes Y, confirmed via F-test or chi-square test.

3.3 An Instance of huSync to Measure Dyadic

Synchronisation Among Musicians

In Study 1, we introduced an instance of the huSync model and framework as

depicted in Fig. 3.2. This illustration corresponds to the structure shown in Fig.

3.1. The process begins by selecting videos that meet our criteria. The first block

(Fig. 3.2 (A)) captures both video and audio signals from standard recordings.

The second block (Fig. 3.2 (B)) processes videos through multi-person pose

estimation, detecting a participant’s body key points frame by frame. It yields a

JSON file that organises participants sequentially, each identified by key points.

We use this trajectory data to extract kinematic information. In our specific

use case, we are interested in the trajectory of the head and extracting the nose

key point (key ‘0’) to represent body sway. Simultaneously, we derive acoustic

features, such as pulse clarity and event density, from the video’s audio signals.

In the third block (Fig. 3.2 (C)), we compute interpersonal synchronisation.

Ultimately, the fourth block (Fig. 3.2 (D)) carries out statistical analysis and

validates the PLV results in line with hypothesis-driven questions. We validate

the interpretation robustness of primarily heterogeneous results cross-modally

using acoustic features.
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Figure 3.2: An instance of the computational framework and the huSync system
architecture to compute dyadic synchronisation.
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3.3.1 huSync Process Pipeline for Dyadic Synchronisation

Figure 3.3: An illustration of the process pipeline for computing Dyadic Synchro-
nisation.

huSync’s follows an 8-step computational methodology, as showcased in Fig.

3.3. This pipeline integrates the elements of blocks B and C from Fig. 3.2,

focusing on operations that manipulate data extracted from pre-processed JSON

files to determine the final dyadic synchronisation in small-group contexts. Before

leveraging the huSync model, we extract data from the JSON files, selecting the

key point of interest based on the experimental arrangement.

Given its adaptability and flexibility, huSync can determine dyadic synchro-

nisation across a complete video phrase or pinpoint specific segments, like the

start, middle, and end, addressing the research inquiries outlined in section 1.2.

Below, we provide details on these steps using a simulated dataset comprising 15

data points between two performers. Fig. 3.4 illustrates steps 1 to 6, while Fig.

3.5 showcases steps 7 and 8.

1. Dataset Computation: Distance, Filtering, and Size: For feature

extraction, as depicted in Fig. 3.1 (C), the Euclidean distance between

extracted nose key points, either single or multiple, is computed from raw

(x,y) coordinates. Pose estimation on videos often introduces noise, so we

assess the need for filtering. If required, the Savitzky-Golay filter, which
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Figure 3.4: Simulated Example illustrating steps 1 to 6.
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preserves signal features, is applied [142][143]. The dataset’s size is deter-

mined to ensure synchronisation level analysis over desired time intervals.

2. Window Size Determination and Extraction: We adopt a sliding

window approach to capture both local and global data trends. In our

example, we set a window size of 5 and a step size of 2, resulting in 6

windows.

3. Dyad Combination Selection: Our focus is on situations involving two

participants in our simulated example, commonly referred to as dyads. The

huSync framework supports manual dyad selection or automated computa-

tion for all potential pairs within a larger group. For such dyad combina-

tions, the calculation involves determining the number of ways n members

can be paired.

When forming pairs or dyads from a group of n individuals, the formula

is akin to counting the number of edges in a fully connected graph with n

nodes. Each node (or individual) in such a graph is connected to every other

node. The total number of unique connections (or edges) can be simplified,

especially when r = 2, to:

C (n, 2) =
n(n− 1)

2
(3.4)

This equation n(n−1)
2

provides a straightforward method to compute the

number of dyads from n members. It calculates the cardinality of the edges

in a complete graph of n nodes.

By employing this formula in our framework, we can efficiently determine

all potential dyad combinations from any given set of participants.

4. FFT Application on Windowed Distance Data: We iteratively apply
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the FFT algorithm to dyadic pairs using the scipy library [143]. After the

FFT application, we extract the spectrum’s real and imaginary components.

5. Phase Angles Determination: Using FFT on distance data yields com-

plex values. We then extract magnitude and phase values using the numpy

library [144]. Each participant’s data undergoes FFT to determine phase

angles for every frequency bin and time step.

6. Relative Phase Angle Computation between Dyads: We compute

the relative phase angles (differences) for all pairs after determining each

participant’s phase angles. For our example, this involves computing the

differences for each time step and frequency bin.

7. Windowed Phase Locking Values: Using relative phase values, we com-

pute PLVs. We align each window element with its counterpart in other

windows, resulting in a set of PLVs equal to the window’s length.

8. Dyadic Synchronisation through Averaged Phase Locking Values:

From the derived PLVs, we generate an array equivalent to a single window’s

length. We can apply a cut-off frequency to remove specific frequencies,

omitting the DC component. After calculating the PLVs, we compute the

averaged PLV (avgPLV) across pertinent frequency bins, yielding the final

dyadic synchronisation value. The computation of PLV and avgPLV follows

Equation (3.5).

PLVj =

∣∣∣∣∣∣∣∣
n∑

i=0

ei θR(ij)

n

∣∣∣∣∣∣∣∣
avgPLV =

k∑
j=0

PLVj

k

(3.5)

where i ∈ {0..n}, j ∈ {0..k} and n are the number of windows, k is the
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number of relative phase angles in each window, and ΘR(ij) represents the

relative phase angle present in each window i at position j. The value ranges

from 0 to 1, where 1 indicates perfect synchrony and 0 no synchrony.

Figure 3.5: Simulated Example illustrating steps 7 and 8.

huSync’s potential is demonstrated through this instance, highlighting its ca-

pability to process multi-modal data and extract significant conclusions. This

tool enables a comprehensive analysis of dyadic synchronisation in small-group

settings, proving invaluable for those keen on decoding group dynamics. The

results for all pairs of Brahms can be found in Table A.3 and those for Borodin

in Table A.4 (see Supplementary Analyses). This practical example reveals our

framework’s application in musical synchronisation understanding and suggests

its applicability in domains where group dynamic comprehension is imperative.
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3.3.2 Pseudo-code Representation of huSync’s Computa-

tional Process

Following the previous section, where we present our computational model, be-

low is a pseudo-code outline of its computational steps, detailing the procedural

logic and steps to process input data, extract features, compute synchronisation

measures, and validate the results against set criteria.

Algorithm 1 Pseudo-code for Computing Dyadic Synchronisation using huSync
Model

Function ComputeDyadicSynchronisation(videos)
for all video in videos do
audio signal, video signal ← ExtractSignal(video)
keypoints data ← MultiPersonPoseEstimation(video signal)
acoustic features ← ExtractAudioFeatures(audio signal)
dyadic data ← []
for all person in keypoints data do
trajectory ← ExtractTrajectory(person, key=’nose’)
dyadic data.append(trajectory)

end for
synchronisation values ← ComputeSynchronisation(dyadic data)
if ValidateResults(synchronisation values, acoustic features) then
StoreResults(synchronisation values)

end if
end for
Function ComputeSynchronisation(dyadic data)
processed data ← []
for all data in dyadic data do
distance ← ComputeEuclideanDistance(data)
windowed data ← ApplySlidingWindow(distance)
fft values ← ApplyFFT(windowed data)
phase angles ← ExtractPhaseAngles(fft values)
relative phase ← ComputeRelativePhase(phase angles)
plv values ← ComputePLV(relative phase)
processed data.append(plv values)

end for
avgPLV ← ComputeAvgPLV(processed data)
return avgPLV
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3.4 An Instance of huSync to Measure the Di-

rectionality of Influence Among Musicians

Our computational model can assess the directionality of influence within pairs

of co-performers and examine leadership dynamics during performances. We per-

formed two studies that quantified and analysed the directionality of information

flow between participants.

3.4.1 Directionality Assessment in huSync

Within huSync, we extend the entrainment block to assess directionality. We use

the key-point position data from video frames to compute the directionality of

information flow between dyadic pairs of performers using GC. It is a statistical

metric that predicts one time series based on another’s past values. In this con-

text, time-series data from two performers (designated as X → Y) undergo the

Granger test to check the predictability of X by Y and vice versa (Y→ X) - thus

helping us compute the directionality of influence between dyads.

3.4.2 Procedure for the Assessment of the Directionality

of Influence in Study 2

For study 2 [14], we utilised a subset of the dataset used in Study 1 and in-

cluded Omega Ensemble’s performance of Johannes Brahms’ Clarinet Quintet in

B minor. We used an experimental approach with binary values to study the

directionality of coupling between ensemble musicians, and it consists of four

steps:

1. Input Signal: Video footages underwent pre-processing using the Alpha-

Pose algorithm, producing detailed trajectory datasets of spatial coordi-
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nates.

2. Feature Distillation: Among various facial landmarks from AlphaPose,

the nose key point was identified as pivotal for tracking head sway (similar

to Study 1). This data discerned the directionality of influence among

performers.

3. Measuring Entrainment - Directionality: The GC technique quanti-

fied the flow and directionality of information. Adjustments were made for

musical performance delays, examining a range of lag lengths for both X

and Y coordinates. Our study used a lag length of 1 second or 30 frames

(equal to the video’s sampling rate).

4. Analysis: The GC analysis outputs were structured for comprehensive

review, as demonstrated in Fig. 3.6. Based on previous studies, each matrix

cell was binary-coded, indicating Granger causality presence or absence

[145; 146]. The GC results for all dyadic pairs were then entered into an

ANOVA by selecting appropriate between and within-subject factors. Our

study used Head Sway as a within-subjects factor, while Pair and Texture

as a between-subjects factor.

Figure 3.6: Mapping process of GC results to binary values.
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3.4.2.1 Pseudo-code for Directionality Assessment in Study 2

Algorithm 2 provides a structured pseudo-code representation of the directional-

ity assessment procedure in Study 2, capturing the computational steps involved

in processing video data, applying Granger Causality tests, and statistically eval-

uating the influence directionality among instrumentalists in musical ensembles

using the binary-coded approach.

Algorithm 2 Directionality Assessment Algorithm in huSync Framework for
Study 2

Function AssessDirectionalityStudy2(videos)
for all video in videos do
Step 1: Input Signal
trajectory data ← ApplyAlphaPose(video)
Step 2: Feature Distillation
head sway data ← ExtractNoseKeypoint(trajectory data)
Step 3: Measuring Entrainment - Directionality
adjusted data ← AdjustForPerformanceDelays(head sway data)
gc results ← []
for all dyad in GetAllDyads(adjusted data) do
lag data X, lag data Y ← ComputeLags(dyad, lag length=30)
gc result ← ApplyGrangerTest(lag data X, lag data Y)
gc results.append(gc result)

end for
Step 4: Analysis
binary coded matrix ← BinaryCodeGCResults(gc results)
anova results ← ApplyANOVA(binary coded matrix, within factor=’Head
Sway’, between factors=[’Pair’, ’Texture’])
if ValidResults(anova results) then
StoreResults(anova results)

end if
end for
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3.4.3 Procedure for the Assessment of the Directionality

in Study 3

Building on Study 2, in Study 3 [15], we investigated the effects of variations

in musical texture on leadership dynamics in musical ensembles using the entire

dataset utilised in Study 1. We used GC measures to assess the directionality of

interpersonal coupling between instrumentalists. Figure 3.7 depicts the system

architecture, modelled as an instance of the computational framework illustrated

in Figure 3.1 and an extension of the model illustrated in Figure 3.2. The process

proceeds through a systematic sequence of steps, commencing with the selection

of videos that align with our analysis criteria as discussed in the next chapter and

Tables 4.1 and 4.2. This architecture encompasses the following four integral

phases:

1. Video Frame Extraction: To ensure stationarity of the data, we apply

first-order differencing to the log-transformed time-series data, a standard

practice for GC based on previous studies.

2. Applying the Granger Test: In this phase, we process video signals

using AlphaPose, a multi-person pose estimation algorithm. This processing

yields trajectory data, which we save as a JSON file. This data captures the

movements of various body parts at a 30Hz sampling rate. We identify the

nose key point as the optimal head representation among the various data

points. We then use this key point to generate kinematic data, creating

position time-series data for subsequent analyses. To ensure the time series

remains stationary, we apply first-order differencing to the log-transformed

series, following methodologies established in prior research [147; 148].

3. Directionality Analysis via Granger Causality: Here, we employ the

grangertest function from the lmtest package [149] in R Studio to evaluate
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the directionality of information flow. The function measures the predictive

relationship between two time series. X represents the first set of time series,

Y represents the second set, and order represents the number of lags used

(default value is 1). We applied this function to the horizontal dimension of

the time-series data to account for anterior-posterior head motion and test

all possible combinations of dyads. For instance, for performers J and K, we

performed tests to examine the directional influence of performer J’s head

motion on performer K’s head motion (X → Y) and vice versa (Y → X)

to determine whether Granger causality exists between the two time series.

If the p-value yielded by the Granger test was less than .05 (our criterion

for statistical significance), we rejected the null hypothesis and inferred a

statistically significant predictive relationship between the two time series

in the specified direction. To account for the delay between stimulus and

response that is common in musical performances [116; 150], as well as in

most behaviours, we performed GC tests for a lag of up to 1 second, setting

the order to 30 (equal to the sampling rate) to test for multiple lag-lengths,

and examine the nose key-point separately for each pair in both possible

test directions (X → Y and Y → X). We extracted the GC values, including

F and p values from each Granger test, and recorded the binary numbers

[0,1] indicating the outcome of each test. A value of 1 indicates a statis-

tically significant predictive relationship (assumed to indicate influence or

information flow) between the performers in the tested direction, while 0

indicates the absence of a significant predictive relationship in that direc-

tion. When GC tests in both directions were statistically significant for a

given instrumentalist pair, a 1 was coded for both directions. The main

analyses were based on the proportion of significant GC tests among pairs

of musicians for each phrase. Specifically, binary values indicating whether
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(1) or not (0) each Granger test was significant were averaged across all

pairs of performers (separately for each test direction, X → Y and Y → X)

for each phrase representing the two textures for each piece. These propor-

tion data were then passed onto the next step to analyse the directionality

of influence among co-performers to address our research questions.

4. Statistical Evaluation and Hypothesis Addressal: At this stage, we

conduct a series of statistical analyses on the GC values to evaluate our

hypothesis regarding influence directionality. Table 3.1 displays sample

results. Columns with the suffix ‘ M1 M2’ represent the GC test out-

comes from Musician 1 to Musician 2. Conversely, columns with the suffix

‘ M2 M1’ represent the GC outcomes from Musician 2 to Musician 1. We

recorded results for all possible pairs of instrumentalists for each musical

phrase. Note that the aim of these analyses was not to determine whether

interaction is taking place at greater than chance levels (given that expert

ensembles were intentionally coordinating highly rehearsed performances

in a public concert setting), or whether GC can capture leader-follower

relations in ensembles (since this has been previously demonstrated in a

number of studies). Our question instead concerns the quality of interac-

tion, specifically related to leadership relations, and whether these relations

vary across conditions in relative terms. The results for all pairs of Brahms

can be found in Table A.5 and those for Borodin in Table A.6 (see Sup-

plementary Analyses). In R, we conducted two primary statistical analyses

[151; 152], one using a linear mixed-effects model (LMM) to test for general

effects of musical texture on GC values, followed by an Analysis of Variance

(ANOVA) to address directionality of influence effects related explicitly to

melodic leadership. Musical piece (Brahms Quintet and Borodin Quartet)

was included as a random effect in these analyses since we did not have
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hypotheses regarding the pieces (they comprised a convenience sample that

were on the ensemble’s program at the time of data collection), but rather

were interested effects that generalize beyond them. Shapiro-Wilk tests in-

dicated that proportion data were not normally distributed in some condi-

tions, even following arcsine transformation. Therefore, we report analyses

on untransformed data (additional analyses with arcsin-transformed data

yielded similar results). However, given these violations of the normality

assumption, we also conducted binomial Generalised Linear Mixed Model

(GLMM) analyses on raw binary GC values to check whether equivalent ef-

fects are obtained. Obtaining consistent outcomes for the LMM and GLMM

analyses would provide evidence for the robustness and reliability of results.

Such consistency was observed, and we only report the LMM and ANOVA

results in the article (because these tests are standard and facilitate com-

parison with other studies in the literature). Due to the large number of

GC tests run per musical excerpt (to assess exhaustive pairwise relations

between instrumentalists), we addressed the issue of potential false positives

by correcting for multiple comparisons using the Bonferroni method in sup-

plementary analyses reported in the Appendix (see Binomial Generalised

Linear Mixed Model (GLMM) analyses and additional analyses with Bon-

ferroni correction). The results were overall consistent with those reported

here.

By quantifying and assessing the directionality of influence, our approach to

modifying and using huSync as a system and framework offers valuable insights

into the complex and subtle dynamics of musical performances, showcasing its

versatility with robust results across various contexts.
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Figure 3.7: An instance and extension of the huSync computational framework
and system architecture for assessing directionality of influence. The accompany-
ing images on the right delineate critical phases of the workflow and its intrinsic
procedures.
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Phrase M1 M2 T F M1
>M2

p M1
>M2

F M2
>M1

p M2
>M1

p M1
>M2
(B)

p M2
>M1
(B)

M I

1 m1 m2 P 0.96 0.53 1.38 0.09 0 0 Mixed
10 m1 m2 P 0.92 0.60 1.78 0.006 0 1 Mixed
11 m1 m2 H 1.25 0.17 3.22 0.003 0 1 m5
7 m1 m3 H 0.98 0.49 0.88 0.65 0 0 m5

Table 3.1: This table presents Granger Causality applied to quintet phrases, cate-
gorised by texture: Polyphonic (P) or Homophonic (H), and labelled by musician
(m1-m5) from left to right as in Fig. 4.1b. The M I’ column labels polyphonic
textures as Mixed’ reflecting melodic role distribution. The Granger test results
for F and p values depict the relationship between musicians (e.g., F M1 >M2
indicates the F value from musician 1 to musician 2).

Table Notes:

• T (Texture): ‘P’ represents polyphonic textures; ‘H’ represents
homophonic textures.

• M1 & M2: Refers to the first and second musician in a dyadic pair.

• Granger Test Columns: The headers ‘F M1 >M2’ and ‘p M1 >M2’
(and their counterparts for M2 to M1) show Granger test results for F and
p values.

• (B) Suffix: Binary values in columns such as ‘p M1 >M2 (B)’ signify
whether there was a Granger causality between the paired musicians.

• M I (Musical Instrument): ‘Mixed’ denotes distributed melodic roles
in polyphonic textures.
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3.4.3.1 Pseudo-code for Directionality Assessment in Study 3

Algorithm 3 provides a structured pseudo-code representation of the directional-

ity assessment procedure in Study 3, capturing the computational steps involved

in processing video data, applying Granger Causality tests, and statistically eval-

uating the influence directionality among instrumentalists in musical ensembles.

Algorithm 3 Directionality Assessment Algorithm in huSync Framework for
Study 3

Function AssessDirectionality(videos)
for all video in videos do
frame data ← ExtractFrames(video)
trajectory data ← ApplyAlphaPose(frame data)
stationary data ← ApplyLogTransformAndDifferencing(trajectory data)
gc values ← []
for all dyad in GetAllDyads(stationary data) do
gc result ← ApplyGrangerTest(dyad)
gc values.append(gc result)

end for
statistical results ← EvaluateHypothesis(gc values)
if ValidResults(statistical results) then
StoreResults(statistical results)

end if
end for
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Chapter 4

Dataset and Experiment Design

The empirical study of interpersonal synchronisation and leadership dynamics

within small chamber music ensembles necessitates a careful approach to dataset

selection and experimental design. This chapter highlights the method to record,

collect, and utilize a multimodal dataset tailored to investigate these phenomena.

The dataset, comprising high-definition video recordings of concert performances

by the Omega Ensemble, a renowned professional chamber music group from

Australia, is described in detail. The chapter further elucidates the experimental

design that aligns with the research questions being investigated.

The dataset, a critical component of this research, consists of concert perfor-

mances by the Omega Ensemble. These performances were meticulously selected

from multiple locations, focusing on the City Recital Hall in Sydney in 2017.

The dataset features compositions by distinguished composers such as Alexander

Borodin and Johannes Brahms.

The decision to concentrate on the City Recital Hall recordings was under-

pinned by technical considerations pertinent to applying a multi-person pose es-

timation algorithm. The chosen recordings offered an unobstructed view of the

performers, thereby minimising occlusions and facilitating the tracking of body
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(a) Image from a musical piece com-
posed by Alexander Borodin (1)

(b) Image from a musical piece com-
posed by Johannes Brahms

(c) Image from a musical piece com-
posed by Max Bruch

(d) Image from a musical piece com-
posed by Alexander Borodin (2)

(e) Image from a musical piece com-
posed by Robert Schumann

Figure 4.1: Screenshots of various concert recordings of the Omega Ensemble,
illustrating the diversity in the dataset and the rationale for selecting specific
recordings for the study.
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key points for all ensemble members (See Figures 4.1a and 4.1b). Conversely, the

other three video recordings were deemed unsuitable for analysis due to data con-

tamination issues, where extraneous elements such as the audience, microphones,

and chairs were visible in the frame (See Figures 4.1c, 4.1d, and 4.1e).

The research specifically focuses on two concert performances: Johannes Brahms’

Clarinet Quintet in B minor (Op. 115) and Alexander Borodin’s String Quartet

No. 1 in A major. These pieces were judiciously chosen based on their structural

congruities within the ensemble and the diverse musical textures they manifest,

thereby aligning with the research objectives and furnishing a rich context for

nuanced analysis.

Details of the recordings are as follows:

1. Camera and Lens: Utilisation of Canon 1DX camera body and Canon

EF 70-200 1:2.8 L zoom lens, ensuring high-resolution capture.

2. Video Format: High-definition QuickTime movies (.MOV) with dimen-

sions of 1920 × 1080 pixels, 25fps, providing clarity and detail.

3. Audio Quality: Recorded in 16-bit stereo at 48 kHz, ensuring fidelity in

audio reproduction.

4. Compression: Utilisation of the H.264 video codec and Linear PCM audio

codec, balancing quality and file size.

5. Synchronisation: Achieved using Timecode, ensuring temporal alignment

between audio and video streams.

The total duration of the performances was approximately 39 minutes and 13

seconds for the Borodin String Quartet and about 40 minutes and 38 seconds for

the Brahms Clarinet Quintet. Specific phrases were carefully selected for analysis,

adhering to pre-defined parameters aligning with the research questions, ensuring
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relevance and applicability. Musicians were labelled for specific positioning as m1,

m2, m3, and so on, arranged from left to right (see Fig 4.2).

Figure 4.2: Images from the performance of the Quintet (Top Left) and the
Quartet (Bottom Left), along with the outputs available with tracked key points
using a pose estimation algorithm (Top Right and Bottom Right). The figure
shows the arrangement of musicians from left to right labelled as m1 to m4
(Quartet: m1 - violin1, m2 - violin2, m3 - viola, m4 - cello) and m1 to m5
(Quintet: m1 - violin1, m2 - violin2, m3 - viola, m4 - cello, m5 - clarinet).

4.1 Rationale for Dataset Selection

The dataset was selected with careful consideration of several significant factors

that align with the research questions:

1. Consistent Ensemble Structure: The Omega Ensemble’s consistent

structure facilitates a controlled analysis of interpersonal dynamics, directly

addressing RQ1 and RQ3 concerning synchronisation and leadership dy-

namics within the ensemble.
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4.2 Annotation and Segmentation of the Dataset

2. Articulated Musical Textures: The performances exhibit clearly delin-

eated musical textures, providing distinct cases for the study of synchro-

nisation (RQ2) and directionality of influence (RQ4) in different musical

contexts.

3. High-Quality Recordings: Utilising high-quality video equipment en-

sures accurate data for analysis, essential for RQ5’s focus on computational

methods and the application of advanced algorithms.

4. Minimal Occlusions and Contamination: Recordings from the City

Recital Hall were specifically chosen due to their minimal occlusions, facili-

tating the tracking of body keypoints using a multi-person pose estimation

algorithm. Other video recordings were limiting, with issues such as audi-

ence visibility contaminating the data, thereby restricting their suitability

for the study.

The Omega Ensemble provided written consent to use their performance

videos, and an ethics committee approved the data collection protocol.

4.2 Annotation and Segmentation of the Dataset

The video recordings were systematically annotated and segmented into sections,

each containing a single musical phrase performed by the ensemble. This seg-

mentation was essential for testing the hypothesised effects of musical texture

and phrase position on interpersonal synchronisation and directionality of influ-

ence.

The annotation process was conducted using ELAN [153], a comprehensive

annotation tool for multimedia files. The videos were annotated following a mu-

sicological analysis of the performed musical pieces’ published score, resulting in
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annotations that included:

1. Phrasing: The division of the music into meaningful phrases, allowing for

the study of synchronisation within specific musical contexts.

2. Textural Classification: Identification of polyphonic or homophonic tex-

tures, facilitating the analysis of directionality of influence in different mu-

sical settings.

3. Instrumentation: The number of instruments playing at a given time

and their roles (e.g., melody, counter melody, harmonic accompaniment),

providing insights into the ensemble’s structural dynamics.

The annotation process aimed to test the influence of two primary factors on

the strength of interpersonal coupling among ensemble performers:

1. Position within the Musical Phrase: The start, middle, or end of

the phrase, relevant to RQ2 and supporting H3, providing insights into

synchronisation patterns.

2. Musical Texture: Polyphonic or homophonic, relevant to RQ2 and RQ3,

and supporting H2 and H4, allowing for the study of directionality of influ-

ence.

The bar numbers from the score corresponding to each excerpt are provided

in Table A.1 (For Quintet: Brahms, J. (1892). Clarinet Quintet, Op. 115. N.

Simrock.) and Table A.2 (For Quartet: Borodin, A. (1884). Refer Supplementary

Analyses). Specific phrases were selected for each recording to adhere to these

musical characteristics. Each selected phrase was approximately 30 seconds long

and was split into three equal segments to represent the phrase’s start, middle,

and end. Additionally, it was ensured that all instruments in the ensemble were
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Piece Texture Minimum Maximum Median Average Count
Brahms Homophonic 15.032 38.199 19.742 21.573 27

Polyphonic 15.488 33.08 23.100 23.528 20
Borodin Homophonic 15.295 24.973 18.317 19.117 10

Polyphonic 15.142 29.628 21.271 21.013 11

Table 4.1: Summary of the complete dataset duration and count for our experi-
ments.

Piece Texture Minimum Maximum Median Average Count
Brahms Homophonic 16.161 30.433 20.615 21.856 12

Polyphonic 15.488 27.553 20.161 21.105 12
Borodin Homophonic 15.295 24.973 18.317 19.117 10

Polyphonic 15.142 29.628 20.924 20.800 10

Table 4.2: Summary of the selected phrases duration and count for Studies 1 and
3.

playing for most of the phrase, allowing for a comprehensive analysis of the en-

semble’s dynamics.

4.3 Experiment Design

The experiment design was planned to align with the research objectives, focus-

ing on two core objectives: the study of interpersonal synchronisation and the

directionality of influence within the ensemble. Both studies leveraged the same

dataset to evaluate the proposed computational models.

4.3.1 Study of Synchronisation

The study of synchronisation aimed to quantify the interpersonal coordination

within the ensemble, using Phase Locking Values (PLV) computed between head

motion trajectories for all possible pairings of musicians.

1. Quantification of Synchronisation: PLVs were derived by applying
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Piece Texture Minimum Maximum Median Average Count
Brahms Homophonic 16.75 34.87 21.60 23.51 12

Polyphonic 15.49 27.55 20.16 21.11 12

Table 4.3: Summary of the duration and count of the selected phrase for Study
2.

FFT to extract phases, calculating phase angle differences between co-

performer signals, and averaging the resulting vectors. This produced a

dyadic PLV time series reflecting the synchronisation of head sway.

2. Analysis of Musical Texture and Phrase Position: ANOVAs were

conducted on the PLV outputs to test for main effects of musical texture

(homophonic vs. polyphonic) and phrase position (start vs. middle vs.

end). Texture addresses coordination under different leadership conditions,

while position explores points of heightened structural uncertainty.

3. Relevance to Research Questions: This study addresses RQ1, RQ2,

RQ3 and RQ5, shedding light on how musical context modulates small

ensemble interpersonal dynamics and synchronisation patterns.

4.3.2 Study of Directionality of Influence

The study of directionality of influence sought to assess directional leadership

relations within the ensemble, focusing on Granger Causality (GC) on the head

motion data.

1. Assessment of Leadership Relations: GC uses autoregressive modelling

to measure directed predictive influence between two time-series. Significant

GC in one direction implies that musician A is driving or leading musician

B, providing insights into the leadership dynamics within the ensemble.
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2. Application to Musical Context: The study was tailored to the musi-

cal textures and phrase positions identified in the dataset, allowing for a

nuanced analysis of how leadership relations evolve within specific musical

contexts.

3. Relevance to Research Questions: Studies using GC address RQ2,

RQ3, RQ4, and RQ5, exploring the directionality of influence and lead-

ership relations within the ensemble, contributing to the understanding

of interactive synchrony in diverse team settings, particularly considering

structural elements such as texture.

4.4 Dataset Summary and Phrase Selection

Table 4.1 details the complete dataset’s composition and selection. For Studies

1 and 3, the summary is available in Table 4.2, while for Study 2 it is available

in Table 4.3. These tables reflect the careful selection process to identify phrases

that align with specific study criteria, demonstrating the consideration given to

the dataset’s relevance to the research objectives. Based on this information,

phrases that had consistent texture and predominantly all instruments playing

throughout were selected for analysis.

1. Alignment with Study Criteria: The selected phrases were chosen with

an eye to the study’s emphasis on interpersonal synchronisation and direc-

tionality of influence among co-performers.

2. Segmentation of Phrases: Each phrase, approximately 30 seconds in

length, was divided into three equal segments to represent the start, middle,

and end of the phrase. This segmentation allowed for a more complete
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analysis of the ensemble’s dynamics for Study 1 since RQ2 addresses phrase

positioning as well.

3. Comprehensive Analysis: The analysis of the dataset, as represented

in Table 4.1, provides insights into ensemble performance dynamics. The

systematic breakdown and annotation of the performances contribute to a

deeper understanding of the factors that may influence interpersonal syn-

chronisation and directionality of influence among co-performers.

The careful selection, annotation, and analysis of the dataset and solid ex-

periment design are essential in working towards the research objectives outlined

in Section 1.2. The dataset’s nature and the attention to detail in its prepara-

tion offer a platform for testing the proposed computational models’ potential in

analysing ensemble music performances, addressing RQ1 to RQ5.

The thoughtful handling of the dataset and the experiment design may con-

tribute to future work in the field of human-computer interaction in music perfor-

mance analysis. It adds to the understanding of ensemble dynamics and provides

a methodological approach that could be useful in future research. This work

may also extend insights into nonverbal signalling, entrainment, and emergent

leadership in musical groups to small teams.
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Chapter 5

Results

This chapter presents results from three studies that collectively use the huSync

computational system and model to explore the intricate dynamics of synchroni-

sation and directional influence among ensemble musicians. While the first study

focuses on quantifying synchronisation between co-performers, the subsequent

two studies broaden the scope to explore the directional influence and the under-

lying leadership relations within the ensemble. To reiterate and for the sake of

convenience, the following are the three primary studies:

1. Study 1: S. R. Sabharwal, M. Varlet, M. Breaden, G. Volpe, A. Camurri

and P. E. Keller. huSync - A Model and System for the Measure of Syn-

chronisation in Small Groups: A Case Study on Musical Joint Action, in

IEEE Access, vol. 10, pp. 92357-92372, 2022.

2. Study 2: S. R. Sabharwal, Arianna Musso, Matthew Breaden, Eva Ric-

comagno, Antonio Camurri, Peter E. Keller. Analysing directionality of

influence among ensemble musicians using Granger Causality, in Interna-

tional Conference of Kansei Engineering and Emotion Research (KEER),

Barcelona, Spain, 2022.
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3. Study 3: S. R. Sabharwal, M. Breaden, G. Volpe, A. Camurri and P. E.

Keller. Leadership Dynamics in Musical Groups: Quantifying Effects of

Musical Structure on Directionality of Influence in Concert Performance

Videos. Currently under review.

Drawing from the same dataset, as delineated in Chapter 4, each study lever-

ages high-definition multi-camera video recordings of performances by a profes-

sional chamber orchestra. These recordings are carefully annotated based on

musical structure, allowing for a nuanced analysis. The Phase Locking Values

(PLVs), derived from the musicians’ head motion trajectories, serve as a quan-

titative synchronisation measure. Concurrently, Granger Causality modelling of

these head motion trajectories sheds light on the directional influence within the

ensemble.

Study 1 explores how musical texture and phrase position influence synchro-

nisation strength between musician pairs. The analysis contrasts textures that

feature a distinct melodic leader with those that foster more distributed co-

leadership. Additionally, it compares synchronisation at points of high structural

uncertainty with those of low uncertainty, revealing the subtle interplay between

these factors.

Studies 2 and 3 extend the investigation to directed leadership relations, prob-

ing the dynamics between musicians under varying musical roles and textures.

These studies test hypotheses concerning the strength of causal linkages from

melodic parts to accompanying sections, uncovering the complex web of influence

within the ensemble.

Together, these studies underscore the sensitivity and applicability of the

huSync model in quantifying and analysing the nuanced effects of musical struc-

ture on ensemble interpersonal coordination. The results provide fresh insights

into the subtleties of nonverbal communication, entrainment, and emergent lead-
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ership in musical groups and hold broader relevance for understanding team dy-

namics in diverse settings. Ultimately, the findings advance the fundamental

comprehension of interactive synchrony, enriching both the musical domain and

the broader field of joint action.

5.1 Results from Study 1

In Study 1, we conducted our analyses on 44 phrases, summarised in Table 1,

carefully selected to meet our criteria. The chosen dataset ensured a good balance

between polyphonic and homophonic textures while also considering the duration

of each phrase and the quality of the data received on pre-processing videos with

a pose estimation algorithm.

Firstly, we present the Phase Locking Values (PLVs) results descriptively, then

detail the Analysis of Variance (ANOVA) findings. We analysed the performances

of the Brahms and Borodin pieces individually due to the differing number of

performers in each piece. For each piece, we entered the PLVs of all pairs into

an ANOVA analysis. This analysis included Phrase Position (Start, Middle,

End) as a within-subjects factor and Texture (Homophonic, Polyphonic) and Pair

(referring to each separate pairing of individuals from the ensemble) as between-

subjects factors. We included the factor ’Pair’ in the analyses because no two

instrumentalists played identical parts, and the specific pairing of parts might

systematically influence PLV.

Nevertheless, we did not delve into a detailed analysis of such potential ef-

fects as it was outside the scope of our study. We incorporated phrase duration

as a covariate in the analyses to account for its potential impact on PLV. We

conducted the ANOVAs using jamovi software. Fig. 5.1 graphically depicts the

PLV results for the three phrase positions in the two textures. We averaged the
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data across pairs for Brahms and Borodin performances. These graphs demon-

strate that polyphonic textures typically exhibit higher PLVs than homophonic

textures, aligning with our hypothesis outlined in section 1.2. We also noted that

PLVs start at a lower value in both textures. In the polyphonic texture, val-

ues commence relatively high, rise in the middle of the phrase, and then decline

towards the phrase’s end. Conversely, in the homophonic texture, values start

lower and maintain this level until a slight increase at the phrase endings.

Figure 5.1: Phase locking values, indicating synchronisation of co-performers
head motion, across phrase positions for polyphonic and homophonic texture for
Position x Texture in the Brahms and Borodin pieces).

In Fig. 5.2, results are shared as network plots of averaged PLVs across all

phrases for individual instrument pairings observed for the Brahms and Borodin

performances separately. Here, most pairs show a higher level of synchronisation

in polyphonic textures at the start, middle, and end of each phrase, suggesting

that the effect is general and not tied to specific instrument pairings.

The ANOVA results are illustrated for the Brahms performance in Table 5.1

and for Borodin in Table 5.2. Values highlighted in bold indicate statistical sig-

nificance (p <0.05). For Brahms, the ANOVA revealed a statistically significant
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Figure 5.2: Network plots for ensemble PLV data by instrument for each condition
(texture and phrase position) in Brahms and Borodin pieces. Edge thickness
indicates the coupling strength based on phase locking values averaged across all
phrases. Each coloured node indicates an instrument played by the performers.

main effect of Texture, F(1, 219) = 16.08, p <0.001, and a significant two-way

interaction between Position and Texture, F(2, 438) = 6.098, p = 0.002. For

Borodin, there was also a statistically significant main effect of Texture, F(1,

107) = 14.051, p <0.001, and a significant two-way interaction between Position

and Texture, F(2, 214) = 3.399, p = 0.035. For both Brahms and Borodin, the

main effect of position was not statistically significant.
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Between Subjects Effects
Sum of Squares df Mean Square F p

Pair 0.0126 9 0.0014 0.25 0.986
Texture 0.0902 1 0.09024 16.081 <.001
Pair ∗ Texture 0.0583 9 0.00648 1.155 0.326
Duration 0.2595 1 0.25948 46.244 <.001
Residual 1.2289 219 0.00561

Within Subjects Effects
Sum of Squares df Mean Square F p

Position 0.00598 2 0.00299 1.003 0.368
Position ∗ Pair 0.08754 18 0.00486 1.632 0.049
Position ∗ Texture 0.03634 2 0.01817 6.098 0.002
Position ∗ Duration 0.00424 2 0.00212 0.711 0.492
Position ∗ Pair ∗ Texture 0.03341 18 0.00186 0.623 0.882
Residual 1.30509 438 0.00298

Table 5.1: ANOVA results for Between and Within Subjects Effects for the
Brahms Concert.

Between Subjects Effects
Sum of Squares df Mean Square F p

Pair 0.02003 5 0.00401 1.542 0.183
Texture 0.0365 1 0.0365 14.051 <.001
Pair ∗ Texture 0.00412 5 0.000825 0.318 0.901
Duration 0.24612 1 0.24612 94.746 <.001
Residual 0.27796 107 0.0026

Within Subjects Effects
Sum of Squares df Mean Square F p

Position 0.01229 2 0.00614 2.849 0.06
Position ∗ Pair 0.01569 10 0.00157 0.727 0.698
Position ∗ Texture 0.01468 2 0.00734 3.403 0.035
Position ∗ Duration 0.00972 2 0.00486 2.253 0.108
Position ∗ Pair ∗ Texture 0.0302 10 0.00302 1.4 0.182
Residual 0.46151 214 0.00216

Table 5.2: ANOVA results for Between and Within Subjects Effects for the
Borodin Concert.

Overall, these results indicate that for both pieces, PLVs were reliably higher

— hence, interpersonal coupling between performers was stronger—for poly-
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phonic than homophonic textures. Nevertheless, this effect of texture varied

throughout musical phrases. Specifically, the end of phrases diminished the tex-

ture effect because coupling strength decreased in polyphonic textures and in-

creased in homophonic textures.

5.1.1 Analysis of audio features

While our principal analysis focuses on ensemble coordination of co-performer

body motion, we conducted an additional analysis to examine the relationship

between the synchronisation of body movements, which provides visual cues, and

ensemble sounds.

Texture
Homophonic Polyphonic

Phrase Position
Piece Measure Start Middle End Start Middle End

Pulse Clarity
Mean 0.111 0.122 0.167 0.148 0.126 0.135

Brahms SD 0.046 0.057 0.058 0.075 0.047 0.052
Event Density
Mean 1.416 2.098 1.767 1.733 2.105 2.205
SD 0.844 1.484 0.931 0.846 0.819 0.845
Pulse Clarity
Mean 0.153 0.157 0.152 0.16 0.156 0.144

Borodin SD 0.063 0.044 0.083 0.081 0.054 0.058
Event Density
Mean 2.102 2.202 1.631 2.197 2.025 2.033
SD 0.946 0.934 0.799 0.798 0.792 1.25

Table 5.3: Mean and standard deviation (SD) of estimates of pulse clarity and
event density as a function of texture (homophonic and polyphonic) and phrase
position (start, middle, and end) for performances of pieces by Brahms and
Borodin.

Because we do not have multi-track audio recordings for each instrument on

a separate track, we computed indirect measures of global ensemble synchroni-
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sation from stereo auditory recordings of the entire ensemble sound. Drawing

from prior research [154; 155; 156], we incorporated estimates for ’pulse clarity’

and ’event density’. We calculated these estimates using the ’mirpulseclarity’

and ’mireventdensity’ functions from the MIRtoolbox in MATLAB [157]. ’Pulse

clarity’ reflects the strength of rhythmic beats, while ’event density’ measures the

average frequency or number of detected events per second. We present descrip-

tive statistics for these measures in Table 5.3. To assess potential effects related

to these audio features, we ran a linear mixed-effects model analysis using the

lmer package [158] in R [159] with PLV as the dependent variable, pulse clarity,

event density, texture, and phrase position as predictor fixed effects, and piece

as a random effect (with intercepts allowed to vary). Pulse clarity values were

arcsine-transformed, and event density values were log-transformed before anal-

ysis. The results revealed a link between PLV and event density. Expressly, a

likelihood-ratio test indicated that a model including event density provided a

better fit for the data than a model without it (χ2 (1)= 7.44, p = 0.006), whereas

pulse clarity did not contribute significantly to the model (χ2 (1) = 0.03, p =

0.884). Examination of the output for the entire model indicated that PLV values

increased with increasing event density (β = 0.031, SE = 0.011, t = 2.767, p =

0.006). These results are consistent with a growing body of evidence that visual

and audio cues are both relevant in assessing interpersonal synchronisation in

musical ensembles [154][155][160][156][133]. In future research using multi-track

audio, we can explore the relationship between auditory and visual information

more thoroughly and assess the correspondence between leader-follower relations

across modalities.
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5.2 Results from Study 2

5.2 Results from Study 2

In Study 2, we performed a two-way ANOVA to assess Granger Causality (GC)

values. Our statistical analysis used version 1.6.23 of jamovi software (The Jamovi

Project, 2021). Based on the estimated marginal means displayed in Fig. 5.3,

our results indicate that homophonic textures with clear melodic leadership have

higher mean GC values than polyphonic textures with more evenly distributed

leadership dynamics. The figure provides a clear visual depiction of the differences

in leadership dynamics between the two textures.

Figure 5.3: A plot showing the mean values of GC for homophonic and polyphonic
textures.

We analysed our ANOVA using Luepsen’s binary value approach [161] to ex-

amine the GC results for all potential dyadic pairs. We considered the Nose tra-

jectory data in X and Y coordinates representing Head Sway as a within-subjects

factor. Additionally, we treated Texture (either Homophonic or Polyphonic) and

Pair (with each pair represented as M1-M2, where M1 influences M2) as between-

subjects factors.

In Table 5.4, we present the ANOVA outcomes for the Brahms concert, dis-

tinguishing between the effects observed within and between subjects. To sim-

plify interpretation, we have highlighted values achieving statistical significance in
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green. The table displays the main effects in three areas: Texture, with F(1,440)

= 8.421, p = 0.004; Pair, with F(19,440) = 2.041, p = 0.006; and Head Sway,

with F(1,440) = 19.047, p¡.001. Moreover, we observed an interaction between

Head Sway and Texture, as evidenced by F(1,440) = 7.928, p=0.005.

Between Subjects Effects
Sum of Squares df Mean Square F p

Pair 10.15 19 0.534 2.041 0.006
Texture 2.2 1 2.204 8.421 0.004
Pair ∗ Texture 3.21 19 0.169 0.646 0.871
Residual 115.17 440 0.262

Within Subjects Effects
Sum of Squares df Mean Square F p

Head Sway 4 1 4.004 19.047 < .001
Head Sway ∗ Pair 4.16 19 0.219 1.042 0.410
Head Sway ∗ Texture 1.67 1 1.667 7.928 0.005
Head Sway ∗ Pair ∗ Texture 3.67 19 0.193 0.918 0.561
Residual 92.5 440 0.21

Table 5.4: ANOVA results for Between and Within Subjects Effects for the
Brahms Concert.

It is worth noting that the inclusion of Head Sway in the ANOVA was to ac-

count for variance related to movement direction. Nevertheless, this variable was

not the central focus from a theoretical perspective, so results for its dimensions

were not presented.

These initial findings suggested a difference in directional coupling between ho-

mophonic and polyphonic textures, providing insights into ensemble performance

dynamics. Building on these results, we extended the experiment to perform the

study of directionality of influence on the entire dataset, akin to the one for Study

1.
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5.3 Results from Study 3

Figure 5.4: Directed network plots for ensemble GC values by instrument for each
texture in Quintet and Quartet musical pieces, representing the Directionality of
Influence (DOI). Edge direction indicates DOI across all phrases. Homophonic
textures have a clear melodic leader, while leadership is assumed to be distributed
in polyphonic textures. Each node represents an individual instrumentalist, and
the yellow dot indicates the melody instruments (which varied across the analysed
phrases for the Quartet) in homophonic textures.
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Figure 5.5: (A – Left) Proportion of significant GC values for homophonic and
polyphonic textures, averaged across the Quintet and Quartet; (B – Right) Pro-
portion of significant GC values for four categories of musical roles adopted by
co-performers indicating the directionality of influence in the musical ensemble.

5.3 Results from Study 3

Study 3 explored the dynamics of interpersonal coupling in musical ensembles,

focusing on the directional influence among instrumentalists based on musical

textures.

Fig 5.4 shows network plots of GC values representing directional linkages

statistically significant for individual instrument pairings as a function of musical

texture in the Quintet and Quartet performances. Visual inspection of the plots

reveals that connections are denser for the Quintet than the Quartet. This effect

was not of interest in the present study, since musical piece was considered as a

random effect in our analyses. Note that comparing the pieces would be prob-

lematic and inconclusive because they vary on multiple confounding parameters

(e.g., number of players, composer, tempi, key, and stylistic elements). Of note,

it is also evident that there is a greater density of connections for homophonic

than polyphonic textures, consistent with our main hypothesis that interpersonal

coupling would generally exhibit higher directionality in homophonic textures

with a clear melodic leader compared to polyphonic textures with distributed

or changing leadership roles. Evidence for or against our additional specific hy-
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pothesis that the melody player would influence other players more than vice

versa in homophonic textures is less readily discernable from visual inspection

of these network plots alone since numerous connections exist not just between

the melody player and other instrumentalists, but also among these other players

themselves. This underscores the fact that our observations are grounded in a

probabilistic framework, reflecting tendencies not certainties. For example, while

findings suggest a melody player often assumes a leadership role, it does not rule

out influential interactions from other ensemble members. Separate statistical

analyses on the GC values were conducted to address each of the two hypotheses.

The hypothesis that interpersonal coupling would exhibit higher directional-

ity in homophonic textures than polyphonic textures was tested by examining

the proportion of instrumentalist pairs exhibiting statistically significant GC test

values as a function of musical texture. The results in Fig 5.5(A) revealed a

higher proportion of significant GC values for homophonic compared to poly-

phonic textures, thus confirming the hypothesis. To further evaluate this effect,

we computed a LMM using the lme4 package in R [162], with texture as a fixed

factor and piece, part, phrase, and direction of the GC test (within each pair of

instrumentalists) as random effects. We included the piece as a random effect

because our hypotheses were not specific to the two particular musical works

featured but rather representative of Western chamber music in general.

A likelihood-ratio test indicated that the full model with texture provided a

better fit to the data than a reduced model, including only the random effects

(χ2(1) = 10.90, p <.001; Log Likelihood = 17.20 (full) vs 11.80 (reduced), AIC

= -20.40 vs -11.50, BIC = -3.10 vs 3.37). The full model revealed a statistically

significant effect of texture on GC values (Effect Estimate = -0.248, SE = 0.070,

t = -3.54, p = 0.001, 95% CI [-0.388, -0.107]), indicating that the directionality

of coupling was reliably higher in homophonic than polyphonic textures.
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The second analysis tested the hypothesis that the instrument playing the

melody would exert greater influence on instrumentalists playing accompaniment

material more than vice versa in homophonic textures. For this analysis, we

classified the GC test outcomes based on the musical roles of the instrumen-

talists, which included melody, accompanying (other), or mixed (in polyphonic

settings). We identified four categories of direction of influence, which can be

seen in Fig 5.5(B): (1) melody instrument influencing accompanying instruments

(Melody on Other), (2) accompanying instruments influencing the melody in-

strument (Other on Melody), (3) accompanying instruments influencing other

accompanying instruments (Other on Other) in homophonic textures, and (4)

mixed roles in polyphonic textures. GC values were entered into a LMM with

the direction of influence category as a fixed factor and piece, part, and phrase

as random effects. This full model provided a better fit to the data than a re-

duced model with only random effects, as indicated by a likelihood-ratio test

(χ2(3) = 15.50, p < .01; Log Likelihood = -1.06 (full) vs -8.82 (reduced), AIC =

18.10 vs 27.60, BIC = 37.90 vs 40.00).

We conducted a follow-up ANOVA with three planned orthogonal contrasts

to determine the specific effects of the direction of influence. These contrasts

compared homophonic leadership categories combined (Melody on Other, Other

on Melody, and Other on Other) versus the mixed polyphonic category (which

is equivalent to the analysis reported above, but with different degrees of free-

dom), homophonic categories including a melody player (Melody on Other and

Other on Melody) versus the homophonic category without a melody player

(Other on Other), and the category reflecting melody instrument influence on

other instruments (Melody on Other) versus accompanying instrument influence

on the melody instrument (Other on Melody). This analysis indicated that

GC values were significantly higher for homophonic than polyphonic textures
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t(45.1) = 2.849, p = .0066, 95% CI [0.212, 1.235] and for melody instrument in-

fluence on others than for other instrument influence on the melody instrument

t(46.8) = 2.520, p = .015, 95% CI [0.027, 0.238]. This latter finding is consis-

tent with our specific hypothesis about musical role. In addition, we found that

GC values for homophonic pairings including a melody player were not signif-

icantly different from values for homophonic pairings without a melody player

t(46.8) = −1.039, p = .304, 95% CI [-0.278, 0.089]. This post-hoc finding was not

hypothesised but is informative to the extent that it indicates high directionality

of influence among accompanying instrumentalists.

5.3.1 Binomial Generalised Linear Mixed Model (GLMM)

analyses and additional analyses with Bonferroni

correction.

Section 5.3 reports analyses using linear mixed-effects models (LMMs) to test

for global effects of musical texture on Granger Causality (GC) values, followed

by Analysis of Variance (ANOVA) to address directionality-of-influence effects

related to melodic leadership. However, given that the raw data consist of binary

GC values (0, 1) that are not normally distributed, we also conducted bino-

mial Generalised Linear Mixed Model (GLMM) analyses on these values to check

whether equivalent effects are obtained. In this section, we report these GLMM

analyses, which were run using the ‘glmer’ function from the lme4 (version 1.1-31)

package in R (version 4.2.2) within RStudio (version 2022.12.0+353). A separate

GLMM analysis addressed each of our two hypotheses. The first GLMM analysis

tested the hypothesis that there would be higher directionality in interpersonal

coupling in homophonic textures (with a clear melodic leader) than in polyphonic

textures (with distributed/changing leadership roles). The GLMM included tex-
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ture as a fixed factor and piece, part, phrase, direction of the GC test (within

each pair of instrumentalists), and instrumentalist pair (coded as unique combi-

nations of instrumentalist numbers) as random effects. Note that instrumentalist

pair is included in the GLMM but not in the LMMs in the main article because

the binary values were averaged across instrumentalist pairs to get the proportion

measure in the latter. A likelihood-ratio test indicated that this full model pro-

vided a better fit to the data than a reduced model that included only the random

effects (χ2(1) = 8.21, p < .01; Log Likelihood = -344 (full) vs -348(reduced), AIC

= 702 vs 708, BIC = 734 vs 736). For the full GLMM, there was a statistically

significant effect of texture on GC values (Effect Estimate = -1.510, SE = 0.499,

z = -3.03, p = 0.0025, 95% CI [-2.578 -0.509]). This outcome confirms the LMM

result reported in the main article.

The second GLMM analysis examined the effects of the musical roles of the

instrumentalists (melody vs accompaniment) on the directionality of coupling.

As in the corresponding LMM analysis in the main article, we included four cate-

gories of direction of influence: (1) melody instrument influencing accompanying

instruments (Melody on Other), (2) accompanying instruments influencing the

melody instrument (Other on Melody), (3) accompanying instruments influenc-

ing other accompanying instruments (Other on Other) in homophonic textures,

and (4) mixed roles in polyphonic textures. The GLMM included direction-of-

influence category as a fixed factor and piece, part, phrase, direction of the GC

test, and instrumentalist pair as random effects. A likelihood-ratio test indicated

that this full model provided a better fit to the data than the reduced model

with only random effects ((χ2(3) = 15.70, p < .01; Log Likelihood = -340 (full)

vs -348 (reduced), AIC = 698 vs 708, BIC = 740 vs 736). There was a statisti-

cally significant effect of direction-of-influence category on GC values in the full

GLMM (Effect Estimate = -1.510, SE = 0.499, z = -3.03, p = 0.0025, 95% CI
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[-2.578 -0.509]). Again, the outcome is consistent with the LMM result in the

main article.

The direction-of-influence effect was broken down using planned orthogonal

contrasts. The outcomes were essentially the same as the corresponding analysis

on proportional data in the main article. Raw binary GC values were significantly

higher for homophonic than polyphonic textures (z = 3.310, p = .0009, 95%

CI [1.957, 7.635]) and for melody instrument influence on others than for other

instrument influence on the melody instrument (z = 1.972, p = .049, 95% CI

[0.005, 1.642]). However, GC values for homophonic pairings including a melody

player were not significantly different from values for homophonic pairings without

a melody player (z = -1.033, p = .301, 95% CI [-1.665, 0.515]). In sum, the

outcomes of the GLMM analyses reported here are in all respects equivalent to

the LMM results in the main article.

From the results of our research, we discern that in chamber music ensembles,

the nature of the musical texture—whether homophonic or polyphonic—plays

a pivotal role in shaping interactions among musicians. In contexts where the

music is homophonic, the individual presenting the melody frequently assumes a

central guiding role. This deepens our comprehension of the subtle interplay and

leadership dynamics at play in group musical performances.
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Chapter 6

Beyond core objectives

During our research, we uncovered related topics that expanded on our primary

objectives and carried out two secondary projects that built upon our founda-

tional theories, showcasing the versatility of our insights in HCI research. One

project offers practical application, while another explores new research chal-

lenges. These works demonstrate the applicability and relevance of our primary

research in varied contexts of HCI, establishing a link between our principal find-

ings and their extended applications.

6.1 MULTIPLATAGE’s ProHome: A Compu-

tational Approach to Movement Analysis in

Geriatric Healthcare

The ProHome initiative is part of the larger MULTIPLATAGE project (NET-

2016-02361805). Its objective is to create a multi-component intervention plat-

form to improve the management of older people with multiple health conditions

and medications. proHome is being developed in collaboration with Ospedale
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Galliera in Genova, Italy and aims to predict adverse outcomes in older patients.

The Ministry of Health, through the Call Finalised Research in 2016, co-funded

the MULTIPLATAGE partnership. The partnership comprises healthcare insti-

tutions such as EO Ospedali Galliera and Ospedale Policlinico San Martino in

Genova, University Federico II of Naples, AOU Maggiore della Carità in Novara,

AOU Mater Domini in Catanzaro, ASP Crotone, and Istituto S.Anna in Crotone.

These partners are shaping this project, and the insights obtained thus far are

playing a pivotal role in ongoing efforts in PNRR, showcasing the extension and

applicability of our research.

The project hinges on the Multidimensional Prognostic Index (MPI)[163], a

tool with proven accuracy in predicting short and long-term mortality in hospital

settings and among older populations. The MPI, unique to geriatric medicine,

relies on a comprehensive geriatric assessment (CGA) that evaluates health, func-

tionality, cognitive ability, nutrition, and social aspects using standardised and

validated rating scales. It predicts outcomes like mortality, (re) hospitalisation,

and institutionalisation.

ProHome employs state-of-the-art sensor technology within a hospital setting

designed to mimic a home, targeting older patients from intensive care. The

objective is the analysis of biophysical and motor data, and before discharge, these

patients undergo a 3-5 day observation to measure their MPI and improve their

health metrics. The initial system uses a Fitbit smartwatch and an Azure Kinect

depth-sensing camera. The Azure Kinect DK, equipped with AI sensors, offers

computer vision and speech models. It integrates a depth sensor, microphone

array, video camera, and orientation sensor in one device, supported by various

software development kits (SDKs).

This simulated home setup comprises a living room, bedroom, restroom, and a

5-meter corridor. In this method, professionals non-invasively monitor patients to
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enhance remote monitoring capabilities. The camera in the corridor records the

patients’ mobility. This data assists in tracking the entire body using the Body

Tracker SDK, capturing key body points. This data feeds into the development

of biomechanic models, analysing features like body axis variations, movement

fluidity, and smoothness, among others.

We developed a software framework to acquire patient data from a Fitbit

smartwatch and Kinect. Our framework follows a three-pronged approach: 1)

Data Acquisition, 2) Data processing, and 3) Analysis. An ETL pipeline ac-

quires patient data in real time. The Fitbit stores data on the Fitbit cloud, while

the hospital server holds Kinect data. The second step, data processing, is where

the efforts are rather extensive since although the information for both devices is

available in the JSON, the structures differ. We track the heart rate, steps, and

sleep from the Fitbit. In contrast, from the Kinect, we developed computational

models to track, and compute from, skeletal information to provide consolidated

metrics concerning the number of times walked in the corridor, walking speed

(max and average), body sway (mean and trend), and anterior-posterior leaning

(mean and trend). Our team is now investigating these data points further ac-

cording to the MPI protocol and we are performing statistical analyses to assess

the overall efficiency of this framework for medical care centres.

As of now, we have collected data from over 50 patients and are analysing

this information. Our preliminary results show promise, and we are directing

our ongoing efforts towards synthesising these observations. We will compile our

findings into a research paper, bridging engineering and medical perspectives.

This work aims to serve as a blueprint for other medical care centres, guiding

them in enhancing care for elderly patients. Further research is anticipated as

part of the PNRR Project Spoke 2.
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6.2 Examining the Correlation Between Dance

and Electroacoustic Music Phrases: A Pilot

Study

Figure 6.1: Plot indicating CEI with its peaks and troughs, and vertical lines for
RMS, Novelty, Spectral Flux, and Brightness peaks for Phrase 3.

In our primary research, we anchored our approach on the flexible huSync

framework and used musical ensemble performances as a test bed. We employed

HPE algorithms to extract kinematic data from video sequences. Initially, we

concentrated on fundamental movements like head sway. Recognising a gap, we

expanded our scope to understand individual movements and their influencing

factors. While HPE algorithms benefit non-invasive studies in natural settings,

they can yield noisy data compared to MoCap systems.

Based on the learnings of our primary research studies, we identified potential

areas for future work, including developing computational models for movement

saliency and relevance. It is crucial to work with reliable, low-noise data for these
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computational models and to go beyond small-group interactions.

Figure 6.2: Mocapgram showing norm acceleration (m/s) for markers, normalised
to 0-1 and shown as greyscale: Head 1-3; upper torso 4-9, 15-16; right arm 10-14;
left arm 17-21, lower torso 22-25, right leg 26-31, left leg 32-37.

With this in mind, we conducted a pilot experiment, studying the synchro-

nisation between electroacoustic dance and music phrases. We emphasised the

connection between musical accents and spontaneous choreography. Two per-

formers danced to electroacoustic tracks rich in accents but lacking clear rhythm,

with their movements captured through a Motion Capture system. The harmony

between music and dance is essential in this domain. Our goal was to understand

the extent of synchronicity between dance gestures and musical accents, offering

a precise, measurable analysis of the auditory-kinematic connection. We utilised

audio attributes derived from diverse tracks via the MIRtoolbox, a sophisticated

tool designed for music feature extraction. Core kinematic attributes (such as

velocity, acceleration, and jerk) and their respective vector norms were derived

from refined mocap datasets using Savitzky-Golay filters. To visually represent
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all these features, mocapgrams were used, providing an insightful qualitative view

(refer to Fig. 6.2)[164; 165]. After thorough qualitative scrutiny, we isolated kine-

matic attributes for seven anatomical segments and evaluated the means of their

vector norms. Informed by prior research [166] and the initial visual interpreta-

tion of dancer motions in the mocapgram, our early focus gravitated towards the

contraction-expansion index (CEI) as a kinematic movement feature.

Central to the study was the temporal binding window (TBW) concept.

TBWs define the span within which we perceive auditory and visual stimuli as

simultaneous. Based on earlier findings, we adopted an average adult TBW of

about 166 ms (equivalent to 20 mocap frames) for brief stimuli like beeps and

flashes [167]. Peak detection was carefully tuned using specific algorithms for

accuracy and prominence in audio and movement features [168; 169].

A quantitative measure, the ‘Jaccard Similarity Index’, was employed to de-

termine the degree of overlap between auditory and kinematic features [170].

Synchronicity standards were defined to ensure peaks fall within the TBW. Our

preliminary analysis explored the audio-dance dynamic by comparing peak se-

quences, revealing synchronisation levels across distinct phrases, hinting at the

dancers’ unique tendencies in aligning movements to varied audio cues.

Results revealed that temporal synchronisation existed between the music’s

accents and the dancers’ movements, extending even to non-rhythmic portions of

the music. The study demonstrated that peak synchronisation percentages varied

significantly across music and dance phrases. Specific features like ‘Novelty’ and

‘RMS’ showed higher alignment in select scenarios, while ‘Brightness’ had lesser

synchronisation. This variance implied underlying patterns and relationships

governing these features 6.1. Moreover, the research discerned that the differences

between the peak kinematic features for different body parts were extensive for

some phrases, aligning with observed distinctions from qualitative evaluations.
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We also observed significant variation, sometimes up to 50%, in kinematic

feature peaks across different body parts for some phrases. Median values for

acceleration peaks ranged between 4.55 and 26, reflecting diverse synchronicity

patterns among dancers. This varied alignment aids in understanding the under-

lying interplay between music and dance.

Our findings suggest that the dynamic relationship between audio features and

movement patterns in dance significantly depends on individual preferences in

choreography. The analysis underscores the strong link between auditory stimuli

and human kinematics, essential for fields like dance pedagogy and performance

analysis. As mentioned earlier, the findings lay the groundwork for future re-

search by helping us narrow down the features to study saliency in movement

and music. Immediate next steps will involve using more sophisticated statistical

tests exploring other movement and audio features that help investigate saliency

in music and dance [45; 171], and an elaborate validation studying with up to

100 participants.
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Chapter 7

Discussion

The objective of this thesis was two-fold. Firstly, it aimed to create a computa-

tional framework and system called huSync, which allows for analysing non-verbal

social-communicative behaviour in small-group interactions. In the intersecting

fields of software engineering and interaction design, huSync is a methodological

contribution to HCI, particularly emphasising embodied interaction design and

somatics. These specialisations are integral to the extensive research efforts of

the InfoMus-Casa Paganini team.

Researchers can leverage huSync on video sequences to conduct studies in

naturalistic environments without the usual interference associated with motion

capture setups. Our developed solution aspires to motivate designs that centre

on the human body and collective tasks, providing insights and tools where the

human body is the focal point of new interaction projects [172; 173; 174].

Secondly, huSync was tested in scenarios investigating the correlation be-

tween interpersonal coordination and the directionality of influence among co-

performers and musical structures. In such scenarios, it emerges as a pragmatic

alternative to traditional systems, such as MoCap suits, for measuring dyadic syn-

chronisation and the directionality of influence between co-performers in musical
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ensembles through the automated analysis of human body motions. The outcome

of these investigations is both methodological and empirical, providing insights

into technical aspects and conceptual issues relevant to the study of real-time

human interaction and non-verbal communication in naturalistic settings.

From a methodological perspective, our structured process involves collecting

kinematic data from regular video recordings in a non-intrusive and marker-free

way. We then analyse this data to determine the synchronisation and directional

influence between musicians performing together. We measure this for all possible

pairs within the group using phase-locking values and Granger Causality. This

approach allows us to obtain information about the interaction between specific

individuals, which is not possible with a global and general measure. However,

interpreting natural behaviour data can be complex and challenging, unlike con-

trolled experiments where we systematically manipulate independent variables.

As an empirical outcome, we applied the above techniques for body motion

analysis to investigate the effects of musical structure in three distinct studies.

Study 1 shows two aspects of musical structure—texture and phrase position—on

the strength of interpersonal coupling in instrumental ensembles. We then con-

ducted two studies (Study 2 and 3), where we operationalised and extended the

huSync model to study the directionality of influence. We analyse how head sway

influences unfolding leadership dynamics among co-performers.

Our first study found that polyphonic textures showed a higher degree of cou-

pling than homophonic textures. Such increased coupling might occur because

performers distribute coupling evenly among themselves in leadership ambiguity

in polyphonic textures. In contrast, in homophonic textures, accompanying per-

formers are more closely linked to a single performer who serves as the melodic

leader. Previous research on interpersonal coordination in controlled laboratory

tasks [70; 175; 176] supports this interpretation. This research suggests that
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distributed leadership in polyphonic textures could lead to improved ensemble

synchronisation due to heightened mutual adaptation, anticipation, and joint at-

tention [2; 29; 35].

While the positioning within musical phrases did not universally influence the

intensity of interpersonal synchronisation, the interplay between phrase position

and musical texture was apparent. This interaction suggests a more pronounced

role of a distinct melodic leader in the initial segments of phrases compared to

their latter portions. Notably, we observe enhanced synchronisation in polyphonic

structures at the beginning and central parts of phrases, but it diminishes towards

their conclusion. A plausible explanation for this trend might be the heightened

coordination requirements at the terminal points of phrases, especially as they

transition to subsequent phrases and introduce fresh musical content [29]. This

coordination challenge presents a contrasting scenario between polyphonic and

homophonic textures. In the absence of a prominent leader, synchronisation in

polyphonic settings tends to wane during these pivotal moments. Conversely, the

presence of a melodic leader in homophonic compositions augments synchronisa-

tion, likely attributed to the augmented focus from the said leader. Future explo-

rations employing eye-tracking methodologies might provide invaluable insights

into these patterns, specifically by gauging visual interactions across different

phrase segments [48; 138; 177].

Our first study exploited the huSync model to study dyadic synchronisation

in a musical ensemble. Our research question addressed the influence of musical

texture and phrase placement on interpersonal interactions, as discerned through

visual cues tied to bodily movements. Interestingly, a subsequent analysis of

the video’s audio tracks unveiled a connection between coordination within the

ensemble in terms of physical movements and auditory elements. Such a link

aligns with previous research on ensemble synchronisation [133; 160; 178] and
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further underscores the expanding research supporting the multi-faceted aspects

of musical communication [28; 154; 179]. This analysis also reinforces the sig-

nificance of amalgamating visual and auditory indicators in understanding syn-

chronisation within musical collectives. Our results indicate that huSync adeptly

discerns dynamic alterations in interpersonal coupling, particularly those associ-

ated with ambiguities in leadership and coordination necessities, within standard

video recordings of spontaneous small-group interactions.

In the second study, we extended huSync to test for directionality of influence

and performed a pilot study utilising a subset of the same dataset as used in Study

1, making use of binary values [145; 146]. This study utilised Granger Causal-

ity, widely used in Neuroscience and Psychology, to measure information transfer

and functional connectivity [180]. Our findings revealed that homophonic tex-

tures, characterised by a melodic leader and accompanying parts, exhibited more

significant directional influence than polyphonic textures with a more balanced

distribution of melodic content.

Transitioning to Study 3, while the previous exploration was a pilot based

on a dataset subset, the third study delved deeper by encompassing the entire

dataset to contextualise the insights from Study 2 further. Here, we deduced that

homophonic textures consistently registered a higher frequency of significant GC

values, suggesting a more substantial directional influence among pairs of co-

performers. This consolidated our hypothesis that distinct roles in homophonic

textures, akin to leader-follower dynamics, culminate in increased directional-

ity in interpersonal coupling. Interestingly, in homophonic settings, the melody

instrument consistently showcased a stronger influence over other instruments, re-

inforcing the idea of the melody player as the leader. These insights not only built

upon our preliminary observations on non-directional coupling [13] but also res-

onated with existing studies that employed GC to scrutinise leadership dynamics
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7.1 Connection between Musical Texture and Leadership Dynamics

in various ensemble configurations [5; 6; 7; 116; 181; 182]. In this investigation,

we did not directly ascertain distinct leadership roles from the musicians but

emphasised the intrinsic musical structure. A potential avenue for subsequent

research is examining the extent to which homophonic textures allow for more

liberal head movements due to diminished synchronisation requisites. While this

study foregrounds head movements, it is imperative to acknowledge that they

are not the exclusive, nor necessarily the paramount, metric for synchronisation

in ensemble contexts. Our work underscored the role of musical texture in these

dynamics and validated the capability of extracting leader-follower patterns from

body motions in naturalistic video recordings. Our findings confirm hypothesis

(H1) that computational and statistical techniques, such as phase-locking values

and Granger Causality, are reliable measures of interpersonal synchronisation and

leadership dynamics in small-group interactions.

7.1 Connection between Musical Texture and

Leadership Dynamics

Pertinent to studies 2 and 3, the influence of musical texture on interpersonal cou-

pling reveals that homophonic textures lead to more pronounced directionality,

where information predominantly flows from the melody player to the accom-

panying players and less so the other way around. These findings confirm our

results from Study 1 that the required leader-follower dynamics inherent in spe-

cific musical structures may allow for flexibility in interpersonal coupling. This

adaptability can manifest in temporal adaptation and anticipation asymmetries

during rhythmically coordinated interactions, a process that balances real-time

error correction and future event prediction [4; 29]. Instrumental movement stud-

ies underscore that followers exhibit higher levels of adaptation and anticipation
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7.1 Connection between Musical Texture and Leadership Dynamics

compared to leaders [135; 136; 183; 184]. Results from Studies 2 and 3 fur-

ther suggest these asymmetries extend to additional body movements, implying

that musical communication spans multiple timescales and sensory channels [47],

consistent with diverse communication patterns observed elsewhere [185; 186].

However, it remains to be seen if other musical structural elements, such

as phrase position, further modulate the interplay between musical texture and

leadership dynamics. Results from Study 1 indicated a varying effect of tex-

ture based on phrase position. During initial and mid-phrase sections, cou-

pling appears firmer for polyphonic versus homophonic textures but converges

at phrase conclusions. The assertion is that polyphonic textures tend towards

leader-follower dynamics at phrase endings, potentially due to coordination chal-

lenges [35]. Such complexities are evident in variable silent pauses that punctuate

successive phrases, prompting increased communicative gestures like eye contact

and pronounced movements [138; 177; 182]. Notably, leaders often adopt pre-

dictable timing strategies during these moments [42; 175; 187; 188], alluding to

a broader principle of coordination smoothers [189]. Even though our current

exploration did not delve into the influence of phrase position due to time se-

ries length constraints (refer to 7.3), future research may examine patterns of

information flow among accompanying players. It could be especially revealing

in this context, given our finding that such interpersonal dynamics are present

and measurable.

Additionally, whether the hierarchical distinction in homophonic textures,

distinguishing melody from accompaniment, inherently triggers leader-follower

dynamics remains an open question. Past investigations involving piano duets

demonstrated consistent melody leadership in keystroke timings and body sway

[42; 160]. However, discerning whether this behaviour arises spontaneously or is

a conscious strategy remains challenging. Interestingly, auditory leader-follower
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7.2 Benefits of studying natural coordination

perceptions appear to be driven by automatic processing effects [133], whereas

deliberate leadership actions are evident in head movements [116]. Our findings

hint at implicit leadership dynamics that arise due to musical constraints. While

pinpointing such dynamics remains elusive in controlled settings [190], future

studies could potentially harness natural interactions, such as during rehearsal

discussions, as a rich source of insights [191].

Finally, regardless of the emergence pattern of leader-follower dynamics, their

impact on information directionality seems intertwined with attention dynamics.

Ensemble players, committed to ”prioritised integrative attending,” distribute at-

tention among their roles while encompassing the collective ensemble’s sound [40].

Particularly in homophonic textures, while performers prioritise their part, there

is a possible disproportionate attentional shift towards the melody by accompa-

nying players [192]. This skewed attention distribution could drive directional

interpersonal coupling dynamics, given the tight coupling between attention and

sensory-motor processes [29; 193; 194].

7.2 Benefits of studying natural coordination

Our study adds to the growing literature showing that body movement, including

head motion, provides an valid metric to investigate interpersonal coordination

and leadership dynamics in group settings [6; 47; 116]. Moreover, we demonstrate

the potential of markerless motion capture technology to analyse such leader-

follower dynamics in videos of music ensemble performances recorded during live

concerts. Studying such performances is informative as they offer a naturalistic

setting for musical communication. While this context presents an ecologically

valid representation of ensemble dynamics, it may not be the only approach to

investigating leadership in musical performances. Research on music and dance
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7.2 Benefits of studying natural coordination

underscores the influence of performing in situ on communication quality. Factors

like acoustics and audience presence can impact performers’ levels of motivation,

attention, and arousal [195; 196; 197]. The nonverbal communication of emotions

is a specific aspect that may benefit under these conditions, and the degree of

enhancement may be reflected in increased information flow. Evidence for this

link is seen in a study that found greater information flow in body sway when a trio

were instructed to perform pieces with emotional expression than without emotion

[3]. Heightened expressive intensity may, therefore, be associated with greater

amplitude movements [198; 199] and the transmission of these cues between co-

performers.

An additional advantage of using conventional video of ensemble performances

is that it widens the potential pool of materials for analysis. Video-based analysis

allows performances of other cultures to be studied when more specialised motion

capture setups are not feasible [154], and therefore has the potential to overcome

the prevailing WEIRD (Western, Educated, Industrialized, Rich, and Democratic

societies) focus of research in psychology and neuroscience and subdisciplines such

as music science [200]. A related practical benefit is that video is relatively neu-

tral regarding group size, notwithstanding the issue of occlusion in large groups

[13], and thus may help to accelerate the trend in the field to go beyond dyadic

coordination to study groups of three or more performers [201]. An advantage

of this upscaling, highlighted by the results in Study 3, is that it allowed us to

examine the coupling between instrumentalists playing accompanying parts and

interactions between melody and accompaniment. Our finding that the “other on

other” influence was almost as strong as the “melody on other” influence in ho-

mophonic textures is noteworthy to the extent it captures the interaction between

accompanying players. This finding suggests that to understand musical group

dynamics, it is important to consider the interconnected network of the entire
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ensemble, in which subsets of performers function with some degree of indepen-

dence [202]. Such independence is consistent with claims that it is necessary to

balance the integration and segregation of psychological representations of “self”

and “other” in ensemble performance [203; 204; 205], with the added nuance that

there may be relatively high segregation between melody and accompaniment

players, but a high degree of integration among the accompaniment players.

A further benefit of the current approach is conceptual. The observed effects

of musical texture on leadership dynamics were not the result of an explicit ex-

perimental manipulation, nor were they post-hoc or data-driven findings. While

these alternative approaches have particular strengths, experimental methods can

lack ecological validity and data-driven findings can be challenging to interpret

due to multiple possible contributing factors. Instead, our approach of segment-

ing the videoed performances based on musicological analysis of musical structure

presents a middle ground that balances ecological naturalness and experimental

control considerations. This feature highlights the benefit of using ensemble mu-

sic from notated traditions, where the score functions as a script that constrains

the actions of each performer while maintaining a degree of freedom for individual

expression, as a domain to study the psychological dynamics of social interaction

[12; 206].

7.3 Limitations

The huSync model, while generally reliable, faces various challenges. Below, we

discuss two macro-level limitations: technical and methodological.

1. Methodological Limitations:

(a) Multiple Temporal Scales: This study operates primarily at one

temporal scale, focusing on head movements. However, synchronisa-
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7.3 Limitations

Figure 7.1: Performance images of the String Quartet No. 2 composed by Alexan-
der Borodin (Top Left) and a trio for clarinet, viola, and piano composed by
Robert Schumann (Bottom Left), with overlayed keypoints depicted on the right.
These images illustrate the complexities and variations in pose estimation during
different performances.

tion can occur at varied temporal scales, ranging from milliseconds to

hours, leaving its exploration an open research question. Understand-

ing such scales in cohesion and directionality is pivotal for revealing

different aspects of synchronisation, a methodology unaddressed in the

current study. Future research can investigate synchronisation across

different temporal scales to provide more comprehensive insights.

(b) Granger Causality (GC): GC is employed for statistical inquiries

in this study, but its reliability for establishing causal relationships is

still debated. The need to transform non-stationary data to stationary

forms to apply GC might alter the intrinsic nature of the time series,

potentially introducing biases [14; 207]. More robust methodologies

are needed to establish causality without compromising data integrity.

(c) Nuanced Roles of Head Movements in Ensemble Coordina-

tion: Head movements, such as nods, have been linked to specific

functions like timekeeping in ensemble music performance [138; 208].
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Distinguishing these in future huSync iterations can provide richer per-

formance analysis. Also, embedding the emotional encoding of head

movements, currently absent, can yield a more comprehensive view of

ensemble coordination [209; 210]. While this study foregrounds head

movements, it is imperative to acknowledge that they are not the ex-

clusive, nor necessarily the paramount, metric for synchronisation or

directionality in ensemble contexts.

(d) Generality of findings: The study’s focus on specific ensembles and

the directionality between specific musical textures and performance

dynamics might limit the general applicability of our findings. For in-

stance, the interaction between melody and rhythm can significantly

impact synchronisation, warranting a more detailed investigation. Ex-

ploring these findings in various non-musical scenarios, such as team

sports or organisational settings where leadership dynamics are cru-

cial, can offer valuable insights. Here, the study’s implications can

be leveraged to understand social signals and leadership dynamics in

settings where one leads and others follow.

(e) Control group: Another limitation to address relates to the fact that,

the present studies focused on naturalistic ensemble performance, and

did not compare co-performers’ body motion to movement patterns

during solo performance. Previous research has highlighted the rele-

vance of body movements in solo performance for regulating perfor-

mance and communicating musical structure and expression [198; 211].

Incorporating a solo performance condition in future studies could pro-

vide a baseline for understanding how these functions are fulfilled for

different musical textures in ensemble settings [212; 213]. It also bears

mention that did not directly ascertain distinct leadership roles from
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7.3 Limitations

the musicians but inferred them from the intrinsic musical structure.

This means that they could be influenced by technical demands re-

lated to coordination, which varies as a function of the actual music

being played. A potential avenue for subsequent research is examining

the extent to which homophonic textures allow for more liberal head

movements due to diminished synchronisation demands.

Note: Future works will consider exploring different temporal scales and

robust causality methodologies, including applying findings in varied con-

texts to enhance the generality and applicability of the results.

2. Technical Limitations:

(a) Data Quality and Pose Estimation: While the huSync technique

offers several advantages, it faces challenges compared to traditional

marker-based systems, which, albeit more expensive and potentially

uncomfortable, yield less noisy data. Clear differentiation between

video foreground and background is crucial for optimising pose esti-

mation, a condition hard to meet in crowded frames with multiple in-

dividuals and obstructions, complicating analysis (See Fig. 7.1) [214].

Potential inaccuracies in pose estimation can distort synchronisation

analysis outcomes, necessitating improvements in data acquisition and

processing techniques.

(b) Technical Sensitivities: The model is sensitive to various factors,

including:

i. The huSync system, as currently designed, does not differentiate

between lateral (side-to-side) and vertical (up-down) head move-

ments. It leverages input from a multi-person HPE algorithm,

and, based on the musicians’ arrangement within the scene, it
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7.3 Limitations

solely utilises position time series along the x-axis (horizontal).

However, with advancements in the HPE domain enabling data

extraction in 3D space, there is potential for enhanced analysis

by capturing more nuanced motion trajectories of participants in

multiple directions.

ii. Challenges exist in tracking in larger ensembles or multi-row set-

tings due to occlusions. Multi-camera setups and 3D viewpoints

can be potential solutions [215; 216; 217], and while they show

promise, refinement is inevitable for in-the-wild implementations.

iii. Lighting variations, frame resolution, and the lack of robust, open-

source models trained on extensive datasets affecting output reli-

ability.

(c) Limited Test Cases: The study is based on two specific instances

of ensembles, limiting the scope of our understanding. Analysing a

more diverse range of ensembles is essential for broader insights. Fu-

ture research should consider different ensemble types and performance

contexts to validate and extend the findings of this study.

3. Others: Studies indicate that performer familiarity significantly influences

ensemble coordination and goal alignment. Knowledge of a co-performer

part aids in coordinating head motion and body sway, though not neces-

sarily the actual playing, serving as a mechanism to reconcile incongruent

performance goals through stylistic assimilation [190]. Over time, as per-

formers become more acquainted with each other, the overall flow of in-

formation may decrease, and relations may alter, with ensemble members

aligning on a common stylistic interpretation and synchronising their body

movements. This suggests a transition from dependency on feedback to

adopting feedforward processes driven by internal models, impacting not
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only the cohesion within the ensemble but also the interpretative dynamics

of the performance [205; 218; 219; 220].
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Chapter 8

Conclusions

This PhD thesis illustrates a comprehensive exploration into the computational

modelling of synchronisation and leadership dynamics in small group interactions.

Through the studies presented, we have contributed to bridge the gap between

the intricate nuances of human interactions and the precision of computational

modelling. This thesis addresses a notable challenge in studying interpersonal

synchronisation and leadership dynamics within small group interactions. Tra-

ditionally, these domains’ research has relied heavily on MoCap systems. While

precise, these systems are expensive and intrusive, potentially altering the study

participants’ natural behaviour. We propose an alternative approach to exam-

ine small-group interactions in a more naturalistic setting: utilising non-intrusive

human pose estimation algorithms. This approach led to the development of

huSync, a model and framework that provides researchers with a more accessi-

ble and non-intrusive method of studying these interactions. Music ensembles

are imbued with nonverbal communication, whether explicitly or implicitly, as

participants naturally communicate through their body movements and gestures.

Given this, we utilise music ensembles as a test-bed for conducting our experi-

ments and validating the huSync model.

We explored various research questions when we established this model. One
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of the fundamental inquiries centred around musical phrases comparable to speech

sentences. These phrases serve as coherent units within a musical composition.

Based on existing literature, we hypothesised that musical texture and phrase

position would influence the strength of interpersonal coupling in body motion.

However, the impact of these musical elements on coupling strength at different

phrase positions remained an open question. Another research question that

emerged was to investigate how the effects of musical texture can affect leadership

dynamics and the directionality of influence.

To empirically interrogate these questions, we operationalised the huSync

model to methodically analyse chamber music concert recordings. This rigor-

ous analysis proffered insights into the nexus between audio performance metrics

and coupling measures, thereby enhancing our epistemological understanding of

interpersonal synchronisation and the directionality of influence within musical

ensembles. Within the purview of the extant literature, and to the best of our

knowledge, our research represents first steps and being amongst the earliest to

exploit HPE algorithms in extracting motoric and postural data from standard-

ised video recordings, especially with an emphasis on dyadic synchronisation,

leadership dynamics, and directionality of influence within a musical ensemble

setup.

In Study 1 [13], we introduced huSync, designed to quantify and evaluate

interpersonal synchronisation in small-group dyads. This study was pivotal in

establishing a foundation for the subsequent investigations. The huSync model,

with its multi-modal signal processing and feature extraction capabilities, pro-

vided a versatile and robust platform to analyse the subtleties of human interac-

tions, particularly in musical ensembles.

With Study 2 [14], we delved deeper into the realm of musical interactions,

focusing on the directionality of influence among ensemble musicians. By em-
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ploying Granger causality, this study illuminated the intricate leader-follower dy-

namics that emerge during musical performances. The insights from this study

underscored the importance of understanding the non-verbal cues and ancillary

body movements that musicians employ to communicate and synchronise with

one another.

In Study 3 [15], we further expanded on the theme of leadership dynamics,

emphasising the quantifiable effects of musical structure on the directionality of

influence in concert performance videos. The study explored how musical struc-

ture, particularly the relative salience of ensemble parts, can influence leadership

dynamics. The study’s results have provided strong evidence that how musicians

interact with each other through their body movements mirrors the hierarchical

relationship between the different parts of the musical ensemble. Such findings

suggest that the directionality of influence between co-performers plays a crucial

role in how the process of music creation evolves.

Lastly, Study 4 [16] extended beyond the core objectives, examining the corre-

lation between dance and electroacoustic music phrases. This pilot study broad-

ened our research scope, hinting at our methodology’s potential applications in

other forms of artistic expression.

8.1 Future works

The research lays the foundation for advances in interaction design and human

dynamics through the huSync model. The following are projected future direc-

tions, and these can be worked upon in the framework of the upcoming PNRR

project:

1. Embodied Interaction Design: An exploration into embodied inter-

action design, utilising the huSync model, can yield profound insights into

the intricacies of non-verbal communication and interaction. This approach
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seeks to design interactive systems more harmonious with human somatic

states, paving the way for creating more intuitive, responsive interfaces and

interaction paradigms.

2. Multi-Temporal Scale Investigation: The present study is constricted

to a single temporal scale, predominantly examining head movements. How-

ever, synchronisation is a multifaceted phenomenon, unfolding across a

spectrum of temporal scales—from milliseconds to hours. This vast and

varied temporal landscape remains uncharted mainly in the current study,

opening avenues for expansive research inquiries. Investigating how syn-

chronisation manifests, interweaves, and directs across these different scales

is critical for unveiling its diverse facets and implications. For instance, un-

derstanding how the immediate, millisecond-level synchrony of musicians’

movements coexists and interacts with the overarching, hour-long harmon-

isation within a performance can offer a more holistic perspective on the

intricate tapestry of synchronisation dynamics. Future research can un-

cover insights into temporal scales, synchronisation, filling knowledge gaps

and extending understanding.

3. Methodological and Technical Improvements: Researchers are work-

ing on increasing the availability of more annotated data which will enhance

the accuracy of HPE algorithms, allowing for the acquisition of more re-

liable motor and postural data under varied scene conditions, such as in

low-light and crowded frames. Such improvements will extend the model’s

applicability and relevance in varied contexts in naturalistic settings.

4. Cross-modal synchronisation analysis: We are exploring methods to

extend huSync’s applicability to cross-modal synchronisation analysis, such

as measuring synchronisation between biophysical indicators, motor and
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postural data from video and other data such as localisation of subject. This

is an open area for investigation under PNRR projects such as proHome

under Spoke 2.

5. Broader research contexts and applications: Extending the method-

ologies and findings to broader contexts can foster advancements in fields

like human-computer interaction and social dynamics analysis. For exam-

ple, analysing leader-follower dynamics in other group settings like orches-

tras or dance ensembles could broaden our understanding of social and

leadership dynamics while continuing to use music as a test bed.

In synthesising the findings from these studies, a few overarching themes

emerge. Firstly, the relationship of leadership and synchronisation in small group

interactions, whether musical or otherwise, is an interplay of non-verbal cues,

shared intentions, and mutual understanding. Secondly, the proposed compu-

tational model huSync offers a versatile and robust approach to studying these

interactions, providing methodological rigour and empirical insights.

During this research, we systematically investigate the nuances of human in-

teractions through a computational lens. Using video-based pose estimation to

analyse large publicly available datasets of real-world performances across cul-

tures and group sizes will maximise the potential use of music to study the com-

munication dynamics of social groups. The methodologies and insights presented

offer future researchers a scaffold to build further, helping enrich our shared com-

prehension of leader-follower relationships in small-group interactions.
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Appendix A

Supplementary Analyses

A.1 Table for Brahms Quintet with bar num-

bers

Table A.1 indicates the bar numbers from the score corresponding to the Brahms

Quintet. The “Concert Part” column indicates the specific part of Brahms’s

Concert being analysed, such as “Part1”, “BrahmsConcertPart1” and so on.

The “No.” column represents a sequence number given to each analysed seg-

ment within the specified part. The “Start Bar” and “End Bar” columns show

the range of musical bars included in each analysed segment, essentially telling

us where in the composition the segment begins and ends. The columns “Start

Time” and “End Time” indicate the timings in seconds, at which the respective

musical bars begin and end. The ”Duration Difference” column calculates the

time span of each segment by subtracting the “Start Time” from the ”End Time,”

giving a clear picture of how long each segment lasts. The “No.Instr.” column in-

dicates how many instruments are being played in each segment, contributing to

the understanding of the complexity of the musical composition. The “T” column

provides insights into the texture of the musical piece. In this case, ‘P’ stands

for ‘Polyphonic’ and ‘H’ stands for ‘Homophonic’. The “MI” column (or Melody

Instrument) identifies the instrument playing the main melody in each segment.
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A.2 Table for Borodin Quartet with bar numbers

The abbreviations correspond to specific instruments, for instance, ‘Cl’ represents

the clarinet, and ‘Vln1’ represents the first violin. In segments where the melody

is shared or alternates between two instruments, both are listed, separated by a

slash.

A.2 Table for Borodin Quartet with bar num-

bers

Table A.2 indicates the bar numbers from the score corresponding to the Borodin

Quartet. The “Concert Part” column indicates the specific part of Borodin’s work

being analysed, such as “Part 1”, “Part 2” and so on. The “No.” column rep-

resents a sequence number given to each analysed segment within the specified

part. The “Start Bar” and “End Bar” columns show the range of musical bars

included in each analysed segment, essentially telling us where in the composi-

tion the segment begins and ends. The columns “Start Time” and “End Time”

indicate the timings in seconds, at which the respective musical bars begin and

end. The ”Duration Difference” column calculates the time span of each segment

by subtracting the “Start Time” from the “End Time”, giving a clear picture

of how long each segment lasts. The “No.Instr.” column indicates how many

instruments are being played in each segment, contributing to the understanding

of the complexity of the musical composition. The “T” column provides insights

into the texture of the musical piece. In this case, ‘P’ stands for ‘Polyphonic’ and

‘H’ stands for ‘Homophonic’. The “MI” column (or Melody Instrument) iden-

tifies the instrument playing the main melody in each segment. ‘NA’ indicates

that there isn’t a single main melody instrument but rather is rather distributed.

Other abbreviations correspond to specific instruments, such as ‘Vln1’ for first

violin, ‘Vlc’ for cello, ‘Vla’ for viola, and ‘Vln2’ for second violin.
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A.2 Table for Borodin Quartet with bar numbers
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A.3 Table for Dyadic Synchronisation test results in Brahms Quintet

A.3 Table for Dyadic Synchronisation test re-

sults in Brahms Quintet

The table below presents the results of the Dyadic Synchronisation tests carried

out on different parts of the Brahms Quintet Quintet. The “Concert & FileNo.”

column identifies the specific concert and consequent section of the Quartet being

analysed. The “T” column signifies the texture of the musical piece, with ’P’

representing ’Polyphonic’ and ’H’ denoting ’Homophonic’. The “Pair” column

shows the dyadic pairs of musicians being examined for their synchronisation,

such as “P1 P2”, “P2 P3”, etc. The columns “Start”, “Middle”, and “End” are

the specific dyadic synchronisation values obtained for the start, middle, and

end of the musical phrases. They signify the phase-locking values of the specific

musician pair. The “Duration” column is the duration of the entire musical

section or phrase.

Table A.3: Detailed PLV data for Brahms Concert Parts.

Concert & FileNo Texture Pair Start Middle End Duration

Brahms Part 1 1 P P1 P2 0.23 0.34 0.34 18.67

Brahms Part 1 1 P P1 P3 0.21 0.34 0.28 18.67

Brahms Part 1 1 P P1 P4 0.29 0.38 0.35 18.67

Brahms Part 1 1 P P1 P5 0.32 0.28 0.31 18.67

Brahms Part 1 1 P P2 P3 0.32 0.34 0.28 18.67

Brahms Part 1 1 P P2 P4 0.35 0.38 0.33 18.67

Brahms Part 1 1 P P2 P5 0.33 0.48 0.34 18.67

Brahms Part 1 1 P P3 P4 0.37 0.33 0.27 18.67

Brahms Part 1 1 P P3 P5 0.36 0.34 0.34 18.67

Brahms Part 1 1 P P4 P5 0.40 0.34 0.29 18.67

Brahms Part 1 3 H P1 P2 0.23 0.25 0.21 27.70

Brahms Part 1 3 H P1 P3 0.20 0.25 0.23 27.70

Brahms Part 1 3 H P1 P4 0.23 0.31 0.23 27.70

Continued on next page
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A.3 Table for Dyadic Synchronisation test results in Brahms Quintet

Table A.3 – continued from previous page

Concert & FileNo Texture Pair Start Middle End Duration

Brahms Part 1 3 H P1 P5 0.18 0.25 0.20 27.70

Brahms Part 1 3 H P2 P3 0.21 0.14 0.19 27.70

Brahms Part 1 3 H P2 P4 0.23 0.25 0.30 27.70

Brahms Part 1 3 H P2 P5 0.14 0.18 0.22 27.70

Brahms Part 1 3 H P3 P4 0.23 0.24 0.19 27.70

Brahms Part 1 3 H P3 P5 0.20 0.23 0.26 27.70

Brahms Part 1 3 H P4 P5 0.26 0.22 0.19 27.70

Brahms Part 1 4 H P1 P2 0.18 0.18 0.19 20.71

Brahms Part 1 4 H P1 P3 0.26 0.30 0.28 20.71

Brahms Part 1 4 H P1 P4 0.36 0.28 0.37 20.71

Brahms Part 1 4 H P1 P5 0.34 0.31 0.35 20.71

Brahms Part 1 4 H P2 P3 0.29 0.26 0.31 20.71

Brahms Part 1 4 H P2 P4 0.27 0.24 0.26 20.71

Brahms Part 1 4 H P2 P5 0.22 0.24 0.23 20.71

Brahms Part 1 4 H P3 P4 0.27 0.31 0.26 20.71

Brahms Part 1 4 H P3 P5 0.30 0.28 0.29 20.71

Brahms Part 1 4 H P4 P5 0.34 0.26 0.33 20.71

Brahms Part 1 5 P P1 P2 0.30 0.35 0.28 17.84

Brahms Part 1 5 P P1 P3 0.25 0.24 0.29 17.84

Brahms Part 1 5 P P1 P4 0.34 0.36 0.33 17.84

Brahms Part 1 5 P P1 P5 0.31 0.37 0.27 17.84

Brahms Part 1 5 P P2 P3 0.35 0.30 0.26 17.84

Brahms Part 1 5 P P2 P4 0.31 0.41 0.46 17.84

Brahms Part 1 5 P P2 P5 0.41 0.27 0.39 17.84

Brahms Part 1 5 P P3 P4 0.32 0.26 0.32 17.84

Brahms Part 1 5 P P3 P5 0.41 0.34 0.39 17.84

Brahms Part 1 5 P P4 P5 0.29 0.33 0.29 17.84

Brahms Part 1 7 H P1 P2 0.23 0.19 0.28 27.99

Brahms Part 1 7 H P1 P3 0.18 0.21 0.30 27.99

Brahms Part 1 7 H P1 P4 0.18 0.23 0.26 27.99

Brahms Part 1 7 H P1 P5 0.21 0.23 0.33 27.99

Continued on next page
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A.3 Table for Dyadic Synchronisation test results in Brahms Quintet

Table A.3 – continued from previous page

Concert & FileNo Texture Pair Start Middle End Duration

Brahms Part 1 7 H P2 P3 0.25 0.22 0.28 27.99

Brahms Part 1 7 H P2 P4 0.21 0.24 0.26 27.99

Brahms Part 1 7 H P2 P5 0.19 0.21 0.26 27.99

Brahms Part 1 7 H P3 P4 0.20 0.25 0.26 27.99

Brahms Part 1 7 H P3 P5 0.27 0.22 0.28 27.99

Brahms Part 1 7 H P4 P5 0.26 0.26 0.30 27.99

Brahms Part 1 8 H P1 P2 0.29 0.32 0.26 20.52

Brahms Part 1 8 H P1 P3 0.24 0.34 0.32 20.52

Brahms Part 1 8 H P1 P4 0.27 0.29 0.34 20.52

Brahms Part 1 8 H P1 P5 0.22 0.34 0.30 20.52

Brahms Part 1 8 H P2 P3 0.16 0.38 0.30 20.52

Brahms Part 1 8 H P2 P4 0.29 0.31 0.25 20.52

Brahms Part 1 8 H P2 P5 0.28 0.29 0.28 20.52

Brahms Part 1 8 H P3 P4 0.30 0.26 0.33 20.52

Brahms Part 1 8 H P3 P5 0.27 0.19 0.30 20.52

Brahms Part 1 8 H P4 P5 0.18 0.26 0.34 20.52

Brahms Part 1 10 P P1 P2 0.32 0.41 0.27 27.31

Brahms Part 1 10 P P1 P3 0.34 0.25 0.26 27.31

Brahms Part 1 10 P P1 P4 0.33 0.22 0.30 27.31

Brahms Part 1 10 P P1 P5 0.44 0.31 0.21 27.31

Brahms Part 1 10 P P2 P3 0.25 0.38 0.26 27.31

Brahms Part 1 10 P P2 P4 0.20 0.36 0.22 27.31

Brahms Part 1 10 P P2 P5 0.25 0.61 0.32 27.31

Brahms Part 1 10 P P3 P4 0.19 0.27 0.25 27.31

Brahms Part 1 10 P P3 P5 0.37 0.39 0.28 27.31

Brahms Part 1 10 P P4 P5 0.24 0.34 0.24 27.31

Brahms Part 1 11 H P1 P2 0.54 0.42 0.46 23.62

Brahms Part 1 11 H P1 P3 0.40 0.25 0.22 23.62

Brahms Part 1 11 H P1 P4 0.34 0.18 0.21 23.62

Brahms Part 1 11 H P1 P5 0.15 0.28 0.22 23.62

Brahms Part 1 11 H P2 P3 0.44 0.42 0.21 23.62

Continued on next page
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A.3 Table for Dyadic Synchronisation test results in Brahms Quintet

Table A.3 – continued from previous page

Concert & FileNo Texture Pair Start Middle End Duration

Brahms Part 1 11 H P2 P4 0.39 0.26 0.25 23.62

Brahms Part 1 11 H P2 P5 0.26 0.21 0.18 23.62

Brahms Part 1 11 H P3 P4 0.64 0.48 0.48 23.62

Brahms Part 1 11 H P3 P5 0.26 0.15 0.17 23.62

Brahms Part 1 11 H P4 P5 0.40 0.23 0.57 23.62

Brahms Part 1 13 P P1 P2 0.36 0.50 0.33 19.54

Brahms Part 1 13 P P1 P3 0.35 0.48 0.26 19.54

Brahms Part 1 13 P P1 P4 0.35 0.42 0.27 19.54

Brahms Part 1 13 P P1 P5 0.29 0.46 0.26 19.54

Brahms Part 1 13 P P2 P3 0.29 0.57 0.24 19.54

Brahms Part 1 13 P P2 P4 0.27 0.47 0.23 19.54

Brahms Part 1 13 P P2 P5 0.19 0.49 0.23 19.54

Brahms Part 1 13 P P3 P4 0.21 0.36 0.22 19.54

Brahms Part 1 13 P P3 P5 0.38 0.47 0.34 19.54

Brahms Part 1 13 P P4 P5 0.25 0.29 0.32 19.54

Brahms Part 1 16 P P1 P2 0.26 0.31 0.30 17.15

Brahms Part 1 16 P P1 P3 0.27 0.26 0.27 17.15

Brahms Part 1 16 P P1 P4 0.23 0.28 0.20 17.15

Brahms Part 1 16 P P1 P5 0.29 0.24 0.34 17.15

Brahms Part 1 16 P P2 P3 0.31 0.27 0.42 17.15

Brahms Part 1 16 P P2 P4 0.18 0.24 0.31 17.15

Brahms Part 1 16 P P2 P5 0.39 0.33 0.23 17.15

Brahms Part 1 16 P P3 P4 0.30 0.27 0.31 17.15

Brahms Part 1 16 P P3 P5 0.33 0.30 0.26 17.15

Brahms Part 1 16 P P4 P5 0.35 0.30 0.25 17.15

Brahms Part 1 17 P P1 P2 0.23 0.26 0.28 20.79

Brahms Part 1 17 P P1 P3 0.30 0.26 0.35 20.79

Brahms Part 1 17 P P1 P4 0.23 0.23 0.21 20.79

Brahms Part 1 17 P P1 P5 0.30 0.32 0.26 20.79

Brahms Part 1 17 P P2 P3 0.37 0.28 0.29 20.79

Brahms Part 1 17 P P2 P4 0.34 0.22 0.28 20.79

Continued on next page
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A.4 Table for Dyadic Synchronisation test results in Borodin Quartet

Table A.3 – continued from previous page

Concert & FileNo Texture Pair Start Middle End Duration

Brahms Part 1 17 P P2 P5 0.33 0.38 0.29 20.79

Brahms Part 1 17 P P3 P4 0.37 0.24 0.34 20.79

Brahms Part 1 17 P P3 P5 0.33 0.24 0.37 20.79

Brahms Part 1 17 P P4 P5 0.37 0.33 0.28 20.79

Brahms Part 1 18 H P1 P2 0.22 0.30 0.25 17.11

Brahms Part 1 18 H P1 P3 0.25 0.27 0.25 17.11

Brahms Part 1 18 H P1 P4 0.27 0.31 0.31 17.11

Brahms Part 1 18 H P1 P5 0.32 0.34 0.30 17.11

Brahms Part 1 18 H P2 P3 0.26 0.33 0.30 17.11

Brahms Part 1 18 H P2 P4 0.23 0.23 0.27 17.11

Brahms Part 1 18 H P2 P5 0.32 0.32 0.25 17.11

Brahms Part 1 18 H P3 P4 0.35 0.19 0.21 17.11

Brahms Part 1 18 H P3 P5 0.32 0.26 0.26 17.11

Brahms Part 1 18 H P4 P5 0.24 0.29 0.30 17.11

A.4 Table for Dyadic Synchronisation test re-

sults in Borodin Quartet

The table below presents the results of the Dyadic Synchronisation tests carried

out on different parts of the Borodin Quartet Quintet. The “Concert & FileNo.”

column identifies the specific concert and consequent section of the Quartet being

analysed. The “T” column signifies the texture of the musical piece, with ’P’

representing ’Polyphonic’ and ’H’ denoting ’Homophonic’. The “Pair” column

shows the dyadic pairs of musicians being examined for their synchronisation,

such as “P1 P2”, “P2 P3”, etc. The columns “Start”, “Middle”, and “End” are

the specific dyadic synchronisation values obtained for the start, middle, and

end of the musical phrases. They signify the phase-locking values of the specific

musician pair. The “Duration” column is the duration of the entire musical

section or phrase.
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A.4 Table for Dyadic Synchronisation test results in Borodin Quartet

Table A.4: Detailed PLV data for Borodin Concert Parts.

Concert & FileNo Texture Pair Start Middle End Duration

BorodinPart1 1 P P1 P2 0.39 0.28 0.31 21.27

BorodinPart1 1 P P1 P3 0.33 0.33 0.21 21.27

BorodinPart1 1 P P1 P4 0.28 0.20 0.21 21.27

BorodinPart1 1 P P2 P3 0.30 0.27 0.23 21.27

BorodinPart1 1 P P2 P4 0.25 0.26 0.27 21.27

BorodinPart1 1 P P3 P4 0.25 0.24 0.18 21.27

BorodinPart1 2 P P1 P2 0.27 0.28 0.32 20.58

BorodinPart1 2 P P1 P3 0.28 0.30 0.29 20.58

BorodinPart1 2 P P1 P4 0.36 0.31 0.31 20.58

BorodinPart1 2 P P2 P3 0.32 0.24 0.29 20.58

BorodinPart1 2 P P2 P4 0.33 0.27 0.32 20.58

BorodinPart1 2 P P3 P4 0.28 0.27 0.31 20.58

BorodinPart2 1 P P1 P2 0.23 0.43 0.25 15.14

BorodinPart2 1 P P1 P3 0.36 0.39 0.29 15.14

BorodinPart2 1 P P1 P4 0.32 0.32 0.35 15.14

BorodinPart2 1 P P2 P3 0.28 0.32 0.26 15.14

BorodinPart2 1 P P2 P4 0.23 0.38 0.38 15.14

BorodinPart2 1 P P3 P4 0.27 0.31 0.27 15.14

BorodinPart2 2 H P1 P2 0.32 0.28 0.30 18.01

BorodinPart2 2 H P1 P3 0.28 0.30 0.33 18.01

BorodinPart2 2 H P1 P4 0.30 0.34 0.23 18.01

BorodinPart2 2 H P2 P3 0.28 0.31 0.28 18.01

BorodinPart2 2 H P2 P4 0.27 0.22 0.36 18.01

BorodinPart2 2 H P3 P4 0.29 0.25 0.31 18.01

BorodinPart2 3 H P1 P2 0.28 0.41 0.27 18.62

BorodinPart2 3 H P1 P3 0.19 0.31 0.29 18.62

BorodinPart2 3 H P1 P4 0.26 0.29 0.27 18.62

BorodinPart2 3 H P2 P3 0.27 0.28 0.36 18.62

BorodinPart2 3 H P2 P4 0.24 0.24 0.26 18.62

BorodinPart2 3 H P3 P4 0.26 0.30 0.24 18.62

Continued on next page
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A.4 Table for Dyadic Synchronisation test results in Borodin Quartet

Table A.4 – continued from previous page

Concert & FileNo Texture Pair Start Middle End Duration

BorodinPart2 4 P P1 P2 0.22 0.19 0.18 29.63

BorodinPart2 4 P P1 P3 0.27 0.27 0.24 29.63

BorodinPart2 4 P P1 P4 0.23 0.20 0.17 29.63

BorodinPart2 4 P P2 P3 0.27 0.25 0.17 29.63

BorodinPart2 4 P P2 P4 0.24 0.22 0.25 29.63

BorodinPart2 4 P P3 P4 0.28 0.17 0.21 29.63

BorodinPart2 5 P P1 P2 0.23 0.23 0.37 23.00

BorodinPart2 5 P P1 P3 0.21 0.34 0.28 23.00

BorodinPart2 5 P P1 P4 0.22 0.26 0.24 23.00

BorodinPart2 5 P P2 P3 0.30 0.26 0.28 23.00

BorodinPart2 5 P P2 P4 0.29 0.21 0.33 23.00

BorodinPart2 5 P P3 P4 0.29 0.27 0.28 23.00

BorodinPart2 6 H P1 P2 0.26 0.33 0.23 23.86

BorodinPart2 6 H P1 P3 0.31 0.27 0.29 23.86

BorodinPart2 6 H P1 P4 0.16 0.20 0.25 23.86

BorodinPart2 6 H P2 P3 0.28 0.21 0.33 23.86

BorodinPart2 6 H P2 P4 0.28 0.26 0.26 23.86

BorodinPart2 6 H P3 P4 0.35 0.22 0.30 23.86

BorodinPart2 7 P P1 P2 0.37 0.39 0.33 19.95

BorodinPart2 7 P P1 P3 0.26 0.34 0.28 19.95

BorodinPart2 7 P P1 P4 0.35 0.25 0.29 19.95

BorodinPart2 7 P P2 P3 0.33 0.36 0.31 19.95

BorodinPart2 7 P P2 P4 0.33 0.26 0.35 19.95

BorodinPart2 7 P P3 P4 0.30 0.33 0.29 19.95

BorodinPart2 8 P P1 P2 0.19 0.27 0.22 21.34

BorodinPart2 8 P P1 P3 0.28 0.25 0.31 21.34

BorodinPart2 8 P P1 P4 0.34 0.40 0.32 21.34

BorodinPart2 8 P P2 P3 0.24 0.34 0.30 21.34

BorodinPart2 8 P P2 P4 0.30 0.36 0.29 21.34

BorodinPart2 8 P P3 P4 0.26 0.36 0.24 21.34

BorodinPart2 9 P P1 P2 0.45 0.31 0.33 15.19
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A.4 Table for Dyadic Synchronisation test results in Borodin Quartet

Table A.4 – continued from previous page

Concert & FileNo Texture Pair Start Middle End Duration

BorodinPart2 9 P P1 P3 0.41 0.39 0.25 15.19

BorodinPart2 9 P P1 P4 0.31 0.50 0.32 15.19

BorodinPart2 9 P P2 P3 0.43 0.25 0.28 15.19

BorodinPart2 9 P P2 P4 0.34 0.33 0.30 15.19

BorodinPart2 9 P P3 P4 0.29 0.30 0.28 15.19

BorodinPart3 1 P P1 P2 0.28 0.27 0.17 26.08

BorodinPart3 1 P P1 P3 0.27 0.26 0.26 26.08

BorodinPart3 1 P P1 P4 0.31 0.25 0.31 26.08

BorodinPart3 1 P P2 P3 0.20 0.28 0.31 26.08

BorodinPart3 1 P P2 P4 0.25 0.26 0.28 26.08

BorodinPart3 1 P P3 P4 0.23 0.23 0.25 26.08

BorodinPart3 2 H P1 P2 0.30 0.30 0.29 15.81

BorodinPart3 2 H P1 P3 0.24 0.23 0.24 15.81

BorodinPart3 2 H P1 P4 0.30 0.28 0.30 15.81

BorodinPart3 2 H P2 P3 0.25 0.25 0.28 15.81

BorodinPart3 2 H P2 P4 0.27 0.29 0.29 15.81

BorodinPart3 2 H P3 P4 0.25 0.26 0.26 15.81

BorodinPart4 1 H P1 P2 0.31 0.29 0.27 18.71

BorodinPart4 1 H P1 P3 0.34 0.32 0.24 18.71

BorodinPart4 1 H P1 P4 0.23 0.32 0.34 18.71

BorodinPart4 1 H P2 P3 0.22 0.33 0.26 18.71

BorodinPart4 1 H P2 P4 0.36 0.32 0.33 18.71

BorodinPart4 1 H P3 P4 0.27 0.31 0.22 18.71

BorodinPart4 2 H P1 P2 0.26 0.22 0.23 24.97

BorodinPart4 2 H P1 P3 0.16 0.24 0.27 24.97

BorodinPart4 2 H P1 P4 0.18 0.28 0.30 24.97

BorodinPart4 2 H P2 P3 0.22 0.19 0.24 24.97

BorodinPart4 2 H P2 P4 0.18 0.29 0.25 24.97

BorodinPart4 2 H P3 P4 0.26 0.17 0.28 24.97

BorodinPart4 3 H P1 P2 0.32 0.37 0.36 15.30

BorodinPart4 3 H P1 P3 0.24 0.30 0.40 15.30
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Concert & FileNo Texture Pair Start Middle End Duration

BorodinPart4 3 H P1 P4 0.30 0.48 0.39 15.30

BorodinPart4 3 H P2 P3 0.26 0.42 0.36 15.30

BorodinPart4 3 H P2 P4 0.28 0.33 0.37 15.30

BorodinPart4 3 H P3 P4 0.26 0.32 0.34 15.30

BorodinPart4 4 H P1 P2 0.24 0.27 0.26 16.67

BorodinPart4 4 H P1 P3 0.30 0.22 0.27 16.67

BorodinPart4 4 H P1 P4 0.29 0.38 0.41 16.67

BorodinPart4 4 H P2 P3 0.32 0.29 0.31 16.67

BorodinPart4 4 H P2 P4 0.35 0.30 0.26 16.67

BorodinPart4 4 H P3 P4 0.29 0.31 0.21 16.67

BorodinPart4 5 H P1 P2 0.28 0.29 0.23 16.41

BorodinPart4 5 H P1 P3 0.25 0.25 0.33 16.41

BorodinPart4 5 H P1 P4 0.29 0.29 0.29 16.41

BorodinPart4 5 H P2 P3 0.27 0.28 0.39 16.41

BorodinPart4 5 H P2 P4 0.29 0.29 0.32 16.41

BorodinPart4 5 H P3 P4 0.26 0.26 0.29 16.41

BorodinPart4 6 H P1 P2 0.28 0.29 0.25 22.82

BorodinPart4 6 H P1 P3 0.22 0.20 0.25 22.82

BorodinPart4 6 H P1 P4 0.29 0.26 0.25 22.82

BorodinPart4 6 H P2 P3 0.26 0.28 0.18 22.82

BorodinPart4 6 H P2 P4 0.28 0.23 0.28 22.82

BorodinPart4 6 H P3 P4 0.24 0.26 0.22 22.82

BorodinPart4 7 P P1 P2 0.42 0.24 0.47 15.83

BorodinPart4 7 P P1 P3 0.29 0.29 0.24 15.83

BorodinPart4 7 P P1 P4 0.32 0.34 0.30 15.83

BorodinPart4 7 P P2 P3 0.25 0.34 0.23 15.83

BorodinPart4 7 P P2 P4 0.25 0.40 0.33 15.83

BorodinPart4 7 P P3 P4 0.37 0.34 0.35 15.83
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A.5 Table for Granger Causality test results in

Brahms Quintet

The table below presents the results of the Granger Causality tests carried out

on different parts of the Brahms Quintet. The “Part” column identifies the spe-

cific section of the Quintet being analysed. The ”File No.” column provides

a sequential numbering of the analysed segments within each part. The “M1”

and “M2” columns represent the first and second musicians in a dyadic pair being

analysed. The “T” column signifies the texture of the musical piece, with ’P’ rep-

resenting ’Polyphonic’ and ’H’ denoting ’Homophonic’. The “Pair” column shows

the dyadic pairs of musicians being examined for their Granger causality, such

as “m1 m2”, “m1 m3”, etc. The “F M1 M2” and “F M2 M1” columns provide

the F values, which are statistical measures indicating the strength of causality

from musician 1 to musician 2, and vice versa. The “p M1 M2” and “p M2 M1”

columns present the corresponding p-values, which are probabilities used to deter-

mine the significance of the observed F values. The columns “p M1 M2 (B)” and

“p M2 M1 (B)” hold binary values (1 or 0) indicating whether the pairs Granger

causes each other or not, with 1 implying causality and 0 suggesting no causality.

The “M I” column signifies the main instrument involved in the Granger Causal-

ity analysis, providing additional details about the musicians’ dyadic pair and

the kind of instruments they played in each analysed segment. If a combination

of instruments was involved, it is represented as “Mixed”.

Table A.5: Detailed Granger Causality data for Brahms Concert Parts.

Part FileNo M1 M2 T FM1,M2 pM1,M2 FM2,M1 pM2,M1 pM1,M2 (B) pM2,M1 (B) M I

Part1 1 m1 m2 P 0.958 0.532 1.379 0.09 0 0 Mixed

Part1 1 m1 m3 P 0.648 0.926 1.132 0.291 0 0 Mixed

Part1 1 m1 m4 P 0.467 0.993 0.748 0.832 0 0 Mixed

Continued on next page
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Part FileNo M1 M2 T FM1,M2 pM1,M2 FM2,M1 pM2,M1 pM1,M2 (B) pM2,M1 (B) M I

Part1 1 m1 m5 P 0.487 0.991 0.949 0.546 0 0 Mixed

Part1 1 m2 m3 P 0.958 0.533 1.265 0.161 0 0 Mixed

Part1 1 m2 m4 P 0.982 0.495 1.328 0.118 0 0 Mixed

Part1 1 m2 m5 P 1.082 0.354 1.681 0.015 0 1 Mixed

Part1 1 m3 m4 P 1.697 0.013 1.182 0.236 1 0 Mixed

Part1 1 m3 m5 P 1.162 0.257 1.162 0.258 0 0 Mixed

Part1 1 m4 m5 P 0.6 0.955 1.173 0.245 0 0 Mixed

Part1 3 m1 m2 H 0.96 0.529 1.583 0.026 0 1 m5

Part1 3 m1 m3 H 1.359 0.097 1.67 0.014 0 1 m5

Part1 3 m1 m4 H 1.158 0.258 1.624 0.02 0 1 m5

Part1 3 m1 m5 H 1.383 0.085 0.981 0.496 0 0 m5

Part1 3 m2 m3 H 1.644 0.017 1.252 0.168 1 0 m5

Part1 3 m2 m4 H 1.392 0.081 1.878 0.003 0 1 m5

Part1 3 m2 m5 H 1.719 0.01 1.572 0.027 1 1 m5

Part1 3 m3 m4 H 1.888 0.003 1.181 0.234 1 0 m5

Part1 3 m3 m5 H 1.755 0.008 1.287 0.141 1 0 m5

Part1 3 m4 m5 H 1.436 0.063 1.085 0.347 0 0 m5

Part2 3 m1 m2 H 1.385 0.087 2.691 0 0 1 m5

Part2 3 m1 m3 H 1.847 0.005 2.656 0 1 1 m5

Part2 3 m1 m4 H 1.282 0.148 2.538 0 0 1 m5

Part2 3 m1 m5 H 1.056 0.389 2.567 0 0 1 m5

Part2 3 m2 m3 H 1.721 0.011 1.411 0.076 1 0 m5

Part2 3 m2 m4 H 1.767 0.008 1.568 0.03 1 1 m5

Part2 3 m2 m5 H 2.704 0 2.393 0 1 1 m5

Part2 3 m3 m4 H 1.626 0.021 1.628 0.021 1 1 m5

Part2 3 m3 m5 H 1.731 0.01 2.703 0 1 1 m5

Part2 3 m4 m5 H 2.415 0 2.117 0.001 1 1 m5

Part3 3 m1 m2 P 0.954 0.539 1.139 0.286 0 0 Mixed

Part3 3 m1 m3 P 0.827 0.729 2.173 0 0 1 Mixed

Part3 3 m1 m4 P 1.581 0.029 0.785 0.786 1 0 Mixed

Part3 3 m1 m5 P 0.805 0.759 1.455 0.061 0 0 Mixed
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Part FileNo M1 M2 T FM1,M2 pM1,M2 FM2,M1 pM2,M1 pM1,M2 (B) pM2,M1 (B) M I

Part3 3 m2 m3 P 0.882 0.649 0.883 0.647 0 0 Mixed

Part3 3 m2 m4 P 1.653 0.019 1.191 0.23 1 0 Mixed

Part3 3 m2 m5 P 1.373 0.096 1.967 0.002 0 1 Mixed

Part3 3 m3 m4 P 1.465 0.058 0.811 0.751 0 0 Mixed

Part3 3 m3 m5 P 0.861 0.68 0.817 0.743 0 0 Mixed

Part3 3 m4 m5 P 0.709 0.873 1.085 0.351 0 0 Mixed

Part1 4 m1 m2 H 0.892 0.634 2.371 0 0 1 m5

Part1 4 m1 m3 H 1.346 0.107 1.184 0.233 0 0 m5

Part1 4 m1 m4 H 1.457 0.058 1.293 0.14 0 0 m5

Part1 4 m1 m5 H 0.914 0.601 2.426 0 0 1 m5

Part1 4 m2 m3 H 1.617 0.022 1.258 0.166 1 0 m5

Part1 4 m2 m4 H 0.697 0.887 1.984 0.002 0 1 m5

Part1 4 m2 m5 H 0.925 0.583 2.261 0 0 1 m5

Part1 4 m3 m4 H 1.283 0.147 1.76 0.008 0 1 m5

Part1 4 m3 m5 H 0.495 0.99 0.734 0.849 0 0 m5

Part1 4 m4 m5 H 0.504 0.988 1.335 0.113 0 0 m5

Part1 5 m1 m2 P 3.013 0 1.444 0.063 1 0 Mixed

Part1 5 m1 m3 P 1.334 0.115 2.194 0 0 1 Mixed

Part1 5 m1 m4 P 1.249 0.175 1.02 0.439 0 0 Mixed

Part1 5 m1 m5 P 1.511 0.043 1.775 0.008 1 1 Mixed

Part1 5 m2 m3 P 0.661 0.916 2.907 0 0 1 Mixed

Part1 5 m2 m4 P 1.587 0.027 1.036 0.416 1 0 Mixed

Part1 5 m2 m5 P 3.682 0 3.095 0 1 1 Mixed

Part1 5 m3 m4 P 1.925 0.003 0.857 0.686 1 0 Mixed

Part1 5 m3 m5 P 1.864 0.004 0.945 0.553 1 0 Mixed

Part1 5 m4 m5 P 1.486 0.05 2.934 0 0 1 Mixed

Part3 5 m1 m2 P 1.257 0.17 1.58 0.029 0 1 Mixed

Part3 5 m1 m3 P 1.735 0.011 1.773 0.009 1 1 Mixed

Part3 5 m1 m4 P 1.631 0.021 1.223 0.199 1 0 Mixed

Part3 5 m1 m5 P 1.106 0.324 1.783 0.008 0 1 Mixed

Part3 5 m2 m3 P 1.67 0.017 0.882 0.649 1 0 Mixed
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Part FileNo M1 M2 T FM1,M2 pM1,M2 FM2,M1 pM2,M1 pM1,M2 (B) pM2,M1 (B) M I

Part3 5 m2 m4 P 1.095 0.338 1.279 0.153 0 0 Mixed

Part3 5 m2 m5 P 1.149 0.273 1.022 0.437 0 0 Mixed

Part3 5 m3 m4 P 0.998 0.473 1.45 0.063 0 0 Mixed

Part3 5 m3 m5 P 1.08 0.358 1.57 0.031 0 1 Mixed

Part3 5 m4 m5 P 1.62 0.023 1.055 0.391 1 0 Mixed

Part1 7 m1 m2 H 0.511 0.987 0.71 0.875 0 0 m5

Part1 7 m1 m3 H 0.983 0.493 0.88 0.654 0 0 m5

Part1 7 m1 m4 H 0.512 0.987 1.603 0.022 0 1 m5

Part1 7 m1 m5 H 0.598 0.958 1.745 0.009 0 1 m5

Part1 7 m2 m3 H 0.884 0.647 1.266 0.157 0 0 m5

Part1 7 m2 m4 H 1.142 0.276 1.306 0.128 0 0 m5

Part1 7 m2 m5 H 0.504 0.988 0.925 0.583 0 0 m5

Part1 7 m3 m4 H 0.945 0.552 1.408 0.074 0 0 m5

Part1 7 m3 m5 H 0.785 0.789 1.565 0.029 0 1 m5

Part1 7 m4 m5 H 1.124 0.297 0.934 0.569 0 0 m5

Part2 7 m1 m2 P 1.34 0.108 0.876 0.659 0 0 Mixed

Part2 7 m1 m3 P 0.866 0.674 0.786 0.788 0 0 Mixed

Part2 7 m1 m4 P 0.684 0.899 0.899 0.624 0 0 Mixed

Part2 7 m1 m5 P 1.307 0.128 1.113 0.312 0 0 Mixed

Part2 7 m2 m3 P 1.429 0.066 0.945 0.552 0 0 Mixed

Part2 7 m2 m4 P 1.084 0.349 0.644 0.93 0 0 Mixed

Part2 7 m2 m5 P 0.907 0.611 1.007 0.457 0 0 Mixed

Part2 7 m3 m4 P 1.28 0.147 0.978 0.501 0 0 Mixed

Part2 7 m3 m5 P 0.917 0.596 0.841 0.711 0 0 Mixed

Part2 7 m4 m5 P 1.414 0.072 1.147 0.271 0 0 Mixed

Part3 7 m1 m2 H 1.838 0.005 2.273 0 1 1 m5

Part3 7 m1 m3 H 1.022 0.436 1.828 0.005 0 1 m5

Part3 7 m1 m4 H 3.119 0 0.851 0.696 1 0 m5

Part3 7 m1 m5 H 1.155 0.263 1.293 0.139 0 0 m5

Part3 7 m2 m3 H 1.323 0.119 1.799 0.006 0 1 m5

Part3 7 m2 m4 H 1.877 0.004 0.975 0.507 1 0 m5
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Part FileNo M1 M2 T FM1,M2 pM1,M2 FM2,M1 pM2,M1 pM1,M2 (B) pM2,M1 (B) M I

Part3 7 m2 m5 H 2.019 0.001 1.865 0.004 1 1 m5

Part3 7 m3 m4 H 0.851 0.696 0.409 0.998 0 0 m5

Part3 7 m3 m5 H 0.737 0.845 0.886 0.644 0 0 m5

Part3 7 m4 m5 H 2.197 0 2.223 0 1 1 m5

Part1 8 m1 m2 H 0.972 0.51 1.562 0.031 0 1 m5

Part1 8 m1 m3 H 1.873 0.004 1.96 0.002 1 1 m5

Part1 8 m1 m4 H 2.866 0 1.925 0.003 1 1 m5

Part1 8 m1 m5 H 3.205 0 6.885 0 1 1 m5

Part1 8 m2 m3 H 1.024 0.433 1.251 0.172 0 0 m5

Part1 8 m2 m4 H 1.519 0.04 1.124 0.3 1 0 m5

Part1 8 m2 m5 H 1.697 0.013 2.083 0.001 1 1 m5

Part1 8 m3 m4 H 5.8 0 2.186 0 1 1 m5

Part1 8 m3 m5 H 4.77 0 1.349 0.105 1 0 m5

Part1 8 m4 m5 H 3.88 0 1.792 0.007 1 1 m5

Part2 8 m1 m2 H 1.27 0.158 0.79 0.781 0 0 m5

Part2 8 m1 m3 H 0.694 0.888 1.547 0.034 0 1 m5

Part2 8 m1 m4 H 0.912 0.604 1.037 0.415 0 0 m5

Part2 8 m1 m5 H 0.809 0.755 0.748 0.832 0 0 m5

Part2 8 m2 m3 H 0.942 0.557 0.889 0.638 0 0 m5

Part2 8 m2 m4 H 1.186 0.232 1.065 0.376 0 0 m5

Part2 8 m2 m5 H 0.784 0.789 1.334 0.115 0 0 m5

Part2 8 m3 m4 H 1.203 0.216 0.593 0.959 0 0 m5

Part2 8 m3 m5 H 0.888 0.64 1.149 0.271 0 0 m5

Part2 8 m4 m5 H 0.685 0.897 0.907 0.611 0 0 m5

Part2 9 m1 m2 P 1.743 0.009 1.259 0.163 1 0 Mixed

Part2 9 m1 m3 P 0.947 0.549 0.777 0.798 0 0 Mixed

Part2 9 m1 m4 P 0.825 0.734 1.148 0.27 0 0 Mixed

Part2 9 m1 m5 P 1.003 0.463 1 0.468 0 0 Mixed

Part2 9 m2 m3 P 1.075 0.361 1.398 0.079 0 0 Mixed

Part2 9 m2 m4 P 0.891 0.636 1.304 0.131 0 0 Mixed

Part2 9 m2 m5 P 0.861 0.681 0.664 0.915 0 0 Mixed
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Part FileNo M1 M2 T FM1,M2 pM1,M2 FM2,M1 pM2,M1 pM1,M2 (B) pM2,M1 (B) M I

Part2 9 m3 m4 P 1.198 0.217 0.947 0.549 0 0 Mixed

Part2 9 m3 m5 P 1.266 0.158 1.37 0.092 0 0 Mixed

Part2 9 m4 m5 P 1.101 0.327 0.861 0.681 0 0 Mixed

Part1 10 m1 m2 P 0.915 0.598 1.785 0.007 0 1 Mixed

Part1 10 m1 m3 P 0.513 0.986 0.958 0.531 0 0 Mixed

Part1 10 m1 m4 P 1.495 0.044 0.985 0.491 1 0 Mixed

Part1 10 m1 m5 P 2.446 0 1.255 0.165 1 0 Mixed

Part1 10 m2 m3 P 0.969 0.514 0.68 0.903 0 0 Mixed

Part1 10 m2 m4 P 0.643 0.931 0.717 0.868 0 0 Mixed

Part1 10 m2 m5 P 1.27 0.154 0.802 0.767 0 0 Mixed

Part1 10 m3 m4 P 0.957 0.533 0.724 0.861 0 0 Mixed

Part1 10 m3 m5 P 1.023 0.434 1.251 0.169 0 0 Mixed

Part1 10 m4 m5 P 1.149 0.268 1.001 0.467 0 0 Mixed

Part1 11 m1 m2 H 1.254 0.168 3.225 0 0 1 m5

Part1 11 m1 m3 H 1.44 0.062 3.392 0 0 1 m5

Part1 11 m1 m4 H 1.482 0.049 3.71 0 1 1 m5

Part1 11 m1 m5 H 1.471 0.052 3.057 0 0 1 m5

Part1 11 m2 m3 H 1.845 0.004 5.165 0 1 1 m5

Part1 11 m2 m4 H 1.065 0.375 4.08 0 0 1 m5

Part1 11 m2 m5 H 2.708 0 3.838 0 1 1 m5

Part1 11 m3 m4 H 2.656 0 1.596 0.024 1 1 m5

Part1 11 m3 m5 H 4.195 0 1.725 0.01 1 1 m5

Part1 11 m4 m5 H 4.692 0 2.191 0 1 1 m5

Part2 11 m1 m2 P 1.705 0.012 1.074 0.362 1 0 Mixed

Part2 11 m1 m3 P 1.07 0.368 1.558 0.031 0 1 Mixed

Part2 11 m1 m4 P 1.154 0.263 1.064 0.375 0 0 Mixed

Part2 11 m1 m5 P 1.065 0.375 1.261 0.162 0 0 Mixed

Part2 11 m2 m3 P 0.718 0.866 0.934 0.569 0 0 Mixed

Part2 11 m2 m4 P 1.59 0.025 1.095 0.334 1 0 Mixed

Part2 11 m2 m5 P 1.138 0.282 0.624 0.943 0 0 Mixed

Part2 11 m3 m4 P 1.585 0.026 0.989 0.484 1 0 Mixed

Continued on next page

129



A.5 Table for Granger Causality test results in Brahms Quintet

Table A.5 – continued from previous page

Part FileNo M1 M2 T FM1,M2 pM1,M2 FM2,M1 pM2,M1 pM1,M2 (B) pM2,M1 (B) M I

Part2 11 m3 m5 P 0.923 0.586 1.235 0.183 0 0 Mixed

Part2 11 m4 m5 P 1.5 0.044 1.302 0.132 1 0 Mixed

Part1 13 m1 m2 P 1.059 0.383 2.552 0 0 1 Mixed

Part1 13 m1 m3 P 1.431 0.067 1.45 0.061 0 0 Mixed

Part1 13 m1 m4 P 2.208 0 1.439 0.064 1 0 Mixed

Part1 13 m1 m5 P 0.44 0.996 1.67 0.016 0 1 Mixed

Part1 13 m2 m3 P 2.127 0.001 0.468 0.993 1 0 Mixed

Part1 13 m2 m4 P 3.062 0 1.125 0.299 1 0 Mixed

Part1 13 m2 m5 P 1.724 0.011 1.471 0.054 1 0 Mixed

Part1 13 m3 m4 P 2.158 0 0.989 0.485 1 0 Mixed

Part1 13 m3 m5 P 0.844 0.706 1.996 0.002 0 1 Mixed

Part1 13 m4 m5 P 1.502 0.045 3.496 0 1 1 Mixed

Part2 13 m1 m2 H 1.275 0.148 1.207 0.205 0 0 m5

Part2 13 m1 m3 H 1.137 0.28 1.234 0.181 0 0 m5

Part2 13 m1 m4 H 1.51 0.039 0.942 0.557 1 0 m5

Part2 13 m1 m5 H 2.018 0.001 1.431 0.063 1 0 m5

Part2 13 m2 m3 H 0.768 0.811 0.768 0.812 0 0 m5

Part2 13 m2 m4 H 1.184 0.229 1.139 0.278 0 0 m5

Part2 13 m2 m5 H 0.597 0.959 1.159 0.256 0 0 m5

Part2 13 m3 m4 H 0.904 0.617 0.881 0.652 0 0 m5

Part2 13 m3 m5 H 0.93 0.576 0.957 0.533 0 0 m5

Part2 13 m4 m5 H 1.076 0.358 1.123 0.297 0 0 m5

Part2 14 m1 m2 P 0.716 0.869 0.863 0.679 0 0 Mixed

Part2 14 m1 m3 P 1.126 0.295 0.604 0.954 0 0 Mixed

Part2 14 m1 m4 P 1.651 0.016 1.014 0.447 1 0 Mixed

Part2 14 m1 m5 P 0.969 0.514 0.914 0.601 0 0 Mixed

Part2 14 m2 m3 P 0.957 0.534 0.773 0.804 0 0 Mixed

Part2 14 m2 m4 P 0.618 0.947 1.02 0.438 0 0 Mixed

Part2 14 m2 m5 P 0.522 0.984 1.223 0.193 0 0 Mixed

Part2 14 m3 m4 P 0.458 0.995 0.537 0.981 0 0 Mixed

Part2 14 m3 m5 P 0.717 0.868 0.52 0.985 0 0 Mixed
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Part FileNo M1 M2 T FM1,M2 pM1,M2 FM2,M1 pM2,M1 pM1,M2 (B) pM2,M1 (B) M I

Part2 14 m4 m5 P 1.367 0.093 1.121 0.301 0 0 Mixed

Part1 16 m1 m2 P 1.097 0.334 1.579 0.029 0 1 Mixed

Part1 16 m1 m3 P 1.391 0.086 0.861 0.681 0 0 Mixed

Part1 16 m1 m4 P 0.732 0.85 1.019 0.442 0 0 Mixed

Part1 16 m1 m5 P 0.775 0.799 1.599 0.025 0 1 Mixed

Part1 16 m2 m3 P 0.828 0.729 0.712 0.871 0 0 Mixed

Part1 16 m2 m4 P 0.913 0.602 0.984 0.493 0 0 Mixed

Part1 16 m2 m5 P 1.082 0.353 1.509 0.044 0 1 Mixed

Part1 16 m3 m4 P 1.072 0.368 1.172 0.247 0 0 Mixed

Part1 16 m3 m5 P 1.302 0.135 1.238 0.185 0 0 Mixed

Part1 16 m4 m5 P 0.854 0.69 1.02 0.44 0 0 Mixed

Part1 17 m1 m2 P 1.506 0.043 1.327 0.118 1 0 Mixed

Part1 17 m1 m3 P 1.306 0.13 1.024 0.432 0 0 Mixed

Part1 17 m1 m4 P 0.886 0.644 1.117 0.308 0 0 Mixed

Part1 17 m1 m5 P 1.375 0.091 1.204 0.213 0 0 Mixed

Part1 17 m2 m3 P 1.23 0.189 1.423 0.07 0 0 Mixed

Part1 17 m2 m4 P 1.228 0.191 0.899 0.623 0 0 Mixed

Part1 17 m2 m5 P 1.205 0.212 0.881 0.652 0 0 Mixed

Part1 17 m3 m4 P 1.182 0.235 1.416 0.073 0 0 Mixed

Part1 17 m3 m5 P 1.172 0.245 0.982 0.495 0 0 Mixed

Part1 17 m4 m5 P 1.069 0.369 1.67 0.015 0 1 Mixed

Part2 17 m1 m2 H 1.602 0.024 1.299 0.137 1 0 m5

Part2 17 m1 m3 H 1.458 0.058 1.689 0.014 0 1 m5

Part2 17 m1 m4 H 3.051 0 1.291 0.142 1 0 m5

Part2 17 m1 m5 H 1.267 0.16 1.197 0.22 0 0 m5

Part2 17 m2 m3 H 1.698 0.013 2.454 0 1 1 m5

Part2 17 m2 m4 H 2.352 0 1.84 0.005 1 1 m5

Part2 17 m2 m5 H 1.486 0.05 2.228 0 1 1 m5

Part2 17 m3 m4 H 3.208 0 1.817 0.006 1 1 m5

Part2 17 m3 m5 H 1.78 0.008 2.474 0 1 1 m5

Part2 17 m4 m5 H 2.032 0.001 6.557 0 1 1 m5

Continued on next page
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Part FileNo M1 M2 T FM1,M2 pM1,M2 FM2,M1 pM2,M1 pM1,M2 (B) pM2,M1 (B) M I

Part1 19 m1 m2 P 1.038 0.414 1.325 0.121 0 0 m1

Part1 19 m1 m3 P 0.966 0.52 1.311 0.131 0 0 m1

Part1 19 m1 m4 P 1.812 0.006 1.486 0.051 1 0 m1

Part1 19 m1 m5 P 1.719 0.012 1.361 0.101 1 0 m1

Part1 19 m2 m3 P 1.646 0.019 3.502 0 1 1 m1

Part1 19 m2 m4 P 1.802 0.007 2.029 0.001 1 1 m1

Part1 19 m2 m5 P 1.666 0.017 1.455 0.06 1 0 m1

Part1 19 m3 m4 P 1.799 0.007 1.766 0.009 1 1 m1

Part1 19 m3 m5 P 1.875 0.004 1.774 0.008 1 1 m1

Part1 19 m4 m5 P 1.205 0.214 1.621 0.022 0 1 m1

Part1 20 m1 m2 H 1.7 0.012 1.142 0.276 1 0 m5

Part1 20 m1 m3 H 1.074 0.362 1.676 0.014 0 1 m5

Part1 20 m1 m4 H 1.362 0.095 2.059 0.001 0 1 m5

Part1 20 m1 m5 H 1.559 0.029 1.947 0.002 1 1 m5

Part1 20 m2 m3 H 1.063 0.376 1.8 0.006 0 1 m5

Part1 20 m2 m4 H 1.308 0.126 2.111 0.001 0 1 m5

Part1 20 m2 m5 H 0.799 0.771 1.818 0.005 0 1 m5

Part1 20 m3 m4 H 1.479 0.048 1.61 0.021 1 1 m5

Part1 20 m3 m5 H 1.642 0.017 2.056 0.001 1 1 m5

Part1 20 m4 m5 H 1.862 0.004 1.377 0.087 1 0 m5

A.6 Table for Granger Causality test results in

Borodin Quartet

The table below presents the results of the Granger Causality tests carried out

on different parts of the Borodin Quartet. The “Part” column identifies the

specific section of the Quintet being analysed. The ”File No.” column provides

a sequential numbering of the analysed segments within each part. The “M1”

and “M2” columns represent the first and second musicians in a dyadic pair

being analysed. The “T” column signifies the texture of the musical piece, with
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’P’ representing ’Polyphonic’ and ’H’ denoting ’Homophonic’. The “F M1 M2”

and “F M2 M1” columns provide the F values, which are statistical measures

indicating the strength of causality from musician 1 to musician 2, and vice

versa. The “p M1 M2” and “p M2 M1” columns present the corresponding p-

values, which are probabilities used to determine the significance of the observed

F values. The columns “p M1 M2 (B)” and “p M2 M1 (B)” hold binary values

(1 or 0) indicating whether the pairs Granger causes each other or not, with 1

implying causality and 0 suggesting no causality. The “M I” column signifies the

main instrument involved in the Granger Causality analysis, providing additional

details about the musicians’ dyadic pair and the kind of instruments they played

in each analysed segment. If a combination of instruments was involved, it is

represented as “Mixed”.

Table A.6: Detailed Granger Causality data for Borodin Concert Parts.

Part FileNo M1 M2 T FM1,M2 pM1,M2 FM2,M1 pM2,M1 pM1,M2 (B) pM2,M1 (B) M I

Part1 1 m1 m2 P 1.185 0.231 1.311 0.127 0 0 Mixed

Part1 1 m1 m3 P 0.622 0.944 0.692 0.891 0 0 Mixed

Part1 1 m1 m4 P 0.913 0.602 1.063 0.378 0 0 Mixed

Part1 1 m2 m3 P 1.035 0.418 1.041 0.409 0 0 Mixed

Part1 1 m2 m4 P 1.476 0.051 0.885 0.646 0 0 Mixed

Part1 1 m3 m4 P 0.588 0.962 1.181 0.235 0 0 Mixed

Part1 2 m1 m2 P 1.259 0.165 1.152 0.267 0 0 Mixed

Part1 2 m1 m3 P 0.771 0.806 1.049 0.397 0 0 Mixed

Part1 2 m1 m4 P 1.239 0.182 0.825 0.733 0 0 Mixed

Part1 2 m2 m3 P 1.104 0.324 0.814 0.749 0 0 Mixed

Part1 2 m2 m4 P 0.805 0.761 0.839 0.714 0 0 Mixed

Part1 2 m3 m4 P 1.36 0.099 1.437 0.065 0 0 Mixed

Part2 1 m1 m2 P 0.712 0.869 0.827 0.729 0 0 Mixed

Part2 1 m1 m3 P 0.76 0.817 0.702 0.879 0 0 Mixed

Part2 1 m1 m4 P 1.761 0.009 1.486 0.052 1 0 Mixed

Continued on next page
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Part FileNo M1 M2 T FM1,M2 pM1,M2 FM2,M1 pM2,M1 pM1,M2 (B) pM2,M1 (B) M I

Part2 1 m2 m3 P 0.767 0.808 0.988 0.488 0 0 Mixed

Part2 1 m2 m4 P 1.456 0.061 0.827 0.729 0 0 Mixed

Part2 1 m3 m4 P 1.037 0.417 0.992 0.482 0 0 Mixed

Part2 2 m1 m2 H 1.263 0.163 1.151 0.269 0 0 m1

Part2 2 m1 m3 H 0.682 0.899 1.034 0.42 0 0 m1

Part2 2 m1 m4 H 0.824 0.735 1.048 0.4 0 0 m1

Part2 2 m2 m3 H 0.869 0.669 0.765 0.812 0 0 m1

Part2 2 m2 m4 H 0.888 0.639 1.18 0.238 0 0 m1

Part2 2 m3 m4 H 1.906 0.003 1.36 0.1 1 0 m1

Part2 3 m1 m2 H 1.354 0.103 1.239 0.182 0 0 m1

Part2 3 m1 m3 H 1.377 0.091 0.993 0.479 0 0 m1

Part2 3 m1 m4 H 1.301 0.135 1.17 0.249 0 0 m1

Part2 3 m2 m3 H 1.199 0.219 1.273 0.155 0 0 m1

Part2 3 m2 m4 H 0.934 0.569 1.183 0.235 0 0 m1

Part2 3 m3 m4 H 1.062 0.38 1.238 0.184 0 0 m1

Part2 4 m1 m2 P 0.573 0.969 1.587 0.025 0 1 Mixed

Part2 4 m1 m3 P 1.151 0.266 1.307 0.127 0 0 Mixed

Part2 4 m1 m4 P 0.837 0.718 0.932 0.572 0 0 Mixed

Part2 4 m2 m3 P 0.941 0.558 0.787 0.787 0 0 Mixed

Part2 4 m2 m4 P 1.498 0.043 1.465 0.053 1 0 Mixed

Part2 4 m3 m4 P 1.139 0.28 0.935 0.568 0 0 Mixed

Part2 5 m1 m2 P 1.024 0.433 1.192 0.223 0 0 Mixed

Part2 5 m1 m3 P 0.988 0.486 0.855 0.691 0 0 Mixed

Part2 5 m1 m4 P 0.936 0.567 0.61 0.951 0 0 Mixed

Part2 5 m2 m3 P 1.005 0.461 0.748 0.834 0 0 Mixed

Part2 5 m2 m4 P 0.871 0.666 1.351 0.102 0 0 Mixed

Part2 5 m3 m4 P 1.305 0.131 1.064 0.377 0 0 Mixed

Part2 6 m1 m2 H 1.348 0.104 1.073 0.363 0 0 m1

Part2 6 m1 m3 H 0.869 0.669 1.218 0.198 0 0 m1

Part2 6 m1 m4 H 1.548 0.033 1.238 0.181 1 0 m1

Part2 6 m2 m3 H 1.094 0.335 0.69 0.893 0 0 m1

Continued on next page
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Part FileNo M1 M2 T FM1,M2 pM1,M2 FM2,M1 pM2,M1 pM1,M2 (B) pM2,M1 (B) M I

Part2 6 m2 m4 H 0.875 0.66 0.841 0.711 0 0 m1

Part2 6 m3 m4 H 0.985 0.49 0.473 0.993 0 0 m1

Part2 7 m1 m2 P 1.149 0.271 1.436 0.065 0 0 Mixed

Part2 7 m1 m3 P 1.453 0.059 0.989 0.485 0 0 Mixed

Part2 7 m1 m4 P 0.659 0.918 1.201 0.216 0 0 Mixed

Part2 7 m2 m3 P 1.022 0.436 0.755 0.825 0 0 Mixed

Part2 7 m2 m4 P 1.316 0.124 0.838 0.715 0 0 Mixed

Part2 7 m3 m4 P 1.05 0.396 1.169 0.248 0 0 Mixed

Part2 8 m1 m2 P 1.481 0.05 0.93 0.576 1 0 Mixed

Part2 8 m1 m3 P 2.201 0 1.062 0.379 1 0 Mixed

Part2 8 m1 m4 P 1.019 0.44 1.154 0.264 0 0 Mixed

Part2 8 m2 m3 P 1.279 0.149 1.208 0.209 0 0 Mixed

Part2 8 m2 m4 P 0.984 0.492 1.274 0.153 0 0 Mixed

Part2 8 m3 m4 P 1.331 0.115 1.105 0.323 0 0 Mixed

Part2 9 m1 m2 P 0.878 0.654 1.258 0.17 0 0 Mixed

Part2 9 m1 m3 P 0.95 0.546 1.17 0.252 0 0 Mixed

Part2 9 m1 m4 P 1.269 0.162 0.887 0.641 0 0 Mixed

Part2 9 m2 m3 P 1.203 0.218 1.026 0.432 0 0 Mixed

Part2 9 m2 m4 P 1.187 0.234 2.016 0.002 0 1 Mixed

Part2 9 m3 m4 P 0.926 0.581 1.045 0.405 0 0 Mixed

Part3 1 m1 m2 P 1.313 0.124 1.072 0.365 0 0 Mixed

Part3 1 m1 m3 P 0.952 0.542 1.304 0.13 0 0 Mixed

Part3 1 m1 m4 P 1.37 0.092 1.008 0.457 0 0 Mixed

Part3 1 m2 m3 P 1.086 0.346 0.877 0.657 0 0 Mixed

Part3 1 m2 m4 P 1.421 0.069 1.065 0.374 0 0 Mixed

Part3 1 m3 m4 P 0.939 0.561 1.088 0.343 0 0 Mixed

Part3 2 m1 m2 H 4.991 0 2.711 0 1 1 m1

Part3 2 m1 m3 H 8.441 0 3.541 0 1 1 m1

Part3 2 m1 m4 H 2.302 0 2.76 0 1 1 m1

Part3 2 m2 m3 H 2.551 0 2.814 0 1 1 m1

Part3 2 m2 m4 H 2.545 0 5.839 0 1 1 m1

Continued on next page
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Part FileNo M1 M2 T FM1,M2 pM1,M2 FM2,M1 pM2,M1 pM1,M2 (B) pM2,M1 (B) M I

Part3 2 m3 m4 H 2.003 0.002 3.693 0 1 1 m1

Part4 1 m1 m2 H 1.149 0.271 1.3 0.136 0 0 m1

Part4 1 m1 m3 H 1.027 0.429 0.876 0.658 0 0 m1

Part4 1 m1 m4 H 1.151 0.269 1.119 0.306 0 0 m1

Part4 1 m2 m3 H 1.587 0.027 1.38 0.089 1 0 m1

Part4 1 m2 m4 H 0.665 0.913 0.584 0.963 0 0 m1

Part4 1 m3 m4 H 1.705 0.013 1.798 0.007 1 1 m1

Part4 2 m1 m2 H 0.889 0.639 0.991 0.481 0 0 m1

Part4 2 m1 m3 H 1.046 0.401 0.713 0.872 0 0 m1

Part4 2 m1 m4 H 1.124 0.299 0.652 0.925 0 0 m1

Part4 2 m2 m3 H 1.403 0.077 1.224 0.193 0 0 m1

Part4 2 m2 m4 H 1.296 0.136 0.953 0.54 0 0 m1

Part4 2 m3 m4 H 0.796 0.774 0.692 0.892 0 0 m1

Part4 3 m1 m2 H 0.788 0.782 0.638 0.932 0 0 m1

Part4 3 m1 m3 H 0.643 0.928 0.995 0.478 0 0 m1

Part4 3 m1 m4 H 0.653 0.922 0.933 0.572 0 0 m1

Part4 3 m2 m3 H 0.733 0.848 1.668 0.017 0 1 m1

Part4 3 m2 m4 H 1.2 0.221 0.416 0.998 0 0 m1

Part4 3 m3 m4 H 1.675 0.016 0.331 1 1 0 m1

Part4 4 m1 m2 H 1.066 0.376 1.618 0.023 0 1 m3

Part4 4 m1 m3 H 1.321 0.124 0.938 0.564 0 0 m3

Part4 4 m1 m4 H 0.534 0.98 1.415 0.075 0 0 m3

Part4 4 m2 m3 H 1.345 0.11 1.465 0.057 0 0 m3

Part4 4 m2 m4 H 1.538 0.037 2.264 0 1 1 m3

Part4 4 m3 m4 H 1.531 0.039 0.904 0.615 1 0 m3

Part4 5 m1 m2 H 1.176 0.244 2.464 0 0 1 m2

Part4 5 m1 m3 H 1.561 0.033 2.487 0 1 1 m2

Part4 5 m1 m4 H 1.323 0.123 1.594 0.027 0 1 m2

Part4 5 m2 m3 H 2.035 0.001 1.803 0.007 1 1 m2

Part4 5 m2 m4 H 1.597 0.026 0.991 0.483 1 0 m2

Part4 5 m3 m4 H 2.387 0 0.771 0.804 1 0 m2

Continued on next page
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Part FileNo M1 M2 T FM1,M2 pM1,M2 FM2,M1 pM2,M1 pM1,M2 (B) pM2,M1 (B) M I

Part4 6 m1 m2 H 0.714 0.87 0.848 0.701 0 0 m1

Part4 6 m1 m3 H 1.483 0.049 0.778 0.797 1 0 m1

Part4 6 m1 m4 H 1.172 0.245 1.161 0.256 0 0 m1

Part4 6 m2 m3 H 1.432 0.066 1.205 0.211 0 0 m1

Part4 6 m2 m4 H 1.139 0.281 0.983 0.493 0 0 m1

Part4 6 m3 m4 H 0.81 0.755 0.542 0.979 0 0 m1

Part4 7 m1 m2 H 1.189 0.231 1.686 0.015 0 1 Mixed

Part4 7 m1 m3 H 1.237 0.187 0.812 0.751 0 0 Mixed

Part4 7 m1 m4 H 0.631 0.937 0.938 0.563 0 0 Mixed

Part4 7 m2 m3 H 1.2 0.22 1.25 0.176 0 0 Mixed

Part4 7 m2 m4 H 0.655 0.92 1.413 0.077 0 0 Mixed

Part4 7 m3 m4 H 1.029 0.427 0.887 0.641 0 0 Mixed
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