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Abstract
When dealing with maintenance in ships engine room, the space available around machinery and systems (clearance) plays an
important role and may significantly affect the cost of the maintenance intervention. In a first part of a current research study
Gualeni et al. (Ship Technol Res, 10.1080/09377255.2021.2020949, 2022), a quantitative relation between the maintenance
costs increment due to the clearance reduction is determined, using a Bayesian approach to General Linear Model (GLM),
with reference to a single item/component of a larger system Sánchez-Herguedas et al. (Reliability Eng Syst Saf 207: 107394,
2021). This paper represents the second part of the activity and it enforces a systemic view over the whole machinery or system
Sanders and Klein (Proc Comput Sci 8:413–419, 2012). The aim is to identify not only the relation between maintenance
costs and clearance reduction, but also how the clearance reductions of the single components/items interact and affect the
whole system/machinery accessibility and maintainability, meant as relevant emerging properties.
The system emerging properties are investigated through the design and application of a HiddenMarkovModel Salvatier et al.
(Peer J Comput Sci 2: e55, 2016); i.e., the system is modeled by a Markov process with unobservable states. The sequence
of states is the maintainability of the system (which incorporates each one of the single components) while the evidence is
the increase in cost of maintenance related to the space reduction.
By predicting a sequence of states, it is therefore possible to predict the interactions between the system components clearances
and determine how the emerging maintainability property is affected by the engine room design.

Keywords Maintenance · OpEx estimation · Systems thinking · Hidden Markov model · Probabilistic inference

1 Introduction

The present study aims to develop a tool able to estimate
the increment in terms of maintenance hours (and therefore
costs) for a component/system when the clearances sug-
gested by the supplier around it, are not respected. This is a
rather common practice especially in engine rooms of naval
ships, research vessels andmega-yachts, since generally they
are not large size ships, and they are characterized by a sig-
nificant technology amount installed onboard (Celik 2009).
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To develop this approach and the related tool, the space avail-
able to operate around/on the componentmust be defined and
quantified.

While considering the best approach in developing the
tool, two different, yet interrelated, points of view can be
defined:

1. A component-centered design;
2. A system-centered design.

The first aspect was analyzed in Gualeni et al. (2022).
The authors defined a GLM (General Linear Model) which
considers the cost increase and the clearance reduction as
continuous parameters, and it is applied to one component
at a time. A general linear relationship is thought to exist
between the reduction of clearance and cost increase. The
huge advantage of the general linear approach is that it allows
defining a continuously generativemodel, trainedwith all the
necessary evidence provided, that returns the cost increase.
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The observations are randomly sampled from the most suit-
able distribution, characterized by a shape that can be varied
acting on its input parameters, then disturbed with a random
Gaussian noise.

However, the present paper focuses on the second aspect,
i.e., it considers the whole system made of the several com-
ponents/items.

System-centered design is an important approach in ship
design, especially in the design of complex marine systems,
such as power generation and distribution, propulsion, and
navigation (Bosschers et al. 2012, Esmaeilpour et al. 2015).
The design of a ship is a complex activity that involves the
integration of various systems and components to pursue the
desired ship emergent properties: a system-centered design
approach can help ensuring that the ship general features
and the systems onboard are properly integrated and opti-
mized for performance (e.g., commercial and operational
objectives), reliability and safety (Konovessis et al. 2010).

In ship design, the system-centered design approach typ-
ically involves the following steps (Wee et al. 2016):

1. Identifying the ship’s operational requirements: The
design process begins with an understanding of the ship’s
operational requirements, including its speed, range, pay-
load, and environmental conditions. These requirements
provide the foundation for the design of the ship’s sys-
tems and components.

2. Developing the ship’s architecture: The ship’s architec-
ture is the overall layout and arrangement of its systems
and components. The architecture must be designed to
optimize the ship’s performance, safety, and maintain-
ability.

3. Designing the ship’s systems: The ship’s systems, such as
propulsion, electrical, and navigation, must be designed
to meet the ship’s operational requirements and be inte-
grated into the ship’s architecture.

4. Validating the ship’s design: The ship’s design must be
validated through testing and analysis to ensure that it
meets the ship’s operational requirements and safety stan-
dards.

The work is structured following the logical steps of
design, realization, and testing of the above mentioned sys-
temic model.

• Sect. 2 introduces the probabilistic inferential approach
adopted in the model development;

• Sect. 3 describes the algorithms used by the model and
how the learning phase takes place;

• Sect. 4 details the architecture of the predictive model
applied to the problem at hand;

• Sect. 5 describes the data generation process for learning
the model;

• Sect. 6 deals with the formulation of predictions;
• Sect. 7 contains the discussion of the results, followed by
the conclusions.

2 Probabilistic inferential approach

Descriptive statistics involves analyzing data in a way that
summarizes or describes the system without making conclu-
sions beyond the analyzed data. The two main tools used
in descriptive statistics are central tendency and dispersion,
which describe the central position of a probability density
distribution and the deviation from the most probable val-
ues, respectively. Descriptive statistics is limited to the items
that have been measured and does not attempt to infer prop-
erties about a larger population. Inferential statistics, on the
other hand, takes data from a sample and makes inferences
about the larger population fromwhich the samplewas drawn
(Trochim 2006). This requires that the sample accurately
reflects the population and it is recommended to use a random
samplingmethod to this purpose. However, there will always
be some error between the properties of the global popula-
tion and the sample’s properties. This error is included in the
results, and an interval of confidence is outlined.

Within inferential statistics, there are two main
approaches: frequentist and Bayesian inference. Frequentist
inference involves calibrating the plausibility of propositions
by considering repeated sampling of a population distribution
to produce datasets. Bayesian inference, on the other hand,
preserves uncertainty and uses probability to quantify the
degree of belief. It is based on Bayes’ theorem and updates
an initial guess on the probability based on evidence.

The present work relies on Bayesian inference, which is
the core of the implemented model. This approach is widely
used in predictive models (Vairo et al. 2019); it uses prob-
ability distributions to represent different degrees of belief.
It is critical to account for uncertainty in situations where
data limitations exist, which can lead to imprecise inference
about preferences, sensitivities, and other aspects of behav-
ior. To overcome this limitation, the Markov Chain Monte
Carlo algorithm is used (Neal R.M., 1993).

3 HiddenMarkovModel (HMM)

A Hidden Markov Model (HMM) is a statistical model used
to model sequences of observations. It is particularly useful
for problems where the underlying state of a system is not
directly observable but can only be inferred from the obser-
vations made (Rabiner 1989).
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Fig. 1 States and emissions of a Hidden Markov Model

The HMM is a combination of two processes: a Markov
Chain, which determines the state at time t, and a state-
dependent process which generates an observation. This
observation is called emission and it is indicated with E,
while S stands for state. For each state S, more than one type
of emission E can be obtained (Satish and Gururaj 1993).

Only the state-dependent process, i.e., the emission, can
be observed, while the Markov Chain (the states) remains
unknown and hidden. The goal is to learn about the hidden
states by observing the emissions.

A model can be composed by n possible states and m
possible emissions. Figure 1 shows the transitions between
the different states. Each transition has a probability, and
each state has an emission probability as well (Van den Bosh
2010).

These probabilities can be grouped into two matrices:

• Transitionmatrix, representing the states’ transitions prob-
abilities.

• Emission matrix, representing the probabilities to get an
emission given a certain state.

A MCMC simulation can be performed by generating
several samples according to the transition matrix. Subse-
quently, the emission matrix constitutes the basis on which
the emission associated to the state is determined. Inferential
statistics can be applied to this type of model, by simulating
and deducing the transition and emission matrices through
a forward–backward algorithm, given observations on either
the states or the emissions.

3.1 The learning process

The learning process in an HMM is performed by the Baum-
Welch algorithm (Baum et al. 1970).

In such a model, two parts must be trained: the Markov
Chain, and the observations.

An HMM has two parts:

• An underlying Markov Chain that describes how likely
you are to transition between different states (or stay in
the same state). This underlying state is the element of
interest. If there are k states in the HMM then the Markov
Chain consists of

o a k x k matrix saying how likely you are to transition
from a state S1 to a state S2,

o a k-length vector saying how likely you are to start off
in each of the states.

• A probability model that lets you compute Pr[O|S], the
probability of seeing observation O if we assume that the
underlying state is S. Unlike the Markov Chain, which has
a fixed format, the model for Pr[O|S] can be arbitrarily
complex.

To a large degree these twomovingparts can be considered
independently. You might even have external knowledge that
tells you what one of them is, but not the other.

With a large amount of labeled data (the sequence of obser-
vations and a knowledge of what the underlying state is),
training the HMM breaks down to two independent prob-
lems:

• First: train the Markov Chain with the labels;
• Then: divvy up the observations based on what state they
were in and train P[O|S] for each state S.

If the state labels for our data are reliable, then training
the HMM is straightforward.

But usually, we just have the sequence of observations,
with only little knowledge of what state the system was in.
So,wecanguess atwhat the state labels are and train anHMM
using those guesses. Then we use the trained HMM to make
better guesses at the states, and re-train the HMM on those
better guesses. This process continues until the trainedHMM
stabilizes. This back-and-forth, between using an HMM to
guess state labels and using those labels to fit a new HMM,
is the core of the Baum-Welch algorithm.

The Baum-Welch algorithm, which is an expectation—
maximizationmethod, is an iterative algorithm that estimates
the parameters of an HMM given a set of observations. The
learning process in anHMMwith theBaum-Welch algorithm
can be described in the following steps (Murphy 2012):
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1. Initialization: The algorithm startswith an initial estimate
of the parameters of the HMM, such as the transition
probabilities and the emission probabilities.

2. Forward–Backward Pass: The algorithm then performs a
forward–backward pass over the observations. The for-
ward pass computes the probability of observing each
sequence up to a particular time step, given the current
estimate of the parameters. The backward pass computes
the probability of observing each sequence from a par-
ticular time step to the end, given the current estimate of
the parameters. These probabilities are used to estimate
the expected number of times the model is in each state
and the expected number of times each state emits each
observation.

3. Parameter Estimation: The expected counts obtained
from the forward–backward pass are used to update
the parameters of the HMM. Specifically, the transition
probabilities are updated using the expected number of
transitions between states, and the emission probabili-
ties are updated using the expected number of times each
state emits each observation.

4. Repeat: Steps 2 and 3 are repeated until convergence. The
convergence criteria may vary, but a common approach
is to stop when the change in the log-likelihood of the
observations is below a certain threshold.

5. Output: The algorithm outputs the estimated parameters
of the HMM, which can be used for prediction or further
analysis.

The learning process of a HMM is schematically depicted
in the following figure (adapted from Vairo et al. 2023).

The Baum-Welch algorithm is a powerful method for
training HMMs, but may require a large amount of data to
obtain accurate estimates of the model parameters. When
such data are not available, or are not reliable, which is often
the case in the design phase of an innovative asset, it is pos-
sible to generate synthetic data for an HMM, but a certain
knowledge of the process is required (Barbu et al. 2009). The
synthetic data generation is detailed in Sect. 5.

Note that the quality of the synthetic data generated in this
way depends on the accuracy of your knowledge of the under-
lying process (Bishop 2006). If your knowledge is inaccurate
or incomplete, the synthetic data may not be representative
of the actual data. Therefore, it is important to validate the
synthetic data using appropriate statistical methods before
using it for any downstream analysis.

4 Designing themodel

Different approaches in solving the proposed problem are
always possible. Two of them have been identified. As
already mentioned, the first model considers one item per

time, while the second one considers all the system’s compo-
nents simultaneously, including the inter-relations between
the components as well, in accordance with the Systemic
approach.

While the model may consider factors related to space or
limitations in resources, the actual factors that impactmainte-
nance time and costs can be numerous and complex. During
the design phase, factors that can affect maintenance time
and costs may include (Smith 2017):

– Accessibility and ease of maintenance: Design features
that make it easier to access and maintain equipment or
infrastructure can help to reduce maintenance time and
costs.

– Modularity and standardization: Modular or standardized
design can simplify maintenance by allowing for easy
replacement of parts or components, reducing the need
for specialized expertise or tools.

– Material selection: The selection of materials during the
design phase can have a significant impact onmaintenance
time and costs. Materials that are durable, corrosion-
resistant, and easy to clean can help to reducemaintenance
requirements.

– Reliability and durability: Design features that enhance the
reliability and durability of equipment or infrastructure can
reduce the frequency and duration of maintenance.

– Predictive maintenance capabilities: Design features that
enable predictive maintenance, such as built-in sensors or
automated monitoring systems, can help to reduce main-
tenance time and costs by allowing for early detection
of potential problems and scheduling maintenance proac-
tively.

– Safety and environmental factors: Design features that
ensure the safety of maintenance personnel and minimize
the impact of maintenance activities on the environment
can also affect maintenance time and costs.

However, the design phase is being considered here
focused in particular on the general arrangement identifi-
cation, i.e., on the best exploitation of space in the engine
room. In this perspective maintenance is an issue and inabil-
ity to comply with clearances affects maintenance activity
in terms of time and cost, so these are the only influencing
factors included in the model.

For considering n elements, a Hidden Markov Model is
structured. The maintenance cost/time increase scenario is
now translated into a hidden state (hidden states are unob-
servable entities). Therefore, three states have been defined,
while the space reduction ranges are considered as the pos-
sible emissions (the observable entities) for each state.

A real combination of element’s states is randomly gener-
ated. According to this combination, a sequence of emissions
is then generated as test data set (Rabiner 1989). At this point,
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the true hypothetical state of each component is defined and
a series of emissions, which constitutes the observations,
is available. Afterwards, three possible cases (sub-models)
arise, in relation with the knowledge about the transition
matrix and the emission matrix. In fact, the cases that can
be considered are:

• Both matrices, emission, and transition ones, are known.
• Only the emission matrix is known.
• No matrix is available.

In the first sub-model, assuming that both transition and
emission matrices are known, maybe from experience, infer-
ence is performed only to obtain the probability density
function of being in one specific state. As prior distribution
for each state, a Categorical distribution (a generalization of
the Bernoulli distribution when the possible outcomes are
more than two, with the same probability for each compo-
nent) can be chosen. Not to introduce an excessive amount of
prior knowledge, which can block the inferential process into
local solutions, the elements of evidence can be implemented
using a Categorical distribution as well.

A Categorical distribution is a natural choice for the prior
distribution for each state in aHiddenMarkovModel (HMM)
because it represents a discrete probability distribution over a
finite number of possible states. The Categorical distribution
is used to model the prior probability of being in each state at
the beginning of the sequence, and the transition probability
matrix is used to model the probability of transitioning from
one state to another. The emission probability distribution
for each state is also typically modeled using a Categorical
distribution, as the emissions are assumed to be generated
from a discrete set of possible values (Murphy 2012).

Moreover, the Categorical distribution is a useful choice
for the prior distribution; it allows for easy computation of the
posterior distribution usingBayes’ rule. Specifically, the pos-
terior distribution over the states given the observed sequence
of emissions can be computed using the forward–backward
algorithm, which is based on the Categorical distribution
(Barber 2012).

Subsequently, the MCMC sampling can be performed
using the Metropolis–Hastings (MH) sampling within Gibbs
algorithm, because it is more suitable to a multi-parameter
case, treating each component as independent from the oth-
ers. The state that is more likely to occur in theMarkovChain
is defined as the “forecast state”.

The second sub-model can be used when less informa-
tion on the system is available. It has been assumed that only
the emission matrix is available, while the transition one is
unknown. However, this secondmatrix can be inferred, using
a Dirichlet distribution with equal initial likelihoods as prior,
while the remaining variables can be defined as in the previ-
ous case. While performing the MCMC sampling, not only

the states but also the transition matrix components can be
sampled and inferred.

The third sub-model is the most generic one and at the
same time it is the most common. In fact, no information is
available, and all the inter-relations between the components
are inferred from the observations. As in the previous case,
also the emission matrix needs to be estimated by inference,
using a Dirichlet distribution as prior as well. This approach
relies on the above described Baum-Welch algorithm and is
themost interestingwhen dealingwith the problem proposed
in this work, because most of the times these probabilities
which compose these matrices are difficult to obtain. If an
adequate (high) number of samples is generated and the start-
ing point of the chain is chosen to avoid local minimums
of the error function, this approach leads to good results. In
particular, theMHwithin Gibbs algorithm seeks the absolute
minimum of the error following the evolution of the Markov
chain. In this way the Markov chain converges to what is
thought to be the posterior most likely value.

Gibbs sampling is aMarkov ChainMonte Carlo (MCMC)
method that is often used to approximate the joint distribution
of a set of random variables. It works by iteratively sampling
from the conditional distributions of each variable, given the
current values of theother variables (Neal 1993).This process
converges to the joint distribution after a sufficient number of
iterations. However, in some cases, it may not be possible to
sample from the conditional distributions directly, and alter-
native methods, such as MH sampling, may be required. MH
sampling is a more general MCMC method that can be used
to sample from any distribution, even if its form is unknown
or intractable. MH sampling works by proposing a new state
using a proposal distribution and then accepting or reject-
ing this proposal based on a probability ratio. If the ratio is
greater than or equal to one, the proposed state is accepted.
Otherwise, the proposed state is accepted with probability
equal to the ratio. This acceptance probability is what allows
the sampler to explore regions of low probability density (Liu
2008).

In the analyzed problem, with Gibbs sampling, the condi-
tional distributions of each variable can be sampled directly,
but it may be more efficient to use MH sampling to sam-
ple from the conditional distributions. To use MH sampling
within Gibbs sampling, it is possible to simply replace the
direct sampling step for a given variable with an MH sam-
pling step. This involves proposing a new value for the
variable using a proposal distribution and then computing
the probability ratio for accepting or rejecting the proposal
(Roberts et al., 2006). The proposal distribution can be cho-
sen based on the structure of the model and the properties
of the variables being sampled. So, MH sampling can be
used within Gibbs sampling when it is not efficient to sample
directly from the conditional distributions of each variable.
This allows the sampler to explore a wider range of values
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Fig. 2 Graphical schematization of the HMM learning process

and can improve the convergence of the sampler (Andrieu
et al. 2009) (Fig. 2).

Figure 3 represents the flow chart of the described
approach, showing the generation of evidence on the left side
and the predictivemodel on the right side, and then compared
to check the accuracy of the prediction.

5 Generation of data

The training/test data are generated following the methodol-
ogy described in Gualeni et al. (2022). A Beta distribution
is used to represent the probability density function for the
clearance reduction, and, for the purposes of the present
paper, the maintenance cost/time is described by a uniform
distribution, considering no available prior information, to
successively generate the observations (Bernardo 2006). The
Beta distribution’s parameters (a and b) can be modified on
need, varying the expected value and the variance of the prob-
ability density function. In this case the Beta distribution is
used for the space probability density function for clearance
reduction; on the other side, costs are sampled froma uniform
probability density function.

As descripted in Gualeni et al., (2022), the clearance
reduction problem involves determining the optimal layout
of equipment in a ship engine room.Oneway to approach this
problem is to use simulation to generate synthetic data for

different layouts and clearance values, and then use statistical
analysis to identify the optimal layout. The beta distribution
is a continuous probability distribution that is commonlyused
to model proportions or probabilities between 0 and 1, which
is a suitable range for clearance values. The beta distribution
parameters (a and b), control the shape and location of the
distribution. These parameters can be estimated from avail-
able data or prior knowledge (Gelman 2013).

Once the beta distribution parameters are determined, a
MC simulation is used to generate synthetic clearance values
by sampling from the beta distribution. This involves gener-
ating random values from a uniform distribution between 0
and 1, and then transforming these values to the correspond-
ing clearance values using the inverse cumulative distribution
function of the beta distribution (Huang et al. 2018).

The application case regards the engine room layout of a
research vessel: focus is made on the positioning of the three
diesel generators (DG1, DG2, DG3), in charge of delivering
electrical power on board.Differently from the diesel engines
devoted to ship propulsion (bound to geometrical constraints
given by the propeller shaft lines), the positioning of diesel
generators for electrical power supply can be topic for dis-
cussion during the design process of the engine room.

The first layout (Fig. 4) corresponds to the one adopted
for the real vessel’s engine room. In this layout, two Diesel
generators are located between frame 77 and 83, while the
third one is between frame 60 and 66. The Diesel generator
which is between the two main engines is defined as number
1, while the other two, located between two pillars, are num-
ber 2 and 3. First, the ideal clearances needed to maintain
each macro-group have been defined, subsequently, the real
clearances available around the items in both x and y direc-
tion, have been measured using the drawings of the top view
of the engine room’s layout.

The second layout (Fig. 5) is an alternative to the real
one, developed to save some space in the engine room and

Fig. 3 HMM flow-chart
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Fig. 4 Engine room first layout (original project)

Fig. 5 Engine room second layout

also to test the method, because it could be already foreseen
that the cost needed to maintain the Diesel engine increases.
In this layout, all the three generators have been located
between the two pillars, leaving an empty space between the
two main engines, with the idea of locating the other pumps
and machinery in this area. The engine number 2 have been
rotated of 180z to allow more mobility around the Air suc-
tion and exhaust gas system. This arrangement, if possible
to realize according to the general arrangement of the ship,
could lead to a shortening of the engine room’s length. In this
configuration, the clearance reduction values are equal for all
the engines because they are equally distanced between each
other and the main obstacle is constituted by the near engine.

The third layout (Fig. 6) is similar to the second one,
but the engines are longitudinally staggered. This arrange-
ment has been obtained modifying the position of the ladder,
of the cooling water pumps and of the fire seawater pump.
TheDiesel generators location have been decided tomisalign
the engines and ensure the required maintenance clearance
around the two considered macro-groups of items. Further-
more, it has been chosen to transversely align the alternators

Fig. 6 Engine room third layout

Table 1 Mean clearances reduction (%)

First layout (original project)

Clearance reduction (%)

DG1 0,19

DG2 0,04

DG3 0,24

Second layout

DG1 0,57

DG2 0,57

DG3 0,57

Third layout

DG1 0

DG2 0

DG3 0

because, being electrical machinery, they are easier to main-
tain, since their elements can be removed along the x-axis.
In this layout, the DGs experience the right clearance around
them.

With reference to the three layouts identified for the
research activity and shown in Figs. 4, 5 and 6, the clear-
ances reduction, representing the expected values of proper
generative (Beta) distributions about systems emissions, are
reported in Table 1.

As mentioned above, starting from the expected clear-
ances reductions related to each layout (defined from the
above reported layouts definitions), it is possible to create
the generative beta distributions, as shown in Figs. 7 and 8.

The evidence on clearances reduction at each step are sam-
pled from the beta distributions in Figs. 7 and 8.

123



660 Journal of Ocean Engineering and Marine Energy (2023) 9:653–663

Fig. 7 Generative distribution for the clearance reductions of the first
layout (Beta distribution 1)

Fig. 8 Generative distribution for the clearance reductions of the second
layout (Beta distribution 2)

6 Determining the state-emission sequences

In the HMM, at each time step, an evidence of clearance
reduction is generated, according to emission probability
(beta distribution of Figs. 7 and 8). The process of generating
summary data on observations on the reduction of clear-
ances is detailed in the previous section, where the process
is described from what is proposed in Gualeni et al. (2022).
The Beta parameters a and b, which control the shape and
location of the distribution, are related to the different con-
sidered layouts. That is in relation with the state (which can
be known or inferred from the generated observations).

The model (λ) depends on: λ = (Q, O, A, B)

• Q: hidden sequence of states (maintenance cost/time)
• O: observed emission sequence = {σ1, …, σk}
• A: n x n transition probabilities (probability for the system
to change the state)matrix A(i,j) = Pr[q t+1=j|q t =i]

• B: probability of generating an emission (the visible clear-
ance reduction) in the actual state.

B(i,j) = probability of generating σj in state qi = P[at =
σj |qt = i]; where at is tth element of generated sequence

The problem we are going to solve with the HMM is a
Learning problem (the third above mentioned sub-model):

• Given an observation sequence O and the set of states
(clearance reductions) in the HMM, learn the HMM
parameters A and B for generating the most probable
sequence of maintenance time/cost increase.

7 Results and discussion

The input to such a learning algorithmwould be an un-labeled
sequence of observations O and a vocabulary of potential
hidden states Q.

The standard algorithm for HMM training is the Baum-
Welch algorithm, which is a specific application of the
Expectation–Maximization (EM) algorithm (Bahl, 1983).
The algorithm will let us train both the transition probabili-
ties A and the emission probabilities B, which represent the
parameters that determine the sequence of hidden states. It is
an iterative algorithm, computing an initial estimate for the
probabilities, then using those.

In the context of maintenance time/cost prediction, the
HiddenMarkovModel (HMM) predict the sequence of states
that are most likely to be connected to a given sequence of
observations (clearance reductions). In this case, the states
represent the underlying classes or categories of the time/cost
increments associatedwith the different layouts. In the evalu-
ation of the prediction, two different layouts are considered,
and for each layout, a sequence of five possible predicted
states is represented. These states correspond to the five dif-
ferent classes of time/cost increment that were obtained from
the HMM. By predicting the most likely sequence of these
states, it is possible to estimate the expected time/cost for
each maintenance activity, for each layout.

It is worth noting that the selection of the number and
definition of the different classes or states used in the HMM
can have a significant impact on the accuracy and usefulness
of the predictions. Therefore, the number of states in each
sequence can be even higher but it implies a superior expo-
nential computational effort. It is worthwhilementioning that
each bar of the following figures represents the percentage of
cost increase in relation with a sample of clearance reduction
percentage derived from beta functions. For each DGi it has
been considered sufficient and representative an evaluation
of five states.
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Table 2 Cost increase prediction with the GLM in Gualeni et al. (2022)

Group Layout 1 cost
increase [%]

Layout 2 cost
increase [%]

DG1 Air suction and
exhaust gas
system

9.71 55.54

Cylinder block 48.62 110.01

DG2 Air suction and
exhaust gas
system

0.00 55.54

Cylinder block 15.57 110.01

DG3 Air suction and
exhaust gas
system

18.87 55.54

Cylinder block 53.34 110.01

Table 3 Cost increase (min, max, average) with HMM

Layout 1 cost increase [%] Layout 2 cost increase [%]

Min 8.54 39.41

Max 48.62 101.01

Avg 23.26 64.53

Each bar in the following charts represents the probability
that the increase in time/maintenance cost falls into one of the
five classes described above. For each configuration, there-
fore, the maximum value (i.e., the increment value linked to
the highest probability), the minimum value (i.e., the incre-
ment value linked to the lowest probability) and the average
will be assessed. The results are reported in Table 3.

Considering the three DGs in a comprehensive view, it
is possible to derive an assessment of the comprehensive
Engine room solution.

First layout:
Second layout:
Given the evidence on space reduction sampled from the

beta distribution 1, for the first layout, and for the beta distri-
bution 2 for the second layout, a remarkable comparability
with the results obtained, with the evaluation methodology
based on the focus about the item/element (summarized in
Table 2), can be observed.

To favor this comparability, in Table 3 theminimum,max-
imum and average values, as described above, are reported
for each configuration as derivable from Figs. 9 and 10.

8 Conclusion

The HMM approach has proven to be a reliable method for
predicting the state of the different systems and observing
their relation with the total engine room layout, given the
evidence on the space reduction for some components. The
predictive capability of the method obviously depends on the
representativeness of the observations, which, in this case,
were generated by randomsamplings fromappropriate distri-
butions, as detailed in Sect. 5, deriving from field knowledge.

The process of time/cost prediction using aHMMinvolves
modeling the relationship between the clearance compliance
associatedwith each considered layout and the hidden classes
of maintenance time/cost increments. The HMM assumes
that the hidden states are related to the clearance compliance,
which are Markovian, and estimates the model parameters
including initial state probabilities, transition probabilities,
and emission probabilities. With these parameters, the pre-
diction algorithm can be used to find themost likely sequence
of hidden states connected with the considered layout and
make predictions about future time/cost increments.

The predictive algorithm, described in Sect. 4, is a
dynamic programming algorithm that uses the estimated
model parameters to efficiently compute the probabilities of
all possible state sequences (depicted in Figs. 9 and 10) and
select the most likely one.

The method described in Gualeni et al. (2022) gave very
close results, but the application of that method inevitably
required to make assumptions also on the increases in main-
tenance costs, which in this second approach were not
necessary, due to the characteristics of theBaum-Welch algo-
rithm. In fact, it tests a multitude of samples (in this case, a
uniform distribution was used for maintenance costs, so as
not to need a priori knowledge), to select only those forwhich
the model is likely to converge.

The whole process allows for accurate and efficient pre-
diction of maintenance time/cost, but careful consideration
and evaluation of the data and model assumptions is neces-
sary to ensure the reliability and validity of the results.

The proposed model, therefore, can represent a useful
instrument to define, in the design phase, the most appro-
priate layout, adequately balancing the engine room space
requirements with the containment of maintenance costs.
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Fig. 9 Predicted sequence of
maintenance time/cost increase
for the first layout

Fig. 10 Predicted sequence of
maintenance time/cost increase
for the second layout
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