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Abstract: Human Natural Killer (NK) cells are all round players in immunity thanks to their powerful
and immediate response against transformed cells and the ability to modulate the subsequent
adaptive immune response. The potential of immunotherapies based on NK cell involvement has
been initially revealed in the hematological setting but has inspired the design of different immune
tools to also be applied against solid tumors, including colorectal cancer (CRC). Indeed, despite cancer
prevention screening plans, surgery, and chemotherapy strategies, CRC is one of the most widespread
cancers and with the highest mortality rate. Therefore, further efficient and complementary immune-
based therapies are in urgent need. In this review, we gathered the most recent advances in NK
cell-based immunotherapies aimed at fighting CRC, in particular, the use of monoclonal antibodies
targeting tumor-associated antigens (TAAs), immune checkpoint blockade, and adoptive NK cell
therapy, including NK cells modified with chimeric antigen receptor (CAR-NK).

Keywords: NK cells; monoclonal antibodies; bispecific antibodies; trispecific engagers; immune
checkpoints; CAR-NK cells; CRC; immunotherapies

1. Introduction

Colorectal cancer (CRC) is the third-most-common cancer worldwide and claims
almost 1 million deaths per year, despite effective cancer prevention screening plans and
relatively good prognosis compared to other gastrointestinal malignancies (WHO and
UEG) [1]. The five-year survival rate is 90 percent for CRC diagnosed at an early stage com-
pared with 13 percent for those diagnosed later [2]. In this context, immunotherapy could
represent an additional strategy to complement surgery, radiotherapy, and chemotherapy
to increase the survival of CRC patients, especially when the disease is diagnosed at later
stages. Indeed, several immunotherapeutic approaches have been developed for differ-
ent cancer types, including CRC, with promising clinical results [3]. Immunotherapy for
CRC patients includes monoclonal antibodies (mAbs) targeting tumor-associated antigens
(TAAs), immune checkpoint inhibitors (ICIs), adoptive cell therapy, anti-cancer vaccines,
and oncolytic viruses treatment [3–6]. However, given the high heterogeneity of CRCs,
the therapeutic efficacy of these approaches is variable [7]. In particular, ICI therapy is
only effective in a small group of CRC patients characterized by microsatellite instability
(MSI) and mismatch-repair deficiency (dMMR), which accounts for less than 20% of pa-
tients [7]. Conversely to the other most diffuse types of CRC, marked by mismatch-repair
proficiency (pMMR) and microsatellite stability (MSS), MSI and dMMR cancers are usually
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characterized by enriched immune cell infiltration. The presence of tumor-infiltrating
lymphocytes (TILs) has been correlated with the containment of metastases [8], a good clin-
ical outcome [9,10] and a positive response to ICI immunotherapies [11–13]. In particular,
high numbers of CD8 and CD4 T cells with Th1 profile and NK cells have been correlated
with better prognosis in CRC patients [14–16]. Based on these clinical data correlating NK
cell infiltration with better survival in CRC patients, it is conceivable that novel immune-
mediated therapies aimed at increasing the number and/or function of NK cells in tumor
lesions could be a useful strategy in CRC containment. In this regard, NK cells, which are
innate lymphocytes able to carry out a powerful and immediate response against cancerous
cells, may importantly contribute to immune-mediated therapies. NK cells are cytotoxic
members of the large and plastic family of Innate Lymphoid Cells (ILCs) [17], whose role in
the development of CRC is controversial [18]. NK cells circulate among blood, lymphoid,
and non-lymphoid tissues patrolling almost the entire human body, while ILCs are mainly
located at mucosal surfaces and are usually not cytolytic [17]. However, NK cells can also be
resident in tissues displaying highly variable expression patterns. Thus a clear distinction
between tissue-resident NK cells and ILCs, especially ILC1, can be challenging [19,20].

Thanks to their multitude of effector capabilities, including killing activity and mod-
ulation of the adaptive immune response, NK cells are ever more considered strategic
effectors of the immunotherapeutic approach. In the present review, we discuss the dif-
ferent immunotherapeutic strategies focused on enhancing NK cell function in the fight
against CRC.

2. Human NK Cells

NK cell capabilities to recognize transformed cells without prior antigen exposure,
kill target cells, and release immune-regulating cytokines/chemokines are mainly due to
the large repertoire of germline-encoded activating receptors that provide the “on” signal
following the interaction with putative ligands (Figure 1). Among all, the non-HLA-specific
natural cytotoxicity receptors NKp46, NKp30, and NKp44 (collectively named NCRs),
NKG2D, and DNAM-1 are the main activating NK receptors [21–27].

Vaccines 2022, 10, x FOR PEER REVIEW 2 of 20 
 

 

accounts for less than 20% of patients [7]. Conversely to the other most diffuse types of 
CRC, marked by mismatch-repair proficiency (pMMR) and microsatellite stability (MSS), 
MSI and dMMR cancers are usually characterized by enriched immune cell infiltration. 
The presence of tumor-infiltrating lymphocytes (TILs) has been correlated with the 
containment of metastases [8], a good clinical outcome [9,10] and a positive response to 
ICI immunotherapies [11–13]. In particular, high numbers of CD8 and CD4 T cells with 
Th1 profile and NK cells have been correlated with better prognosis in CRC patients [14–
16]. Based on these clinical data correlating NK cell infiltration with better survival in CRC 
patients, it is conceivable that novel immune-mediated therapies aimed at increasing the 
number and/or function of NK cells in tumor lesions could be a useful strategy in CRC 
containment. In this regard, NK cells, which are innate lymphocytes able to carry out a 
powerful and immediate response against cancerous cells, may importantly contribute to 
immune-mediated therapies. NK cells are cytotoxic members of the large and plastic 
family of Innate Lymphoid Cells (ILCs) [17], whose role in the development of CRC is 
controversial [18]. NK cells circulate among blood, lymphoid, and non-lymphoid tissues 
patrolling almost the entire human body, while ILCs are mainly located at mucosal 
surfaces and are usually not cytolytic [17]. However, NK cells can also be resident in 
tissues displaying highly variable expression patterns. Thus a clear distinction between 
tissue-resident NK cells and ILCs, especially ILC1, can be challenging [19,20]. 

Thanks to their multitude of effector capabilities, including killing activity and 
modulation of the adaptive immune response, NK cells are ever more considered strategic 
effectors of the immunotherapeutic approach. In the present review, we discuss the 
different immunotherapeutic strategies focused on enhancing NK cell function in the fight 
against CRC. 

2. Human NK Cells 
NK cell capabilities to recognize transformed cells without prior antigen exposure, 

kill target cells, and release immune-regulating cytokines/chemokines are mainly due to 
the large repertoire of germline-encoded activating receptors that provide the “on” signal 
following the interaction with putative ligands (Figure 1). Among all, the non-HLA-
specific natural cytotoxicity receptors NKp46, NKp30, and NKp44 (collectively named 
NCRs), NKG2D, and DNAM-1 are the main activating NK receptors [21–27]. 

 
Figure 1. Main inhibitory (A) and activating (B) NK-cell surface receptors and their cognate ligands 
on target cells. 

NCRs belong to the Ig superfamily and possess, in the transmembrane domain, 
positively charged amino acids that allow association with ITAM-bearing molecules, such 
as CD3-ζ and/or FcεRI-γ for NKp30 and NKp46 and KARAP/DAP12 for NKp44, and, 

Figure 1. Main inhibitory (A) and activating (B) NK-cell surface receptors and their cognate ligands
on target cells.

NCRs belong to the Ig superfamily and possess, in the transmembrane domain, pos-
itively charged amino acids that allow association with ITAM-bearing molecules, such
as CD3-ζ and/or FcεRI-γ for NKp30 and NKp46 and KARAP/DAP12 for NKp44, and,
therefore, the transduction of an activation signal upon ligand recognition [28]. Different
membrane-bound, intracellular, and soluble extracellular molecules have been identified
as NCRs ligands, including some molecules of viral origin [26,29–36].
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NKG2D is a type II transmembrane protein with a C-type lectin-like extracellular
domain and transduces an activation signal through association with the adapter ITAM-
bearing molecule DAP-10 upon recognition of stress-inducible molecules, namely ULBPs
and MICA/B. NKG2D ligands can also be shed from tumor-transformed cells and con-
tribute to tumor escape mechanisms [25,37,38].

DNAM-1 is a transmembrane glycoprotein characterized by two extracellular Ig-like
domains and by a cytoplasmic portion containing tyrosine residues involved in lymphocyte
adhesion and signaling [39]. DNAM-1 recognizes PVR and Nectin-2 [24,40] that are highly
expressed on antigen-presenting cells (APCs), tumors, and virus-infected cells. In addition,
DNAM-1 shares the same ligands of the TIGIT and CD96 inhibitory receptors but exhibits
opposite functions with respect to them, suggesting a complementary role in the regulation
of tumor immunity and inflammatory response [40,41].

Another relevant activating receptor is CD16 (FcγRIIIa), a low-affinity receptor for the
immunoglobulin G (IgG) Fc fragment, whose binding to opsonized target cells triggers
efficient NK cell-mediated killing through antibody-dependent cell-mediated cytotoxicity
(ADCC) [42,43].

In healthy conditions, all these activating receptors are under the control of in-
hibitory signals transduced by HLA class I-specific receptors (such as inhibitory KIRs,
CD94/NKG2A, LILRB-1) upon recognition of self-HLA molecules [44–46] (Figure 1). Ma-
ture and functional NK cells usually express at least one inhibitory receptor, specific for
self-HLA class I molecules. Indeed, during the cell differentiation process, only NK cells
expressing inhibitory receptors recognizing self-HLA class I molecules undergo a process
called “education”, consisting of the acquisition of functional competencies in terms of
cytotoxicity ability and cytokine secretion [47,48]. This process ensures, on the one hand,
self-tolerance towards healthy cells and on the other hand, an efficient response against
transformed cells, which usually lack or down-regulate HLA class I expression and acquire
or up-regulate the expression of ligands for the non-HLA specific activating NK recep-
tors [49]. NK cells can also express other inhibitory receptors, the non-HLA class I specific
receptors, which can regulate the NK cell function by acting as immune checkpoints (ICs),
similarly to KIR, NKG2A, and LILRB1. These additional ICs include PD-1, TIM-3, TIGIT,
CD96, LAG3, CD161, Siglec-7, and IRp60 and can be up-regulated or de novo expressed by
NK cells in pathologic conditions [50–52], thus contributing to avoid exacerbated immune
responses and also favoring tumor escape (Figure 1).

In this regard, the immunosuppressive CRC tumor microenvironment (TME) due to
the activity of tumor cells and the related presence of other immune cells with immune-
modulatory properties, such as myeloid-derived suppressor cells (MDSCs) and Th17 cells,
can create a disadvantageous milieu affecting the killing properties of NK cells [53]. Several
studies have demonstrated that NK cells have reduced functionality in CRC patients [10].
Decreased expression of NKp46 and NKp30 has been demonstrated in CRC-infiltrating
NK cells, and the low expression of NKp46 in peripheral blood (PB) NK cells of CRC
patients has been correlated with lower relapse-free survival (RFS). Moreover, NKG2D and
DNAM-1 expression has been demonstrated to be down-modulated in both PB-NK cells
and tissue-infiltrating NK cells of CRC patients [54,55].

3. Monoclonal Antibodies-Based Treatments to Enhance NK Cell Cytotoxicity

The potential of immunotherapies based on the use of mAbs that target distinct cancer-
specific cell markers and may trigger T cell anti-tumor function and NK cell-mediated
ADCC has been initially revealed in the hematological setting. Indeed, the successful use
of Rituximab, a chimeric anti-CD20 mAb targeting CD20+ lymphoma cells [56,57], has
prompted the design of different immune tools to also be applied against solid tumors,
including CRC. In this context, several mAbs targeting CRC tumor antigens (e.g., EGFR,
CEA, Her2) or the TME (e.g., VEGF) that may simultaneously trigger NK cell cytotoxicity
have been developed. More recently, the use of mAbs targeting different ICs, represented
by inhibitory receptors (e.g., PD-1) that control the function of effector cells, such as T and
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NK cells, by disrupting inhibitory interactions and restoring anti-tumor capabilities by
cytotoxic lymphocytes, has offered unexpected possibilities to cure solid tumors [58–60].

3.1. Anti-Tumor Associated Antigen (TAA) mAbs, BiKe, and Engagers Enhancing CRC Killing via
ADCC

The use of mAbs directed against surface antigens expressed by tumor cells has shown
clinical efficacy in different tumors. Treatment with anti-TAA mAbs can induce tumor cell
death by several mechanisms, such as directly inducing tumor apoptosis or via ADCC, that
is, mediated by CD16 engagement with IgG-opsonized tumor cells. Indeed, the efficacy
of an anti-TAA mAb largely employed in the treatment of metastatic CRC, i.e., anti-EGFR
(known by the commercial names Cetuximab or Panitumumab or Necitumumab [61]) also
relies on enhanced NK-mediated killing via ADCC (Figure 2a). The epidermal growth
factor receptor (EGFR; ErbB-1; HER1 in humans), a transmembrane tyrosine kinase receptor,
affects cell adhesion, survival and proliferation and is overexpressed in most CRC (75%)
and is associated with poor prognosis. Anti-EGFR mAbs can act by blocking ligand binding
and thus prevent proliferation in response to EGF. However, in a fraction of CRC patients
(36–55% [62]), mutations in KRAS, a signaling molecule downstream of EGFR, render
the receptor constitutively active and the anti-EGFR treatment ineffective [63–65]. On the
other hand, in KRAS-mutated patients, anti-EGFR mAbs could still efficaciously induce
ADCC by NK cells as demonstrated in vitro [66] and also in vivo in a recent clinical study
(NCT01450319) [67]. Interestingly, this work also reported that anti-EGFR-treated, KRAS-
mutant patients carrying homozygous KIR genotypes (AA or BB) have a worse outcome
than KIR heterozygotes (AB). The mechanisms underlying this observation are unknown
but could be related to altered HLA class-I expression on tumor cells in response to factors,
such as IFN-γ, possibly released by CD16-engaged NK cells.

However, anti-EGFR clinical benefits are confined to a fraction of patients [68], and
many efforts to optimize this treatment are in progress. One possibility that has been
explored is the manipulation of the Fc fragment to augment its affinity for CD16. For
example, a glycoengineered anti-EGFR mAb (GA201, Imgatuzumab, RO5083945) has been
demonstrated to induce superior ADCC than the non-manipulated mAb (Cetuximab),
allowing both the NK cell impairment often observed in CRC patients [69] and the lower
Fc affinity of given CD16 variants that display an amino-acid substitution at position
158 (V158F polymorphism) to be overcome [64,70]. GA201 is not currently employed in
clinical trials or therapies, but a similar glycoengineered antibody derived from Cetuximab,
Tomuzotuximab, has been tested in combination with a glycoengineered humanized anti-
Mucin-1 (MUC-1) antibody (Gatipotuzumab) that targets a tumor-specific epitope of MUC-
1, showing promising results in CRC patients [71]. Indeed, Fc-optimized mAbs can elicit
potent NK-mediated ADCC and possibly replace the standard antibody in several tumor
settings. In this context, anti-EGFR efficacy can be limited not only by KRAS mutations
or CD16 variants but also by low Ab penetrance due to TME factors. To overcome these
hurdles, novel immune tools such as BiKe and engagers have been designed and have
proved their efficacy in vitro and in preclinical models [72,73]. Similar to BiTe (i.e., bispecific
single-chain T-cell engager, such as Blinatumomab that couples anti-CD3 to anti-CD20),
BiKe are composed of a single-chain variable fragment (scFv) of an antibody specific
for a given TAA connected through a short peptide linker to an anti-CD16 scFv, which
triggers stronger cytolytic signals in NK cells, favoring the formation of the NK-tumor
immunological synapse [35]. Interestingly, a bispecific single domain antibody that targets
CD16 on NK cells and recognizes EGFR on tumor cells induces a strong NK cell effector
response against both EGFR-expressing CRC cell lines and ex vivo CRC-derived tumor
cells, regardless of tumor KRAS mutation status [73]. Moreover, this bispecific antibody
induces a consistent release of CXCL10 when ex vivo metastatic CRC tumor cells are
co-cultured with autologous PBMC, possibly favoring the in vivo recruitment of effector
T and NK cells at the tumor site. Similarly, a tetravalent bispecific (i.e., displaying two
binding domains instead of a single chain) fusion antibody targeting CD16 and EGFR on
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tumor cells also results in highly effective toward a variety of EGFR-expressing tumor cells,
regardless of the EGFR expression level [74], thus suggesting its potential efficacy despite
CRC heterogeneity.
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Figure 2. Strategies to enhance anti-tumor NK cell function against Colorectal Cancer (CRC).
(a) ADCC triggering strategies via anti-TAA mAbs, BiKe, or NKCEs; (b) IC blockade via anti-NKG2A
and anti-PD-1 mAbs; (c) Cytokine activation of NK cells by IL-2, IL-15/IL-12/IL-18 combination,
or N-803; (d) CAR-modified NK cells targeting several TAAs (CEA, MUC-1, EpCAM, HER-2, and
NKG2D ligands MICA/B and ULBPs).

MAbs and BiKes engaging CD16 to induce ADCC can fail to efficiently trigger NK-
mediated cytotoxicity when CD16 is shed from the NK cell surface by matrix metallopro-
teases such as ADAM17 [75] that can be up-regulated in the TME [76]. Indeed, low CD16
expression levels have been described in tumor-infiltrating NK cells from CRC biopsies [54].
Besides the use of metalloprotease inhibitors to prevent CD16 shedding [77], other im-
mune tools that hold promise to circumvent this issue are trifunctional NK cell engagers
(NKCEs). This innovative tool simultaneously targeting NKp46 (or NKp30) and CD16 on
NK cells and EGFR on cancer cells has proved to induce superior anti-tumor activity than
the standard therapeutic mAbs (e.g., Cetuximab) in preclinical models [72]. Indeed, NKCEs
represent plastic tools that could be easily modified with different anti-tumor antigens or
anti-NK receptor moieties to better fit both cancer features and NK cell heterogeneity in
distinct patients.

Of note, bispecific antibodies simultaneously binding two different tumor antigens
that could potently induce NK-mediated ADCC are currently in clinical trials for advanced
CRC or in preclinical models, such as anti-EGFR and anti-c-MET (Mesenchymal Epithelial
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Transition receptor, highly expressed or amplified in subsets of CRC, NCT04930432) or
anti-EGFR and anti-LGR5 (cancer stem cell marker) [78].

Beyond EGFR, several other TAAs associated with CRC, such as MUC-1, CEA, gpa33,
HER2, PD-L1, and CD73, are currently being explored as targets of mAb-mediated im-
munotherapy, possibly benefitting NK cell ADCC [53,79]

3.2. Immune Checkpoint Inhibitors (ICI) to Unleash NK Cell Killing against CRC

In the TME, NK cell function can be dampened mainly by the down-modulation of
activating receptors in response to soluble factors released by tumor or tumor-associated
cells (e.g., TGF-β, PGE2, soluble B7-H6, IDO1-derived catabolites, soluble ligands [10,80])
and/or by the engagement of ICs expressed by NK cells. Some studies have shown that
NK cells infiltrating CRC can express multiple ICs, including both inhibitory receptors
specific for HLA class I molecules (NKG2A and KIRs) and those recognizing non-HLA
class I ligands (e.g., PD-1, TIM-3, LAG3, TIGIT) [54,81–83]. Further studies investigating
IC expression and function in CRC-infiltrating NK cells are needed; however, the use
of different ICIs that block the interactions between ICs and their ligands expressed on
tumor cells is a promising immunotherapeutic approach that could be capable not only of
restoring T cell immunity, but also of unleashing NK cell anti-tumor potential (Figure 2b).

A large number of clinical trials in metastatic or advanced MSI and dMMR CRC have
been based on the administration of anti-PD-1 and/or anti-PD-L1 mAbs. Interestingly,
recent data reported that MSS patients with proficient MMR but harboring the POLE
mutation (pole encodes the DNA polymerase responsible for lead strand DNA replication)
that favors high neoantigens generation, high TMB, and recruitment of TILs, including
NK cells, can also benefit from anti-IC therapies [7,84]. Indeed, with the aim of optimiz-
ing/enlarging the ICI potential for MSS patients or ICI refractory/resistant MSI patients,
several currently active (or still recruiting) clinical trials are exploring the effect of anti-PD-1
mAbs in combination with chemotherapy or with kinase inhibitors or with other mAbs,
such as anti-VEGF, both in MSI and in MSS CRC at advanced stages. Other trials are aimed
at simultaneously blocking multiple ICs in combination with conventional chemotherapies
that could contribute to converting “cold” tumors to immune-active tumors sensitive to
ICI therapies [85]. Although the PD-1-PD-L1 axis may actually contribute to hamper NK
cell function in CRC, a major role is likely played by the IC NKG2A, which is consistently
expressed by both NK and T cells in CRC TILs [54,81,86]. NKG2A recognizes the non-
classical HLA class I molecule HLA-E, which results as overexpressed in a fraction of
CRC, preferentially in MSI compared to MSS, and whose expression is associated with
a worse prognosis [81,87,88]. Indeed, a combination of anti-NKG2A (Monalizumab or
IPH2202) and anti-PD-L1 (Durvalumab) mAbs, offered to patients with metastatic MSS
CRC, showed promising activity in a recent clinical trial (NCT02671435) [89]. An addi-
tional promising strategy is based on combining the blockade of inhibitory signals with
the delivery of activating signals. In this context, in vitro data demonstrated that NKG2A
blockade with Monalizumab boosts NK cell-mediated ADCC against Cetuximab-coated
tumor targets [81]. Indeed, this combination was effective in a phase 1–2 trial and a phase 3
trial (NCT04590963) is ongoing in a Squamous Cell Carcinoma of Head and Neck (SCCHN)
cohort. Along this line, a phase 1 trial (NCT05162755) that combines an NKG2A and PD-1
blockade with anti-EGFR is currently recruiting patients with metastatic gastric tumor
and CRC. A similar strategy can be pursued by novel immune tools designed to stimulate
ADCC via CD16 and simultaneously block PD-1/PD-L1 interactions. These molecules
have been engineered to incorporate an IL-15 moiety with the aim of promoting NK cell
activation, in vivo persistence and proliferation and have shown promising results in vitro
and in preclinical models [90,91].

Finally, the effects of other ICI on NK cell function, such as those blocking LAG3 and
TIGIT that can be expressed by NK cells in CRC, deserve to be examined [59,79].



Vaccines 2022, 10, 1033 7 of 20

4. Cytokines Enhancing NK Cells Mediated Killing of CRC

Therapeutic approaches based on the use of cytokines, mainly IL-2 and IL-15, able to
directly stimulate and promote NK cell activation, persistence, and expansion, have been
tested in several preclinical and clinical studies [36,92,93]. In vitro results demonstrated
that the combined use of IL-2 and IL-15 with Cetuximab can improve the impaired ADCC
response of NK cells derived from CRC patients with respect to Cetuximab alone [94]. In
addition, in CRC patients, IL-15 was shown to recover anti-tumor functions of infiltrating
NK cells in liver metastases [95]. Actually, Aldesleukin (IL-2) is used in clinical trials testing
vaccines in patients with metastatic CRC (NCT00019591).

However, the use of both cytokines in a clinical setting is related to severe adverse
events (AEs), affecting the safety and efficacy of the treatment [96–98]. Re-engineering
these two cytokines in order to reduce toxicity effects and preserve biological properties is
an actual challenge.

Interestingly, in a recent paper, Silva and colleagues developed a computational pro-
tein design method and generated a neo-protein mimicking IL-2 with preserved functional
properties and the ability to bind the heterodimeric IL2Rβγ receptor but not IL-2Rα [99]
(Figure 2c). This property can overstep one of the issues concerning IL-2 administration,
which is the production of immunosuppressive TGF-β by IL-2/IL-2Rα-mediated activation
of regulatory T cells (Treg) that constitutively express IL-2Rα at high levels [100]. The
authors showed that the newly engineered IL-2 caused reduced expansion of immunosup-
pressive T cells (Treg) in comparison to native IL-2 and led to a dose-dependent delay in
tumor growth, both in colon cancer and melanoma mouse models, without immunogenic-
ity and with reduced toxicity [99]. The other two modified IL-2 products, IL-2 superkine
and NKTR-214, derived by sequence mutation and PEGylation of native IL-2, respec-
tively [101,102], have been generated with the aim of reducing IL2/IL-2Rα interaction.
IL-2 superkine has been demonstrated to decrease Treg immunosuppressive activity and
improve anti-tumor responses in vivo against a murine colon carcinoma model. Similarly,
in melanoma mouse models, treatment with NKTR-214 resulted in Treg number reduction
in comparison to IL-2 without affecting CD8 and NK responses. In addition, the authors
demonstrated high efficacy of NKTR-214 administration combined with anti-CTLA-4 in
reducing murine colon tumor growth in syngeneic models without evident adverse signs.
NKTR-214 revealed good tolerability in a completed clinical trial that had enrolled patients
with advanced renal carcinoma and melanoma [103] and is under evaluation in other
clinical trials as monotherapy or combined treatment.

Regarding the modified IL-15-derived products, N-803 (formerly known as ALT-803),
a compound developed by binding an IL-15 mutant to a soluble dimeric IL-15Ra-Fc fusion
protein, has been proven capable of expanding NK and CD8 T cells and of inducing a
significantly higher anti-tumor activity than rIL-15. In addition, N-803 treatment could
also prolong survival against pulmonary metastasis, and it has shown a synergistic effect
in combination with ICI, mainly with anti-CTLA-4, in tumor models generated using
colon carcinoma cells [104,105]. In the hematological setting, N-803 initially provided good
results in patients who relapsed after transplantation [106]. However, more recent studies
highlighted that N-803 could promote allogeneic cell rejection by host T cells, limiting
the in vivo persistence of adoptive NK cells and overall clinical responses to allogeneic
adoptive cell therapy [107]. Thus, whether N-803 could be the optimal cytokine support
to promote NK cell expansion and persistence after the adoptive transfer has still to be
defined [108], and its use deserves further studies in solid tumor treatment.

5. Adoptive Transfer of NK Cells
5.1. Unmodified NK Cells for the Treatment of Solid Tumors

Already, in the 90s, first evidence demonstrated the feasibility of administering ex-
panded autologous NK cells in combination with cytokines (e.g., IL-2) in the treatment of
cancer patients (e.g., breast cancer and lymphoma patients) [109,110] and later on different
studies demonstrated the beneficial effect of therapies using allogeneic NK cell infusion
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in transplantation and non-transplantation settings [111–116]. Most studies and clinical
trials using NK cell-based product administration (allogeneic NK cells and NK-92 cell
lines) were focused on the treatment of hematological malignancies. Less explored was the
effectiveness of adoptive NK cell treatments for solid tumors.

The most recent strategies using adoptive NK cell administration take advantage of
recent advances in expansion, activation, and cryopreservation of NK cells, as well as the
enrichment of NK cell sources. Indeed, the NK-92 cell line, PB cells, umbilical cord blood
(UCB), and induced pluripotent stem cells (iPSCs) have been demonstrated to be supplies
for NK adoptive transfer, but each of them is characterized by lights and shadows [117,118].
The unmodified but irradiated NK-92 cell line, approved by the FDA for adoptive transfer
in clinical trials [119], has some limitations, mainly due to the reduced persistence in vivo
after the infusion, the lack of CD16 impairing triggering via ADCC, and the lack of NKp44
expression [120,121], compromising the natural cytotoxicity response. UCB-derived NK
cells can be rapidly available, and show reduced GvHD and viral transmission risk, but
few cells can be obtained from UCB [122]. PB-derived NK cells can be easily provided,
and require activation and expansion, but the yield could be affected by donor variability.
IPSCs can be maintained in an undifferentiated state and grown indefinitely, therefore
enabling the production of huge numbers of homogeneous NK cells providing a base for a
standardized, off-the-shelf approach [123–125].

From the beginning of 2019, the clinical trial NCT03841110 has been assessing, for
the first time, the safety of iPSC-derived NK cells in the treatment of lymphoma and
advanced solid tumors, including CRC. The treatment consists of lympho-conditioning
with fludarabine and cyclophosphamide followed by the administration of FT500, an
iPSC-derived NK cell product, as monotherapy or combined with 1 of 3 approved ICIs
(Nivolumab, Pembrolizumab, or Atezolizumab), in patients who have failed prior ICI
therapy [126]. Published results showed that 69% of solid tumor patients (n = 13) had
the best response of stable disease (evaluated by iRECIST), no AEs related to cytokine
therapy, and no immune-mediated toxicity as GvHD, cytokine release syndrome (CRS),
or neurotoxicity (NT). A subsequent observational study (NCT04106167) is designed to
provide long-term safety, efficacy, and survival data for subjects who took part in the
interventional study of allogeneic FT500 NK cellular immunotherapy.

Moreover, another iPSC-derived NK cell product is under evaluation in a recently
opened clinical trial (NCT05069935), which enrolls patients with advanced solid tumors,
including metastatic CRC. The study is finalized to evaluate the right dose of the allogeneic
NK cell FT538 product. In this case, the iPSC-derived NK cells platform is engineered to
be CD38 knock-out and to express a high affinity, non-cleavable version of the Fc receptor
CD16a and a membrane-bound IL-15/IL-15R fusion protein. These modifications are
focused on enhancing ADCC capability and in vivo persistence [127–130].

Another active clinical trial (NCT03319459) enrolling patients affected by advanced
solid tumors expressing EGFR, including CRC patients, is evaluating the effect of PB-
derived allogeneic NK cell administration in combination with Cetuximab. These infused
allogeneic NK cells have been enriched in highly functional mature NK cells. Indeed,
this trial is based on results obtained by Cichocki and colleagues, who demonstrated that
exposure to IL-15 and to an inhibitor of Glycogen synthase kinase (GSK) 3 enhanced NK
cell-mediated anti-tumor activity and ADCC against tumors of different histotypes when
administered in combination with a mAb against EGFR or other TAAs [131].

5.2. Engineered NK Cells as Therapy for Colorectal Cancer Patients

Alongside the T cell-modifying strategies, innate immune cell engineering has been
more recently considered a promising therapeutic approach to counteract CRC. Chimeric
Antigen Receptors (CARs) are engineered proteins composed of an extracellular antigen-
binding domain targeting TAA, a transmembrane region and an intracellular activating
signaling domain. A large plethora of constructs (from first to fourth generation) has been
developed in order to optimize the receptor function, mainly modifying the intracellular
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sequence with different stimulatory or co-stimulatory domains, and to strengthen T and NK
cell response [132,133]. Nowadays, different clinical and preclinical studies report encour-
aging results on the use of CAR-T, especially against hematological malignancies [134–136].
However, the use of CAR-NK cells could offer several advantages over their CAR-T coun-
terpart [137]. Indeed, CAR-NK cells (1) can be prepared in advance and from different
sources (NK-92 cell line, PB cells, UCB, and iPSC); (2) have been demonstrated to be able
to kill in a CAR-dependent and independent manner, overtaking possible tumor escape
mechanisms, such as loss of the antigen recognized by the CAR; and (3) are less capable of
inducing CRS and neurotoxicity therapy-related events.

Inducing overexpression of activating receptors can improve NK anti-tumor activity
(Figure 2d and Table 1). To this end, in 2019, Xiao and coworkers demonstrated that
intra-peritoneal injection of short-lived PB-derived CAR-NK cells, generated by RNA
electroporation with a construct coding for NKG2D extracellular domain combined to
DAP12 signaling moiety (NKG2D CAR-NK), significantly reduced tumor burden and
progression in xenograft mice generated with human CRC cell lines [138]. In addition,
in the related pilot clinical trial (NCT03415100), three patients with refractory metastatic
CRC were treated with a local infusion of NKG2D CAR-NK (one in autologous and two in
haploidentical setting) with benefit and without severe AEs. In particular, in two patients,
the number of cancer cells in ascites fluid decreased, and, in another one, a complete
metabolic response in liver metastasis was observed. These encouraging results show that
localized solid tumor treatment with CAR-NK cells may be a therapeutic strategy to pursue.
However, further analyses are needed to assess the persistence of the treatment outcome.
In this regard, additional informative results will also be obtained from another clinical trial
(NCT05213195), which has recently started and that evaluates the effects of intra-peritoneal
and intra-venous NKG2D-CAR-NK infusion in patients with refractory metastatic CRC.
Other interesting results aimed at increasing NKG2D-mediated killing activity of NK cells
against CRC liver metastases have been carried out from preclinical studies focused on
the analysis of the anti-tumor activity of allogeneic healthy donors’ NK cells modified
with a chimeric NKG2D receptor fused to co-stimulatory (OX40) and signaling (CD3ζ)
domains (to enhance their intrinsic activity) and equipped with membrane-bound IL-15
(to enhance in vivo persistence) [139,140]. Indeed, NKG2D-CAR-NK cells are shown to
perform enhanced in vivo cytotoxicity against hepatocellular carcinoma cells in a SNU449
(HCC cell line) xenograft model [141].

Table 1. Current preclinical studies describing engineered NK cells to target CRC.

Targeted Molecules NK Cell Sources Engineered
Constructs References

NKG2D-Ls Peripheral Blood NKG2D-CD8-DAP12 [138]

NKG2D-Ls Peripheral Blood NKG2D-OX40-CD3ζ
and mbIL-15 [139,140]

Ep-CAM NK-92 anti-EpCAMscFv-
CD8-4-1BB-CD3ζ [142]

CEA NK-92 anti-CEAscFV-CD8α-
CD3ζ [143]

MUC-1 NK-92 anti-MUC1-pNK [144]
HER-2 NK-92 ACE-oNK-HER-2 [145,146]

Preclinical/clinical studies are developing an immune-mediated therapeutic inter-
vention to also target EpCAM positive cells since high expression of EpCAM (CD326) is
one of the most common alterations in solid tumors of epithelial origin, including CRC
(NCT03013712) [147,148]. A recent preclinical study analyzed the effect of NK-92 modified
with a second-generation CAR, targeting EpCAM, in the control/eradication of the CRC
line HCT-8-Luc in a subcutaneous xenograft NOD/SCID mice model and demonstrated
that CAR-NK-92 cells significantly reduced tumor growth compared to the control NK-92
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cell line [142]. The anti-tumor response could also be incremented by the combined use of
Regorafenib, a multikinase inhibitor with activity against different protein kinases involved
in oncogenesis [149,150] and successfully used to treat refractory metastatic CRC [151].

CEA is considered another molecule to direct targeted therapy (NCT02349724) [152]
since it is widely expressed in CRC tissues and scarcely expressed in normal adult tissues
(lung cells and GI-epithelial cells). In a preclinical study, anti-CEA CAR NK-92MI, an IL-2
independent derived NK-92 cell line, has been demonstrated to recognize and kill CEA-
expressing tumor cells at high and moderate levels [143]. Since chemotherapy frequently
induces up-regulation of CEA, anti-CEA modified NK cells could be a secondary rescue
line of intervention in the treatment of refractory CRC. However, further evaluation on
CEA cell-mediated targeting will be needed since clinical results obtained by targeting
CEA with CAR-T cells have shown high toxicity, may be related not only to the CAR-T-
induced cytokine storm upon recognition of antigen on tumor but also to non-tumor tissues
(NCT01212887) [153].

Actually, a broader set of molecules is being studied as CAR targets for CRC treatment,
and, among them, MUC-1 and HER-2 appear as suitable targets for cell-mediated therapy
(Table 1).

Further, MUC-1 is highly expressed in CRC cells, and increasing evidence suggests
this highly glycosylated protein is a potent target for diverse immunotherapy strategies,
including the generation of modified NK cells equipped with anti-MUC-1 CAR. In this
line, a phase I/II clinical trial (NCT02839954) is evaluating the safety and effectiveness of
anti-MUC-1 CAR NK cell immunotherapy in patients with MUC-1+ relapsed or refractory
solid tumors [144].

HER-2 belongs to the EGFR family, and its overexpression is correlated with the stage
of disease and reduced survival in CRC [154,155] as well as in breast cancer and gastric
adenocarcinomas [156–158]. Further, an NK-92-derived product is under investigation
for a clinical translation aimed at treating HER2-expressing solid tumors (NCT04319757).
Indeed, it has been recently shown that an adapted subpopulation of NK-92 expressing
functional endogenous CD16 and further modified with the conjugation with Trastuzumab,
an anti-human epidermal growth factor receptor 2 (HER-2) antibody, displayed enhanced
cytotoxicity against HER-2-positive targets in vivo and in vitro. The absence of cell manipu-
lation with viral vector or transposon systems, possibly mediating viral insertion mutation
and imprecise chromosomal insertion, respectively, could represent an advantage with
respect to other engineered products [145,146].

6. Future Perspectives

The combination of different strategies to fully unleash cytotoxic immune cell function
is certainly one of the most promising approaches to increase their impact in anti-tumor
immunotherapies. For example, the combination of immunotherapies aimed at reducing
the suppressive effect exerted by TME-related factors with ICI or triggering mAbs holds
promise to increase NK and T cells’ anti-tumor potential. In this context, the adenosine
signaling pathway has quite recently emerged to be a target for immunotherapy in the
treatment of solid tumors. Indeed, adenosine represents an immune-suppressive modulator
impairing CD8 T and NK cell anti-cancer immune response. In particular, the ecto-enzyme
CD73, which is overexpressed in response to hypoxia signaling and, together with CD39,
converts extracellular ATP to adenosine, represents a very promising candidate [159–167]. A
recent paper by Kim et al. suggested that blocking ATP/adenosine signaling in combination
with PD-1 inhibitors results in a synergistic approach with the potential to improve the
treatment of refractory CRC [168] and refractory renal cell cancer [169]. In this regard, in
the preclinical setting, CD73 blockade has been demonstrated to enhance the ability of
NKG2D CAR-engineered NK-92 cells to restrain tumor growth in lung cancer xenograft
models [170]. Besides inhibiting adenosine production, blocking the activity of IDO1, an
enzyme overexpressed in CRC and other tumors, which converts tryptophan (Trp) in
immunosuppressive catabolites, could be a promising strategy [171]. In particular, Trp-
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derived kynurenine limits T cell proliferation and NK cell cytotoxicity by down-modulating
the activating receptors NKp46 and NKG2D [172]. Along this line, two trials (NCT02178722,
NCT02959437) have explored the combined effect of PD-1 blockade and IDO1 inhibition in
MSS patients and could provide interesting hints to optimize immune treatments in solid
tumors by rescuing NK and T cell effector function.

Exploring new possibilities to potentiate NK cell function in vitro before infusion
in adoptive cell therapy is another open field of investigation. Romee and colleagues
pre-activating ex vivo allogeneic NK cells with a mixture of cytokines, including IL-12,
IL-15, and IL-18, characterized the so-called “cytokine induced memory-like NK cells”
(CIML-NK), which show enhanced proliferation capability, high IFN-γ production, high
cytotoxicity, and, after a second encounter with tumor targets, an enhanced recall re-
sponse [173,174]. CIML-NK cells appear as a promising NK cell therapy and clinical trials
evaluating the use of CIML-NK for refractory/relapsed AML patients showed encouraging
results, prompting the design of clinical trials evaluating the use of CIML-NK in solid
tumors [175]. Moreover, the CIML-NK platform could be further combined with other
immune-mediated strategies, such as CAR engineering. In this regard, recent studies on
CAR-engineered CIML for targeting resistant B lymphoma and AML demonstrate the
feasibility of this alternative approach for cancer immunotherapy [176,177]. Interestingly,
a novel triple-cytokine fusion molecule has been recently created (named 18/12/TxMin),
composed of the scaffold of N-803 linked with IL-18 and the IL-12 p70 single-chain. This
novel molecule exactly mimics the effect of exposing NK cells to the combination of in-
dividual cytokines both in vitro and in vivo and could represent a more suitable tool to
activate and expand CIML-NK cells for adoptive therapy purposes and combinatorial
therapies [178]. In addition to cytokine exposure or mAb-mediated triggering, NK cell
function can be greatly potentiated through Toll-like receptor engagement [179–181]. Along
this line, a recent study by Long and colleagues demonstrated that NK cells exposed to
Cetuximab in combination with oncolytic reovirus were activated mainly by TLR-3 and
showed increased ADCC against CRC lines in vitro independently to KRAS mutation
status and EGFR expression level. Importantly, the combined exposure to reovirus and
Cetuximab provided a greater NK-mediated anti-tumor effect than monotherapy with
Cetuximab in vivo [182].

Another real challenge in NK-mediated immunotherapies for solid tumors is to in-
crease not only NK cell effectiveness but also their abundance in the TME [183]. Up-
regulating chemokine receptors on NK cells can be a valuable option to achieve this goal
in CRC. In a recent study, the up-regulation of the chemokine receptor CXC chemokine
receptor 2 (CXCR2) and IL-2 expression on NK-92 cells by CRISPR-Cas9 gene-editing has
been shown to increase migration into tumor sites and induce stronger cell-killing and pro-
liferation activity of engineered cells. The benefit of increased recruitment of gene-edited
NK-92 cells was also confirmed by better control of tumor growth in vivo [184].

Finally, identifying novel markers and up-regulated or dis-regulated pathways during
neoplastic transformation is paramount to designing new specific mAbs to directly target
cancer cells but also to develop combined therapies taking advantage of NK-mediated
ADCC response.

Several immunotherapeutic strategies against CRC involving NK cell activity are,
therefore, under evaluation and are opening interesting perspectives. However, a deeper
understanding of the immune landscape in different types of primary CRC and metastatic
lesions, including a sharp analysis of NK cell signature and function, will further contribute
to better design of novel immunotherapies.
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