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Abstract: Background: We focus on the inland rail forwarding of import containers from a marine
terminal. Specifically, we present a discrete-event simulation study related to container-loading
operations by train, evaluating different train departure policies within a predetermined schedule
based on the capacity of the rail network. The aim is threefold: manage more containers shipped by
train, improve terminal operational efficiency, and increase the rail share. Methods: The proposed
procedures take full advantage of the digitization and visualization of data currently present in
the terminal with the aim of improving the performance indices of interest, thereby increasing the
terminal‘s operational efficiency. We evaluate the medium- and long-term impact of alternative
strategies on container dwell times and the possible increase in the number of containers shipped
by train. Results: The computational tests are performed with data from a terminal in the port of
Genoa (Italy). The results show the relationships between train departure management policies and
train departure distributions. The number of departing trains, cancelled trains, and trains departing
with load percentages below 70% is studied. Average loads per train and estimated delays are
also analyzed. Conclusions: It is noted that the results, which can be obtained with data from any
terminal, are of great importance for optimizing operational management, offering practical solutions
to improve efficiency and reduce container downtime.

Keywords: maritime logistics; container terminal; train scheduling; inland forwarding; discrete-
event simulation

1. Introduction

Freight transport has been on a positive trend since the turn of the century, even
considering the recent periods of crisis due to the COVID-19 pandemic and the geopo-
litical situation caused by the war between Russia and Ukraine. The European Commis-
sion’s White Paper [1] of 2011 reports that freight transport will increase by 80% until
2050 throughout Europe. Due to this growth in freight transport, the importance of ports as
key international nodes in the multimodal logistics chain has also increased, and, as a result,
containerships now account for around a quarter of the world’s total fleet. For this reason,
many authors have emphasized the need to efficiently manage the flow of goods within
maritime terminals, as in Haralambides 2019 [2], and between ports and the hinterland,
as in Essel et al., 2022 [3] and Feng et al., 2023 [4]. Particular attention has also been paid
to sustainable ports, mainly focusing on the need to contain peak port congestion and
mitigate environmental impact (see Wang et al., 2021 [5], Mehmet 2023 [6], Wu & Zhang
2023 [7], and Pohl & Geldermann 2024 [8]).

It is worth noting that container shipping from ports is still dominated by road trans-
port due to its flexibility, although there is now a growing focus on rail as a more sustainable
and efficient mode of transport for long distances. However, the modal shift between road
and rail faces several operational challenges, including limited infrastructure capacity and
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the need for precise train scheduling to optimize the flow of goods. As a contribution to
increasing the modal split by rail, in this paper we analyze the impact of different train
schedules, derived from the evaluation of alternative train loading strategies, to test the
possibility of increasing the number of containers shipped by rail while keeping the avail-
able port resources unchanged. Unlike existing studies, which often focus on a single train
departure policy, our approach examines multiple policies to provide a comprehensive
comparative study. This innovative aspect allows a better understanding of the impact of
different scheduling strategies on terminal operations and rail transport efficiency. The
objective of the present paper is thus threefold: (a) to manage a larger number of con-
tainers shipped by trains, (b) to have good performances in terms of terminal operational
efficiency, and (c) to increase the rail share. It should be noted that these objectives are
closely interrelated and are assessed against the performance indices evaluated in this
study, relating to the dwell time of the containers, number of trains departed, number
of containers shipped by train, and train load percentage. We aim to demonstrate that it
is possible to improve the performance indices of interest by applying operational rules
that can be easily implemented, provided that the necessary information is available on
digital platforms.

The need to improve the level of digitization of a maritime terminal is now unavoid-
able, and there are many factors affecting it, as reported, for instance, in Jović et al., 2022 [9]
and Seo et al., 2023 [10]. As regards the improvement of operational efficiency, several re-
search papers have appeared in recent literature on the efficient use of handling equipment
in both the storage yard and the rail side of container terminals. Among others, a review
of train load planning including several practical and terminal operational constraints is
proposed in Heggen et al., 2016 [11]. In Rathi & Upadhyay 2022 [12], the authors pro-
posed heuristic algorithms to minimize the handling time of the cranes while considering
double-stack train loading operations. Double-stack trains are also considered in Ruf et al.,
2022 [13], where two integer linear programming models are presented for the integrated
load planning and sequencing problem.

With regard to increasing the rail modal split, many papers emphasized the need to
promote transport policies that incentivize the shift of container volumes from road to rail,
observing that in many countries, such as Italy, road transport is still the most convenient
shipping modality, as reported in Mostert et al., 2017 [14]. In Ambrosino et al., 2018 [15],
the authors analyzed the effects of different planned interventions for increasing the rail
capacity of the northern Italian logistic network. Moreover, research works, such as Petro
& Konečny 2017 [16] and Ambrosino & Sciomachen 2021 [17], are focused on evaluating
the negative impact of high volumes of containerized flows sent from maritime terminals
to the hinterland by using the road modality. The train departure strategies proposed in
this paper aim to increase the number of containers shipped by train, although, as we will
see in the experimental results section, referring to the present case study on a container
terminal in the port network of Genoa (Italy), the effect on modal shift is limited by the
capacity of the rail network. The analyzed train departure rules were evaluated by running
several independent runs of a discrete-event simulation model of the terminal under study
implemented in Witness Horizon 2024.

In recent literature, there are an increasing number of simulation experiments con-
ducted with the Witness software environment to analyze the operational efficiency of
maritime terminals. These include, among others [18–21]. In particular, in Li 2024 [18], the
author uses Witness to improve the efficiency of the intelligent control system of the port
tipping line, thereby increasing the efficiency of loading and unloading operations. The
input–output flow efficiency of the port of Tianjin is analyzed in Baoqin et al., 2016 [19]
with different equipment, while an efficient use of the resources in container terminals
is examined in Zhang 2022 [20]. As in the present case, in Liang et al., 2016 [21], the
simulation model is supported by optimization procedures implemented with MATLAB
(https://ww2.mathworks.cn/products/matlab.html, accessed on 30 June 2024) in a termi-
nal represented by parallel queueing networks.

https://ww2.mathworks.cn/products/matlab.html
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The problem we are involved with is described in detail in Section 2, together with
an analysis of the input data related to the import container flow. Section 3 reports the
proposed applied trains leaving rules, while the proposed discrete-event simulation model
is described in Section 4. The results of the different analyzed scenarios obtained in
independent simulation runs are reported and discussed in Section 5. Finally, conclusions
and guidelines for future research directions are reported.

2. Terminal Analysis and Simulation Data

The terminal analyzed in this case study is in Pra, in the port area of Genoa (Italy). It is
the largest terminal reality in the port of Genoa and in the upper Tyrrhenian Sea. Currently,
this terminal handles approximately 2.4 million twenty equivalent units (TEUs) per year,
which is about 85% of the containerized traffic of the entire Port of Genoa, being its focal
point for container traffic (see Port Authority’s 2024 report [22]).

As already mentioned, in the present study we focus on the flow of import containers
to be forwarded by train from the terminal. This flow was derived from the container
volume and equipment capacity information provided by the port authority and reported
in [22–25]. The input data obtained useful for our study are shown in Table 1, where for
each data item the name, the name of the variable attributed to it, the numerical value, and
the percentage value are given in the corresponding columns, respectively.

Table 1. Data related to the import flow of containers shipped by train.

Data Description Variable Name Value %

Total import TEUs at Ports of Genoa TEUimport 1,218,502
Total import TEU at Ports of Genoa shipped by train TEUimport−train 185,983 15.3

# import containers at PRA and SECH terminals CONTAINERimport 713,721
# import containers at PRA and SECH shipped by train CONTimport−train 108,937

# import trains leaving terminal PRA trainfrom Pra 60
# import trains leaving terminal SECH trainfrom Sech 11 84.5

# import containers shipped by train from PRA CONTPRA import−train 92,059 15.5

From the data in Table 1, an average interarrival time of 5.7 min was derived for import
containers. An exponential distribution of their interarrival times was also assumed.

The details of the characteristics of the containers that arrived in sequence are shown
in different files generated by the simulation program ContainerFlow_Simulator described
in Bruzzone et al., 2024 [26]. More precisely, the ContainerFlow_Simulator program can
generate scenarios from open data using artificial intelligence (AI) techniques capable
of merging and combining integrated information with a dynamic stochastic simulation
model. The generated files show the containers in chronological order with associated
information of interest for the subsequent simulation, such as their destination and size. In
this study, we considered 20′, 40′, and 45′ containers.

For the selection of the interports served by rail from the terminal we referred to [24],
where the following destinations are listed: Milan (including Melzo and Vittuone), Rivalta
(including Alessandria), Piacenza, Padua, Verona, and Reggio Emilia (including Rubiera).
The map of the considered north-western Italian zone where terminal Pra is located is
reported in Figure 1. Figure 1 also shows the railway network connecting the port ter-
minal of Genoa PRA to the main interports it serves. The visualizations of the nodes
of the network have been realized within this study using QGIS3.34.3 software [27] and
OpenStreetMap [28].

The number of trains leaving the terminal for each destination was obtained from the
data contained in the files generated by the ContainerFlow_Simulator program described
in Bruzzone et al., 2024 [26], calculating the container percentages for each destination and
assuming a time horizon of one semester. Then, we used these values to divide the trains
among the four tracks, thus obtaining the values shown in Table 2. These data allowed us
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to decide the container routing rules in the discrete-event simulation model presented in
Section 4. Note that in total we had 68,851 containers and 60 departed trains.
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Table 2. distribution of departed trains to various destinations.

Destinations # Containers # Trains

Milano 24,853 22
Rivalta 5038 4

Piacenza 868 1
Padova 7714 7
Verona 19,113 17

Reggio Emilia 11,265 10

3. Train Departure Planning

From the frequency and capacity of the railway line described in the previous section,
the weekly train departure times were generated randomly using a procedure implemented
in MATLAB. The values are generated according to the different policies allowed for the
terminal’s rail container forwarding management, which will be evaluated later using the
simulation model described in Section 4. To develop the departure schedules, the MATLAB
procedure requires the following input data:

• total trains per week;
• destinations to be served;
• number of trains per week per destination;
• number of trains per day.

About the last two figures on the list, which have not yet been illustrated, different
scenarios were used to choose the number of leaving trains per day. In particular, the
following cases were considered to assess their impact on terminal performance in response
to different scheduling:

• evenly distributed departures;
• departures distributed over medium-, low-, and high-frequency days;
• departures distributed over low- and high-frequency days only.

The procedure generates a schedule of train departures, specifying their track, depar-
ture time, and destination. Furthermore, we considered an added constraint to avoid, if
possible, the departure of two consecutive trains to the same destination.
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Currently, trains leave from the terminal tracks at the appointed time to connect to
the national rail network. Therefore, no control is conducted on the number of containers
loaded on the train (i.e., the percentage of the train load) and the number of containers
waiting in the yard for the same destination. As far as the frequency of train departures is
concerned, Scenario 1, described below, is followed.

Starting from the current operational rule of the train departures, the following two
different management policies are proposed and compared to possibly improve the current
performance indices.

Flexible Delay Policy: A delay in departure up to a maximum of 30 min is allowed,
provided that the load level does not exceed 70% of the maximum capacity of the train.
When the train is ready for departure, the load percentage is checked. If the load exceeds
70% of the maximum capacity, the train leaves at once. Otherwise, it is checked whether
there are containers in the yard with the same destination as the train. If the number of
such containers exceeds a predefined threshold (equal to 5), the train waits up to 30 min to
allow for these containers to be loaded.

Strict Load Adherence Policy: If at the scheduled departure time the train does not
reach 70% of its largest load, the next train is deleted, and the current train continues to be
loaded. The departure of the train is then rescheduled to the time when the delayed train
was originally supposed to leave.

The diagram of the operations performed according to the Flexible Delay Policy is shown
in Figure 2. In practice, when the departure time is reached, two checks are conducted:

1. load percentage check: if the load is greater than 70%, the train leaves. Otherwise, the
train loading process continues;

2. container availability check for the train’s destination: if the number of containers
available in the yard waiting for being loaded onto a train is less than a given value
(i.e., 5), the train is not delayed and leaves. Otherwise, the loading process continues
until the maximum delay of 30 min is reached.
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Figure 2. Diagram of the Flexible Delay Policy.

Note that, as can be seen from the diagram reported in Figure 3, in the case of the
Strict Load Adherence Policy, no delays are allowed, but if the train has not reached the
required load levels, the train does not depart, causing it to be cancelled and the next train
to wait. In practice, when the departure time is reached, the load percentage is checked. If
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this percentage does not reach 70% of the largest load, the scheduling of train departures is
changed as follows: the train being loaded assumes a new departure time, corresponding
to the time of the train leaving later. It is then necessary to update the departure time and
remove the next one. This procedure can only be performed once, after which, once the
new departure time has been reached, the train leaves regardless of the current load level.
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As these data were not available, a procedure implemented in MATLAB was devel-
oped to obtain the weekly train departure times. The number of trains scheduled to leave
from the terminal each day thus generated is shown in Table 3. It should be noted that a
total of 60 trains are scheduled to leave from the four available tracks each day.

Table 3. Number of daily leaving trains.

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5

Sunday 0 0 0 0 0
Monday 3 3 10 15 20
Tuesday 11 11 10 5 0
Wednesday 16 16 10 15 20
Thursday 11 16 10 5 0
Friday 16 11 10 15 20
Saturday 3 3 10 5 0

From the values given in Table 3, different scenarios for scheduling train departures
were generated. It is worth noting that in setting up the scenarios illustrated in Figure 4,
since the departure of trains involves their forwarding on the main rail network, the main
constraint considered was to leave a fixed number of trains, i.e., 60, over the course of a
week. Consequently, the frequency of daily departures was varied to assess its impact on
the parameters under analysis. The derived scenarios are reported in Figure 4:

• Scenario 1: Trains are distributed according to their daily frequency. Trains are then
classified into three types throughout the day according to their departure frequency,
i.e., medium-, high-, and low-frequency;
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• Scenario 2: The same distribution as described in Scenario 1 is used, but the high-
frequency days are adjacent;

• Scenario 3: An even distribution of train departures over six days from Monday
to Saturday is used. An equally distributed number of trains is then allocated to
these days;

• Scenario 4: Low-frequency and high-frequency days are considered. The trains are
then distributed over three low-frequency days and three high-frequency days;

• Scenario 5: A homogeneous distribution of train departures over the three middle
days of the week is considered.
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4. The Discrete-Event Simulation Model

The discrete-event dynamic simulation study related to the problem at hand was imple-
mented in Witness Horizon v.24, whose functionalities are described in Waller 2012 [29,30].
The layout of the reference terminal is shown in Figure 5. It is worth noting that we have
only considered the layout related to the process of container handling, from their arrival
at the terminal platform to their loading onto a train for their inland forwarding.
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As can be seen from Figure 5, there are 11 buffers in the model, corresponding to
waiting areas for the containers, and eight machines, corresponding to equipment of
the terminal.

In the model, containers stand for the dynamic components, denoted parts. The
containers are generated using a NegExp distribution with an average time of 5.7 min. This
value is calculated based on the average number of annual import containers leaving by
train from the terminal in Pra, as derived and reported in Table 1. The required information
about the parts is obtained by reading the data table ‘DataContainer’ provided in the input
file format .csv generated by using the ContainerFlow_Simulator described in Bruzzone
et al., 2024 [26], as shown in Figure 6. Each column of the data table corresponds to an
attribute of the container created, specifically: destination, expressed as a numerical value,
and size (20′, 40′, or 45′).
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Concerning the buffer, the railyard one is the container storage area close to the rail
network. Within this simulation model element, the computation of the number of waiting
containers for each destination is conducted by creating proper input and output actions.
For this purpose, the variable dispositioni is defined, where i is the identification code of
the corresponding destination. Then, the following action rules are considered within the
dispatching rules to the railyard out from buffer:

action on input: i f containerdestination = i do dispositioni = dispositioni + 1

action on output: i f containerdestination = i do dispositioni = dispositioni − 1

As an output option from the buffer, a conditional rule is chosen requiring that the
container destination attribute corresponds to one of the destinations associated with a
train being loaded in one of the four tracks. The rule is as follows:

If containerdestination = traindestination1 ∨ traindestination2 ∨ traindestination3 ∨ traindestination4

Furthermore, with reference to the model illustrated in Figure 5, the six buffer desti-
nations represent the arrival interports. In each of them, the number of arriving trains is
counted. This information allows us to compare the train management policies adopted.

Concerning the machines, we considered four rail-mounted gantry cranes (RMGs)
used to move containers from the yard to the trains. We assumed an Erlang distribution as
the handling cycle, whose average value is 5 min with the parameter K = 3. This distribution
is considered to be the most appropriate because conditional cycles are used within the
machinery exit rules, which will be described shortly. The RMG exit management rule
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checks two factors: the first is the destination of the container, comparing the destination
attribute with the destinations of the trains to be loaded. Secondly, the available space
onboard the train is controlled by the control_dimension function. This function returns a
value between 0 and 3, depending on the space available onboard each train, according to
the following operational condition:

control dimension =


0 can load any container

1 can load 20′e 40′ container
2 can load 20′ container

3 no more space

The implemented control rules are then linked together so that containers are loaded
onto the train with the correct destination and only if there is sufficient space. This control
procedure is synthetized in Figure 7. It is worth noting that the order in which the trains
are selected to execute the cycle described in Figure 7 affects the train loading percentage.
In fact, if there were two trains with the same destination on two tracks and the control
was always carried out in the same order, the first train would always be loaded, and the
second would remain empty. To avoid this situation, each RMG crane used to load the
trains has a different train control order.
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Finally, a buffer (Buffer_Track_N) and an assembly machine (assembly_track_N),
both relating to the same track N, are used to represent the loading of trains and their
departure. In particular, the buffer input action allows counting the containers that are
loaded, considering their size, and thus the space (in percentage) occupied each time. The
recognition of the departure time and destination to be assigned to the train is carried
out by means of four data tables called Track_i. These data tables are an integral part of
the simulation model and are depicted in Figure 8. The tables read as input the .csv files
generated by MATLAB with the weekly scheduling. When each train leaves, the timetable
cell, expressed in minutes, is updated with the following week’s timetable in this way:

traindeparture = traindeparture + 7 × 60 × 24

The assembly machine, on the other hand, assembles the departing containers by
generating a train. The assembly action takes place according to the planned train departure
strategies described above, namely the Flexible Delay Policy and Strict Load Adherence Policy.

To run the model and reproduce the operating scenario of the reference terminal, the
following time shifts were implemented in the simulation models:

• shift 1: the terminal runs 24 h a day, every day of the year (except Christmas day and
1 May). Container arrivals follow this shift;

• shift 2: operators can work in the railway yard from 6 a.m. to 10 p.m. every day of the
year (except Christmas day and 1 May). This shift is used for the RMGs in the yard;
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• shift 3: trains can run from 6:00 a.m. on Monday to 6:00 a.m. on Sunday.
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5. Simulation Results

The simulation experiment was conducted on a computer with the following technical
specifications: 11th Gen Intel(R) Core (TM) i7-1165G7 @ 2.80GHz (2.80 GHz) x64-based
processor, 16.0 GB (15.8 GB usable) installed RAM, and a 64-bit operating system. To
verify the steady-state conditions (see, e.g., Law 2015 [31]), 33 independent runs were
executed with different seeds, using a skip between seeds of value 100. Each simulation
was conducted over a time horizon of 6 months. Moreover, an initial warmup period of
2 months was considered, corresponding to one-third of the total analysis period of this
study. For each scenario under analysis, it was possible to run the instances automatically
thanks to Witness Horizon’s experimenter option. This option allows the number of runs,
seed skip value, warm-up time, and total simulation time to be set initially. The use of
this resource simplified the process, allowing simulations to be run automatically. This
approach ensured efficient management of time and computational resources.

The first step of our simulation experiment was to reproduce the actual behavior of
the import containers from their arrival to their loading onto trains. Therefore, from the
data shown in Tables 1 and 2, we applied the train-departing rules currently used in the
terminal described in Section 3, thus obtaining the main performance indices reported in
Table 4, that is, the number of departed trains and the number of departed trains having a
load level less than 70%. The results reported in Table 4 show that 82% of trains leave with
a load less than 70% of their maximum capacity.

Table 4. Performance indices of the train loading operations in the present scenario.

Dwell Time # Trains Departed # Trains with Less than 70% of Max Load

6128 1549 1265

The first test of the developed simulation model was dedicated to the evaluation of
the goodness of the results and the accuracy of the model itself. This test was performed on
the dwell time of the containers in the railyard considering the tn−1-Student confidence
interval, with a 95% degree of confidence, and by executing 33 independent runs, as shown
in Figure 9.

As a first analysis of the simulation experiments, we tested the impact of train depar-
ture policies on the waiting times of containers in the railyard buffer. The results show that
the Strict Load Adherence Policy train departure rule results in an increase in the dwell
time of containers in the buffer. This behavior is illustrated in Figure 10. The number of
trains leaving from the terminal in the two departure management scenarios is reported
and compared in Figure 11. As shown in Figure 11, by adopting the Strict Load Adherence
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Policy, the number of leaving trains, and thus the number of containers handled by the
port, decreases. In practice, avoiding delays in train departures leads to a decrease in the
overall efficiency of the transport system, increasing the average time that containers spend
in the yard before being loaded onto trains.
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Table 5 shows that the percentage increases in dwell times do not have a linear
relationship with the reduction in the number of leaving trains. This nonlinear relationship
between the two analyzed indices suggests that an increase in dwell time does not lead
to a proportional decrease in the number of leaving trains. This implies that factors other
than the number of leaving trains influence the dwell time of containers in the buffer.
To make the most of this relationship, it is important to consider load and dwell time
management policies based on specific aims. For example, the Flexible Delay Policy might
be useful in scenarios where it is necessary to reduce dwell times and improve train load
efficiency. Conversely, the Strict Load Adherence Policy might be preferable when the aim
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is to increase train load rates, even if this means longer dwell times. The use of simulation
models to assess the impact of different policies can help make informed decisions and
balance efficiency and load according to operational needs. The number of trains leaving
with less than 70% of the largest load was also considered. The results of this analysis show
that the Flexible Delay Policy increases the loading efficiency of trains, as the comparison in
Figure 12 shows. The difference between the two train departure policies shows that, using
the Flexible Delay Policy, the terminal experiences lower container dwell times. In contrast,
the Strict Load Adherence Policy allows trains to increase their load percentage, improving
the overall efficiency of the transport system. This shows that although the Flexible Delay
Policy reduces the dwell time of containers, it results in lower loading efficiency of trains.
In contrast, the Strict Load Adherence Policy ensures more loaded trains, albeit at the cost
of longer container dwell time in the buffer.
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Table 5. Increase in dwell time and decrease in train departure.

Increase in Dwell Time Decrease in Trains Departed

Scenario 1 10,188 534
Scenario 2 10,951 645
Scenario 3 13,204 573
Scenario 4 10,588 577
Scenario 5 6785 563
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From the analysis of the scheduling scenarios for the Flexible Delay Policy, reported
in Table 6, it is evident that Scenario 3, with homogeneous departures for each day, is the
best in terms of average delays, dwell times, and number of leaving trains with a load of
less than 70 percent. In fact, this scenario reduces all these parameters, proving greater
overall operational efficiency. It is interesting to note, however, that Scenario 1, which is
closest to the scheduling policy currently adopted by the terminal under analysis, does not
appear to be the best in any of the parameters considered. This scenario excels neither in
reducing average delays nor in minimizing dwell times and the number of leaving trains
with suboptimal loads. The results reported in Table 6 show that the percentage of trains
leaving with a load less than 70% of maximum capacity is between 77% and 86%.

Table 6. Flexible Delay Policy results.

Scenario Dwell Time # Trains Left # Trains with Less than 70% of Max Load

Scenario 1 5292 1549 1253
Scenario 2 7159 1549 1284
Scenario 3 3271 1550 1191
Scenario 4 4819 1555 1266
Scenario 5 8409 1560 1341

From the analysis of the load adherence policy, shown in Figure 13 and Table 7, it is
interesting to note that each scheduling scenario improves only one parameter at a time,
with no obvious simultaneous improvements on multiple parameters. The results reported
in Figure 13 show that the percentage of trains leaving with a load lower than 70% of
maximum capacity is between 14% and 20%. One noteworthy finding is the significant
reduction in the number of trains leaving with less than 70 percent load in Scenarios 3 and
4. However, both policies keep a comparable number of trains leaving with a load below
70%. Moreover, both policies keep a comparable number of cancelled trains as in the
other scenarios. Scenario 2, on the other hand, has the highest dwell time among the
five scenarios analyzed. This suggests that although some policies may improve specific
operational aspects, such as train load percentage, other areas may be negatively affected,
as shown by the increase in dwell time in Scenario 2.
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Table 7. Strict Load Adherence Policy results.

Scenario Dwell Time

Scenario 1 15,480
Scenario 2 18,110
Scenario 3 16,475
Scenario 4 15,407
Scenario 5 15,194

These observations highlight the complexity of improved terminal management and
the importance of balancing various operational parameters to achieve overall efficiency.
Future research should aim to develop scheduling strategies that can improve multiple param-
eters simultaneously, reducing train cancellations and optimizing dwell times and capacity.

6. Conclusions

In this paper, we dealt with train loading procedures in a container terminal. In
particular, starting from the current level of operations, we examined whether it is possible
to improve the performance indices of interest, making the most of the digitization and
visualization procedures of the data currently present in the terminal. The indices we
examined were the dwell time, the average number of containers loaded on a train, and the
load level of trains waiting at the yard.

The proposed policies do not require additional resources but merely variations,
obviously permissible, of the current operating rules. To test the validity of the proposed
policies, which also include possible variations in train departure frequencies on a weekly
basis, a discrete-event simulation model was implemented with Witness. The results
obtained by running several independent simulations with different scenarios are very
promising. We have demonstrated that it is possible to improve the above-mentioned
performance indices by making minimal changes, provided that the necessary information,
i.e., the destination of the trains, the number of containers to be loaded and already loaded,
is available on digital platforms, such as those used within the Witness simulation software
environment. Among the most significant results are that the Flexible Delay Policy allows a
reduction in dwell time in the range from 5 to 48 h, while the Strict Load Adherence Policy
reduces the percentage of the number of departing trains with a load less than 70% from 82%
to 17%. It should be emphasized that the proposed operational rules are easy to implement,
and therefore, by having a data digitization system with the necessary information, it is
possible to truly adapt them to the actual needs of the terminal and increase its operational
efficiency. As a future development of this research, we intend to extend this case study,
where only standard containers are considered, to the case where there are also refrigerated
containers and containers with dangerous goods. These containers obviously have different
rules and priorities in the management of loading operations and constraints on waiting
time. Moreover, we wish to analyze how external factors, such as weather or geopolitical
events and environmental issues, influence the train departure strategies discussed in
this study.
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