
VOL. X, NO. X, X X 0000000

Sensor Applications

Trade-off between Accuracy and Computational Cost with Neural
Architecture Search: a Novel Strategy for Tactile Sensing Design

Christian Gianoglio1*, Edoardo Ragusa1*, Paolo Gastaldo1, and Maurizio Valle1**

1Electrical, Electronics, and Telecommunication Eng. and Naval Architecture Department (DITEN), University of Genoa, Genoa, Italy
*Member, IEEE; **Senior Member, IEEE

Abstract—This letter presents a neural architecture search to optimize tactile elaboration systems taking into account the
computational cost of the whole pipeline consisting of data pre-processing and a convolutional neural network (CNN)
model to extract information. The strategy is exploited to train standard 1D CNNs and binary CNNs on a 3-class touch
modality classification dataset. The experimental results show that systems based on standard CNNs outperform state-
of-the-art techniques in terms of accuracy and computational cost, while the ones based on binary CNNs reduce further
the computational cost with a small accuracy drop.

Index Terms—CNNs, NAS, Tactile systems, Touch Modality Classification, Smart Sensors.

I. INTRODUCTION

Modern prostheses equip tactile sensors to convey the sense of
touch to humans. Effective and efficient wearable elaboration devices
are required to collect and process the data from such systems. This
letter addresses a touch modality classification problem [1] adopting
an evolutionary neural architecture search (ENAS) [2] to design
the whole elaboration pipeline consisting of the data preprocessing
and the classification stages. The ENAS evaluates a custom loss
function suitable for resource-constrained devices that, differently
from standard approaches, takes into account the computational cost
of both stages and the accuracy of the classifier because pre-processing
could primarily affect the computational cost of the system when
designing tiny classifiers. As a result of the ENAS evaluating the loss
function proposed by [3], we outperform the state-of-the-art (SoA)
accuracy and computational cost by adopting 1D convolutional neural
networks (1D-CNNs) as classifiers. As a major result, the NAS enables
using binary weights CNNs leading to half of the computational cost
with a slight deterioration of the classification accuracy.

Touch modality classification is a well-known problem [4]–
[8]. In [1], the authors performed three touch modalities on a
piezoelectric sensing patch and they applied tensor-SVM and tensor-
RLS algorithms to classify the data. In subsequent years, researchers
proposed solutions to increase classification accuracy and reduce
the computational cost: k-NN and SVM to address a two-class
classification [9], [10], applying approximate computing techniques
to deploy the algorithms on a resource-constrained device; transfer
learning technique, transforming the data into RGB images [11];
recurrent neural networks (RNNs) to improve the accuracy and reduce
the computational cost [12]; shallow CNNs that achieved a good trade-
off between accuracy and computational cost [13], [14]; a kernel-SVM
based on a reduced space that attained 85.4% accuracy at the expense of
a huge computational cost [15]. All these works lack exhaustive search
in the hypothesis space of the classifier architectures and/or on the
pre-processing techniques applied to the data that affect the accuracy

Corresponding author: C. Gianoglio (e-mail: christian.gianoglio@unige.it).
The authors acknowledge partial financial support from AI-Powered Manipulation
System for Advanced Robotic Service, Manufacturing and Prosthetics (Intelli-
Man) project: EU H2022, Grant agreement ID 101070136.

Associate Editor: XXXXX XXXXXX.
Digital Object Identifier XX.XXXX/LSENS.XXXX.XXXXXXX

and the computational cost of the classification. Moreover, only a
few tackled the hardware implementation on resource-constrained
devices targeting shallow models.

NAS sets the SoA for designing tiny networks [16], [17] thanks
to the capability of encoding hardware constraints directly in the
procedure [18], [19]. In this letter, we merge the idea of taking into
account the computational cost of the whole elaboration pipeline
[3] with evolutionary NAS by evaluating a custom loss function to
optimize the architecture. To the best of the authors’ knowledge, no
previous works based on NAS took into account the constraints on
data preprocessing besides the DNN architecture. As a major result,
the proposed procedure offers an automatic strategy to optimize a
data elaboration system balancing the accuracy of the CNN classifiers
and the computational cost of the whole pipeline.

The approach is not tied to specific implementation details or
low-level optimization techniques. The deployment of the system on
a device is influenced by the characteristics of the target hardware
and the elaboration pipeline. Among the proposed elaboration steps,
CNNs have the largest computational requirement. However, many
optimized implementations for both specialized or general-purpose
computing units support the atomic operations involved in the forward
phase [19]–[21]. These optimizations can be applied to almost all
CNN architectures yielded by our proposed procedure. Therefore,
one can choose a target platform, retrieve hardware constraints, obtain
the most effective combination of processing and CNN by adopting
our strategy, and then deploy the architecture.

Experiments with a real-world dataset with 3 touch modalities
sensed by an e-skin confirmed the suitability of the proposed
procedure that based on the settings can generate very accurate
systems, beating previous SoA results of more than 3% [13], [15], or
very efficient systems based on binary CNN that significantly reduce
the computational cost.

To summarize, i) we propose an ENAS for the exploration of the
hyperparameters space of CNNs and the input data preprocessing
techniques, addressing the touch modalities classification problem;
ii) the results show that the ENAS provides a valuable strategy to
optimize the hyperparameters of the architectures and the elaboration
techniques applied to the input data, even setting a hard constraint
on the computational cost.

This article has been accepted for publication in IEEE Sensors Letters. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/LSENS.2023.3273733

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

0000000 VOL. X, NO. X, X X

II. METHODOLOGY

A recent work [3] proposed to optimize the elaboration pipeline
using a loss function composed of two terms measuring general-
ization performance and computing the cost of the whole pipeline,
respectively, obtaining SoA results for touch modality classification.
The optimization problem can be formalized as:

𝑖∗ = argmin
𝑖

�̂�𝑚 (𝑓 ∗𝑛,𝑖) + \𝑅𝐻 (𝑓 ∗𝑛,𝑖) where (1)

𝑓 ∗𝑛,𝑖 = argmin
𝑓 ∈F𝑖

�̂�𝑛 (𝑓) + _𝑅(𝑓). (2)

where �̂�𝑚 is the empirical risk computed on the validation set 𝐷𝑚, \ is
a hyperparameter that weights the computational cost of the processing
pipeline 𝑅𝐻 , F𝑖 represents the space of the algorithms described by
different values of hyperparameters, �̂�𝑛 (𝑓) is the empirical risk
computed on the training set 𝐷𝑛, and _ weights the regularization
term 𝑅 (e.g. L2-norm) that prevents overfitting.

In this letter, an ENAS [2] is enhanced pursuing the same result
of [3]. The proposed approach optimizes the hyperparameters of
a CNN and the data processing techniques simultaneously, taking
into consideration the computational cost of the whole elaboration
pipeline and the generalization performance of the architecture. The
optimization procedure is supported by the ENAS which, iteratively,
mutates parent models according to a search space generating an
offspring. The offspring are evaluated and ranked accordingly to a
loss function. The search is adjusted on the ranking to obtain a new
pool of parents for the next iteration. The optimization ends when
a stop criterion is met. The following sections detail our enhanced
ENAS for touch modality classification, describing the search space,
search algorithm, and evaluation criteria.

A. Search Space

In this proposal, ENAS enables the tuning of hyperparameters of
DNNs and processing techniques while considering the computational
cost of the system. This allows for achieving a suitable balance
between classification accuracy and computational cost. We employed
standard CNNs and two variants based on the binarization of weights
and the activation functions to classify the tactile data. In many
applications [21], binary CNNs achieved accuracies similar to standard
ones reducing the computational cost.

In detail, the three kinds of CNN adopted in the experiments
are a standard 1D-CNN (1D), a 1D binary-weights CNN (BW)
where the weights are forced to be -1 or +1, and a 1D full-binary
CNN (FB) where both weights and the output of activations of the
convolutional layers are binarized as -1 or +1. The 1D consists of
blocks connected sequentially made of convolution, dropout, and
average pooling (AP), resulting in a single-branch network. The last
layer provides the classification label and consists of a convolutional
layer with a number of filters equal to the number of classes and
kernel size equal to 1, a global AP layer to reduce the size of each
filter to one, and the Softmax layer. The BW and FB contain the
same functional blocks of 1D, with a batch normalization layer after
each AP layer. As hyperparameters of the CNN architectures which
form the search space SM of the models, we chose the number of
filters and kernel sizes of the convolutional layers.

As described in [3], a tactile sensing elaboration system (ES)
consists of the sensing array, a pre-processing stage, and the inference
stage. A datum X ∈ R𝐷1×𝐷2×𝑁 is collected by the sensing array,

where 𝐷1 × 𝐷2 is the geometry of the sensing patch (𝐷2 = 1 if
the sensors can be represented as an array) and 𝑁 is the number
of samples collected from each sensor. The pre-processing stage
filters the data, reducing the noise and the number of samples. As
a result, the X −→ X̃ ∈ R𝐷1×𝐷2×�̃� , where �̃� ≤ 𝑁 . The resulting
tensor X̃ feeds a CNN providing the classification label. The data
pre-processing affects both the accuracy and the computational cost
of the whole pipeline [3]. Thus, besides the hyperparameters of the
classifiers, the pre-processing techniques must be considered in the
search space of the ENAS. In this work, besides not applying any
technique to the raw data, we adopted similar processing previously
used in [3] based on filtering: 1) a low-pass FIR filter with the
hamming window, 2) a gaussian window convolved with the signals,
and 3) a decimation technique to reduce the sampling frequency. A
moving average with 50% of overlapped samples was also applied
to reduce the number of data samples to three different values. The
search space of the pre-processing techniques will be named SP
in the following. It contains all the combinations of filtering and
no-filtering with moving averages for an amount of 12 techniques.

B. Search Algorithm

Procedure 1 depicts the ENAS search procedure. The ENAS initially
generates a parent model P from the search space SM. P is then
trained with data processed by the technique extracted from SP,
solving (2) with a fixed 𝑓 = P. The ENAS computes the score
by evaluating the loss function solving (1) with fixed 𝑖 and \. 𝐷𝑛

and 𝐷𝑚, in (1) and (2), correspond to the training and validation
sets extracted from the processed data. At each step of the iterative
procedure, the ENAS generates a child C by applying two mutations
to the convolutional layers of the parent architecture blocks: 1) either
adding one block to the network (only if the maximum number of
blocks is not achieved), either removing one block from the network
(only if the minimum number of blocks is not attained), or no
modification to the architecture; 2) a random mutation is always
applied to a convolutional layer of a random block accordingly to
SM. As a result, the search on models adopts a schema based on
blocks of single-branch architectures. The weight sharing technique
[22] is also applied to enhance the accuracy performance resulting
also in a faster search. After the training, the ENAS computes the
score of C. The iterative procedure is repeated until a stop criterion
is satisfied: either ENAS reaches the maximum number of epochs or
the ENAS satisfies the early-stop criterion on the number of times
none of the children achieved a better score than the parent model.

C. Evaluation Criterion

Three constraints lead to the deployment of tactile sensing: infer-
ence time (IT), memory occupation (MO), and energy consumption
(EC). On resource-constrained devices with limited parallelism, IT
is proportional to the FLOPs number (simply FLOPs from now
on) that must be run from the CPU. The memory is divided into
two parts: flash memory hosting code and network parameters, and
RAM storing partial results as tensors. The bottleneck is usually the
RAM size, lower than the flash memory, since the tensors propagated
through the system easily become large. EC is strictly correlated to
the clock frequency, the total amount of operations, and the number
of operations that the processor can execute in one cycle. Since the
last performance highly depends on the targeted hardware and the

This article has been accepted for publication in IEEE Sensors Letters. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/LSENS.2023.3273733

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

VOL. X, NO. X, X X 0000000

Procedure 1 ENAS Search Procedure
0. Input Search spaces SM and SP, User-defined parameter \ [3]
1. Beginning Procedure

1) Generate a parent model P from SM
2) Train P with data processed by a technique picked from SP
3) save the score 𝑠𝑐𝑜𝑟𝑒_𝑏𝑒𝑠𝑡 computed by the loss function

2. Iterative Procedure
1: while stop criterion is not satisfied do
2: Apply a mutation to P based on SM generating a child C
3: Train C with data processed by a technique picked from SP
4: Compute the 𝑠𝑐𝑜𝑟𝑒 with the loss function [3]
5: If 𝑠𝑐𝑜𝑟𝑒 > 𝑠𝑐𝑜𝑟𝑒𝑏𝑒𝑠𝑡 thenP = C and save the pre-processing

technique as best else keep P and previous technique as bests
6: end while

3. Output Return the best model and pre-processing technique

approach proposed in this paper is not designed for a specific device,
this work proposes the evaluation of the loss function by measuring
the computational cost 𝑅𝐻 (1) as FLOPs or RAM MO during the
ENAS search. In the first case, ENAS computes FLOPs for both the
pre-processing and the classification stages; in the second, the ENAS
computes the largest MO measured as the number of elements that
have to be loaded in the RAM or cache memory of the resource-
constrained device during the online inference. As a result, the largest
MO corresponds to the size of the biggest tensor processed by the ES
because the operations on the tensors are computed by the networks’
layers sequentially, thus the output of a layer is saved into the RAM
to be processed by the consequent layer. The FLOPs are computed
accordingly to the convention presented in [3]. As an example, a
MAC operation between two floating point (FP) numbers requires 2
FLOPs, one for multiplication and one for the summation with the
cumulative result. In the case of binary networks, a MAC operation
between an FP number and a binary weight requires only one FLOP
since, when the number is multiplied by a negative weight, it just
changes the sign thus only the summation matters. In the following,
L𝐹 and L𝑀 will refer to the FLOPs and memory loss functions,
respectively. During the evaluation of the two losses in the search
procedure, the measured FLOPs and MO are normalized between 0
and 1 by their maximum values that can be computed a priori.

III. RESULTS AND DISCUSSION

The dataset, available at https://github.com/cosmiclabunige/Touch_
modalities_dataset, consists of three actions (i.e., slide a finger, roll
a washer and brush a paintbrush) on a 4 × 4 sensing patch. Each
action counts 280 data with a duration of 10 seconds sampled
at 3𝐾𝑆𝑎𝑚𝑝𝑙𝑒𝑠/𝑠. Formally, D = {(X, 𝑦)𝑖;X𝑖 ∈ R16×30000; 𝑦 ∈
{𝑆𝑙𝑖𝑑𝑒, 𝐵𝑟𝑢𝑠ℎ, 𝑅𝑜𝑙𝑙}; 𝑖 = 1, ..., 840}. D can be processed during
the ENAS with 12 techniques, resulting from the combination
of filtering proposed in [3] and moving average that reduces the
number of samples to 50, 75, and 100. The pool of candidates
networks hyperparameters is 𝑓 𝑖𝑙𝑡𝑒𝑟𝑠 = [4, 8, 12, 16, 32, 64] and
𝑘𝑒𝑟𝑛𝑒𝑙_𝑠𝑖𝑧𝑒 = [3, 4, 5, 6, 7, 8, 10, 12, 16]. During the procedure data
are split into training (480 data, 160 per class), validation (120 data,
40 per class) to evaluate the loss function, and testing (240 data,
80 per class) to compute the generalization performance. We set
the minimum and maximum number of models’ blocks to 2 and

7, the first parent model to 4 blocks, the dropout percentage value
to 0.2, the pooling size to 2, the stride for convolutions to 1, a
𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑟𝑎𝑡𝑒 = 1𝑒 − 3. The best model P is fine-tuned for 100
epochs with an early-stop criterion with a patience value of 8, and
user-defined parameter \ = 0, 1, 5, the maximum number of ENAS
epochs 𝑠𝑡𝑒 = 30, the maximum number of iterations 𝑚𝑎𝑥_𝑖𝑡𝑒𝑟 = 10
defining the early-stop criterion mentioned in II-B, and the ENAS was
run 5 times for each combination of model-\ and the results averaged.
In the following, we first present the results of the accuracies attained
by the ESs using the two loss functions on each model, based on
the \ values. Next, we compare the accuracies, FLOPs, and memory
usage of the ESs for the two loss functions on each model, again
based on the \ values.

Table 1 presents the accuracy of the ESs based on the three
models (1D, BW, and FB), evaluated on the test set and averaged
on the 5 runs. The first column lists ESs, and the others show the
average accuracy and the standard deviation for each ES evaluating
the two loss functions. The table highlights in bold the accuracies
that outperform the SoA results (85.4% in [15]). 1Ds outperform
the other ESs’ accuracies. Five out of six 1Ds present an accuracy
higher than SoA. For 1Ds and BWs, when adopting L𝑀 , at the
same value of \, the accuracies are higher with respect to L𝐹 . The
BWs, with \ = 0, present an accuracy drop lower than 3% with
respect to the 1Ds and a slight improvement with respect to the SoA.
When \ increases the accuracy drop widens up to ∼6%. At an equal
value of \, the accuracies achieved by BWs trained with L𝑀 are
slightly better than the ones obtained with L𝐹 . The FBs achieved
the lowest accuracies with respect to the other networks, with a drop
even higher than 20%. This deterioration is probably due to the hard
approximations of the full-binary architectures.

The radar plots in figure 1 show the ESs’ accuracy, FLOPs, and
MO with respect to \ values and the losses. Each plot displays a
colored triangle for \ = 1 and \ = 5 where the vertices are the
average accuracy, KFLOPs, and MO on the 5 runs. The values of the
three performance were normalized with respect to the maximum
values obtained with \ = 0, represented by the numbers below each
performance label. Since with \ = 0 the ES computational cost is not
relevant, the maximum accuracies in the figure result as the averages
between the \ = 0 values showed in Table 1. Figure 1(a) shows that
FLOPs and MO of the 1Ds evaluated with L𝑀 are lower than the ones
attained with L𝐹 , at equal \ value. The reason is that constraining
the MO, i.e. the dimensions of the tensors propagated through the
systems, affects the FLOPs since smaller models are targeted by
the ENAS. When \ = 0, the 1Ds require ∼2.69MFLOPs and 1840
elements in the memory; while, considering L𝑀 , the system takes
∼695KFLOPs and 800 elements when \ = 1, and ∼621KFLOPs and
800 elements when \ = 5. As a comparison with SoA, in [13] the
ES achieved an average accuracy of 85% with ∼1.31MFLOPs, thus
the 1Ds with \ > 0 present greater performance for both accuracy

Table 1: Accuracy results

Memory Loss Function FLOPs Loss Function
ESs \ = 0 \ = 1 \ = 5 \ = 0 \ = 1 \ = 5

1D
87.58 87.08 86.83 87.58 86.50 83.58
±1.00 ±1.39 ±1.31 ±1.22 ±2.70 ±1.64

BW
85.42 82.00 80.67 84.67 81.83 79.67
±1.67 ±2.22 ±1.64 ±1.91 ±2.60 ±2.03

FB
72.67 69.08 69.42 73.92 65.50 64.58
±3.71 ±5.32 ±4.72 ±1.91 ±1.89 ±5.37

This article has been accepted for publication in IEEE Sensors Letters. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/LSENS.2023.3273733

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

0000000 VOL. X, NO. X, X X

Fig. 1: Radar plots of systems performance. The solid lines refer to L𝑀 , while the dashed to L𝐹 . Red lines represent \ = 1 and greens \ = 5.

and computational cost measured as FLOPs. Figure 1(b) shows that,
considering L𝐹 , FLOPs and MO of BW with \ = 1 are the highest.
When \ = 5, BW with L𝐹 attains the lowest FLOPs but with a
similar value of MO of \ = 1. On the other hand, the BWs with L𝑀

are better in terms of MO and intermediate results in terms of FLOPs.
When \ = 0, the BWs require ∼1.54MFLOPs and 3360 elements
in the memory; considering L𝑀 , the system takes ∼421KFLOPs
and 800 elements when \ = 1, and ∼347KFLOPs and 800 elements
when \ = 5; while, with L𝐹 , the system takes ∼530KFLOPs and
1200 elements when \ = 1, and ∼236KFLOPs and 1120 elements
when \ = 5. Regarding 1Ds, the BWs require much lower FLOPs;
while concerning the MO the BWs present a bigger tensor when
\ = 0, while it has similar sizes when \ > 0. Hence, besides the
drop in accuracy, BWs are valuable options when the computational
cost measured as FLOPs is relevant. Eventually, looking at Fig. 1(c),
the FBs fail to improve in terms of FLOPs and MO with respect to
the BWs, except in the case of \ = 0. In any case, the high drop
in accuracy of the FBs makes them unsuitable for an embedded
implementation.

Summarizing, the 1Ds achieved the best results in terms of accuracy
also outperforming the SoA, 85% in our previous work [13] and
85.4% in [15], for both the loss functions and for all the \ values but
\ = 5 with L𝐹 . Moreover, with \ > 0, the FLOPs of 1Ds are lower
than 700K with respect to ∼1.31MFLOPs in [13]. Eventually, BWs
are valuable options when the computational in terms of FLOPs is
the hardest constraint.

IV. CONCLUSION

The paper proposed an enhanced ENAS to optimize a tactile
elaboration system for touch modalities classification. The ENAS,
in the search procedure, evaluates the computational cost of the pre-
processing and classification stages using a customized loss function.
Results show that standard 1D-CNNs attain the best accuracy,
outperforming the SoA by more than 3% while binary weights
CNNs present a better computational cost than standard 1D-CNNs,
with a drop in accuracy of at most 6%.

REFERENCES

[1] P. Gastaldo, L. Pinna, L. Seminara, M. Valle, and R. Zunino, “Computational
intelligence techniques for tactile sensing systems,” Sensors, vol. 14, no. 6, pp.
10 952–10 976, 2014.

[2] Y. Liu, Y. Sun, B. Xue, M. Zhang, G. G. Yen, and K. C. Tan, “A survey on
evolutionary neural architecture search,” IEEE Transactions on Neural Networks
and Learning Systems, pp. 1–21, 2021.

[3] C. Gianoglio, E. Ragusa, P. Gastaldo, and M. Valle, “A novel learning strategy
for the trade-off between accuracy and computational cost: A touch modalities
classification case study,” IEEE Sensors Journal, vol. 22, no. 1, pp. 659–670, 2021.

[4] D. Silvera Tawil, D. Rye, and M. Velonaki, “Interpretation of the modality of touch
on an artificial arm covered with an eit-based sensitive skin,” The International
Journal of Robotics Research, vol. 31, no. 13, pp. 1627–1641, 2012.

[5] M. Kaboli, A. Long, and G. Cheng, “Humanoids learn touch modalities identification
via multi-modal robotic skin and robust tactile descriptors,” Advanced Robotics,
vol. 29, no. 21, pp. 1411–1425, 2015.

[6] M. M. Jung, M. Poel, R. Poppe, and D. K. Heylen, “Automatic recognition of touch
gestures in the corpus of social touch,” Journal on multimodal user interfaces,
vol. 11, no. 1, pp. 81–96, 2017.

[7] D. Hughes, A. Krauthammer, and N. Correll, “Recognizing social touch gestures
using recurrent and convolutional neural networks,” in 2017 IEEE International
Conference on Robotics and Automation (ICRA). IEEE, 2017, pp. 2315–2321.

[8] Y. Hu, S. M. Bejarano, and G. Hoffman, “Shadowsense: Detecting human touch
in a social robot using shadow image classification,” Proceedings of the ACM
on Interactive, Mobile, Wearable and Ubiquitous Technologies, vol. 4, no. 4, pp.
1–24, 2020.

[9] H. Younes, A. Ibrahim, M. Rizk, and M. Valle, “Data oriented approximate k-nearest
neighbor classifier for touch modality recognition,” in 2019 15th Conference on
Ph. D Research in Microelectronics and Electronics (PRIME). IEEE, 2019, pp.
241–244.

[10] H. Younes, M. Rizk, A. Ibrahim, and M. Valle, “Algorithmic-level approximate
tensorial svm using high-level synthesis on fpga,” Electronics, vol. 10, no. 2, p.
205, 2021.

[11] M. Alameh, A. Ibrahim, M. Valle, and G. Moser, “Dcnn for tactile sensory
data classification based on transfer learning,” in 2019 15th Conference on Ph. D
Research in Microelectronics and Electronics (PRIME). IEEE, 2019, pp. 237–240.

[12] M. Alameh, Y. Abbass, A. Ibrahim, G. Moser, and M. Valle, “Touch modality
classification using recurrent neural networks,” IEEE Sensors Journal, vol. 21,
no. 8, pp. 9983–9993, 2021.

[13] C. Gianoglio, E. Ragusa, R. Zunino, and M. Valle, “1-d convolutional neural
networks for touch modalities classification,” in 2021 28th IEEE International
Conference on Electronics, Circuits, and Systems (ICECS). IEEE, 2021, pp. 1–6.

[14] F. Sakr, H. Younes, J. Doyle, F. Bellotti, A. De Gloria, and R. Berta, “A
tiny cnn for embedded electronic skin systems,” in International Conference on
System-Integrated Intelligence. Springer, 2023, pp. 564–573.

[15] Z. Yi, T. Xu, W. Shang, and X. Wu, “Touch modality identification with tensorial
tactile signals: A kernel-based approach,” IEEE Transactions on Automation Science
and Engineering, vol. 19, no. 2, pp. 959–968, 2021.

[16] D. Baymurzina, E. Golikov, and M. Burtsev, “A review of neural architecture
search,” Neurocomputing, 2021.

[17] P. Ren, Y. Xiao, X. Chang, P.-Y. Huang, Z. Li, X. Chen, and X. Wang, “A
comprehensive survey of neural architecture search: Challenges and solutions,”
ACM Computing Surveys (CSUR), vol. 54, no. 4, pp. 1–34, 2021.

[18] H. Benmeziane, K. E. Maghraoui, H. Ouarnoughi, S. Niar, M. Wistuba, and N. Wang,
“A comprehensive survey on hardware-aware neural architecture search,” arXiv
preprint arXiv:2101.09336, 2021.

[19] L. Sekanina, “Neural architecture search and hardware accelerator co-search: A
survey,” IEEE Access, vol. 9, pp. 151 337–151 362, 2021.

[20] T. Liang, J. Glossner, L. Wang, S. Shi, and X. Zhang, “Pruning and quantization
for deep neural network acceleration: A survey,” Neurocomputing, vol. 461, pp.
370–403, 2021.

[21] H. Qin, R. Gong, X. Liu, X. Bai, J. Song, and N. Sebe, “Binary neural networks:
A survey,” Pattern Recognition, vol. 105, p. 107281, 2020.

[22] H. Liu, K. Simonyan, and Y. Yang, “Darts: Differentiable architecture search,”
arXiv preprint arXiv:1806.09055, 2018.

This article has been accepted for publication in IEEE Sensors Letters. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/LSENS.2023.3273733

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

