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Abstract: Methanol as marine fuel represents one of the most cost-effective and practical solutions
towards low-carbon shipping. Methanol fueled internal combustion engines have a high level of
technological readiness and are already available on the market; however, technical data in terms of
fuel consumption and emissions are not yet easily accessible. For this reason, the present study deals
with the simulation of a virtual spark-ignition methanol engine, carried out in a Matlab-Simulink©

R2023a environment to assess the CO2 emissions in several working conditions of a possible ship
power system. The thermodynamic model of the methanol fueled engine is derived from a marine
gas engine simulator, already validated by the authors in a previous work. This article presents the
relevant modifications necessary to adapt the engine to the methanol fuel mode with regard to the
different fuel characteristics. The simulation analysis compares the results of the virtual methanol
engine with available data from a similar, existing gas engine, highlighting the differences in efficiency
and carbon dioxide emissions.

Keywords: ship decarbonization; marine engine simulation; methanol; natural gas; CO2 emissions

1. Introduction

The transport sector is facing massive changes due to the need to reduce climate-
altering emissions. For the shipping sector this challenge is still complex as ships’ size and
ships’ high energy and power demand make the current commercially available solutions
unsuitable. Moreover, the ship decarbonization process not only covers carbon dioxide
(CO2) but also a reduction in other harmful emissions, such as nitrous oxide (N2O) and
methane (CH4), as they present a Global Warming Potential (GWP) higher than CO2. To
this end, the Annex VI of the MARPOL Convention [1], by the International Maritime
Organization (IMO), reports increasingly stringent limits on some main air pollutants, such
as NOx and SOx, as well as requiring yearly improvements in ship efficiency. In terms of
greenhouse gas (GHG) emission and carbon intensity (CO2 emissions per transport work of
a ship) reduction, IMO aims to reach net-zero GHG emissions from international shipping
by 2050, a reduction of at least 40% in carbon intensity by 2030, and a 70% reduction in total
annual GHG emissions by 2040. Meanwhile, the European Union, aiming towards climate
neutrality by 2050, has included the shipping sector in the Emission Trading Scheme (ETS)
and set a new regulation on alternative fuels (FuelEU Maritime) pushing for the adoption of
alternative fuels and basing its strategy on the “polluter pays” principle. There are currently
various technologies that aim to reduce emissions and increase the efficiency of ships, but
they are not long-term solutions. Energy saving solutions such as more efficient hull forms,
air lubrication systems [2], waste heat recovery systems from internal combustion engines
(ICEs) [3–7], more powerful batteries and hybrid energy devices [8–10] can reduce air
pollutants but cannot reach net-zero emissions while ship propulsion systems are based
on fossil fuels. Therefore, further technological progress is crucial in the development of
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marine engines powered by green alternative fuels (i.e., produced from renewable sources
to guarantee zero emissions in the life cycle).

In this scenario, methanol seems to be a viable proposal to reduce emissions and it
is also suitable for both ICEs and fuel cells. (FC) [11,12]. In particular, FC systems with
onboard methanol reformers are being deployed in pilot projects in the United States,
Europe, and China [13,14]. However, in applications where a higher power density is
required, ICEs still represent the most suitable solution.

Although research on methanol is going fast and there are already many methanol
ICEs in the order books of the most important marine engine manufacturers [13], in the
scientific literature, there are few publications concerning marine ICEs running on methanol
(most of which refer to technical and economic analyses concerning the conversion of diesel
engines to methanol [15]). Nonetheless, for naval architects, it is very important to know the
fuel consumption map of the engine to evaluate its economic and environmental efficiency,
as ships’ operating conditions vary. The present study provides a contribution to cover this
lack of information by a simulation analysis of a virtual SI methanol internal combustion
engine, based on a model of a four-stroke natural gas engine model, developed by the
authors in [16]. Both NG and methanol engines operate according to thermodynamic cycles
that are quite similar (Otto–Miller cycle), so the choice can be considered reasonable.

The approach adopted for the simulation of the combustion process of the engine is
rather simplified; therefore, it allows for a reliable prediction of fuel consumption only,
without being able to calculate all the polluting emissions (e.g., NOx and particulate matter).
However, the development of the proposed simulator is useful for testing engines powered
by alternative fuels not yet marketed, mainly in terms of decarbonization effects on the
ship. In fact, the simulation analysis shows that a reliable prediction of fuel consumption
also easily allows for an estimate of equivalent CO2 emissions by an appropriate carbon
emission factor. Furthermore, the simulation code allows for this analysis to be extended to
any operating point of the engine, making it particularly useful in mechanical propulsion
applications, where the required power can significantly differ from the traditional load of
the propeller (i.e., the cubic relationship between power and revolutions), as can usually
happen in fast craft such as planing and semi-planing boats [17]. The same consideration
can also be made in the case of using the engine as an electric energy generator, which
can traditionally be used at constant rpm, but also at variable rpm as seen in some recent
applications [18].

1.1. Marine Alternative Fuels

Several alternative fuels are going to power ships in the near future, each one being
characterized by different chemical and physical properties. The most promising are natural
gas (NG or LNG), methanol, ammonia, and hydrogen.

NG is by far the most widely used alternative fuel with application onboard cruise
ships, bulkers, and ferries. Although providing a small reduction in GHG emissions,
NG manages to reduce PM and SOx which are also critical for ships to enter emission-
controlled areas. NG is commonly stored liquified at cryogenic temperatures in pressurized
and insulated tanks, i.e., space- and weight-demanding solutions which result in less space
for cargo or passengers.

Ammonia as a fuel is suitable for spark-ignition (SI) ICEs and compression ignition
(CI) engines in Dual Fuel (DF) configurations, with the injection of a pilot fuel (diesel oil) or
it can be also directly fed into fuel cells. Unfortunately, the main drawback of ammonia is
its toxicity for human beings, resulting in a very challenging integration onboard passenger
ships [19]. Regarding the storage, ammonia is also commonly stored in insulated and
pressurized tanks at a temperature of −33 ◦C.

Hydrogen is generally stored as compressed gas at pressures ranging from 350 to
700 bar as its liquefaction at minus 253 ◦C is still very challenging. As a fuel, studies on
marine ICE fueled by hydrogen are still ongoing both for SI and CI ICEs and no commercial
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applications are yet available. Nevertheless, hydrogen represents the long-term solution as
its combustion process does not produce harmful compounds.

Methanol is a liquid alcohol (CH3OH) at room temperature and can be stored in
common fuel tanks, thus representing a crucial advantage against other alternative fuels
in the definition of the general arrangement plan of a vessel. However, some special
precautions must be taken to avoid the unwanted release of methanol which is flammable
and toxic to humans. Some of these precautions consist of using of cofferdams, double-
walled pipes, and inert gas to avoid explosions. Methanol, for humans, is irritating to the
eyes, skin, and respiratory tract and causes dryness and cracking of the skin. As reported
in [20], the quantity of liquid methanol necessary to be ingested to cause the death of
an adult man is approximately 10–30 mL, while the exposure limit to methanol vapors
(Permissible Exposure Limit—PEL) is 200 ppm, for eight hours, for forty hours per week.

As a fuel, methanol combustion produces CO2, but in a broader perspective, its life
cycle emissions are highly dependent on the production process. In fact, green methanol
can be obtained from biomass or renewable energy, allowing for net-zero emission, since
the CO2 emissions resulting from combustion are offset by the CO2 absorption of growing
crops or carbon capture systems. In particular, bio-methanol is produced through the
gasification of biomass and from the synthesis of the resulting syngas (CO + H2) into
methanol. During the synthesis, the syngas is pressurized and converted to methanol in the
presence of a catalyst, followed by its purification, removing water and other impurities.
The methanol conversion is carried out at high pressure and low temperatures (50–100 bar
and 220–275 ◦C, using the catalyst of copper and zinc oxides on alumina) [21]. The other
cleaner pathway to produce methanol is the synthesis of methanol from the CO2 captured
from a fossil fuel-powered engine and hydrogen from green electricity (i.e., from the
hydrolysis of water powered by wind or solar power). An extensive review of the different
Well-to-Wake greenhouse gas emission factors is available in [22], where it is shown how
green methanol has an emission factor equal to 13.6 gCO2e/MJ, versus the 94.4 gCO2e/MJ of
grey methanol (i.e., methanol produced from natural gas as feedstock).

For these reasons, green methanol is considered by shipowners as a suitable fuel for
use in the near future, which may allow for the needed reduction in GHG emissions.

1.2. Marine Methanol ICEs: State of the Art

In this paragraph, a state-of-the-art marine methanol fueled engine is presented.
Although there are several studies ongoing and some already commercially available
methanol engines, there is still a lack of available information regarding meaningful pa-
rameters for the on-board integration of these engines such as fuel consumption maps,
efficiency in different working points, and exhaust gasses’ temperature and flow.

From a commercial point of view, marine engine manufacturers such as MAN Energy
Solutions are already commercializing methanol-ready two-stroke engines, some of which
have been in operation since 2016. For these DF engines, no modifications in methanol fuel
mode are required inside the engine, since the changes only affect the injectors, cylinder
heads and fuel delivery system. Starting in 2024, MAN Energy Solutions will also begin
offering methanol retrofit solutions for four-stroke engines. Table 1 summarizes the upcom-
ing development programs of other major marine engine manufacturers regarding their
strategies for developing methanol technologies [13].

In the scientific literature, numerous solutions for utilizing methanol in internal com-
bustion engines (ICEs) have been studied and tested. However, most of the available
literature focuses on automotive engines [23], which are typically smaller than marine
engines. As a result, the findings may not be entirely relevant to marine engines.

Methanol, as a consequence of its characteristics as a fuel, is well suited for use in spark-
ignition (SI) engines given its high octane number and high latent heat of vaporization [23].
There are few scientific and experimental publications in the literature regarding single-fuel
methanol fueled engines. In [24], the use of methanol as a mono-fuel in a 320 mm bored
marine engine is simulated via CFD code and validated, as far as possible, through available
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experimental data. The lean methanol–air mixtures appeared to ignite reliably, and high
thermal efficiencies and low NOx were found. In [25], two automotive SI engines are tested,
running on methanol (M100). The experimental results showed an increase in efficiency
and a reduction in NOx resulting from the reduction in temperature, due to the high latent
heat and higher volumetric efficiency. In [26], a single-cylinder large-bore high-speed diesel
engine with about 5 L cylinder displacement and 1800 rpm was converted to a port fuel
injected (PFI) spark-ignited (SI) methanol combustion system. The effect of the air to fuel
ratio on emission and performance was studied in the range of 1.4 to 1.75. Preignitions
were not found to be an issue and engine knock was the limiting factor for the achievable
engine load. The results show brake thermal efficiencies superior to the state of the art of
natural gas engines. These preliminary tests highlight the good potential for a single-fueled
methanol engine as a future marine power solution due to its low emissions and efficiency.

Table 1. Methanol development programs of the main marine engines manufacturers [13].

Anglo Belgian Corporation (ABC)
DZC dual-fuel engine portfolio, with 6- and 8-cylinder
inline engines and 12- and 16-cylinder V-engines,
covers a power range from 600 kW up to 10.4 MW.

Caterpillar Cat® 3500E-series marine engines can be modified to
run on methanol.

China State Shipbuilding Corporation
(CSSC) Power Research lnstitute,
Anqing CSSC Diesel Engine, and
Hudong Heavy Machinery

Developed the 6M320DM methanol fuel engine. The
engine can be adapted to various ships of up to
20,000 GT.

Hyundai Heavy Industries—Engine
and Machinery Division (HHI·EMD)

A total of 14 methanol dual-fuel, two-stroke engines
delivered, and 17 more on order (as of February 2022).

MAN Energy Solutions

ME-LGIM two-stroke dual-fuel methanol engines have
accumulated more than 145,000 h of operation.
Four-stroke methanol engines are currently being
developed.

MTU Marine solutions (by Rolls-Royce) Launching methanol engines based on the MTU Series
4000 from 2026, and fuel cells from 2028.

Nordhavn Power Solutions A/S Offers 13 L/6-cylinder and 16 L/8-cylinder marine
methanol engines, in partnership with ScandiNAOS.

Wartsila

W32 and W46 methanol engines already in the market
draw from the experience accumulated since 2015
from the conversion of a Wartsila Z40 engine and its
operation in the RoPax vessel “Stena Germanica”.
Additionally, two-stroke engine retrofits in
collaboration with MSC.

WinGD and HSD Engine
Methanol fueled engines under development in a joint
development program. It aims to launch the first
engines by 2024.

2. Materials and Methods

The numerical simulation was performed in Matlab-Simulink® environment; therefore,
no commercial software specifically dedicated to engine simulation [27,28] was adopted.
Each mechanical component and physical phenomenon is modeled through mathematical
approaches developed by authors. The simulation process is based on the resolution of
the thermodynamic cycle of the engine, where the fuel combustion is modeled by Wiebe
equation [16,17]. By this approach, it is not possible to achieve a reliable estimation of
the main polluting emissions; however, this method allows for better management of the
code computation, as well as its easier integration into a complete simulation of the ship’s
motions [29].
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2.1. General Modeling of the SI Engine

The development of the simulation approach refers to a four-stroke NG marine engine
(C26:33L8PG, 2430 kW@1000 rpm) developed by Rolls-Royce Bergen [30].

For a brief reminder on the modeling, Figure 1 shows the simulation flow of the
cylinder model, including turbocharger dynamics. Load fraction (i.e., % LOAD) and engine
speed in revolutions per minute (i.e., RPM) represent the main input variables, while the
indicated mean effective pressure (IMEP), obtained from the numerical integration over
time of the thermodynamic cycle, is the main output from which it is possible to calculate
the engine brake power.
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The throttle valve position (and associated losses) is not simulated as the load fraction
(i.e., % LOAD in Figure 1) value is simulated through the volumetric efficiency (λv) which
is input directly into the simulator. The volumetric efficiency was calculated so that the
engine power was the same as the natural gas engine simulator. In other words, through
the volumetric efficiency, different positions of the throttle valve were simulated.

The cylinder actual Otto–Miller cycle is determined at each crank angle value, by a
single-zone zero-dimensional approach. Then, once the friction mean effective pressure
FMEP has been estimated as a function of IMEP and engine speed [31], the brake mean
effective pressure BMEP can be found as follows:

BMEP = IMEP − FMEP (1)

Finally, the brake power is obtained with the following equation:

PB = BMEP
Vn
ε

(2)

where V is the cylinder displaced volume, n is the rotational speed of engine and ε is the
number of revolutions required to complete one engine cycle (ε = 1 for two-stroke engine;
ε = 2 for four-stroke engine).

The turbocharger dynamics are solved through the evaluation of the turbine torque:

Tt =

.
mexhcp,exh(TIN,t − TOUT,t)

2πn
(3)

and compressor torque:

Tc =

.
maircp,air(TOUT,c − TAMB)

2πn
(4)
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where mexh and mair are the mass flow of air and exhaust gas, cp,exh and cp,air are the
isobaric specific heat of air and exhaust gas, and n are the revolutions of the TC group. TIN,t
is the temperature at the turbine inlet, TOUT,t and TOUT,c are the temperature at the outlet
of the turbine and compressor and TAMB is room temperature.

The problem solution needs important input data such as engine geometric data, fuel
properties, and exhaust valves characteristics, together with their opening/closing timing,
and compressor and turbine performance maps. For the sake of greater clarity, further
information on the engine simulator is given in previous articles by the authors [16,17].

2.2. Methanol SI Engine Simulation

In the present study, the NG marine engine (C26:33L8PG by Rolls Royce) is also
simulated in methanol fuel mode. Table 2 reports the main data of the two fuels, necessary
for the comparative simulation analysis.

Table 2. NG and methanol fuel characteristics [18].

Data Natural Gas Methanol

Carbon content (wt%) 75 37.5
Lower heating value (kJ/kg) 49,000 20,100
Stoichiometric air/fuel ratio 17.5 6.5

Both engine simulators are based on the Otto–Miller thermodynamic cycle type, have
the same maximum continuous rating (MCR) speed and power, as well as geometrical
data and turbocharge characteristics, such as compressor and turbine maps. The methanol
engine model is optimized to achieve maximum efficiency in all operating conditions and
generate the same MCR power as the NG engine. The modifications made to the original
model to make it suitable for running on methanol are described in the following.

2.2.1. Air/Fuel Ratio

As regards the equivalence ratio (φ = αs/α, where α is the air/fuel ratio and αs the
stoichiometric one), in the NG engine φ is equal to 0.5 [16], as well as in the methanol fuel
mode [24] (i.e., excess air ratio equal to 2). In both fuel modes, the respective equivalence
ratio values are kept constant in each operating condition.

In [24], where a CFD model of a mono-fuel marine SI engine fueled by methanol is
simulated and validated, the authors tested different excess air ratios, aiming to find the best
compromise between engine efficiency and delivered power. The excess air ratios ranged
from 2 to 2.8. An excess air ratio equal to 2.4 showed the highest values in combustion
efficiency and lowest emissions. Nevertheless, the power density (i.e., BMEP) was found to
be too low. To find the best compromise between efficiency, power density and emission,
the authors considered a value of 2.1 acceptable.

A further reduction in excess air ratios was applied to the engine simulation of the
present article, taking into account the high power density required from marine engines,
especially in fast craft [17]. No critical issues in emission were found applying this slight
reduction in λ, as shown in Figure 2, where the increase in NOx emissions does not affect
the compliance of the engine with NOx IMO Tier III limits.

2.2.2. Ignition and Combustion

After ignition, since the flame propagation speed of methanol is greater than that of
NG [23], the duration of combustion, in terms of crank angle values, is reduced by 15%
compared to the NG application.

The Wiebe equation simulates the heat release (xb) for each value of the crank angle θ:

dxb = 1 − exp
[
−a

(
θ− θign

∆θ

)m]
(5)
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where a and m are numerical constants; θign is the combustion start crank angle and ∆θ is
the overall combustion crank angle.
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Figure 2. Emissions at different excess air ratios (λ) from [24].

In the methanol simulator, the volumetric efficiency of the engine was reduced to
obtain the same MCR power, achieved by increasing the inlet valve closing delay after
the bottom dead center. In addition, a new ignition start crank angle setting θign has been
defined to maximize the cylinder IMEP in all engine working conditions. The combustion
start crank angle advance has been reduced by 1 ÷ 1.5 degrees, when compared to the NG
engine model.

3. Results

The simulation analysis aims to estimate the specific methanol fuel consumption
(i.e., the inverse of the engine efficiency) in the entire ICE working area, as illustrated
in Figure 3 in dimensionless form. However, for a more effective presentation of the
simulation results, the comparison between the two fuel modes refers to only ten engine
operating conditions, corresponding to the theoretical propeller load in a possible marine
propulsion application. In particular, Figure 4a shows the ICE load diagram, defining the
ten working conditions in a power range between 10% and 100% of MCR, with steps equal
to 10%. Since the methanol engine modeling is derived from the NG model, the torque
limit curve is also considered to be common to the two fuel modes.
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Figure 4. NG and methanol engines working conditions in the load diagram (a) and compressor
maps (b).

Figure 4b reports the ten engines’ working conditions in the turbocharger (TC) com-
pressor maps, normalized by dividing each characteristic by the correspondent value
referring to the MCR working condition in the NG mode. The figure shows that in the
methanol fuel mode, at the same engine load, the compressor works at a greater pres-
sure ratio and a lower volumetric flow compared to NG condition. Obviously, the higher
air-supply pressure involves also a higher maximum pressure inside the cylinders.

The different tuning of the combustion process simulated through the Weibe Equation (5)
is shown in Figure 5, where the combustion duration is reduced as well as the ignition
start crank angle. A steeper increase in heat release and cylinder pressure is visible, as also
reported in [24].
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Figure 5. NG and methanol engines in-cylinder pressure and heat release rates at 80% engine load.

The engines efficiency (ηE) and its engine percentage difference (∆x/x) are expressed
by the following equation:

ηE =
PE

MfHi
(6)

∆x
x

=
x − xNG

xNG
100 (7)

where PE is the engine brake power; Mf and Hi are the fuel mass flow rate and its lower
heating value, respectively; ∆x represents the change in the generic variable x and xNG is
the generic variable referred to the NG fuel at the same engine load of the variable x.



Energies 2024, 17, 2498 9 of 13

Figure 6a shows the engine efficiency in the two fuel modes, while Figure 6b reports
the percentage difference on the propeller curve.
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Figure 6a highlights a greater efficiency of the NG engine; this difference decreases
from about 4% down to slightly greater than 3% as the engine load decreases (Figure 6b).

To assess the difference in equivalent carbon dioxide (CO2e) emissions from methanol
and NG, both Well-to-Tank (WtT) emissions and Tank-to-Wake (TtW) emissions are consid-
ered. The sum of the emissions from WtT and TtW represents the emissions from the fuel
over its whole lifecycle, also known as Well-to-Wake (WtW) emissions. Thus, to evaluate
the WtT specific emissions, the WtT carbon emission factors (CFe) [32] of each fuel (NG and
methanol) are considered and divided by the respective engine efficiency for the several
engine loads. The carbon emission factors resulting from a biological production process
are applied for both fuels. The TtW emission contribution is calculated by again consid-
ering the efficiency of the simulated engines, but no emissions due to NOx and methane
slip are considered as they are not predictable by the current simulation model. Figure 7
shows the percentage difference in CO2e emissions per MJ at the engine shaft between the
two fuel modes. Results highlight greater CO2e emissions in the WtW perspective of the
methanol mode in comparison with NG, ranging between 18.7% and 19.3%, depending on
the engine load.
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Although there is a slight reduction in engine efficiency between the methanol and
NG engine simulators, the different production pathways of the two fuels may allow
for a reduction in emissions on a lifecycle basis. As per [30], bio-methanol from farmed
wood, bio-methanol from black liquor, and E-methanol present different WtT carbon
emission factors (CFe), but for each one of these production processes the TtW emissions
are considered equal to zero. In this perspective, the simulated methanol engine can be
assumed as CO2 neutral if a green production pathway is adopted.

4. Discussion

The previous section presented the results of a study that demonstrated how a
methanol engine could be a viable solution to reduce emissions from ships, despite its
slightly lower efficiency compared to a natural gas engine (between 3 and 4%). This study
also showed that the use of green fuels resulted in a much greater reduction in emissions
than the reduction in efficiency. In comparison, natural gas engines have a higher lower
heating value (LHV) and efficiency, making them a popular choice for use on-board ships.
However, it is important to consider the challenge of storing natural gas, which requires
cryogenic temperatures. This difficulty is even more pronounced in small boats, such as
those used for passenger transport or small cabotage.

We remember that simulation refers only to a virtual engine fueled by methanol, while
NG powers the real existing engine. For this reason, the current simulation model can be
validated only in NG fuel mode, as shown in Figure 8 where the engine data sheet and
simulation results are compared. In detail, average errors of less than 2%, with peak values
lower than 4%, can be declared [16].
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Instead, as regards the virtual engine running on methanol, simulation validation
had to be based on the data available in [33], which is the only useful work found by the
authors on this subject. Specifically, [33] presents data of a two-stroke engine (MAN 9S90
ME-C, 37.62 MW @ 72 rpm), converted to operate by NG (using 1.5% MDO as pilot fuel) or
methanol (5% MDO pilot fuel), showing higher values of CO2 emission in the methanol
mode than NG fuel. To this regard, Figure 7 shows a difference in CO2e emission between
the two fuels of less than 20%. This difference is rather similar to the value reported
in [33]. On this basis, the simulation results seem to provide a first positive indication
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on the reliability of the methanol engine simulator. On the other hand, considering the
significant differences in power and working principles between the two engine types
(i.e., the two-stroke engine in [33] versus the four-stroke engine in the present paper), there
is an urgent need for more reliable feedback through the availability of experimental data
as soon as possible.

5. Conclusions

This article presents a simulation study on the behavior of a marine engine fueled
by methanol, as a possible response to the decarbonization process through alternative
shipping fuels. The engine does not actually exist; however, the geometric and power
output data used for the simulation refer to a real four-stroke marine engine running on
natural gas. This choice of data is due to the same working thermodynamic cycle in the
two combustion modes and to the unavailability of methanol engine manufacturer’s data
for the modeling validation, while gas engines are now still widely studied and widespread
onboard ships. Therefore, the engine simulation approach is validated on the natural gas
fuel mode, while the running conditions by methanol are only extrapolated on the basis
of some considerations about the different thermodynamic properties of methanol fuel
(e.g., lower heating value, flame propagation speed during combustion, equivalence ratio,
. . .), compared to natural gas characteristics. This is why the main results in terms of fuel
consumption, efficiency, and decarbonization effects are shown through a comparative
analysis between the two engine operating modes. Among the most interesting results for a
naval architect, there is the availability, by simulation, of the methanol consumption map in
the entire working area of the engine, to be used for a proper matching between engine and
propeller in the design stage of a ship propulsion system. Although the analysis was carried
out on a virtual methanol engine and therefore an accurate experimental validation is still
necessary, the extrapolated simulation data can give a useful indication of the emissions
produced, depending on the type of methanol, fossil or green.
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Abbreviations

BMEP Brake Mean Effective Pressure
CFD Computational Fluid Dynamics
CFe Carbon emission Factors
CI Compression ignition
CO2e equivalent CO2
DF Dual Fuel
ETS Emission Trading Scheme
FC Fuel cell
FMEP Friction Mean Effective Pressure
GHG Greenhouse Gas
GT Gross Tonnage
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GWP Global Warming Potential
ICE Internal Combustion Engine
IMEP Indicated Mean Effective Pressure
IMO International Maritime Organization
LNG Liquified Natural Gas
MARPOL International Convention for the Prevention of Pollution from Ships
MCR Maximum Continuous Rating
MDO Marine Diesel Oil
NG Natural Gas
PEL Permissible Exposure Limit
PFI Port Fuel Injection
PM Particulate Matter
SI Spark Ignition
TC Turbocharger
TDC Top Dead Center
TtW Tank-to-Wake
WtT Well-to-Tank
WtW Well-to-Wake
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