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Abstract: Fibromyalgia (FM) is a chronic pain disorder with unclear pathophysiological mechanisms,
which leads to challenges in patient management. In addition to pain, the disorder presents with a
broad range of symptoms, such as sleep disruption, chronic fatigue, brain fog, depression, muscle
stiffness, and migraine. FM has a considerable female prevalence, and it has been shown that symp-
toms are influenced by the menstrual cycle and periods of significant hormonal and immunological
changes. There is increasing evidence that females with FM experience an aggravation of symptoms
in pregnancy, particularly during the third trimester and after childbirth. In this perspective paper,
we focus on the neuro-endocrine interactions that occur between progesterone, allopregnanolone,
and cortisol during pregnancy, and propose that they align with our previously proposed model of
FM pathogenesis based on GABAergic “weakening” in a thalamocortical neural loop system. Based
on our hypothesis, we introduce the possibility of utilizing transcranial direct current stimulation
(tDCS) as a non-invasive treatment potentially capable of exerting sex-specific effects on FM patients.

Keywords: chronic pain; gonadal hormones; cortisol; GABA; serotonin; tDCS

1. Introduction

Fibromyalgia (FM) is a debilitating, chronic pain disorder with inconclusive under-
lying mechanisms. Due to the lack of understanding of its pathogenesis, treatment of
this clinical population is challenging [1]. FM was originally classified as a peripheral
musculoskeletal disorder; however, research has led to a redefinition of the syndrome as
a central disorder involving pain processing [2], categorized as a Central Sensitivity Syn-
drome (CSS). Even though chronic widespread pain is the most well-known characteristic
of FM, the disorder encompasses a broad range of symptoms, such as sleep disruption,
chronic fatigue, depression, anxiety, and muscle stiffness. Moreover, it is associated with
various comorbidities, such as migraine and irritable bowel syndrome [3,4], which both lie
within the CSS category.

FM occurs in both males and females; however, females represent the majority of the
FM clinical population [5–7], with peak occurrence at around postmenopausal ages [8].
In pre-pubertal children, FM incidence is low and does not demonstrate the same gender
imbalance which occurs in adults. However, at the onset of puberty, FM rates become
female dominant [9]. This suggests that gonadal hormones play a role in the development
of FM, similarly to migraine [10]. The female reproductive cycle and pregnancy involve
significant neuro-endocrine changes [11], which are considered potential contributors to
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FM pathogenesis [12,13]. Estrogens and progesterone are known to exert multiple non-
reproductive influences on the central nervous system, including protective effects against
glutamate excitotoxicity, amyloid beta, and oxidative stress, and in addition, the recovery
from traumatic brain injuries [14–17]. These hormone fluctuations are thought to be one of
the main mechanisms responsible for the higher prevalence of chronic pain conditions in
females [18,19]. In addition, gonadal hormone fluctuations present in the life of women
are associated with modifications in immunocompetence and symptomatology [20,21].
Animal research highlighted how neuro-immune pain signaling may have sexual dimor-
phisms [22,23]. FM has, therefore, been proposed as a neuropathy-induced, autoimmune
syndrome where women’s peculiar endocrinological and immune responses might be
accountable for a clear female predominance in the manifestation of the disorder [13,24].

In a previous paper, we formulated a hypothesis that FM pathophysiology depends on
a switch in the functioning of a thalamocortical loop system, resulting in chronic pain [25].
The thalamocortical loop normally acts as a negative feedback loop due to GABAergic mod-
ulation exerted by the thalamic reticular nucleus on the reciprocal excitatory connections
between the thalamic ventroposterolateral nucleus and the primary somatosensory cortex.
GABA, the most common inhibitory neurotransmitter in the central nervous system [26],
seems to play a crucial role in FM pathophysiology, particularly being implicated in FM-
altered central pain circuitry [25,27]. To support this, it has been shown that individuals
with FM have lower levels of GABA in brain regions responsible for sensory processing
when compared to healthy controls [28]. In addition, anticonvulsant medications that
modulate GABA, such as pregabalin and gabapentin, show some efficacy as FM treat-
ment [29]. Also, immune-endocrine stimuli, such as menopause [30], activation of the stress
response [31], and increased inflammatory cytokines [32], can be linked to the weakening of
GABAergic transmission in FM [25]. In our model, if GABA is reduced, and/or glutamate
rises, the thalamocortical neural loop system shifts to a bistable switch, predisposed to
developing a high pain processing response after minimal or even absent peripheral stimuli
(phantom stimuli), resulting in the chronic pain condition of FM [25]. This hypothetical
model resolves various FM etiological correlations, neuroimaging evidence, and clinical
data [25,33], thus suggesting GABA modulators as a preferential therapeutic option. Here
we propose the use of non-invasive brain stimulation (NIBS) for its ability to modulate
GABAergic activity.

Over the past 20 years, interest in NIBS, such as transcranial direct current stimulation
(tDCS) and transcranial magnetic stimulation (TMS), has surged. Although the gender
component has not been significantly considered in the implementation of neuromodu-
lation, it has been shown that females with major depression are 1.34 times more likely
to respond and 1.37 times more likely to achieve remission relative to males with tDCS
treatment [34]. Similarly, a positive, linear relationship between the percentage of females
enrolled in clinical trials, and the overall reduction in depression severity has been re-
ported [35–37]. Compared to males, females have greater gray matter volume within the
frontal and parietal cortices, cerebral blood flow, and baseline neural activity [38,39]. The
frontal and parietal cortices of females are also associated with a higher gyrification index
(a measurement of cortical folding), leading to an increase in the gyral surface area [40].
The variance in observed data may be related to the impact that fluctuations in estradiol
and progesterone have on cortical excitability [41–43]. Therefore, we propose that the use
of neuromodulation treatments for the management of a disorder such as FM might be
effective considering peculiar hormonal phases, such as pregnancy, which is entirely novel.

Considering these aspects, the current perspective paper aims to highlight the mecha-
nistic hypothesis on how the neuro-endocrine changes during pregnancy can influence our
thalamocortical loop model and FM pathophysiology. It also proposes the use of tDCS as a
therapeutic intervention based on its ability to modulate the GABAergic system [44].
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2. Methods

The current manuscript is a perspective paper that presents a hypothesis about the
role of gonadal hormones during pregnancy in FM patients. The hypothesis was developed
based on a PubMed database literature search, from inception through November 2022 and
was based on our previously published theoretical loop model [25]. During the PubMed
search, primary endpoints were the combination between the terms “fibromyalgia” or “pain”,
and in addition, the combinations of each of the former terms with a series of terms. These
terms include: “androgens”, “estrogens”, “GABA”, “glucocorticoids”, “glutamate”, “gonadal hor-
mones”, “HPA axis”, “HPG axis”, “immunity”, “interleukins”, “neuromodulation”, “pregnancy”,
“serotonin”, “transcranial direct current stimulation”, “transcranial magnetic stimulation”, and
allied terms. The literature review results were used in support of the new perspective
hypothesis proposed in this manuscript.

3. Interactions between FM and Pregnancy

The literature on the interaction between FM and pregnancy is limited, though the
available studies do provide evidence that justifies further exploration of this relationship.
Two studies have reported that around 50% of their study population experienced FM
symptoms after childbirth, and this rate was higher in those who had delivered by ce-
sarians vs. vaginal births [45,46]. However, these studies did not confirm whether any
of these patients had pre-existing FM. Other studies demonstrated that pregnant females
with pre-existing FM experienced an aggravation of symptoms throughout pregnancy,
and particularly in the third trimester, the symptoms were at their worst [46–48]. There
were also reported changes to symptoms in the postnatal period, while hormonal changes
connected with abortion, use of hormonal contraceptives, and breastfeeding did not modu-
late FM symptom severity [45,49,50]. Overall, these data highlight how neuro-endocrine
fluctuations during pregnancy may exacerbate FM pain symptoms, similarly to what was
also reported during menses [51,52]. Therefore, in the next paragraphs, we consider some
of the major signaling molecules whose levels vary widely in pregnancy and highlight their
possible role in FM pain modulation.

4. Estrogen, Progesterone, and Cortisol

Given that most FM patients are females, gonadal hormone influence has been widely
investigated. Females affected by FM are experiencing more FM induced-pain during the
luteal phase and the immediate time before and after menses, in comparison with healthy
controls [51–53]. From clinical observations as well as animal models, we know that pain
processing has been linked with changes in estrogen levels. Many studies have proven that
estrogen modulates pain via specific signaling pathways. However, it is still unclear which
subtype of estrogen receptor (ER) is recruited under different conditions [54]. Estrogen’s
influence on pain remains controversial, with either pro-algesic or analgesic properties
reported in different studies [19]. This is possibly because estrogens are not easily separated
from other hormones, being preceded by an increase in testosterone and co-occurring with
an increase in progesterone. A study on transgender people argues for pain aggravation,
showing that 55% of female-to-male individuals with chronic pain reported a reduction
of pain after receiving testosterone treatment, while 23% of male-to-female individuals
reported initiation of chronic pain after estrogen and anti-androgen therapy [55]. By
contrast, anti-nociceptive effects of estrogens have been reported in a mouse model of
neuropathic pain [56]. Potentially, these differences are due to the activation of different
ERs [54]. A study showed that ERβ agonists were effective in alleviating pain induced by
chemotherapy, while the nonselective agonist 17β-estradiol and the ERα-selective agonist
PPT had no effect [57].

Conversely to estrogens, the role of progesterone in pain modulation seems better
defined. A study on pre-menopausal females with FM subjected the females to daily mea-
surements of plasma hormone levels throughout the menstrual cycle. Results showed that
progesterone and testosterone, but not estradiol or cortisol, were inversely correlated with
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pain severity, reporting that pain was highest during the menstrual phase when gonadal
hormones were at their lowest levels [58]. Progesterone and neurosteroid allopregnanolone,
a progesterone metabolite, are known to reduce neuropathic pain. This is due to their
modulatory properties of GABAergic transmission, particularly their allosteric stimulation
of the GABAA receptors (GABAAR), as reported in animal model studies [59]. Despite
considerable interpersonal variability, both estradiol and progesterone fluctuate, and their
serum levels increase enormously during pregnancy up to the third trimester (see Table 1).
We, therefore, consider the possible involvement of this surge of hormones in the variations
of symptoms in FM patients.

Table 1. Hormonal reference ranges during menstrual cycle and pregnancy.

Pregnancy Trimesters

Hormone Menstrual Cycle
(min and max) First Second Third

Progesterone (ng/mL) 2–25 8–48 32–80 99–342
17β-estradiol (pg/mL) 30–400 188–2497 1278–7192 6137–3460

Prolactin (ng/mL) < 20 36–213 110–330 137–372
Cortisol (µg/dL) 10–20 (CAR) 7–19 10–42 12–50

Values are from [60,61]. CAR = cortisol awakening response.

Other important hormones to consider are glucocorticoids (cortisol in humans), which
are essential to sustaining pregnancy. These hormones are involved in the development of
the fetal organs and modulate the increased energy demand during the gestational period.
Therefore, modifications of the hypothalamic–pituitary–adrenal (HPA) axis are part of
the physiological adaptive mechanisms in pregnancy. Starting from the end of the first
trimester, cortisol production is enhanced, reaching serum levels up to about 50 µg/dL
at the end of gestation (Table 1). Placental corticotropin-releasing hormone contributes
to this physiological hypercortisolism and plays a role in inducing labor [62,63]. Nev-
ertheless, the fetus is protected from excess cortisol by means of different mechanisms,
including the placental activity of type 2 11β-hydroxysteroid dehydrogenase, responsible
for cortisol inactivation [64], and the downregulation of the maternal stress response. The
latter is achieved through the induction of neurosteroidogenesis by pregnancy-associated
hormones, such as estrogens, progesterone, and prolactin [65]. Particularly, the levels of al-
lopregnanolone increase together with progesterone during pregnancy. Allopregnanolone
stimulates GABAergic neurotransmission and the endogenous opioid system at the hy-
pothalamic paraventricular nucleus to dampen down the HPA response to stressors [66].

Despite these protective mechanisms, cortisol levels can still rise in response to trau-
matic or chronic stress during pregnancy. In addition, according to the “pregnenolone
steal” hypothesis, the enhanced synthesis of cortisol upon stress may reduce the amount
of pregnenolone available for the synthesis of other steroids, leading to progesterone and
allopregnanolone depletion [62]. While this hypothesis has yet to be verified, it provides a
link between cortisol and progesterone that could explain the onset or worsening of FM in
late pregnancy. In fact, reduced allopregnanolone bioavailability can impair GABAergic
transmission. In addition, cortisol, even at lower concentrations than those activating
glucocorticoid receptors, binds to the membrane or cytoplasmic mineralcorticoid recep-
tors, which have been shown to act pre- and post-synaptically to facilitate glutamatergic
transmission [67].

In addition to this body of evidence, it has been shown that the action of allopreg-
nanolone at the highest physiological concentrations can involve a peculiar dose–response
inversion, from activation to inhibition, of GABAAR, specifically the α4β2δ subunit com-
bination [50,68]. This could further explain why FM symptoms worsen in late pregnancy
when progesterone and allopregnanolone are at maximum levels before decreasing. Al-
though this makes theoretical sense, the actual bioavailability of neurosteroids in the brains
of pregnant females is still unknown, and further studies should be encouraged [65].



Biomedicines 2023, 11, 615 5 of 15

It is also worth noting that after a period of prolonged hypercortisolism, such as
that occurring when high levels of stress add up to the physiological increase in cortisol
during pregnancy, compensatory mechanisms may be triggered, including blunted HPA
axis responsiveness and glucocorticoid resistance. In accordance, hypocortisolism has
been observed in about one-quarter of patients with stress-related disorders, including
FM [69,70].

5. Prolactin and Immune Mediators

Another hormone showing large variations during pregnancy is prolactin (PRL)
(Table 1). High levels of estrogens stimulate the pituitary secretion of PRL throughout
pregnancy, reaching peak serum values at term and delivery [71]. It has been shown that
in vitro PRL affects hormonal secretion by placental cells: the secretion of progesterone
is increased, whilst that of estrogens is decreased [72]. However, PRL is also among the
hormonal mediators that are released during stress, while substantial evidence supports a
stimulatory action of PRL in the adrenal gland’s response to stress [73]. Moreover, PRL has
cytokine properties and immunostimulatory actions and promotes autoimmunity [74].

As for the role of PRL on neurotransmitters, it has been found that lactogenic induction
of maternal behavior is mediated by PRL receptors expressed on GABAergic neurons [75].
Moreover, PRL is known to increase the synthesis and release of GABA in hypothalamic
tissue [76]. Given the wide expression of prolactin receptors in the CNS [77], it is possible
that PRL exerts a positive effect on different central GABAergic functions.

Besides canonical hormones, gestation is also a period of intense variations of immune
mediators, some of which also act as signal molecules to regulate various physiological
processes [78]. Overall, a three-phase sequence can be outlined in pregnancy, namely
inflammatory/anti-inflammatory/inflammatory, which roughly corresponds to trimesters,
with a more vigorous inflammatory phase in late pregnancy [79]. Successful fetal gestation
relies on the crosstalk between the endocrine and immune systems. Understanding these
complicated mechanisms is fundamental to our understanding of the potential neurophysi-
ological changes that occur in FM patients [80]. These interactions are made possible by the
expression of hormone receptors on a wealth of immune cells, and by the responsiveness
of endocrine tissues to immune mediators, such as cytokines [81]. Although the role of
cytokines in FM is still unclear, it should be considered when investigating the crosstalk
between the endocrine and immune systems [82].

6. Neurotransmitters

Increasing evidence based on experimental models and brain imaging has demon-
strated the anti-nociceptive effects mediated by the serotonin (5-HT) receptors 5-HT1A and
5-HT1B [30,31]. An interaction between estrogens and serotoninergic pathways seems to
be mediated by the activation of genomic and non-genomic estrogen receptors (ERs). More
specifically, 5-HT2A receptors have been shown to decrease pain when estrogen levels are
high, while their blockage by a 5-HT2A antagonist tends to increase the estrogen-induced
pain release [39,40]. Some reports on FM patients mention low 5-HT serum levels, which
has been proposed as a potential FM biomarker [83]. Such a reduction could be associ-
ated with a reduction in the levels of melatonin, which partially explains these patients’
disturbed sleep patterns [84].

A clue about the possible involvement of low 5-HT in FM pathophysiology is offered
by pharmacologic interventions based on 5-HT modulation, such as antidepressants (e.g.,
amitriptyline) [85]. Similarly, some non-pharmacologic FM therapies, such as acupuncture,
could be related to an increase in 5-HT. Although the mechanism of action of acupunc-
ture is unknown, the stimulation of acupoints can alter the concentration of some pain
mediators, including endorphin, substance P, encephalin, and 5-HT, in the brain and local
tissues [86,87]. However, the role of 5-HT in the descending pain regulatory pathway
should be ruled out in FM. This is because the limited therapeutic effects of opioids show
that this pathway could be, at most, only indirectly involved in the disorder [88].
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However, 5-HT is also known to strengthen both excitatory glutamate and inhibitory
GABA synapses [89,90]. Therefore, it potentially acts positively on the thalamocortical
major supraspinal relay site for ascending pain stimuli. The role of GABA and 5-HT in
modulating pain processing during pregnancy is still uncertain. In pregnant female rodents,
a reduction of brain GABA levels and a downregulation of GABAAR δ and γ2 subunits
have been found [91,92]. In pregnant females with FM, 5-HT has been shown to decrease
as pregnancy progresses. This resulted in an increase in anxiety and depression [93], but
may have also contributed to explaining pain recrudescence in late pregnancy [94].

7. Perspectives for a Validation of Our Hypothesis

Our FM model can combine into a consistent scenario some of the above-described
neuro-endocrine mechanisms to explain FM pathophysiology during pregnancy (Figure 1).
The role of estrogens in modulating pain is still controversial. Similarly, PRL could promote
the GABAergic function, which, in our model, preserves from FM insurgence, but has
also been shown to increase the HPA axis during stress, which is detrimental to GABA.
Conversely, the role of progesterone seems better defined. It is widely accepted that
progesterone is a major pain modulator in pregnancy, possibly through its neurosteroid
allopregnanolone [95,96]. In addition, the role of 5-HT depletion in FM progression and
pain symptoms recrudescence seems crucial [93].
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Figure 1. Effects of major pregnancy endocrine agents on the thalamocortical loop brain network
representing a possible bistable switch model of FM pathogenesis. Progesterone and allopregnanolone
strengthen GABAergic transmission, whereas cortisol indirectly weakens it, thereby preventing or
promoting, respectively, the switching of the loop to a pathogenic functional regime. Key: Arrow line-
endings indicate activation and T-shaped line-endings inhibition. TRN: thalamic reticular nucleus,
VPL: ventroposterolateral nucleus. Image attributes: Henry Vandyke Carter and Pearson Scott
Foresman, Public domain, via Wikimedia Commons https://commons.wikimedia.org (accessed on
17 February 2023).

Early-to-mid pregnancy corresponds to increasing systemic progesterone, and con-
sequently, to high brain allopregnanolone, presumably involving a positive effect on
GABAergic transmission. Conversely, in the third trimester, there are a few events to
consider: (i) pregnenolone steal and glutamate pumping by cortisol, (ii) possible inversion

https://commons.wikimedia.org
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of GABAergic transmission from inhibitory to excitatory induced by prolonged high allo-
pregnanolone, and (iii) inflammation rebound. These events could collectively contribute
to weakening the inhibitory GABAergic and/or strengthening the glutamatergic function,
thus explaining FM symptom worsening and shifting the thalamocortical loop of our model
towards a positive feedback loop [25].

Late pregnancy events can be exacerbated by a disequilibrium between glucocorticoids
and progesterone production. This is due to maternal stress, which triggers glucocorticoid
release and impairs progesterone secretion, causing inflammation [62]. As known, systemic
inflammation can trigger neuroinflammation [97] and the latter is associated with excitotox-
icity due to glutamate/GABA imbalance [98,99]. Finally, 5-HT lowering during pregnancy
could also produce detrimental effects on thalamic GABAergic transmission. This is caused
by a 5-HT modulatory effect on presynaptic activity [100]. Hence, the correlation between
neuroendocrine variations and FM changes during pregnancy and postpartum are overall
in agreement with the predictions of our thalamocortical loop model.

8. Future Interventions for Neuromodulation in Pregnant FM Patients

As we have highlighted, the immune-endocrine scenario of pregnancy helps to clarify
the upstream mechanisms that would trigger the FM pathogenic transition as predicted
by our model. These correspondences add to a series of pharmacological and clinical data
that are consistent with the model [25], thus strengthening its reliability. Hence, given that
the model involves a brain network dysfunction, neuromodulation techniques deserve
particular attention in the development of a suitable therapeutic strategy for FM.

Proposed explanations for sex-mediated effects of brain stimulation on cortical ex-
citability and behavior include: (i) neurotransmitter balances; (ii) cortical bone struc-
ture/composition; (iii) distance from the prefrontal cortex to the external surface of the
skull; (iv) structural and functional differences; (v) anatomical differences in tissue volumes;
(vi) gonadal hormones [101].

Considering these crucial sex-mediated effects of brain stimulation, it is interesting
to further explore such techniques in a gender-driven disorder such as FM. Performing
new studies on non-invasive techniques is necessary. Due to deep uncertainties about the
pathogenesis and development of FM, the clinical management of patients is generally
challenging and often provides limited results [102]. This becomes even more complicated
in female patients during pregnancy. Different drugs commonly used in FM for managing
pain and other symptoms are considered problematic for possible adverse gestational
outcomes [94]. Antidepressants, together with gabapentinoids, are a first-line FM thera-
peutic choice [103], but when nursing, these drugs are typically restricted to the treatment
of moderate to severe depression due to unknown long-term effects on the developing
infant’s nervous system [104]. Such a complex of reasons raises the need for alternative
therapeutic treatments during the perinatal period [105].

Utilizing neuromodulation techniques would also be a way to validate our theoretical
model by inducing an effect on the GABAergic system. A major mechanism by which the
neural activity generated by an experience modifies brain function is via modifications of
synaptic transmission, known as synaptic plasticity. There is agreement that alterations of
synaptic transmission are based on a delicate balance between excitatory and inhibitory pro-
cesses [106,107]. Glutamate is the most common excitatory neurotransmitter in the central
nervous system [26], while it is estimated that 30% of synapses in the mammalian cerebral
cortex are GABAergic [108]. Hence, the homeostasis of the glutamate/GABA balance is
crucial in the modulation of proper cortical excitability [109]. Considering the influence
of tDCS on the GABAergic system, a potential approach would be to treat FM patients
with neuromodulation prior to a planned pregnancy. Females have been reported to show
enhanced response following NIBS compared to males [110,111]. Although this finding
is not universal [112], non-invasive neuromodulation might be a promising alternative
treatment option for pregnant FM patients [113].
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Considering the hormonal differences between females and males, sex-specific neuro-
modulation protocols that consider different hormonal phases are essential in addressing
gender-driven disorders such as FM. Testosterone and its metabolites modulate cortical
excitability similarly on different days, as opposed to the cyclic fluctuations and, therefore,
the effect female hormones have on cortical excitability. Particularly, when progesterone
and estradiol are low during the first follicular phase of menstruation (days 1–7), cortical
excitation and inhibition from tDCS are less responsive. As estradiol increases, while pro-
gesterone remains low in the second follicular phase (days 7–14), excitability is enhanced
while inhibition is reduced. When estradiol levels are moderate and progesterone levels
are high (during the first (days 14–21) and second luteal phase (days 21–28)), excitation is
reduced and inhibition is enhanced [41,42].

In 2006, the first randomized, sham-controlled proof-of-principle study on tDCS
provided initial evidence of the therapeutic effect of this technique in FM [114]. Today,
based on published Pubmed-indexed data, approximately 80 studies report the use of tDCS
as a treatment option in FM. It should be highlighted that effect size and duration are
often limited in any disorder using tDCS [115]. Therefore, research into the probable effect
of tDCS in FM is encouraged to make these studies part of routine clinical care. A self-
administered tDCS in the home setting could be helpful to ease access to treatment [116].
When implementing neuromodulation protocols, it is important to consider the hormonal
phase of females and the gender dimorphism with males. With regards to young female
patients with FM planning to become pregnant, it is certainly easier to implement these
protocols as part of a routine clinical practice prior to or after pregnancy. However, studies
should further explore the usage of tDCS during pregnancy. In theory, tDCS poses no
risk to a developing fetus when applied during pregnancy [112]. This is because tDCS
changes regional brain activity without directly impacting autonomic or thermoregulatory
functions [113,117]. Yet, more conclusive data are required.

To date, tDCS in pregnancy has only been tested in four studies (case report, uncon-
trolled, randomized clinical trial, open label) in Major Depressive Disorder (MDD) and
two case reports in Auditory Hallucinations (AH) (Table 2). All six studies supported the
potential benefit of tDCS in the treatment of MDD or AH during pregnancy. No serious
pregnancy or birth complications or irregularities of fetal or maternal health were observed
in more than 120 tDCS sessions [112], or 160 tDCS sessions [118]. Minimum anticipated
side effects were reported, and patients were overall satisfied using tDCS during preg-
nancy [118,119]; however, large-scale, longitudinal studies are needed to further evaluate
safety [120].

Overall, after a full clinical trial and validation, tDCS could potentially become the
ideal alternative treatment option for not only depression, but also FM during pregnancy.
Additionally, tDCS could be used as an add-on treatment combined with other therapies,
such as physical exercise, since non-pharmaceutical interventions have been found to
be more beneficial to FM patients than pharmacological treatments [33,121]. Combining
exercise with brain stimulation may facilitate neuroplasticity [122]. Moreover, home devices
might enable more successful therapeutic applications and make the treatment available to
a wider group of patients.
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Table 2. Studies reporting on efficacy and safety of transcranial direct current stimulation (tDCS)
in pregnancy.

Shenoy
et al., 2014 [123]

Sreeraj
et al., 2016 [124]

Strube
et al., 2016 [125]

Palm
et al., 2017 [126]

Vigod
et al., 2019 [112]

Kurzeck
et al., 2021 [118]

Study Type Case Report Case Report Case Report Uncontrolled RCT Open Label

N 1 1 1 3 20 6

Age 25 23 36 23, 28, 32 >18 23–43

Dropouts 0 0 0 0(1) * 4 ** 0(2) *

Diagnosis AH MDD AH MDD MDD MDD

Scale(s) PSYRATS HAMD, HAMA PANSS, AHRS,
CDSS, CGI, GAF

HAMD-21, BDI,
TMT-A/B

MADRS HAMD-21, BDI,
CGI, TMT-A/B

Treatment Add-On Mono Mono Mono Mono Mono

tDCS prior to
Pregnancy

Yes No N/A N/A N/A N/A

Weeks in
Gestation

18 6 32 19–31 14–32 12–33

Parameters 2 mA,
2 × 20 min

2 mA,
30 min

2 mA,
2 × 30 min

2 mA, 2 × 30 min
(2 mA, 30 min)

2 mA, 30 min 2 mA, 2 × 30 min
(2 mA, 30 min)

No. of Sessions 10 10 20 20 (30) 15 20 (30)

Response Near remission Remission 41%
improvement
(CDSS)

33.3% remission 75% vs. 12.5% 39.3% reduction
(HAMD)
57.1% reduction
(BDI)
28.6% reduction
(CGI)

Comments Add-on tDCS
resulted in near
remission of
auditory
hallucination.
tDCS was well
tolerated and no
changes in
autonomic
function,
ventilation rate,
or core body
temperature were
observed.

tDCS was well
tolerated without
any adverse
events. In 3 out of
the 10 tDCS
sessions, patients
experienced
transient, mild
burning sensation
at the target side
and fleeting
perception of
phosphenes
during the fade-in
phase, which is
an anticipated
tDCS side effect.

No improvement
in auditory
hallucinations
was recorded.
Patients tolerated
tDCS well with
no reported,
noticeable side
effects. Fetal
examination at
35th gestational
week revealed no
changes or
abnormalities.
Delivery of a
healthy child
occurred with no
complications.

Statistically
significant
changes could be
observed. One
patient achieved
remission. tDCS
was well
tolerated without
adverse events.

No abnormalities
or serious
pregnancy
complications
were reported in
either group.
Percent fractions
of 87.5% and
77.8% in the tDCS
group and sham
group,
respectively, were
satisfied to
extremely
satisfied with the
treatment and
viewed tDCS as
an acceptable and
alternative
treatment option.

Significant
changes were
observed. tDCS
was well tolerated
without adverse
events. In Phase 1,
33.3% achieved
response in
HAMD scores;
33.3% showed
response and
16.7% remission
in BDI scores. In
Phase 2, one
patient achieved
remission for
both HAMD and
BDI.

AH: Auditory Hallucinations; AHRS: Auditory Hallucination Rating Scale; BDI: Beck’s Depression Inventory;
CDSS: Calgary Depression Scale in Schizophrenia; CGI: Clinical Global Impression; GAF: Global Assessment
of Functioning; HAMA: Hamilton Anxiety Rating Scale; HAMD: Hamilton Depression Rating Scale; MADRS:
Montgomery–Asberg Depression Rating Scale; MDD: Major Depressive Disorder; PANSS: Positive and Negative
Syndrome Scale; PSYRATS: Psychotic Symptom Rating Scales; RCT: Randomized Clinical Trial; TMT A/B: Trail
Making Test A/B. * Patients were submitted to twice-daily tDCS over ten days during inpatient stay, followed by
once-daily tDCS over 10 days during an optional outpatient stay. ** One in each group withdrew (1) before the
start of the protocol due to an obstetrical complication or childcare challenges and (2) after 1 session both due to
travel feasibility.

In summary, the following items should be considered with the aim of developing
tDCS neuromodulation treatments for peri-pregnancy FM patients:

• Perform hormonal-related longitudinal studies in FM patients during different hor-
monal phases: menses, pregnancy, menopause. Progesterone, prolactin, estrogen, and
testosterone should be carefully evaluated and matched with symptom fluctuations.
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• Further assess the involvement of cortisol and serotonin through repetitive blood and
saliva sampling.

• Perform GABAergic investigation using high-resolution functional magnetic resonance
imaging (fMRI)/18F-fludeoxyglucose positron-emission tomography (18F-FDG–PET)
scans in patients during different hormonal phases would prove how the GABAergic
system is modulated [127,128].

• Assess the feasibility of tDCS in women planning a pregnancy affected by FM.
• Assess home-based, remote tDCS treatment in combination with lifestyle changes,

given they have been proven to be successful at reducing the patient’s symptoms [33].

9. Conclusions

Based on changes in FM symptoms reported by females affected by the disorder during
pregnancy, or developing it, we hypothesize that the progressive aggravation towards the
delivery is correlated to the negative influence exerted by neuro-endocrine changes on the
GABAergic transmission in our previously proposed thalamocortical loop model of FM
pathogenesis. This proposes a mechanism of how FM onset occurs during pregnancy, or
why recrudescence in late pregnancy occurs in existing FM patients. We suggested new
studies be performed to validate our hypothesis. Given the ability of tDCS to modulate
the GABAergic system, this evidence merits consideration as a potential treatment option
during or before pregnancy. We encourage the scientific community to consider these
new perspectives.
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