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We consider the theory of a symmetric tensor field in 4D, invariant under a subclass of infinitesimal 
diffeomorphism transformations, where the vector diff parameter is the 4-divergence of a scalar 
parameter. The resulting gauge symmetry characterizes the “fracton” quasiparticles and identifies a theory 
which depends on a dimensionless parameter, which cannot be reabsorbed by a redefinition of the 
tensor field, despite the fact that the theory is free of interactions. This kind of “electromagnetic gauge 
symmetry” is weaker that the original diffeomorphism invariance, in the sense that the most general 
action contains, but is not limited to, linearized gravity, and we show how it is possible to switch 
continuously from linearized gravity to a mixed phase where both gravitons and fractons are present, 
without changing the degrees of freedom of the theory. The gauge fixing procedure is particularly rich 
and rather peculiar, and leads to the computation of propagators which in the massive case we ask to be 
tachyonic-free, thus constraining the domain of the parameter of the theory. Finally, a closer contact to 
fractons is made by the introduction of a parameter related to the “rate of propagation”. For a particular 
value of this parameter the theory does not propagate at all, and we guess that, for this reason, the 
resulting theory should be tightly related to the fracton excitations.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Recently, quantum phases of matter have been studied which 
are characterized by fractionalized quasiparticles of the same type 
of spin liquids and fractional quantum Hall systems [1–5], which 
are commonly described in terms of gauge theories [6–8]. But, dif-
ferently from the latter, these new 4D phases are described by 
higher rank symmetric tensor fields, rather than vectors [9–13]. 
The corresponding fractionalized quasiparticles have been called 
“fractons”, which are excitations of U (1) gauge field theories 
which generalize the usual electromagnetism. The defining prop-
erty of these quasiparticles is their complete or partial immobility 
[14–16]. This property may be achieved through an extension of 
the usual electromagnetic theory, where the spatial vector gauge 
field Ai is substituted by a rank-2 spatial symmetric tensor gauge 
field Aij . Now, the usual gauge symmetry

δAi = ∂i� (1.1)
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may be extended in two different ways [17]:

• by means of a vector charge theory characterized by an un-
usual vector charge density ρ i and by an extended gauge 
transformation of the gauge tensor Aij with a vector ghost 
field

δAij = ∂i� j + ∂ j�i , (1.2)

which is the usual (spatial) infinitesimal diffeomorphism in-
variance, or

• through a scalar charge theory characterized by the usual 
scalar charge density ρ and by an unusual extended gauge 
transformation of the gauge tensor Aij with a scalar ghost 
field.

δAij = ∂i∂ j� . (1.3)

Both extensions imply restrictions on the mobility of the exci-
tation, which is partial in the case of vector charge theory and 
complete in the scalar charge theory [17]. Fractons are commonly 
understood as belonging to the second type of realization of the 
higher rank gauge theory, namely the scalar charge theory. This 
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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type of new quasiparticles lies on the boundary of several theo-
retical research activities, wherever immobility plays an important 
role (amorphousness in solids [14,18,19] and in computational sys-
tems [20–22], long-term entanglement [15,16,23], for instance). In 
this paper we would like to focus on the consequences of dealing 
with a gauge field Aij with a tensorial nature, which necessarily 
shares its birth certificate with Linearized Gravity (LG) [24], as it is 
apparent from the two cases mentioned above. It is readily seen, 
indeed, that for a particular choice of the vector parameter of the 
spatial diffeomorphism transformation (1.2)

�i = (∂i�)/2 (1.4)

the first transformation (1.2) turns into the second (1.3). This sug-
gests that a theory invariant under the transformation (1.2) should 
be invariant also under (1.3), being a particular case, but not vice 
versa. Which means that LG should be a particular case of the 
more general fracton theory invariant under (1.3).

This fact has already been observed [3] and in this paper, we 
aim at providing more details on this subject. The point of view 
that we take, where we consider a covariant 4D extension of 
the fracton transformation of a rank-2 symmetric tensor (given in 
(1.3)), has not been explored in the literature. We want to study 
the resulting tensor gauge field theory, using standard Quantum 
Field Theory techniques. The starting point is the necessary gauge 
fixing procedure, which already displays some non-standard fea-
tures, on which we will elaborate. We will then discuss in which 
sense fractons and gravitons are related, what commonalities they 
have, and how they differ. We will then consider the case where 
the fractons are massive, also exhibiting some unexpected features. 
The first notable difference with LG is that we have at our dis-
posal a dimensionless parameter a, and second that in order to 
find the propagators, the gauge fixing is much simpler. Neverthe-
less the propagator structure turns out to be quite rich and its 
study leads to a “phase” diagram of the theory which includes par-
ticular values of the free parameter a where the invariant action 
acquires a different structure. In our analysis we will adopt the 
simplest possible Landau gauge which has the advantage of mak-
ing the “physics” more transparent and the computations much 
easier. Particular attention has been paid to the degrees of free-
dom (dof) of the theory as the a-parameter moves on the real line. 
We shall also see that the phase diagram suggests an interpreta-
tion of the a-parameter and a possible connection with fractons. At 
the end we will explore, as is usual in LG, the massive extension 
of the model and will find that, in order to avoid tachyonic poles, 
a segment of the real line must be excluded from the domain of a. 
The paper is organised as follows. In Section 2 the invariant action 
for a 4D symmetric tensor field is derived as the most general one 
invariant under the particular infinitesimal symmetry characteris-
ing the “emergent electromagnetism” described in [2,3]. We then 
analyze the gauge fixing procedure, and we show that the Landau 
gauge choice is the natural one for this model. Finally, we compute 
the propagators, which lead to identify some critical values of the 
parameter a. One of these special values, notably a = 0, is expected 
since the model acquires a stronger symmetry and hence a com-
pletely different structure and while another one is also expected 
where the symmetric tensor becomes traceless, there is a third in-
triguing singular point, a = 1, where the model can be written in 
terms of a non propagating, invariant vector field. In Section 3 the 
degrees of freedom are studied, which allow for a further inter-
pretation of the a-parameter, which turns out to be related also to 
the gauge fixing structure of the theory, i.e. the choice of a scalar 
ghost. The massive case is considered in Section 4, where appear 
analogies and differences with respect to LG: as in the Fierz-Pauli 
theory of LG only one mass parameter is allowed instead of two 
[25,26], as a symmetric tensor field would in principle admit, and, 
2

differently to what happens in massive LG [27–29], the number of 
degrees of freedom does not depend on the presence of a mass 
term. Finally, in Section 5 we discuss the main feature of fractons, 
i.e. the fact of having limited or even zero mobility [14–16], and 
we propose a parameter, which of course is a function of a, which 
measures the rate of propagation of the particle described by this 
theory. We show that indeed for a particular value of this param-
eter the corresponding particle does not propagate, which lead us 
to identify the parameter, hence the theory, corresponding to frac-
tons.

2. The model

2.1. The symmetry and the invariant action

The action is built in flat 4D spacetime with a symmetric rank-2 
tensor field Aμν(x), and is invariant under the gauge transforma-
tion (2.1) [2,3]

δAμν = ∂μ∂ν� , (2.1)

where �(x) is a local scalar gauge parameter and the mass dimen-
sion of the tensor field is [Aμν ] = 1. Up to a field redefinition, the 
most general local action compatible with power counting and in-
variant under (2.1) is

Sinv(a) =
∫

d4x
[
∂μ A∂μ A − ∂ρ Aμν∂ρ Aμν + 2A∂μ∂ν Aμν

+ 2∂λ Aμλ∂ρ Aμρ

+a
(
∂ρ Aμν∂ρ Aμν − ∂λ Aμλ∂ρ Aμρ

)]
,

(2.2)

where A(x) ≡ ημν Aμν(x) and ημν = diag(−1, 1, 1, 1) is the 4D 
Minkowski metric. The action (2.2) depends on a dimensionless 
parameter, which we called “a”. It is quite peculiar that a free 
quadratic theory shows a “coupling” constant which cannot be re-
absorbed by a field redefinition. To our knowledge, the action (2.2)
is the only non interacting theory displaying this feature, with the 
exception of the abelian 3D Maxwell-Chern-Simons theory, where 
the coupling plays the role of a topological mass [30]. The choice 
of the a-parametrization of the action (2.2) makes apparent the 
contact with LG [24], which is reached for a = 0:

Sinv(a = 0) = SLG , (2.3)

which obeys the stronger symmetry of infinitesimal diffeomor-
phisms

δdi f f Aμν = 1

2
(∂μξν + ∂νξμ) . (2.4)

The fracton symmetry (2.1) is recovered for the particular choice 
of the vector diff parameter

ξμ = (∂μ�)/2 . (2.5)

Notice that

∂ Sinv(a)

∂a
=

∫
d4x Aμν

(
ημρ∂2 − ∂μ∂ρ

)
A ν

ρ , (2.6)

and hence the “a-term” in the action Sinv(a) (2.2) is transverse. 
The gauge symmetry (2.1) need to be fixed in order to compute 
the propagators, and here we notice a peculiar behaviour. While 
for the stronger symmetry (2.4) we promote the gauge parameter 
ξμ(x) to a ghost field with antighost ξ̄μ(x) and Nakanishi-Lautrup 
Lagrange multiplier bμ(x) [31,32] with

δξ̄μ = bμ , (2.7)
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in the weaker case (2.1) it is sufficient a scalar ghost φ(x) with 
antighost �̄(x) and a multiplier b(x) with

δ�̄ = b . (2.8)

Pursuing this second alternative enforces the following choice of 
dimensions

[�] = [�̄] = 0 ; [b] = 1 . (2.9)

2.2. Gauge fixing

The most general term linear in Aμν(x) and at most quadratic 
in b(x) of maximal dimensionality is

S g f (k,k1) =
∫

d4x

[
−b(∂μ∂ν Aμν + k1∂

2 A) + k

2
b∂2b

]
, (2.10)

where k and k1 are two dimensionless gauge parameters. This term 
is peculiar, since if we try to eliminate the multiplier b(x) by its 
equation of motion, we have

∂μ∂ν Aμν + k1∂
2 A − k∂2b = 0 , (2.11)

which substituted back in (2.10) yields

S g f =
∫

d4x

[
−1

2
b(∂μ∂ν Aμν + k1∂

2 A)

]
= 1

2
S g f (k = 0,k1) ,

(2.12)

i.e. it looks like we are forced into a Landau gauge k = 0 choice. 
Following this suggestion we further consider the Landau gauge at 
k1 = 0 and we have from (2.11)

∂μ∂ν Aμν = 0 , (2.13)

which closely resembles the Lorenz gauge condition of QED and 
furthermore it does not touch the transverse “a-term” (2.6) of the 
invariant action Sinv(a) (2.2). For these reasons we will adopt the 
minimal Landau gauge [26]

k = k1 = 0 , (2.14)

and the gauge fixed action in Fourier transform is

S = Sinv(a) + S g f

=
∫

d4 p
[

p2 Ã(p) Ã(−p) − p2 Ãμν(p) Ãμν(−p)

− 2 Ã(p)pμpν Ãμν(−p) + 2pλpρ Ãμλ(p) Ãμρ(−p)

+aÃμν(p)(ημρ p2 − pμpρ) Ã ν
ρ (−p) + b̃(p)pμpν Ãμν(−p)

]
.

(2.15)

2.3. Propagators

In order to compute the propagators of the theory, we rewrite 
the action Sinv(a) (2.2) as

Sinv(a) = 1

2

∫
d4 p

[
Ãαβ(p)̃αβ,μν(p) Ãμν(−p) ,

]
(2.16)

where ̃αβ,μν(p) satisfies

̃αβ,μν = ̃μν,αβ = ̃βα,μν = ̃αβ,νμ , (2.17)

and can be expanded on five rank-4 tensors which we collectively 
denote [33–35]
3

Xμν,αβ ≡ (A, B, C, D, E)μν,αβ (2.18)

defined as

Aμν,αβ = dμνdαβ

3
(2.19)

Bμν,αβ = eμνeαβ (2.20)

Cμν,αβ = 1

2

(
dμαdνβ + dμβdνα − 2

3
dμνdαβ

)
(2.21)

Dμν,αβ = 1

2

(
dμαeνβ + dμβeνα + eμαdνβ + eμβdνα

)
(2.22)

Eμν,αβ = ημνηαβ

4
, (2.23)

where

eμν = pμpν

p2
; dμν = ημν − eμν (2.24)

are idempotent and orthogonal rank-2 projectors

eμλeλ
μ = eμν, dμλdλ

ν = dμν, eμλdλ
ν = 0 . (2.25)

On the above basis, ̃μν,αβ(p) in the action (2.16) writes

̃μν,αβ = t(p)Aμν,αβ + u(p)Bμν,αβ + v(p)Cμν,αβ

+ z(p)Dμν,αβ + w(p)Eμν,αβ ,
(2.26)

with

t(p) = (2 + a)p2 ; u(p) = 0 ; v(p) = (a − 1)p2 ;
z(p) = a

2
p2 ; w(p) = 0 .

(2.27)

The gauge fixed action S (2.15) can be written as

S =
∫

d4 p
[

Ãμν̃μν,αβ Ãαβ + b̃( Ãμν�∗μν + �μν Ãμν)
]

=
∫

d4 p ( Ãμν b̃)

(
̃μν,αβ p2eμν/2
p2eαβ/2 0

)(
Ãαβ

b̃

)
. (2.28)

The propagators are given by the inverse of the matrix appearing 
in (2.28)

(
̃μν,αβ p2eμν/2
p2eαβ/2 0

)(
G̃αβ,ρσ G̃∗

αβ

G̃ρσ G̃

)
=

(
Iμν

ρσ 0
0 1

)
,

(2.29)

where we parametrize the gauge propagator as

G̃αβ,ρσ = t̃(p)Aαβ,ρσ + ũ(p)Bαβ,ρσ + ṽ(p)Cαβ,ρσ

+ z̃(p)Dαβ,ρσ + w̃(p)Eαβ,ρσ .
(2.30)

We get (see Appendix A for the detailed calculations)

t̃(p) = 1

(2 + a)p2
; ṽ(p) = 1

(a − 1)p2
; z̃(p) = 2

ap2
. (2.31)

As (2.31) clearly shows, the limit cases a = 0, |a| → ∞, a = 1 and 
a = −2 should be considered separately. Let us recall that the pa-
rameter a is the one which measures the deformation of the action 
Sinv(a) (2.2) with respect to LG.

1. a → 0 The action becomes that of LG and the symmetry is 
restored to the one shown in (2.4). Notice that the choice a = 0
is protected by the enhanced symmetry (2.4). The propagator 
matrix is dominated by the z̃(p) term in (2.30):

G̃αβ,μν(0) ∝ 2
2

Dαβ,μν . (2.32)

ap
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2. |a| → ∞ The LG component of the action (2.2) is suppressed 
and the propagator matrix becomes

G̃αβ,μν(∞) ∝ 1

ap2
(Aαβ,μν + Cαβ,μν + 2Dαβ,μν) . (2.33)

Notice that

G̃αβ,μν(∞) = 1

2ap2
(dμαdνβ + dμβdνα) + G̃αβ,μν(0) . (2.34)

3. a → 1 Let us go back to the invariant action Sinv (a) (2.2) and 
see what happens when a = 1. We find

Sinv(a = 1) =
∫

d4 p [p2 Ã(p) Ã(−p) − 2 Ã(p)pμpν Ãμν(−p)

+ pμpν Ã ρ
μ (p) Ãρν(−p)] . (2.35)

Now, setting

Ãρ(p) ≡ pρ Ã(p) − pν Ã ρ
ν (p) , (2.36)

with

δÃρ(p) = pρ p2�̃ − pν pν pρ�̃ = 0 , (2.37)

we can rewrite (2.35) as

Sinv(a = 1) =
∫

d4 p [Ãρ(p)Ãρ(−p)] , (2.38)

so that the action trivializes, since the field Ãρ(p) does not 
propagate, which is the defining property of the fracton quasi-
particle. We shall comment on this in the concluding Section.

4. a → −2 Once again we reconsider the invariant action Sinv (a)

(2.2) for this particular value of a, and setting

Aμν(x) = Âμν(x) + 1

4
ημν A(x) , (2.39)

where Âμν(x) is the traceless component of Aμν(x)

Â(x) = Â μ
μ (x) = 0 , (2.40)

we find that Sinv(a = −2) depends only on Âμν(x) and the 
trace Â(x) disappears from the invariant action.

Notice that, contrary to the a → 0 case which is protected by the 
rising of a new symmetry (2.4), the cases a = 1 and a = −2 are 
“unstable” under radiative corrections and therefore they corre-
spond to a “mild” singularity which is there at the classical level 
but which does not survive the quantum fluctuations.

3. Degrees of freedom (dof)

Since the dof are gauge independent, the easiest way of com-
puting them is in the Landau gauge through the equations of mo-
tion. From (2.15) we have

δS

δb̃
= pρ pσ Ãρσ = 0 (3.1)

δS

δ Ãμν

= 2p2ημν Ã − 2p2 Ãμν − 2ημν pρ pσ Ãρσ

− 2pμpν Ã + 2(pμpτ Ãν
τ + pν pτ Ãμ

τ )

+ a(2p2 Ãμν − pμpτ Ãν
τ − pν pτ Ãμ

τ ) + pμpν b̃ = 0 .

(3.2)

From (3.2) we find

ημ

eμ

p

wh

pρ

ap

A 
of 
Fo
so
kn
ter
W
sy
dif
sy
Th
co
ton
dif
rea
ca
do
ve
us

J̃ρ

wh

pρ

wh

J̃ρ

for
(3.

p2

wh

p2

or

B̃ρ

an

J̃μ

or

pσ

wh
ex
the
4

ν
δS

δ Ãμν

= (4 + 2a)(p2 Ã − pρ pσ Ãρσ ) + p2b̃ = 0 (3.3)

ν
δS

δ Ãμν

= p2b̃ = 0 (3.4)

ν
δS

δ Ãμν

= a (p2 pν Ãμν − pμpρ pσ Ãρσ ) + pμp2b̃ = 0 , (3.5)

ich, taking into account also the gauge condition (3.1), imply

p2b̃ = 0 (3.6)

pσ Ãρσ = 0 (3.7)
2 pν Ãμν = 0 . (3.8)

remark is in order concerning the case a = 0, which corresponds 
having only gravitons in the theory, as we see from Sinv(a) (2.2). 
r a = 0 we have only the constraint (3.7) on the symmetric ten-
r field Aμν(x), which therefore would display 9 dof. Now, we 
ow that the dof of massless LG are, instead, 6 [27,28]. It is in-
esting and instructive to go back to the origin of this mismatch. 

e already noticed that LG is a particular solution of the fracton 
mmetry (2.1), which is protected by the stronger infinitesimal 
feomorphism symmetry (2.4). In other words, for a → 0 the 
mmetry switches from the weaker (2.1) to the stronger (2.4). 
is transition is not continuous as far as the gauge parameter is 
ncerned, because it changes from being a scalar (for the frac-
 symmetry (2.1)) to become a vector field (for the infinitesimal 

feomorphism (2.4)). As a consequence, the “scalar” gauge fixing 
lised in S g f (2.10) is not a proper gauge fixing for the a = 0

se, and one should choose instead a “vectorial” gauge fixing, as 
ne in [25,34] for LG. This is the physical explanation of the di-
rgence of the propagator (2.31) for a → 0. In the case a �= 0, let 
 define

≡ pσ Ãρσ , (3.9)

ich by (3.7) is a conserved current, i.e.

J̃ρ = 0 , (3.10)

ich implies that the current J̃ρ is of the form

= ερμνλ pμ B̃νλ (3.11)

 a generic antisymmetric tensor B̃νλ . Substituting back J̃ρ in 
8) yields

J̃μ = p2εμρνλ pρ B̃νλ = 0 , (3.12)

ich also implies

B̃ρλ = pρ B̃λ − pλ B̃ρ , (3.13)

λ = 1

p2
(pρ B̃λ − pλ B̃ρ) , (3.14)

d hence, from (3.11)

= 0 , (3.15)

Ãρσ = 0 , (3.16)

ich represents four conditions. Therefore at a �= 0 we find 6 dof, 
cept the case a = −2 where the tensor becomes traceless and 
 dof reduce to 5.
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4. Massive theory

To complete the analysis, we consider the massive case, and 
the generic mass term that can be added to the invariant action is 
[25,34,36]

Sm =
∫

d4 p
(m1

4
Ãμν Ãμν + m2

8
Ã2

)

=
∫

d4 p
1

2
Ãμν(m1Iμν,ρσ + m2 Eμν,ρσ ) Ãρσ , (4.1)

where Iμν,ρσ and Eμν,ρσ are the rank-4 tensors defined in (A.2)
and (2.23). Consequently, the tensor ̃μν,ρσ (2.16) is modified as

̃μν,ρσ (m1,m2) = ̃μν,ρσ + m1Iμν,ρσ + m2 Eμν,ρσ , (4.2)

and, by Eqs. (A.2) and (2.26), we can write

̃μν,ρσ (m1,m2) = (t(p) + m1)Aμν,ρσ + m1 Bμν,ρσ

+ (v(p) + m1)Cμν,ρσ

+ (z(p) + m1)Dμν,ρσ + m2 Eμν,ρσ .

(4.3)

Since our aim here is to investigate the propagator structure of the 
invariant theory, we shall keep the modification with respect to 
the massless action to a minimum and accordingly we shall main-
tain the minimal Landau gauge fixing, given by S g f (k = k1 = 0)

(2.10). To compute the propagators we have to find a matrix(
G̃αβ,ρσ (m1,m2) G̃∗

αβ(m1,m2)

G̃ρσ (m1,m2) G̃(m1,m2)

)
(4.4)

which obeys(
̃μν,αβ(m1,m2) p2eμν/2

p2eαβ/2 0

)(
G̃αβ,ρσ (m1,m2) G̃∗

αβ(m1,m2)

G̃ρσ (m1,m2) G̃(m1,m2)

)

=
(
Iμν

ρσ 0
0 1

)
. (4.5)

Parametrising G̃αβ,ρσ (m1, m2) as

G̃αβ,ρσ (m1,m2) = T̃ Aμν,ρσ + Ũ Bμν,ρσ + Ṽ Cμν,ρσ

+ Z̃ Dμν,ρσ + W̃ Eμν,ρσ

(4.6)

we find (the details of the calculation are in the Appendix)

m2 = 0 , (4.7)

G̃(m1,m2) = −2m1

p4
(4.8)

and

T̃ (p;a,m1) = 1

(2 + a)p2 + m1
(4.9)

Ṽ (p;a,m1) = 1

(a − 1)p2 + m1
(4.10)

Z̃(p;a,m1) = 1

ap2/2 + m1
. (4.11)

A few considerations are in order. First of all, we observe that in 
the Landau gauge a separate mass term for the trace of Aμν(x) is 
forbidden, in close analogy to what happens in massive LG [25]. 
Moreover, having introduced a mass term, we have the new prop-
agator (4.6) with coefficients (4.9)-(4.11), which we would like 
not to have tachyonic poles [34]. With our choice of the metric 
ημν = diag(−1, 1, 1, 1) we need that the coefficient of p2 and the 
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Fig. 1. Allowed regions in the (a,m1)-plane.

s term have the same sign, and this identifies two allowed re-
s in the (a, m1)-plane. Therefore the a-segment (−2, 1) is not 

sically reachable and consequently in the massive case we can-
reach a = 0, i.e. the point where fractons disappear and only 
itons are present. This signals that, as already pointed out in 
study of the dof of the theory, the case a = 0 is somewhat sin-
r for the gauge choice (2.11), due to the fact that the gauge 
metry at a = 0 displays a vector, rather than scalar, parame-
The problem of massive LG has a longstanding literature, and a 
ed theoretical approach to both massive fractons and massive 
itons is still lacking. The number of dof in the massive case 
be computed in complete analogy to the massless one, and we 
 two constraints

pρ pσ Ãρσ = 0 (4.12)

2 + m1

2

)
pμ Ãμν = 0 , (4.13)

now a �= 0 and therefore we get from (4.13) four constraints 
 hence six dof, like in the massless case.

e finally remark that in the Landau gauge we have a func-
al equation which controls the mass term which breaks the 
ge symmetry (2.1), indeed we find

m) = m1

2

∫
d4x Aμν∂μ∂ν� = m1

2

∫
d4x �∂μ∂ν Aμν

= −m1

2

∫
d4x �

δ

δb
S(m) ,

(4.14)

ce
m1

2

∫
d4x �

δ

δb

)
S(m) . (4.15)

otice that if in (4.9)-(4.11) we parametrize m1 by means of 
a-parameter as follows

= a

|a|m2 , (4.16)

void tachyons with imaginary mass when

a > 0: from Ṽ (4.10) we find a ≥ 1,
a < 0: from T̃ (4.9) we find a ≤ −2,

efore the region a ∈ (−2, 1) is not physically reachable, as in 
1.
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5. Summary and discussion

In this paper we considered the theory of a symmetric ten-
sor field Aμν(x) in 4D, characterized by a particular infinitesimal 
diffeomorphism transformation, namely that whose vectorial pa-
rameter is a 4-divergence of a scalar. This weaker transformation 
identifies as the most general invariant action the local functional 
Sinv (2.2), which depends on a dimensionless parameter, which we 
called “a”, and which cannot be reabsorbed by a redefinition of 
Aμν . This is unusual for a quadratic theory and, to our knowledge, 
unique in 4D, the most known example of a quadratic theory de-
pending on a true parameter being Maxwell Chern Simons theory 
in 3D, where the parameter plays the role of topological mass for 
the gauge vector field. This opens the question of the interpretation 
of the a-parameter, besides the obvious fact of tuning the invariant 
action which coincides with LG when a = 0 to suppress gravi-
tons. The fact of dealing with a scalar gauge parameter suggests 
a gauge fixing governed by a Nakanishi-Lautrup scalar multiplier 
implementing a gauge condition which, as customary for symmet-
ric rank-2 tensor fields [26,34], depends on two gauge parameters. 
We show how the Landau gauge choice is the natural one and that 
the value a = 0, which would correspond to pure LG, is forbid-
den for two reasons. A technical one (the propagator diverge at 
a → 0) and a physical one (wrong counting of the degrees of free-
dom, which turn out to be nine instead of six, as expected in LG). 
We interpreted this mismatch with the fact that the symmetry of 
pure LG is governed by a vector gauge parameter (2.4) rather than 
a scalar one as in (2.1). As a consequence, the gauge fixing needs 
a vector Nakanishi-Lautrup multiplier as done in [25,26,34,36,37]
and not a scalar one as in (2.10). A final, important comment con-
cerns the relation between the theory studied in this paper and the 
fracton excitations. The first link is of course given by the symme-
try (2.1), which almost defines the fracton theory [3], but does not 
uniquely fixes the fractons as the only quasiparticles of the the-
ory, but rather a mixed phase of fractons and gravitons. What is 
really peculiar of fractons is the absence of mobility [14–16]. Now, 
if fractons are localized, we may propose a different (and com-
plementary) interpretation of the a-parameter. In Section 2.3 we 
noticed that the case a = 1 we can write the invariant action in 
terms of the vector field (2.36)

Aρ(x) ≡ ∂ρ A(x) − ∂ν Aνρ(x) (5.1)

as (2.38)

Sinv(a = 1) =
∫

d4x AρAρ , (5.2)

which does not propagate and is also invariant since

δAρ = ∂ρ(��) − ∂ν(∂ν∂ρ�) = 0 . (5.3)

The action Sinv(a) in (2.2) describes a class of theories parametrized 
by a and invariant under the “fracton” symmetry (2.1). Amongst 
them, we observe that the one characterized by a = 1 has a pe-
culiar property: it is possible to make the linear redefinition (5.1)
which trivializes the action Sinv(a = 1) to (5.2) for a non prop-
agating vector field. Now, interpreting the fracton property of 
absence of mobility as a non propagating excitation, we guess 
that Sinv(a = 1) might be the purely fracton action. For a → ∞
the graviton disappears in the sense that the LG component of 
the action is suppressed in favour of the dominating a-component 
which, alone, is an invariant action for a propagating symmetric 
tensor field and, hence, cannot be identified as a fracton quasipar-
ticle, which, instead, should not propagate. The case a = 1, which 
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Fig. 2. Allowed values of the a-parameter.

is our candidate for a pure fracton theory, corresponds to an ex-
tension of the LG action, not to its suppression. The allowed values 
of the a-parameter are summarized in Fig. 2. Now define the pa-
rameter μ as

μ ≡
∣∣∣∣a − 1

a

∣∣∣∣ , (5.4)

which measures the “rate of propagation” of the “particle” de-
scribed by the action Sinv (a) (2.2). In fact, for a = 1 we have μ = 0, 
and the mode is localized, while for a → 0 we have μ → ∞, i.e.
the gravitons propagate freely. Finally for a = −2, we have μ = 3

2 , 
and for |a| → ∞ we have μ → 1. In terms of μ we have the sit-
uation displayed in Fig. 3. We have the quite uncommon situation 
where the action Sinv(a) (2.2), which is only quadratic, contains 
a dimensionless parameter (“a”). In Section 2.3 we saw that the 
resulting propagators become a-dependent and we isolated three 
points, namely a = 0, a = 1 and a = −2, where these values simu-
late an infrared divergence which is the signal of a “phase transi-
tion”. Under this respect, the only clear interpretation is for a = 0, 
where the invariant action coincides with that of LG and there is a 
shift in the symmetry from the weaker scalar gauge (2.1) to the full 
infinitesimal diffeomorphism (2.4). In this sense we may say that 
at a = 0 we have only gravitons. Now the question is: if we elim-
inate the gravitons, i.e. a → ∞ what is left? In this limit we have 
an independent term which is invariant under the weaker symme-
try, but this term really identifies only an equivalence class and it 
is within this class that we have to make a choice for the “fracton” 
action. What we propose is strictly related to a peculiar property of 
fractons, i.e. the fact that they are localized and do not propagate. 
Hence it seems natural to assume that at a = 1, where the action 
trivializes and is written in terms of the non propagating invari-
ant vector field Aρ(x) (5.1), we have only fractons. The definition 
of the rate of propagation (5.4) allows us to make contact with 
the “phase transition” picture: suppose a = Tc−T

Tc
for some critical 

temperature Tc , then μ =
∣∣∣ T

T −Tc

∣∣∣ and we have μ = 0 for T = 0K

while μ → ∞ when T → Tc . The case a = −2 means T = 3Tc . 
If this picture is correct, we should have a critical temperature 
Tc �= 0K where we have a phase of only gravitons. The singular 
point a = −2 has an immediate interpretation since the trace of 
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Fig. 3. Rate of propagation μ.
the tensor field disappears from the invariant action and we loose 
one degree of freedom. To summarize, at a = 0 we have only gravi-
tons and at a = 1 only fractons. The hypothesis about the presence 
of a critical temperature T where the phase transition from frac-
tons to gravitons takes place is simply a “hypothesis” which fits in 
our scheme but for which we have no explicit evidence We con-
clude with a remark concerning the choice we made for the gauge 
fixing. The reason for choosing a scalar gauge condition instead of 
a vector one, as it happens in LG, which also is described by a 
symmetric tensor field, is due to the fact that the gauge parame-
ter of the transformation (2.1) is a scalar function. Hence only one 
gauge degree of freedom needs to be fixed by means of a scalar 
constraint and, for a symmetric tensor field Aμν , the most general 
one is that implemented by (2.12):

∂μ∂ν Aμν + k1∂
2 A = 0, (5.5)

which generalizes the Lorenz gauge condition for the vector gauge 
field Aμ

∂μ Aμ = 0. (5.6)

For a = 0, the action reduces to that of LG, which is not uniquely 
determined by the “fracton” transformation (2.1) but by the in-
finitesimal diffeomorphism transformation (2.4), which is a gauge 
transformation with a vector parameter, which hence necessarily 
needs a vector gauge condition, whose most general form is

∂ν Aμν + k1∂μ A = 0. (5.7)

The question might arise: what if we chose from the beginning 
a vector gauge condition, for a generic parameter a? Our guess is 
that it would be correct for a = 0 (which is LG), but it would over-
count the gauge degrees of freedom for a �= 0, and we expect that 
this would reflect in a different (and presumably wrong) count-
ing of the theory degrees of freedom. In any case, it should not 
be the first choice, when dealing with a gauge transformation like 
(2.1) characterized by a scalar parameter. As a first step towards 
a comparison of the two approaches, in Appendix A.1 we com-
pute the propagators also for the vector gauge condition (5.7), but 
this field theoretical issue would lead beyond the scope of this 
Letter, which is that of studying the degrees of freedom of a the-
ory of a symmetric tensor field parametrized by a, and finding a 
criterion for picking up amongst the whole class of theories, the 
one which might describe the fractons, whose defining property is 
that of being quasiparticles with vanishing or limited mobility. Our 
candidate for the fracton theory is Sinv(a = 1) (2.2), which can be 
reduced to the trivial action (5.2) for the non propagating vector 
field (5.1). This, at the moment, seems to be the main feature to 
identify the fractons. Following this hint, from (5.4) we see that 
for a → ∞ the mobility μ → 1, which is a small value compared 
to the gravitons mobility (a → 0 ⇒ μ → ∞). If we wish to give a 
name to the quasiparticles with a �= 1 (and a �= 0), we might call 
them “quasifractons”. We would like to point out that our picture 
is only a possibility, and that further investigation is needed to ar-
rive at a well established physical identification of the whole class 
of quasiparticles described by the action (2.2).
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Appendix A. Propagators

A.1. Massless case

The Xμν,αβ tensors (2.18) have the symmetries

Xμν,αβ = Xνμ,αβ = Xμν,βα = Xαβ,μν , (A.1)

and the following properties hold:

• decomposition of the rank-4 tensor identity

Iμν,ρσ = 1

2
(ημρηνσ + ημσ ηνρ) (A.2)

Aμν,αβ + Bμν,αβ + Cμν,αβ + Dμν,αβ = Iμν,αβ ; (A.3)

• idempotency:

X ρσ
μν Xρσ ,αβ = Xμν,αβ ; (A.4)

• orthogonality of A, B , C and D:

Xμν,αβ X ′αβ
ρσ = 0 if (X, X ′) �= E and X �= X ′ ; (A.5)

• contractions with E:

Aμν,αβ Eαβ
ρσ = dμνηρσ

4
(A.6)

Bμν,αβ Eαβ
ρσ = eμνηρσ

4
(A.7)

Cμν,αβ Eαβ
ρσ = Dμν,αβ Eαβ

ρσ = 0 . (A.8)

From (A.23) we have

̃μν,αβ G̃αβ,ρσ + 1

2
p2eμν G̃ρσ = Iμν

ρσ (A.9)

̃μν,αβ G̃∗
αβ + 1

2
p2eμν G̃ = 0 (A.10)

p2eαβ G̃αβ,ρσ = 0 (A.11)

1
p2eαβ G̃∗

αβ = 1 . (A.12)

2
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From (A.12) we immediately get

G̃∗
αβ = G̃αβ = 2

p2
eαβ , (A.13)

which, substituted in (A.10) and taking into account (2.26) and 
(2.27), gives

G̃ = 0 . (A.14)

Using the properties of the rank-2 projectors eμν and dμν (2.24)
and of the rank-4 tensors Xμν,αβ (2.18), from (A.11) we have

ũ(p) = w̃(p) = 0 . (A.15)

The other coefficients of the gauge propagator G̃αβ,ρσ (2.30) are 
determined by (A.9), which becomes

tt̃ Aμν
ρσ + v ṽCμν

ρσ + zz̃Dμν
ρσ + eμνeρσ = Iμν

ρσ

= Aμν
ρσ + Bμν

ρσ + Cμν
ρσ + Dμν

ρσ ,
(A.16)

hence

tt̃ = v ṽ = zz̃ = 1 , (A.17)

i.e.

t̃(p) = 1

(2 + a)p2
; ṽ(p) = 1

(a − 1)p2
; z̃(p) = 2

ap2
. (A.18)

The symmetry (2.1), besides many other physical peculiarities, 
has also the additional one of giving a double possibility of gauge 
fixing it, by means of the scalar gauge condition (5.5) or the vector 
one (5.7). In this paper we adopted the scalar choice by count-
ing the gauge degrees of freedom: the symmetry (2.1) involves 
a scalar gauge parameter. Hence, the scalar gauge choice (5.5) is 
the appropriate one. Nevertheless, in order to be able to write the 
propagators of the theory, one might adopt the vector gauge con-
dition (5.7) as well, which is the one relevant in LG and which 
corresponds to the stronger infinitesimal diff transformation (2.4), 
which is not a symmetry of the theory studied in this paper 
(the action (2.2) is not invariant under the gauge transformation 
(2.4)). Hence, the vectorial gauge condition (5.7) is not the correct 
one. This opens an interesting, purely field theoretical, question, 
on the nature of the gauge fixing procedure. Going back to Fad-
deev and Popov, gauge fixing a theory is a much more subtle task 
than adding a term to the action in order to being able to invert 
the quadratic part of the action and write down the propagators. 
Gauge fixing a gauge field theory means intersecting the gauge or-
bits and choosing, for each orbit, one representative, and possibly 
only one. We know that this is not possible, due to the Gribov 
problem, but what is sure is that a scalar gauge parameter needs 
one and only one gauge condition. Choosing, as it would be the 
case for the vector condition (5.7), four conditions instead of one 
is more than enough for writing the propagators, but it does not 
correspond to intersecting the gauge orbits defined by (2.1) only 
once. Hence, the existence of propagators is granted, as we shall 
show in a moment, but the counting of the degrees of freedom 
would be presumably wrong. Nevertheless, for the sake of com-
pleteness, we now compute the propagators corresponding to the 
vector gauge fixing (5.7). The gauge fixing term in this case is

S g f =
∫

d4x

{
bμ

[
∂ν Aμν + k1∂μ A

] + k

2
bμbμ

}
, (A.19)

where bμ is a vector Lagrange multiplier implementing the condi-
tion (5.7) and (k, k1) are two gauge parameters. In Fourier trans-
form the total action reads
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S =
∫

d4 p ( Ãμν b̃μ)

(
̃μν,αβ �̃�μν,α

�̃μ,αβ H̃μα

)(
Ãαβ

b̃α

)
, (A.20)

where ̃μν,αβ is still given by (2.26) and

�̃μ,αβ = − i

4
(dαμpβ + dβμpα) − i

2
k1dαβ pμ − i

2
(1 + k1)eαβ pμ

(A.21)

H̃μν = k

2
(dμν + eμν) . (A.22)

The matrix of propagators should satisfy(
̃μν,αβ �̃�μν,α

�̃μ,αβ H̃μα

)(
G̃αβ,ρσ G̃αβ,ρ

G̃∗
ρσ ,α G̃αρ

)
=

(
Iμν

ρσ 0
0 ημρ

)
,

(A.23)

where the gauge propagator is parametrized as (2.30), and

G̃μν,α = i[ f̃ (p)(dμα pν + dνα pμ) + g̃(p)dμν pα + l̃(p)eμν pα]
(A.24)

G̃μν = r̃(p)dμν + s̃(p)eμν . (A.25)

After long but straightforward calculations we get

t̃(p) = 1 + 4k1

(1 + k1)(a + 2)p2
;

ũ(p) = k1(1 + 4k1) − 2k(a + 2)

(1 + k1)2(a + 2)p2 ; ṽ(p) = 1

(a − 1)p2 (A.26)

z̃(p) = 4k

(2ka − 1)p2
; w̃(p) = − 4k1

(1 + k1)(a + 2)p2
(A.27)

for the gauge propagator G̃μν,ρσ (p) = 〈 Ãμν Ãρσ 〉,

f̃ (p) = 2

(1 − 2ka)p2
; g̃(p) = 0 ; l̃(p) = 2

(1 + k1)p2
, (A.28)

for the propagator G̃μν,ρ(p) = 〈 Ãμν b̃ρ〉(p) and, finally,

r̃(p) = 4a

2ka − 1
; s̃(p) = 0 , (A.29)

for the propagator G̃μν(p) = 〈b̃μb̃ν〉(p). Hence, the gauge fixing 
condition (5.7) leads to a set of propagators, as expected, which, 
as guessed, do not display anymore a pole in a = 0, which was a 
signal of the change of symmetry of the action (2.2), and which 
still display poles in a = 1 and a = −2, which have been dis-
cussed already. Notice the appearance of another pole involving 
the a-parameter, at 2ka = 1, which should be unphysical, since it 
relates a physical parameter to a gauge unphysical one, together 
with an additional pole at k1 = −1, which occurs also in LG [26]. 
As a check, one can verify that the propagators computed here 
with the vector gauge condition (5.7) coincide, at a = 0 with those 
of massive LG at vanishing masses, as they should [25].

A.2. Massive case

From (4.5) we get

̃μν,αβ(m1,m2)G̃αβ,ρσ (m1,m2) + p2

2
eμν G̃ρσ (m1,m2) = Iμν

ρσ

(A.30)

̃μν,αβ(m1,m2)G̃∗
αβ(m1,m2) + p2

2
eμν G̃(m1,m2) = 0

(A.31)
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p2

2
eαβ G̃αβ,ρσ (m1,m2) = 0

(A.32)

p2

2
eαβ G̃∗

αβ(m1,m2) = 0 .

(A.33)

With the parametrization (4.6) we find from (A.32)

Ũ pρ pσ + W̃
p2

4
ηρσ = 0 ⇒ Ũ = W̃ = 0 , (A.34)

while from (A.33) we have

G̃μν(m1,m2) = 2
eμν

p2
. (A.35)

Therefore (A.31) becomes

m1
eαβ

p2
+ m2

4p2
ηαβ + p2G̃(m1,m2)

eαβ

2
= 0 , (A.36)

which implies

m2 = 0 (A.37)

and

G̃(m1,m2) = −2m1

p4
. (A.38)

Taking all the above results into account, we can rewrite the con-
dition (A.30) as

[(t + m1)A + m1 B + (v + m1)C + (z + m1)D]αβ,μν [T̃ A + Ṽ C

+ Z̃ D]μν,ρσ + pα pβ

2

2eρσ

p2
= Iαβ

ρσ (A.39)

or

[(t + m1)T̃ A + (v + m1)Ṽ C + (z + m1) Z̃ D]αβ
ρσ + eαβeρσ

= [A + B + C + D]αβ
ρσ , (A.40)

so that

T̃ (p;a,m1) = 1

(2 + a)p2 + m1
(A.41)

Ṽ (p;a,m1) = 1

(a − 1)p2 + m1
(A.42)

Z̃(p;a,m1) = 1

ap2/2 + m1
. (A.43)
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